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Abstract: The presence of micropores in calcium phosphate

(CaP) ceramics has shown its important role in initiating

inductive bone formation in ectopic sites. To investigate how

microporous CaP ceramics trigger osteoinduction, we opti-

mized two biphasic CaP ceramics (i.e., BCP-R and BCP-S) to

have the same chemical composition, equivalent surface area

per volume, comparable protein adsorption, similar ion (i.e.,

calcium and phosphate) exchange and the same surface min-

eralization potential, but different surface architecture. In par-

ticular, BCP-R had a surface roughness (Ra) of 325.4 6 58.9

nm while for BCP-S it was 231.6 6 35.7 nm. Ceramic blocks

with crossing or noncrossing channels of 250, 500, 1000, and

2000 mm were implanted in paraspinal muscle of dogs for 12

weeks. The percentage of bone volume in the channels was

not affected by the type of pores (i.e., crossing vs. closed) or

their size, but it was greatly influenced by the ceramic type

(i.e., BCP-R vs. BCP-S). Significantly, more bone was formed

in the channels of BCP-R than in those of BCP-S. Since the

two CaP ceramics differed only in their surface architecture,

the results hereby demonstrate that microporous CaP

ceramics may induce ectopic osteogenesis through surface

architecture. VC 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part

A: 103A: 1188–1199, 2015.
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INTRODUCTION

Searching for alternatives to autologs bone graft, which is
the current gold standard grafting material to heal bone
defects, has become a goal of biomedical engineering.1–3

Calcium phosphate (CaP) ceramics are applied for bone
grafting because their chemical composition resembles the
bone mineral phase.4–6 Traditionally, CaP ceramics were
used as osteoconductive or osteoinductive bone graft substi-
tutes in combination with cells and/or growth factors. For
instance, CaP ceramics delivering mesenchymal stromal cells
(MSCs) to the bone defect site could induce bone forma-
tion.7 Alternatively, a subclass of CaP ceramics with specific
physicochemical properties can induce ectopic bone forma-

tion without the addition of cells or growth factors through
a process defined as “osteoinduction.” Such phenomena has
been reported in several animal models, where hydroxyapa-
tite (HA) ceramic induced heterotopic bone formation in
dogs,8,9 baboons,4,10–12 rabbits,13 mouse,13 sheep,14 and
goats.15,16 Similarly, it was shown occurring also in tri-
calcium phosphate (TCP) ceramics in dogs,4,9,17–20 sheep,21

and in biphasic calcium phosphate (BCP) ceramics
implanted in dogs,5,17,18,22 pigs,5 sheep,14,23 goat,16,24–27 rab-
bits,13,28 and baboons.11 Previous studies have shown the
possible clinical importance of such CaP ceramics by com-
paring them in both nonosseous and osseous sites.22,29

Moreover, a resorbable osteoinductive TCP ceramic has
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shown equivalent bone forming ability to autologs bone
graft and recombinant human bone morphogenetic protein-
2 (rhBMP-2) in critical-sized bone defects.21 This finding
strongly reveals the potential of such specific ceramics to be
alternatives to autologs bone grafts.

The available data may have shown the relevance of mate-
rial properties to its functionality in bone regeneration. Physi-
cochemical modification of CaP ceramics may represent an
approach for bone defect repair. It is well known that the
chemistry of CaP ceramics influences on their degradation
behavior, which in turn affects osteogenesis. For instance, in a
previous study of ours, HA and BCP ceramics were implanted
intramuscularly in goats: higher bone incidence and amount
were found in the BCP ceramic—which contains the more
soluble TCP—as compared to HA ceramic.15 The geometry
and macrostructural properties of ceramic scaffolds have
been shown to play critical roles in bone formation as well.
Ripamonti et al showed that bone formation always started
from the concave side of the macropores and never from the
convex spaces of HA rods and discs.30

It is generally accepted that the presence of micropores
in CaP ceramics plays an important role in inducing hetero-
topic bone formation. For instance, microporous HA
ceramics could induce bone formation after subcutaneous8

and intramuscular6 implantations in dogs, while no bone
formed in those HA ceramics lacking of micropores. The
microstructure may improve osteoinduction by enlarging
the surface area, thus affecting protein adsorption, ion
release and mineral deposition. Protein adsorption, that is
the adsorption of growth factors including bone morphoge-
netic proteins (BMPs),31,32 is believed to play a crucial role
in bone induction. It has therefore been suggested that
micropores in CaP ceramics may concentrate higher
amounts of growth factors thanks to their enlarged surface
area.15,21 It was also proposed that the microporous CaP
ceramics can enhance the ion exchange processes because
of their enlarged surface area, later affecting osteogenic dif-
ferentiation of MSCs.33 The ions (e.g., Ca21 and PO32

4 ) in the
surroundings might trigger the bioactivity of CaP ceramics,
which may later allow bone formation.34 In addition, the
Ca21 and PO32

4 in the body fluids could also form a biologi-
cal apatite layer on the surface of the CaP ceramics.16,35 The
possible role of the formation of an apatite layer in osteoin-
duction is supported by the fact that bioactive metals could
induce ectopic bone formation. For example, bioactive tita-
nium implants that could get surface mineralization induced
bone formation after ectopic implantation, while titanium
implants not able to get such mineralization then could not
induce any bone formation.35

In addition to the improved protein adsorption and ion
exchange, micropores in CaP ceramics can generate different
surface architectures, which have shown to influence the
osteogenic differentiation of MSCs through various physical
properties such as surface roughness,36–40 the size of sur-
face pattern,41,42 and surface morphology.43–45 For instance,
Fu et al. showed that micropost rigidity can affect cell mor-
phology, focal adhesions, cytoskeletal contractility, and dif-
ferentiation of stem cells.46 In addition, Oh et al. showed

the critical role of the nanotube dimensions on osteogenic
differentiation of hMSCs in absence of osteogenic inducing
media.42 Finally, Dalby et al. demonstrated that nanoscale
disorder could stimulate osteogenic differentiation of hMSCs
in vitro without osteogenic supplements.45 Therefore the
role of surface architecture of CaP ceramics in ectopic osteo-
genesis cannot be excluded. The surface arthitecture could
be varied by controlling the sintering temperature of CaP
ceramics: a decrease in grain size and increase in micro-
porosity have shown to positively affect on osteoinductive
potential of CaP ceramics.16,21 Considering the surface prop-
erties, it is known that the presence of a high number of
small features on the surface indicates high roughness
values.

Therefore, from previous results suggesting that CaP
ceramics with small grains trigger heterotopic bone forma-
tion, here we expect that CaP ceramics with high roughness
will lead to ectopic bone formation. To explore whether the
surface architecture affects osteogenesis by microstructured
CaP ceramics, we optimized two types of BCP ceramics (i.e.,
BCP-R and BCP-S) to have the same chemical composition,
equivalent surface area per volume, comparable protein
adsorption, similar ions (e.g., Ca21 and PO32

4 ) exchange and
same surface mineralization potential, but different surface
architecture. We then compared their capacity to induce
osteogenesis in a canine osteoinduction model.

MATERIALS AND METHODS

Preparation and optimization of BCP ceramics
Two types of BCP, namely BCP-R and BCP-S, were prepared
from the same CaP apatite powder with a Ca/P ratio of
1.64. BCP-R was obtained by mixing CaP apatite powder
with 0.1% H2O2 solution to get slurry, which was subse-
quently dried at room temperature and sintered at 1150�C
for 8 h. BCP-S was prepared by isostatically pressing the
starting apatite powder in a steel cylinder, with inner diam-
eter of 1.25 inch, at a certain pressure for 5 min at room
temperature and thereafter sintering it at 1150�C for 8 h.
Importantly, the pressure was optimized to get BCP-S having
the same protein adsorption as BCP-R (see section “Protein
adsorption”): at last the chosen BCP-S was prepared using a
pressure of 50 MPa. The ceramic samples were then made
into three forms. Discs (Ø10 3 1 mm) were fabricated using
a lathe (Esmeijer, Netherland) and a histological diamond
saw (SP-1600, Leica, Germany), while blocks (7 3 9 3 12
mm) were made using a diamond saw (Heathway, England).
Afterwards, two types of channels (i.e., crossing and non-
crossing) with different diameters of 250, 500, 1000, and
2000 mm were made along the shortest side of the BCP
blocks using drills with the required diameter. BCP-R
ceramic implants had both crossing and noncrossing chan-
nels, while BCP-S ceramic implants only had noncrossing
channels. Because of technical challenges, it was not possi-
ble to obtain crossing channels with a diameter of 250 mm
in BCP-R. Granules (size 1–2 mm) were obtained by crush-
ing and sieving the ceramics. The crossing channels were
made to study the possible role of pore interconnectivity in
bone induction. All the samples were ultrasonically cleaned
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with acetone, 70% ethanol and demineralized water,
then dried at 80�C and sterilized with gamma irradiation
(Isotron, Netherland BV, Ede, The Netherlands) before fur-
ther use.

Physicochemical characterization of the ceramics
The chemical composition of the samples was determined
with X-ray diffraction (XRD; Rigaku, Japan). The HA/b-TCP
weight ratios in the BCP ceramics were determined with a
calibration line obtained from internal standard powders
with known HA/b-TCP weight ratios. The surface micro-
structure of the BCP ceramics was studied with scanning
electron microscope (SEM; XL30, ESEM-FEG, Philips, Eind-
hoven, The Netherlands) in the secondary electron mode.
The micro-porosity, micro-pore size distribution, and spe-
cific surface area of the ceramic blocks were measured
using a mercury intrusion porosimeter (MP; Auto Pore IV
9500, Micromeritics European Analysis Service, Monchen-
gladbach, Germany). The density of the ceramics was meas-
ured with the weight/volume method using the ceramic
discs. To better evaluate the surface properties, we calcu-
lated the surface area per volume as the product between
the specific surface area measured with mercury intrusion
and the measured density of the ceramic. The surface
roughness of the ceramic discs was analyzed with atomic
force microscopy (AFM; Bioscope Catalyst AFM, Bruker AXS,
Wormer, the Netherlands) using dual scans in tapping
mode, at a scan frequency of 1 Hz, on areas of 10 3 10 lm
with a MikroMarsch NCS36 cantilever (total tip height 20–
25 mm, tip radius 10 nm and full type cone radius of 40� ,
spring constant 1.75 N/m). Obtained images were filtered
from signal noise and then analyzed with SPIP software
(v5.1.11, Image Metrology A/S, H�rsholm, Denmark). The
surface roughness was estimated in terms of roughness
average (Sa) and root mean square (Sq). Further, measure-
ments on the profile height changes as compared to the
zero-plan were also taken and plotted as distribution.

Protein adsorption
Fetal bovine serum (FBS, Lonza, Germany) and bovine
serum albumin (BSA, Sigma) were diluted in 25 ppm aque-
ous NaN3 solution and sterilized with 0.22 mm filter to get
the solutions of FBS (0.25%) and BSA (100 mg/mL). After
immersing the discs in the solutions (3 mL per disc, n 5 5
per material) at 37�C for 24 h, the remaining proteins in
the solutions were measured with the QuantiProTM BCA
assay kit (Pierce, The Netherlands) following the manufac-
turer’s guidelines and absorbance was measured with a
spectrophotometer (AnthosZenyth 3100, AnthosLabtec
Instruments GmbH, Salzburg, Austria) at 595 nm. The
amount of proteins adsorbed from FBS solution onto the
discs (microgram of protein per disc) was estimated
through a calibration serum protein curve using FBS after
determining the total proteins content in pure FBS (i.e.,
33.78 6 0.64 mg/mL). In the meantime, a calibration line
for BSA was built with a series of concentrated BSA solu-
tions. All measured values were expressed as mean 6

standard deviation.

rhBMP-2 adsorption
A solution of rhBMP2 (500 ng/mL) was prepared by dilut-
ing rhBMP-2 (Reborne, Shanghai) in the basic medium (BM)
containing Dulbecco’s modified Eagle’s medium (DMEM;
Gibco, Invitrogen, UK), 10% FBS and 1% penicillin/strepto-
mycin (100 U/mL penicillin, 100 mg/mL streptomycin;
Gibco, Invitrogen, UK). The ceramic discs were then soaked
in the medium (3 mL per disc, n 5 5 per material) at 37�C
in humid atmosphere with 5% CO2 for 24 h. The discs were
stored at 280�C for at least 12 h after being washed with
PBS three times. Thereafter 0.5 mL of 1% triton was add to
each sample and kept at 4�C for at least 12 h and followed
by ultrasonically shaking for 5 min. Finally, rhBMP-2 content
in the supernatant was measured with BMP-2 Elisa kit
(R&D, UK) following the manufacturer’s instructions and
absorbance was measured with a spectrophotometer at 450
nm. The rhBMP-2 adsorption was estimated through a
standard calibration rhBMP-2 curve and expressed as mean
6 standard deviation.

Ion exchange
Ceramic discs were soaked in BM (3 mL per disc, n 5 5 per
material) at 37�C in humid atmosphere with 5% CO2 for 24
h. Calcium and phosphate contents in the solutions were
measured and compared to the control (i.e., solution with
no sample). Calcium and phosphate ion concentration were
measured with QuantiChromTM Calcium assay kit (BioAssay,
USA) and phosphoWorkTM Colorimetric Phosphate Assay Kit
(AATBioquest, USA), respectively following the manufac-
turer’s guidelines. Thereafter, absorbance was measured
with spectrophotometer at 620 nm. Both calcium and phos-
phate contents were expressed as mean 6 standard
deviation.

Surface mineralization
Simulated body fluid (SBF) was prepared according to Ref.
[47 by dissolving reagent grade chemicals in distilled water
strictly in the following order: NaCl, NaHCO3, KCl,
K2HPO4�3H2O, MgCl2�6H2O, CaCl2 (Ca ion standard solution,
0.1M, Metrohm) and Na2SO4. The solution was then buf-
fered to pH 7.4 at 36.5�C using Tris ((CH2OH)3CNH3) and
1M HCl. The final solution had an ion concentration (mM)
as follows: Na1, 142; K1, 5; Mg21, 1.5; Ca21, 2.5; Cl2,
147.8; (HCO3)

2, 4.2; (HPO4)
22, 1; (SO4)

22, 0.5. Fifty gran-
ules (1–2 mm) of each material were soaked in 200 mL of
SBF at 37 6 1�C for up to 1 week. A minimum of 10 gran-
ules were taken out at each time point of 1, 2, 4, and 7
days. They were rinsed five times with distilled water and
dried at room temperature. The mineralization of the BCP
ceramics was observed with SEM. Four spots were ran-
domly selected from each granule. The mineralization level
of the materials was ranked as follows: (a) no mineraliza-
tion: all the spots were completely bare; (b) few mineraliza-
tion: one (or more) of the spots had thin and not uniform
mineralized layers; and (c) full mineralization: all the spots
were covered by thick and uniform mineralized layers. For
each classification group, the number of granules was
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counted and plotted on a histogram as percentage on the
total granules considered.

Evaluation of osteoinduction
Animal experiments. Following the permission of the local
animal care committee (Animal Center, Sichuan University,
Chengdu, China), ceramic blocks (n 5 8 per ceramic)
were implanted in the para-spinal muscles of 8 adult
male dogs (mongrel, 10–15 kg) for 12 weeks. The surgi-
cal operation was performed under general anesthesia by
abdominal injection of sodium pentobarbital (30 mg/kg
body weight) and sterile conditions. Following the sur-
geries, buprenorphine (0.1 mg/animal) was intramuscular
injected to the dogs for 2 days to relieve pain, while pen-
icillin (40 mg/kg) was intramuscular injected for three
consecutive days to prevent infection. After operation, the
animals were allowed for full weight bearing and received
normal diet.

Histological processing. After 12 weeks the animals were
sacrificed with a celiac injection of excessive amount of pento-
barbital sodium. Implants were then harvested with the sur-
rounding tissues and fixed in 4% buffered formaldehyde
solution (pH 5 7.4) at 4�C for one week, and embedded in
methyl methacrylate (MMA, K-plast, LTI Netherland, Bilt-
hoven, the Netherlands) after dehydration in a series of gradi-
ent ethanol solutions. Serial nondecalcified sections with an
average thickness of 15 mm were obtained without interrup-
tion using a microtome (SP-1600, Leica, Germany) equipped
with diamond saw blade having an approximate thickness of
280 mm and a knurled screw to control the thickness of the
sections. Being the sectioning done serially, the distance
between consecutive sections is �280 mm due to loss of
material by the blade. Each slide was stained with 1% methyl-
ene blue (Aldrich) and 0.3% basic function (Aldrich). Sections
were also prepared from MMA-embedded ceramic blocks
(not implanted) to be used as controls.

Histological and histomorphometric analysis. The histolog-
ical sections were observed with light microscopy (Nikon
Eclipse E200, Tokyo, Japan) with respect to tissue formation in
the channels. The sections were then scanned using a slide scan-
ner (Dimage Scan Elite 5400II, Konica Minolta Photo Imaging
Inc, Tokyo, Japan) to obtain overview images for histomorpho-
metrical analysis, which was performed using Adobe Photoshop
Elements 4.0 software. The channel area was selected as a
region of interest and the corresponding number of pixels was
read as ROI. Then the bone tissue area was pseudo-colored and
its respective pixels were counted as B. The percentage of bone
area in the channel (B%) was determined as B% 5 B*100/ROI
and the results were presented as mean and standard deviation
of all the sections taken at the same depth from all the samples.
As shown in the aforementioned equation, we normalized the
bone area to the ROI of the corresponding channel to make the
comparison of bone formation among the channels with differ-
ent dimension possible. The ROI of the channels in the control
ceramic blocks was measured as well, and the resorption rate
(R%) of the ceramics after explant was determined as R% 5

(ROI of the control-ROI of the explants)*100/(ROI of the con-
trol). The measurements were taken both at the openings and
in the central region of the channels.

Statistical analysis
Statistical analysis was performed using a one-way ANOVA
followed by a Tukey’s multiple comparison test or paired t-
test. A value of p < 0.05 was considered as significant
difference.

RESULTS

Material characteristics
The XRD patterns of the ceramics are given in Figure 1(a),
which shows the two BCP ceramics had similar chemistry
consisting of 80 6 3 wt % HA and 20 6 3 wt % b-TCP. The
SEM observation demonstrated a rougher surface of BCP-R
[Fig. 1(d)] than that of BCP-S [Fig. 1(c)]. This observation
was further confirmed by AFM images [Fig. 1(e,f)]. Smaller
pores could also be observed on BCP-S than BCP-R as con-
firmed also by mercury intrusion test [Fig. 1(b)]. The aver-
age roughness (Sa) and the root mean square (Sq) resulted
significantly higher in BCP-R than BCP-S (p 5 0.0014 and p
5 0.0019, respectively) indicating that the former material
presents a topography having larger and deeper variability
in its peaks and hollows heights over the area [Fig. 1(h)].
These results are corroborated by the distribution of surface
heights [Fig. 1(g)], which is larger for BCP-R. Interestingly,
the distribution of surface heights on BCP-R presents a lager
tail on the right as compared to BCP-S, which might be cor-
related with the preparation method of BCP-S involving a
step of isostatic pressure that could have flattened the sur-
face. In addition, the mercury intrusion results showed the
two BCP ceramics had different porosity and distribution of
micropore size. A micropore range of 0.3 and 1.3 mm with a
peak at 0.9 mm for BCP-R, whereas BCP-S had micropore
range from 0.3 to 0.7 lm with a peak at 0.6 mm [Fig. 1(b)].
The total microporosity was higher for BCP-R (43%) than
for BCP-S (28%). Mercury intrusion data revealed also that
the surface area per volume of BCP-R and BCP-S were the
same (Table I).

Protein adsorption assay
The amount of protein absorbed by the two ceramics is
shown in Figures 2(c, d, e), where no significant differences
between BCP-R and BCP-S with respect to adsorption of BSA
(p 5 0.702), of proteins in FBS (p 5 0.387), and of rhBMP-2
(p 5 0.632) were observed. These results might be explained
by the fact that the two ceramics have the same surface area.

Calcium and phosphate ions assay
Changes in calcium and phosphate ion concentrations in BM
were evaluated [Fig. 2(a,b)]: instead of releasing calcium
and phosphate ions into the medium, both ceramics
adsorbed ions from the medium within 24 h. However, BCP-
R and BCP-S adsorbed similar amounts of calcium and phos-
phate ions and no significant differences were observed
(calcium: p 5 0.153, phosphate: p 5 0.088).
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Surface mineralization
Mineralization on the BCP ceramics was observed as early
as after soaking in SBF for one day [Fig. 3(a,b)], and the
amount of mineralization increased during time finally
leading to thick layers of apatite that uniformly covered

the surface of all the samples after seven days [Fig.
3(c,d)]. The trend of surface mineralization over time is
illustrated in Figure 3(e), where no significant differences
between the two BCP ceramics were observed after seven
days.

FIGURE 1. (a) XRD pattern of the two ceramics, showing that BCP-S and BCP-R have the same chemistry. (b) Micropore distribution of BCP-S

and BCP-R as obtained from mercury intrusion measurements. It can be seen that BCP-S has smaller micropore size than BCP-R. The surface

microstructure of (c) BCP-S and (d) BCP-R was observed with SEM. AFM allows evaluating the surface roughness of (e) BCP-S and (f) BCP-R.

The height distributions of the microstructured surface of the two ceramics is shown in (g). Histograms in (h) allow the comparison of the meas-

ured surface roughness average (Sa) and root mean square (Sq) between the two ceramics. Statistically significant differences are marked by *

for p < 0.05. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Ectopic bone formation
A total of eight samples per ceramic were intramuscularly
implanted in eight dogs for 12 weeks, and all were
retrieved. Histological observations demonstrated that bone
formed in most channels of BCP-R [Fig. 4(b,d)], while in

BCP-S little bone amounts were found in few channels and
fibrous tissue was dominant [Fig. 4(a,c)]. Bone grew tight to
the wall of the channels [Fig. 4(d)]. The distribution of the
newly formed bone along the crossing channels with differ-
ent diameters (i.e., 500 mm, 1000 mm, and 2000 mm) of
BCP-R is shown in Figure 4(e). It could be seen that similar
trends in the distribution of new bone exist among the dif-
ferent channels: no bone formation at the openings (i.e., at
0 and 7000 mm on the x-axis); bone formation always
started at about 500 mm far from both openings (i.e., at 500
and 6500 mm on the x-axis); high amount of bone formation
was observed in the central part of the channels (i.e.,
between 750 and 6000 mm on the x-axis). Furthermore, it
appeared that higher amount of bone formed in the chan-
nels with 1 mm diameter rather than in the others, but no
significant differences in the bone amount were seen since

TABLE I. Density, Specific Surface Area and Surface Area per

Volume of the Two BCP Ceramics: The Density and the Spe-

cific Surface Area Data Were Experimentally Measured and

Used to Calculate the Surface Area per Volume that Resulted

to be the Same for the Two Ceramics

Density
(g/mL)

Specific Surface
Area (m2/g)

Surface Aarea
per Volume (m2/mL)

BCP-R 1.758 6 0.026 1.057 1.859
BCP-S 2.242 6 0.026 0.825 1.854

FIGURE 2. (a) Ca21 and (b) PO32
4 concentrations in culture medium after soaking the two ceramics’ discs for 24 h: they were significantly lower

than the control medium in both cases, but differences in Ca21 and PO32
4 amounts in the medium with BCP-S and BCP-R were not significant.

Protein adsorption of the ceramic discs after soaking in (c) BSA, (d) FBS, and (e) rhBMP-2 solutions, indicating that BCP-S and BCP-R have simi-

lar protein adsorption potential. Any statistically significant difference is marked with *** for p < 0.001. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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the standard deviation was high (p > 0.05). Table II shows
the amount of bone formation in each channel of the BCP
ceramics. In BCP-R ceramics: with the same diameter, the
type of channel (i.e., crossing and noncrossing) does not

affect the amount of bone formation (p > 0.05); within the
same type of channel, the diameter of the channel does not
affect the amount of bone formation either (p > 0.05). How-
ever, the amount of bone formation was significantly

affected by the ceramic type (i.e., BCP-R vs. BCP-S), where
significantly higher amounts of bone formed in the channels
of BCP-R (p < 0.01 or p < 0.001). The histological over-
views [Fig. 4(a,b)] show that the channels of both BCP

ceramics retained their shape after a 12-week implantation
indicating no obvious resorption of both ceramics in vivo.
The quantitative data confirmed this observation (Table III)
where no significant resorption was seen in both ceramics.

In particular, the measurements showed no effect of the

diameter or region (i.e., at the openings and in the central
sector) of the channel on the ceramics resorption.

DISCUSSION

In this study, we used optimized BCP ceramics to investigate
whether the surface architecture is playing a role in
material-directed osteoinduction. We could minimize the
number of possible influencing factors and make sure that
the two ceramics differed only in their surface architecture.
After a 12-week intramuscular implantation, BCP-R gave
rise to abundant bone formation while BCP-S could induce
the formation of a little amount of bone. The results pre-
sented herein thus indicate an important role of surface
architecture in the osteogenesis process by CaP ceramics.

Chemistry,21,22,42 macrostructure,11,48 and microstruc-
ture16,49,50 have been suggested to play roles in material
dependent osteoinduction. The possible influence of chemis-
try and macrostructure could be excluded in our study. The

FIGURE 3. Surface mineralization of BCPs after soaking in SBF solution. SEM images of surface mineralization on BCP-S with (a) few and (c) full

surface mineralization and BCP-R with (b) few and (d) full surface mineralization. (e) Percentage of BCPs ceramics with no, few and full surface

mineralization at days 1, 2, 4, and 7. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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two BCP ceramics were made from the same CaP powder
and, as shown in the XRD patterns, both BCP ceramics had
the same composition with 80 6 3% wt HA and 20 6 3%
wt b-TCP. This indicated that the different manufacture
methods did not affect the final chemistry of the BCP
ceramics. The macrostructure of the two BCP ceramic

implants was kept equal: both BCP ceramics contained non-
crossing channels with different diameters (i.e., 250, 500,
1000, and 2000 mm), and the channels were created in the
same positions in all the blocks.

The histological analysis showed that the newly formed
bone was not on the surface of the implants, but it always

FIGURE 4. Histology of the BCP ceramics (a and c: BCP-S; b and d: BCP-R) after 12 weeks in muscle of dogs. The green rectangles in (a) and (b)

highlight the areas observed with light microscope in (c) and (d). Figure (e) shows bone formation area along the crossing channels in BCP-R.

Legend of symbols: ST stands for soft tissues, M for material, and B for bone. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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formed inside the channels suggesting the important role of
macrostructure in osteoinduction. This result is consistent
with a previous study,19 where it was concluded that a con-
cave structure is necessary for osteoinduction in CaP
ceramics. To further investigate the effect of macrostructure
dimension on bone formation, we fabricated both BCP
ceramic implants with different channels’ diameters. When
analyzing the ceramics, no significant difference was
observed in both the bone incidence and the bone amount
among the channels having different diameter. It is worthy
of notice that this fact was found for both BCP-R and BCP-S,
therefore the diameter of the channels did not seem to be
essential for bone ingrowth in the tested range. However,
the measured percentage of bone in the 12-week samples
could not address the dynamic metabolism of the formed
bone regarding its growth towards the center of the chan-
nels and its remodeling, therefore the possible influence of
the channels’ diameter on bone metabolism could not be
excluded. It may well be that, at other time points such as
later than 12 weeks, the smaller channels would have more
bone fill than the larger ones as the latter will take longer
to be fully colonized by bone tissue. Furthermore, we
observed that there was no significant difference between
crossing and noncrossing channels in BCP-R, which is in
good agreement with a previous study12 where it was
claimed that interconnected macropores are not necessary
for osteoinduction. However, the histological results showed
that the incidence and amount of bone induced by BCP-S
were lower than BCP-R regardless of the channel diameter
(Table II). Therefore, the surface microstructure may have
played roles as main determinant of the osteoinductive

potential of the BCP ceramics, which was already shown in
several studies.16,46,49 It is generally suggested that micro-
porous CaP ceramics affects bone formation by virtue of its
enlarged surface area since it would result in higher protein
adsorption (e.g., BMP-2), higher calcium and phosphate ions
release and induced surface mineralization, or their
combinations.

Both BCP-R and BCP-S used in this study had the same
volume and equal surface area as shown in Table I. There-
fore, the surface area was not the main factor influencing
the bone forming potential. Meanwhile, the two BCP
ceramics adsorbed similar amounts of proteins from BSA
and FBS solutions, and they also could uptake rhBMP-2
from cell culture medium (Fig. 4). These results confirm the
fact that surface area of CaP ceramics influences the protein
adsorption. Having equal surface area, BCP-R and BCP-S
adsorbed equivalent amounts of proteins regardless of the
type of protein. The results also show that the protein
adsorption could not be appointed as the main determinant
for osteoinduction, since bone formation was different
between BCP-R and BCP-S which adsorbed the same amount
of proteins.

It has been reported that extracellular calcium and phos-
phate significantly influenced the growth and osteogenic dif-
ferentiation of MSCs,48 meanwhile the calcium and
phosphate supplementation promoted bone cell mineraliza-
tion.16 It has been also suggested that have been made the
dissolution of calcium and phosphate ions can be improved
when biomaterials are precoated with CaP apatite layers.
When titanium alloy was covered by an apatite layer, it
could dissolve and release ions that can favor osteogenic

TABLE II. A Summary of the Bone Forming Ability In Vivo for the Ceramics Studied

Samples Bone Incidence (%) Bone in Pores (% wt)

BCP-R Noncrossing (Ø: mm) 2 100 11.0 6 3.8
1 100 17.7 6 5.7
0.5 100 7.9 6 9.4
0.25 75 15.5 6 19.5

Crossing (Ø: mm) 2 100 14.3 6 5.8
1 100 22.3 6 9.6
0.5 87.5 6.8 6 9.4

BCP-S Noncrossing (Ø: mm) 2 50 0.6 6 1.1
1 25 0.9 6 2.4
0.5 62.5 1.8 6 2.3
0.25 31.25 1.8 6 3.7

It can be observed that the bone incidence as well as the newly formed bone volume were significantly higher in BCP-R than BCP-S when

considering the case of closed channels (i.e., with only one opening). The presence of a second opening in the channels (i.e., two sides open

case) did not significantly change the in vivo performance of BCP-R.

TABLE III. A Summary of Ceramic Resorption In Vivo (as Measured for the Noncrossing Channels in Both Ceramics), Which

Did Not Occur Regardless of the Ceramic Type or Channel Diameter

Peripheral Region of the Channels (U: mm) Central Region of the Channels (U: mm)

2000 1000 500 250 2000 1000 500 250

Resortpion
rate (%)

BCP-R 0.28 6 1.47 21.42 6 2.27 21.21 6 5.71 23.24 6 4.42 0.23 6 2.27 20.26 6 3.34 21.99 6 5.10 1.28 6 2.29
BCP-S 2.6 6 2.49 3.49 6 3.5 1.71 6 3.39 24.32 6 2.13 0.09 6 1.16 20.11 6 2.75 1.68 6 4.65 1.34 6 1.49
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differentiation of progenitor cells51 indicating a key role in
the CaP dissolution. It is therefore possible that the micro-
porous CaP ceramics used in our study initiated inductive
bone formation via ion release during material resorption.
However, no obvious resorption of both BCP ceramics was
observed in this study. The reason could be that the TCP
content in BCP ceramics was too low (20%) or the implan-
tation time was too short (12 week) to allow the resorption
of the ceramics. Moreover, both BCP-R and BCP-S, instead of
releasing, adsorbed similar amount of calcium and phos-
phate ions from culture medium after 24 h in vitro. There-
fore, the degradation rate of the materials and the CaP ions
release was not the affecting factors in BCP-R ceramic-
induced osteogenesis.

The ability to get surface mineralization has also been
suggested being important in ectopic osteogenesis because
ectopic bone formation was observed quite often in materi-
als that can easily mineralize. Winter and Simpson reported
that ectopic bone formation induced by a polymeric mate-
rial occurred after surface mineralization of the implant.52

Fujibayashi et al. studied the in vivo osteoinductivity of tita-
nium implants, which could or not surface mineralize in
vitro in SBF. The results demonstrated that those implants
that induced an apatite layer formation in vitro had osteoin-
ductive potential in vivo.35 Similarly, Barbieri et al. reported
the role of surface mineralization in vitro in material-
directed bone induction. They prepared poly (D,L-lactide)
and nanosized apatite composites with various apatite con-
tents that were used to test in vivo osteoinduction. The
results showed that only composites with at least 40% wt
apatite content could surface mineralize in vitro and
induced bone formation in vivo.53 Besides the spontaneous
formation of mineralized layers by natural precipitation of
ions from biological fluids, precoating biomaterials with CaP
layers has shown to improve their biological activity. For
example, polycaprolactone/TCP composites with HA-like
coating allowed not only better adhesion and proliferation
of porcine BMSCs as compared to noncoated counterparts54

but also better osteogenic differentiation as the expression
levels of various osteogenic indicators were improved. The
authors suggested that such apatite-like coating layers
would mimic the bone environment thus direct cells
towards bone phenotypes.54 When a polymer, i.e., polycap-
rolactone, was coated with a CaP layer and then cultured
with osteoblasts,55 it could induce ectopic bone formation
subcutaneously. The same study observed significant lower
performances of the noncoated polymer indicating a crucial
role of apatite-like layers in bone induction. However, our
results showed that both BCP-R and BCP-S mineralized in
vitro with similar trends, thus the possible influence of sur-
face mineralization on their different osteoinductivity could
be excluded.

Taken together, the role of surface architecture (as char-
acterized by surface roughness) in heterotopic bone forma-
tion induced by CaP ceramics could be clearly seen in this
study with the well-designed materials. In fact, previous
studies already showed that osteoblast-like cells favor
rougher surface to smooth surface in vitro.37–40 It also has

been demonstrated that microscale roughness with a high
density of nanoscale features were superior to microscale
roughness also in promoting osteogenic induction of the
human osteosarcoma cell line MG63, determined by
increased osteocalcin, osteoprotegerin, and vascular endo-
thelial growth factor. Moreover, Hu et al. examined the
changes in hMSC proliferation and differentiation after
growth on silk/tropoelastin materials with different content
of human tropoelastin, together with different surface
roughness and micro/nanoscale surface patterns. They
found that higher surface roughness with micro/nanoscale
surface patterns, and by increasing the content of human
tropoelastin in the materials, enhanced the proliferation and
osteogenic differentiation of hMSCs.36 In our study, the dif-
ferent methods used to prepare the materials resulted in
different micro-pore size [Fig. 1(b)] and thus in different
surface roughness [Fig. 1(e–h)]. The result herein showed a
relationship between surface properties of materials and
bone induction in vivo. Many biochemists and biologists
induce osteogenic differentiation of cells by topography fac-
tors in vitro, but there is no well-understood way of control-
ling such factors in vivo. We demonstrated in this report a
clear mechanism for osteoinduction based on the surface
architecture providing an explanation for the control of
bone induction by specific surface roughness. It is most
probable that surface architecture could physically affect
osteogenic differentiation of stem cells or undifferentiated
inducible osteoprogenitor cells in ectopic sites and lead to
the new heterotopic bone formation.

How the surface architecture of CaP ceramics drives
osteogenesis in ectopic sites is not clear as yet. It should be
mentioned that, upon injury due to the surgery, an inflam-
matory reaction is immediately triggered to limit the dam-
age while blood vessels restrict to stop bleeding. During this
stage, macrophage migration to the injured site and quick
formation of fibrin-based platelet-rich clot may have hap-
pened.56,57 Macrophages and platelets, together with endo-
thelial cells in the damaged vessels, might have released
various biomolecules (e.g., cytokines and several growth fac-
tors) prompting angiogenesis and migration of (stem) cells
to the site.56,57 In this study, the presence of the microstruc-
tured surface of BCP implants may have driven such (stem)
cells towards osteogenic differentiation favoring the
observed ectopic bone formation. To confirm this suggestive
mechanism, a histological analysis of short-term implants,
that is within few days from implantation, is recommended
to analyze the blood clot formation and presence of inflam-
matory cells in future studies.

Recently it has been shown that scaffolds seeded with
human mesenchymal progenitor cells and enriched with
rhBMP-7 could ectopically form bone tissue that resembled
the typical characteristics of a physiological bone, including
a trabecular structure surrounded by a cortex-like layer.58

We could not unequivocally identify the fat-like tissue pres-
ent in the large channels of BCP-R [Fig. 4(d)] as fat marrow
and therefore it is not possible to claim that the observed
bone can be considered as a complete organ bone in the
current study. However, the use of histochemical stains is
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suggested in future studies to identify the possible presence
of bone marrow and better understand if material-driven
ectopic bone formation can lead to a complete functional
bone tissue.

The optimized CaP ceramics allowed us to study
whether the surface architecture of CaP ceramics could act
as a cue for osteoinduction of CaP ceramics in vivo.
Although we have not pinpointed a mechanism where sur-
face architecture triggers ectopic bone formation of CaP
ceramics, to the best of our knowledge it is the first work
describing the significant role of a surface architecture in
bone formation in vivo, instead of in vitro osteogenic differ-
entiation of stem cells driven by surface characteristics as
often documented in literature.

CONCLUSION

Given the same chemical composition, surface area per vol-
ume, proteins adsorption, ion release rate, and surface min-
eralization ability, the surface architecture (i.e., surface
roughness) affects bone forming ability of biphasic CaP
ceramics, with a surface roughness of Ra 325.4 6 58.9 nm
as a favorite scale for bone formation in this study. The
results also showed that the percentage of bone volume in
the channels was significantly affected by the surface archi-
tecture of the ceramics instead of the type (i.e., crossing vs.
noncrossing) and size of the channels. Although the biologi-
cal mechanism of ectopic osteogenesis of microporous CaP
ceramics is far beyond understood, the current results dem-
onstrate the surface roughness a cue for material-induced
bone formation.
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