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In this review, we presume that the process of thrombus formation, as assessed in whole blood flow studies and
in experimental (murine) thrombosis studies, reflects the platelet responses in human haemostasis and throm-
bosis. Following this concept, we give an up-to-date overview of the main platelet receptors and signalling path-
ways that contribute to thrombus formation and are used as targets in (pre)clinical intervention studies to
prevent cardiovascular disease. Discussed are receptors for thrombin, thromboxane, ADP, ATP, prostaglandins,
vonWillebrand factor, collagen, CLEC-2 ligand, fibrinogen and laminin. Sketched are the consequences of recep-
tor deficiency or blockage for haemostasis and thrombosis in mouse and man. Recording of bleeding due to
(congenital) platelet dysfunction or (acquired) antiplatelet treatment occurs according to different protocols,
while common laboratory methods are used to determine platelet function.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Platelets are essential for normal haemostasis by forming a primary
plug or thrombus after vascular injury, thus preventing further blood
loss. Quantitative or qualitative platelet defects explain a considerable
part of spontaneous or induced abnormal bleeding events in the
population. Prospective studies suggest that the prevalence of bleeding
due to platelet defects is high and comparable to that of von Willebrand
disease [1]. Although the most severe platelet disorders are identified at
childhood, the majority of patients with milder platelet disorders remain
undiagnosed until excessive bleeding occurs after specific challenges, as
in surgery or trauma. On the other hand, undesired platelet activation
contributes to arterial thrombotic diseases, and antiplatelet medication
is the common therapy for secondary prevention, as in cardiovascular dis-
ease and stroke. Risk of bleeding is a well-known side effect of this sup-
pression of platelet activation.

The premise of this paper is that the process of thrombus formation,
such as assessed in whole blood flow studies and in experimental
(murine) thrombosis studies, mirrors the platelet responses that deter-
minehaemostasis and thrombosis. In this scenery, we aim to give anup-
to-date overview of themain platelet receptors and signalling pathways
that contribute to thrombus formation and are used as targets in (pre)
clinical intervention studies to attack cardiovascular disease. Since
platelet dysfunction and treatment with antiplatelet therapy may both
lead to a higher bleeding risk, we also sketch the current views of
, CARIM, P.O. Box 616, 6200MD,
+31 43 3884159.
.nl (J.W.M. Heemskerk).
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assessment of normal haemostasis by bleeding scores and discuss cur-
rent methods to measure platelet function impairment.
2. Platelet receptors, antagonists and thrombus formation

2.1. Thrombin receptors, PAR1, 3 and 4

Thrombin, a short-living proteolytic enzyme generated from pro-
thrombin by coagulation factor Xa, is not only a strong platelet agonist,
but also a main effector of the coagulation cascade, inducing fibrin clot
formation [2]. Thrombin is generated at phosphatidylserine-exposing
membranes from the damaged vessel wall and highly activated plate-
lets [3]. Its formation and inactivation can precisely be measured in
platelet-rich plasma or blood by thrombin generation assays [4].
Antithrombin in plasma binds and inactivates thrombin, a process that
is enhanced by heparins.

In human platelets, thrombin cleaves and activates the protease-
activated receptors (PAR)1 and PAR4. In comparison to PAR4, the
former displays a higher affinity to thrombin, transmitting signals at
sub-nanomolar thrombin concentrations. Accordingly, PAR1 functions
as the key thrombin receptor of human platelets,while PAR4 rather sus-
tains the action of PAR1 [5]. Platelets do not express the factor Xa recep-
tor, PAR2. Both expressed receptors, PAR1 and 4, signal via the G-
proteins G12/13α and Gqα, which evoke the majority of functional
platelet responses (Fig. 1). Current view is that both thrombin receptors
only indirectly signal via Giα, i.e. through ADP secretion and autocrine
effects [6]. The PAR-induced activation of G12/13α results in platelet
shape change by activation of Rho-associated protein kinase (ROCK)
followed by actin cytoskeletal changes, whereas the activation of Gqα

http://dx.doi.org/10.1016/j.blre.2013.12.001
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Fig. 1. Signalling and intervention via the protease-activated receptors (PARs) for thrombin. Shown are established agonists and receptors on human platelets that are involved in normal
haemostasis and are (potential) targets of antithrombotic treatment. Only key signalling proteins are indicated, as far as they associate with the receptors and act as essential molecular
switches or second messenger-generating proteins (isoforms in smaller font). Asterisks point to the known presence of dysfunctional mutations in man. Numbers in italic refer to copy
numbers (×1000) per platelet, as described in handbooks and proteomic analyses [162,163]. For instance, for G12/13α the indication ./6k indicates expression levels of ‘unknown’
(G12α) and ~6000 (G13α) copy numbers per platelet. Dashed lines show networks of signal transmitting proteins linking to the indicated platelet responses (lower boxes). Activation
strength of specific responses is represented by a heat mapwith colour codes fromwhite to blue. Pharmacological inhibitors used in clinic or laboratory are indicated in red, physiological
agonists in green. Abbreviations: AT, antithrombin; Gq, GTP-binding protein Gq; PLC, phospholipase C; PS, phosphatidylserine; ROCK, Rho-associated protein kinase.
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results in Ca2+-dependent integrin αIIbβ3 activation and secretion via
the effector enzyme, phospholipase Cβ (PLCβ). Thrombin is a strong
platelet agonist, which via PAR1/4 evokesmaximal shape change, secre-
tion and integrin activation, but thrombin by itself has little effect on
platelet procoagulant activity (Fig. 1) [3]. In vitro, the various PAR recep-
tors can be activated by specific thrombin receptor-activating peptides
(TRAP). Patients with mutations in the genes encoding for PAR recep-
tors have not yet been described, but a patient is reported with platelet
Gqα deficiency suffering from mucocutaneous bleeding [7].

Mouse platelets are devoid of PAR1 but express the isoform PAR3,
which serves as thrombin-binding co-factor for PAR4 promoting the ac-
tivity of this receptor [8]. Studies with Par3−/− and Par4−/− mice re-
vealed marked protection in experimental arterial thrombosis, which
was associated with prolonged bleeding times upon challenge [9]. In
Par4−/− mice, thrombus formation in vivo was reduced compared to
wildtypes, but knockout platelets showed normal adhesion and normal
support of fibrin deposition [10]. These in vivo observations suggest a
beneficial effect of blocking thrombin receptors in platelets.

In accordance with a key role of PAR1 in human platelet activation,
clinical trials have been performed with PAR1 antagonists like Vorapaxar
andAtopaxar. Vorapaxar has been evaluated in twophase III clinical trials.
The TRACER study did not reveal superiority of Vorapaxar over standard
therapy in the primary endpoint, which was a composite of death from
cardiovascular causes, myocardial infarction, stroke, recurrent ischemia
with rehospitalization, or urgent coronary revascularization [11]. In the
TRA-2P TIMI-50 study, where patients with prior stroke were excluded,
Vorapaxar was superior to placebo on top of standard care [12,13]. This
benefit was at the expense of an increased risk of intracranial bleeding,
which was observed in both studies. The other PAR1 antagonist,
Atopaxar, has been tested in several phase II trials, showing similar out-
comes as Vorapaxar in terms of safety and efficacy [14].

One consideration for the clinical practice, when prescribing PAR1
antagonists in combination with other antiplatelet agents is that,
although an extra bleeding risk would be acceptable in comparison to
gained antithrombotic protection, the patients need to take even more
medication at extra costs, with lower compliance as a side effect [15].
2.2. Thromboxane-prostanoid receptor, TP

The TP receptor (one gene product, previously split into α and β
forms) is activated by the fatty acid derivative, thromboxane A2 [16].
This prostanoid is released from activated platelets as a very unstable
metabolite, hence providing a rapid shut-off action mechanism upon
stimulation of the TP receptors. Thromboxane A2 formation requires
the release of arachidonic acid from membrane phospholipids, a pro-
cess catalysed by the Ca2+-dependent cytosolic phospholipase A2.
Arachidonate acts as a substrate for cyclooxygenase 1 (COX1) to pro-
duce prostaglandin H2, which is converted by thromboxane synthase
into thromboxane A2. Signalling via the TP receptor takes place via
G12/13α and Gqα, similarly as for thrombin, but at a lower extent
(Fig. 2) [17]. Activation of G12/13α again triggers platelet shape change
via ROCK activation, while the low activation of Gqα/PLCβ is still suffi-
cient for integrin activation and secretion.

In the laboratory, the stable thromboxane analogue U46619 is
used to specifically trigger TP receptors. By itself, U46619 is a weak
agonist evoking limited functional responses, but it enhances the ef-
fects of other platelet agonists. In agreement with this, collagen-
induced platelet activation relies for a considerable extent on the re-
lease of thromboxane A2 and ADP, and ensuing TP and P2Y12 receptor
activation, respectively [18]. The few patients described with muta-
tions in the thromboxane receptor experience mild bleeding [7].
This agrees with the finding that also in Tp−/− mice bleeding times
are prolonged [19].

The COX1 complex is irreversibly inhibited by Aspirin and other
non-steroid anti-inflammatory drugs (NSAIDs), such as Indomethacin,
Diclofenac, Ibuprofen and Naproxen (Fig. 2). The classical test to check
for inhibited COX1 activity is measurement of arachidonic acid-
induced (i.e., thromboxane-dependent) platelet aggregation. Benefit of
Aspirin in the treatment and secondary prevention of cardiovascular
disease has clearly been shown in early clinical trials [20,21]. However,
Aspirin has side effects experienced by some patients, particularly renal
insufficiently, gastrointestinal symptoms and haemorrhagic complica-
tions [22]. In accordance with this, also patients with an inherited
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Fig. 2. Signalling and intervention via the TP receptor for thromboxane A2. For explanation, see Fig. 1; AA, arachidonic acid; COX-1, cyclooxygenase 1; cPLA2, cytosolic phospholipase A2.
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‘aspirin-like’ platelet defect frequently have a mild bleeding phenotype
[7].While biochemical ‘resistance’ to Aspirin intake (i.e., lack of inhibition
of thromboxane A2 formation) is relatively rare, the drug prevents only
part of the thrombotic events [23], likely because thromboxane is a
weak platelet agonist. Intake of other NSAIDs may increase the cardio-
vascular risk, indicating that such drugs also affect other processes
than platelet thromboxane formation [24].

One of the developed antagonists for thromboxane receptors,
Terutroban, has been tested clinically as an orally active drug. The
TAIPAD study indicated that it was as effective as Aspirin in secondary
prevention of thrombotic events in cardiovascular disease [25]. On the
other hand, superiority of Terutroban over Aspirin could not be demon-
strated in the PERFORM trial, in preventing arterial events in patients
with stroke [26].

2.3. Purinergic receptors, P2Y1, P2Y12 and P2X1

The platelet dense granules (δ-granules) contain high concentrations
of the adenosine nucleotides ADP, ATP and adenosine polyphosphate. In
response to physiological agonists, these nucleotides are secreted and
enforce platelet activation processes in an autocrine manner. Secreted
ADP interacts with the purinergic P2Y1 and P2Y12 receptors, while ATP
binds to P2X1 receptors (Fig. 3). The receptors P2Y1 and P2Y12 are
coupled to the G-proteins, Gqα and Giα, respectively [27]. Interaction
of ADP with P2Y1 results in Ca2+ mobilization, shape change and initial
platelet aggregation through PLCβ stimulation [28]. Stimulation of the
other receptor, P2Y12, promotes the formation of large and stable plate-
let aggregates [29]. The principal signalling mechanism of P2Y12 is by
Giα-dependent stimulation of phosphoinositide 3-kinase (PI3Kβ/γ),
which regulates platelet aggregation via actin cytoskeleton-dependent
integrin αIIbβ3 activation [30]. The alternative pathway of Giα-
mediated inhibition of adenylate cyclase is nowadays considered to be
of lesser importance [31]. Under flow, continuous signalling via P2Y12

is required to maintain αIIbβ3 in the active conformation, and to ensure
thrombus stability [32].

Patients with P2Y1 deficiencies are not yet known. However,
mice lacking this receptor on platelets are protected from collagen/
epinephrine-induced thromboembolism and have a bleeding pheno-
type [28,33]. The P2Y1-deficient platelets show reduced aggregation
to all agonists. Conversely, mice with platelets overexpressing P2Y1

are more susceptible to thromboembolism and arterial thrombosis
[34].

Thirteen patients, experiencing a mild bleeding diathesis, have been
described who either lack P2Y12 receptors or have a receptor mutation
interfering with ligand binding [29,35]. Platelets from these patients
display a lesser and reversible aggregation in response to ADP, but
have normal shape change and Ca2+ mobilization. Bleeding is also
reported for subjectswith heterozygous pointmutations in the receptor
locus [36]. Interestingly, reduced expression in platelets of the P2Y12-
transmitting protein Giα gives a similar phenotype [7]. Also mice defi-
cient in P2Y12 display defective ADP-induced platelet aggregation and
increased bleeding times. In vivo, their platelets form small and unstable
thrombi [37]. Conversely, transgenic mice expressing constitutively
active P2Y12 exhibit increased platelet activation and arterial thrombo-
sis [38].

As reviewed elsewhere, P2Y12 is the pharmacological target of a
number of common antiplatelet agents [29]. Thienopyridines derived
from the prodrugs Clopidogrel and Prasugrel inhibit P2Y12 in an irre-
versible way, whereas the drugs Ticagrelor and Cangrelor act as revers-
ible P2Y12 inhibitors.When taken orally, Clopidogrel and Prasugrel need
to be converted by hepatic cytochrome P450 enzymes into active,
unstable metabolites. Despite well proven efficacy in multiple clinical
trials, the use of Clopidogrel has certain drawbacks [29]. The antiplatelet
effect is delayed by themetabolic conversion of the prodrug,while its ir-
reversible mode of action can be a problem if patients acutely need sur-
gery. Furthermore, Clopidogrel has considerable inter-individual
variability in responsiveness, which is clinically relevant since ‘poor’
respondersmay not be adequately protected from adverse cardiovascu-
lar events [39]. Poor responsiveness to Clopidogrel is associated with
loss-of-function mutations of cytochrome P450 isoforms [40]. This var-
iability in Clopidogrel responsiveness would argue for routine testing of
platelet function for optimal care of patients [29], as suggested in a
proof-of-concept trial [41]. The structural analogue Prasugrel is less crit-
ically dependent on cytochrome P450 enzymes for conversion into the
active metabolite in comparison to Clopidogrel. Prasugrel intake leads
to faster appearance of the active metabolite in the blood, and overall
greater inhibition of P2Y12-dependent platelet functions with less
intra-individual variation [29,40]. For both drugs, though, adequate dos-
ing is important, as full P2Y12 receptor blockage causes a high bleeding
risk.

The PLATO trial demonstrated that the drug Ticagrelor, which acts as
an oral and reversible P2Y12 antagonist, induces amore consistent plate-
let inhibition and a greater antithrombotic efficacy, when compared to
Clopidogrel, but still at the expense of bleeding [42]. Another reversible
P2Y12 inhibitor in use is the drug Cangrelor, which is administrated
intravenously. A recent meta-analysis suggests that Cangrelor and
Clopidogrel are similarly effective in reducing ischemic endpoints
after percutaneous coronary intervention [43].
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The ATP receptor P2X1 operates as a cation channel that mediates
transient Ca2+ influx through the plasma membrane and contributes
to platelet activation by stimulating shape change (Fig. 3). The Ca2+

signal evoked by P2X1 synergizes with that of other receptors, thus
explaining why P2X1 stimulation enhances platelet responses evoked
by other agonists [44]. One case of a congenital deficiency in P2X1

activation has been presented that was accompanied by a bleeding di-
athesis [45]. Mice lacking P2X1 are viable, yet males are infertile
[46,47]. P2X1-deficient mice show impaired platelet aggregation at
low agonist doses, decreased thrombus formation in vivo and protection
from thromboembolism [47]. No specific drugs for clinical use have
been described.

2.4. Prostaglandin receptors, IP and EP1–4

Prostaglandin I2 (prostacyclin) and prostaglandin E2 are prostanoids
involved in haemostasis by interactingwith the platelet IP and EP recep-
tors, respectively. Next to nitric oxide, prostaglandin I2 is one of the
major endothelium-derived platelet inhibitors. It abrogates platelet
activation via the Gsα-coupled IP receptors [48]. The signal pathway
involves activation of the enzyme adenylyl cyclase, which raises the sec-
ondmessenger cyclic AMP and leads to protein phosphorylation events
that are strongly inhibitory for platelets (Fig. 4). Several proteins inte-
grate the inhibitory activities of cyclic AMP, in particularly the G-
protein regulators CalDAG-GEFI and RGS18 [49,50]. Mice lacking the IP
receptor display an increased tendency to arterial thrombosis [51]. For
the human IP receptor, dysfunctional mutations are known resulting
in a defective function or lack of expression,whichweremore frequent-
ly accompanied by coronary artery obstruction, when compared to si-
lent mutations [52]. Drugs targeting the IP receptor, such as Selexipag,
Ilomedine and Teprostinil have primarily been tested for the treatment
of pulmonary hypertension, but will also inhibit platelet function.

The vasodilatating prostaglandin E2 (as drug termed Dinoprostone)
is released by various nuclear cells including macrophages. The mecha-
nism by which prostaglandin E2 influences platelets is complex: it
enhances platelet aggregation at low concentrations but inhibits at
higher doses. The proaggregatory effect is mediated by prostaglandin
E2 binding to the EP3 receptors and a Giα-linked mechanism (Fig. 4)
[53], similarly as described for ADP. It is suggested that EP3 signalling
in this way contributes to ADP- and collagen-induced platelet aggrega-
tion at low agonist doses. Functional mutations in the human EP3 gene
have not been described. Mice lacking this receptor display a markedly
decreased susceptibility to prostaglandin E2-promoted thrombosis.

At higher concentrations, prostaglandin E2 binds to the EP1, EP2 and
EP4 receptors [54]. All of these are Gsα-coupled receptors, and thus in-
hibit platelets by increasing cyclic AMP levels [53]. In human platelets,
especially the EP4 receptor transmits the inhibitory effect of prostaglan-
din E2. A selective EP4 agonist such as ONO AE1–329 thus suppresses
human platelet activation on collagen [55]. It was proposed that EP4
agonists can serve as antithrombotics, e.g. in cases where Aspirin and
ADP antagonists alone are insufficient to prevent thrombotic events.

The EP3 receptor is of some interest as a target, e.g. in
atherothrombotic disease where prostaglandin E2 levels are increased
at sites of atherosclerotic lesions [56,57]. An EP3 antagonist at the
beginning of clinical development (Phase II) is DG-041. Ex vivo, this
compound inhibits the potentiating effects of prostaglandin E2 on rat
and human platelet aggregation induced by various agonists, in rat
without increasing bleeding times [57,58].

2.5. Von Willebrand factor receptor, GPIb–V–IX

VonWillebrand factor (VWF) is a large glycoprotein that is released
from endothelial cells in blood plasma as well as from platelets.
Ultralarge multimers (strings) of VWF freshly secreted by endothelial
cells are most activating for platelets. Under normal conditions these
strings are cleaved by the protease ADAMTS13, but when ADAMTS13
activity is absent they become clinically problematic causing throm-
botic thrombocytopenia purpurea (TTP) [59]. Bleeding in TTP patients
is considered to be a consequence of VWF-induced platelet agglutina-
tion and thrombocytopenia.

In healthy subjects VWF circulates as intermediate-size multimers,
which capture factor VIII and bind to subendothelial matrix components
(collagen, laminin) and platelet aggregates. Under high shear stress con-
ditions as in the arterial circulation, the medium-sized VWF multimers
change in conformation and avidly interact with the platelet GPIb–V–
IX complex, forming a so-called catch bond [60]. The consequence is
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transient platelet adhesion which, in the presence of other receptor-
ligand interactions (e.g. collagen), turns into firm adhesion and platelet
activation under flow [61,62]. In the presence of high shear gradients,
for instance at atherosclerotic geometries, platelets can form thrombi
at post-stenotic sites in a GPIb-dependent manner with limited activa-
tion [63,64].

In the laboratory, VWF–GPIb interaction is induced by the venom
components ristocetin and botrocetin, which force VWF to bind
to GPIb–V–IX in the absence of shear. Ristocetin- or shear-induced
VWF–GPIb interaction leads to PLCγ and PI3K activity and, thereby, ac-
tivated αIIbβ3 [65]. The GPIb-associated adaptor protein 14-3-3ζ plays
an intermediary role in assembly of the concerning signal complex
[66]. The binding of VWF to GPIb–V–IX (under shear) induces only
limited signalling events (Fig. 5). However, it enforces multiple amplifi-
cation pathways in platelets, including thromboxane A2, ADP and
phospholipase D pathways [66,67].

There is increasing interest in the further roles of VWF and GPIb–V–
IX under conditions of coagulation and low shear, as in venous throm-
bosis. An initial observation was that thrombin binding to GPIb acceler-
ates platelet activation via PAR1 [68]. Several other coagulation factors
bind to theGPIb–V–IX complex aswell, but the functional consequences
are not well understood [3]. Under coagulant conditions, VWF binding
to GPIb stimulates platelet procoagulant activity and the formation of fi-
brin fibres on human and mouse platelets [69]. This is compatible with
the finding that in mice both VWF and GPIb contribute to venous
thrombosis in vivo, although the precise mechanisms are not fully
understood [70,71]. Together, this points to the existence of synergy
pathways of GPIb- and coagulation (thrombin?)-mediated platelet
responses.

Genetic deficiency or dysfunction of platelet GPIb–V–IX leads to
Bernard–Soulier syndrome, a rare bleeding disorder characterized by
thrombocytopenia and giant platelets [7]. A similar phenotype is
observed in mice deficient in the GPIbα or GPIbβ chains [72,73]. Inter-
estingly, also in mice, the GPV chain is considered to contribute to
thrombus formation by acting as a cleavable substrate for thrombin
[74]. The VWF–GPIb axis may also be a suitable target for pharmacolog-
ical intervention. In baboons, the humanized anti-GPIb antibody h6B4
acts as a safe antithrombotic drug withminimal bleeding [75]. A second
approach to interfere with GPIb-mediated thrombus formation may be
to target VWF. It has been shown that antibodies against the A3 domain
of vWF, through which GPIb interacts, inhibit arterial thrombus forma-
tion in vivo [76].

Bleeding is a recurrent phenomenon in patients with vonWillebrand
disease, a disorder characterized by quantitative or qualitative abnormal-
ities in VWF [77]. In most forms of von Willebrand disease, ristocetin-
induced platelet clumping via VWF (so-called platelet agglutination)
is reduced, thus stressing the importance of VWF–GPIb binding for nor-
mal haemostasis. In platelet-type 2M and type 2B von Willebrand dis-
ease, the VWF–GPIb interaction is increased leading to ‘spontaneous’
platelet aggregation and even thrombocytopenia [77].

2.6. Collagen receptor, GPVI

The principal signalling receptor for collagen on platelets is glycopro-
tein VI (GPVI), a member of the immunoglobulin superfamily, which as-
sociates with the ITAM-bearing FcRγ-chain [78]. GPVI is only expressed
on platelets and megakaryocytes, and it requires dimerization for bind-
ing to collagen [79]. Stimulation viaGPVI leads to full platelet activation,
including integrin activation, secretion and procoagulant activity [80].
Established ligands of GPVI are the fibrillar collagen types I or III,
collagen-related peptides containing repeats of the sequence, glycine-
proline-hydroxyproline, and the snake venom convulxin.

The GPVI-induced signalling mechanism operates through protein
tyrosine kinases, and resembles the signalling induced by various
other adhesive receptors (Fig. 6) [81,82]. In brief, ligand-occupied
GPVI dimers form a large signalling complex, via activation of Src-
family kinases, phosphorylation of the ITAM motif of the FcRγ-chain,
and activation of the central tyrosine kinase, Syk [83]. This results in a
cascade of phosphorylation events, with as an end result the activation
of key effector enzymes at the plasma membrane, PLCγ and PI3K iso-
forms [84,85]. The functional consequences are prolonged Ca2+mobili-
zation, secretion, integrin activation, procoagulant activity and
membrane blebbing (Fig. 7) [3]. The Ca2+-dependent proteins, protein
kinase C and CalDAG-GEFI, regulatemany of the downstream responses
to secretion and integrin activation (see below) [86,87].

The interest in GPVI as a target for antithrombotic therapy was
greatly raised by the recognition that mice lacking the FcRγ-chain
showed a greatly impaired thrombus formation in experimentalmodels
of arterial thrombosis, that was not accompanied by increased tail
bleeding [88]. A similar phenotype was found after depletion of platelet
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GPVI by injection of antibodies against this receptor [89]. In addition,
blocking of GPVI impaired thrombus formation on atherosclerotic
plaques, e.g. in a mouse model of acute plaque rupturing [90]. On the
other hand, deficiency in GPVI did not affect arterial thrombus forma-
tion in models of more severe vascular damage with tissue factor expo-
sure, where thrombin generation is considered to be the major driving
force of thrombosis [91,92].

Several patients have been described with circulating anti-GPVI
antibodies, accompanied by low expression of platelet GPVI, thrombo-
cytopenia and a mild bleeding tendency [78,93]. Mild mucocutaneous
bleeding symptoms have been reported for subjects with compound
heterozygous mutations or a frame-shift mutation in the GP6 gene
[94]. In addition, large scale genome-wide analyses indicate that varia-
tion in the GP6 locus is one of the major predictors in determining the
extent of platelet activation [95,96].
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GPVI [97,98]. Thrombus formation on collagen is greatly impaired in
mice lacking proteins of the GPVI signalling complex, i.e. PLCγ or PI3K iso-
forms [85,99],whereas animalswith constitutively active PLCγ2 showag-
gravated thrombus formation [100]. These mouse studies jointly suggest
that the major functional role of GPVI is the limiting of excessive blood
loss upon injury with substantial collagen exposure [101].

Since anti-GPVI agents have the potential to reduce arterial thrombus
formation with limited effect on haemostatic activity, there have been
several initiatives to develop such substances. Small GPVI-inhibiting m
olecules (e.g., Losartan) and blocking anti-GPVI antibodies (10B12, 9O12)
have been generated for experimental use with animal and human blood
[88,93]. Such anti-GPVI agents strongly inhibit thrombus formation on
collagen under flow conditions [102,103]. Injection of the anti-GPVI
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OM2-Fab fragment into cynomolgus monkeys caused inhibition of
collagen-induced platelet aggregation [104]. In a different approach, a sol-
uble dimeric GPVI-Fc fusion protein (Revacept) has been generated to
block the GPVI-binding sites on exposed collagen, causing suppression
of murine arterial thrombosis [105]. This GPVI-Fc fusion protein is pres-
ently tested in a phase III trial [106]. Taken together, GPVI is an interesting
therapeutic target that deserves further exploration.

2.7. Novel receptor, CLEC-2

The C-type lectin-like type II membrane glycoprotein CLEC-2 has
recently been identified as a receptor that also can strongly activate plate-
lets. Ligands of this receptor are the snake venom toxin, rhodocytin and
the glycoprotein podoplanin [107,108]. The physiological ligand of CLEC-2
in the vascular system is still unclear. The signalling pathway evoked by
CLEC-2 clustering is similar to that of GPVI, i.e. via activated protein tyrosine
kinases resulting in PLCγ activation, although in this case the mecha-
nism does more rely on Syk than on Src kinases (Fig. 6) [101,107].
Phosphoproteomics analysis of activated platelets also points to a substan-
tial, but not complete overlap of GPVI and CLEC-2 signalling events [109].

In mice, conditional knockout of CLEC-2 or treatment with anti-
CLEC-2 antibody caused reduced thrombus stability and prolonged tail
bleeding times [107,110]. Strikingly, combined in vivo depletion of
GPVI and CLEC-2 by antibody treatment, or genetic deficiency of platelet
GPVI plus CLEC-2 resulted in severe impairment of arterial thrombus
formation, but at the expense of prolonged bleeding times [111]. This
points to functional redundancy of the two receptors in thrombosis
and haemostasis. Although there are only few human data available, to-
gether this suggests that CLEC-2 is an interesting therapeutic target, but
bleeding might be an unavoidable side effect.

2.8. Fibrinogen receptor, integrin αIIbβ3

IntegrinαIIbβ3 (GPIIb/IIIa) is themost abundantly expressed receptor
on platelets. On resting platelets αIIbβ3 assumes a bent form with low
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ligand affinity. Upon platelet activation by most agonists, the integrin
opens by a reversible conformational change, which increases its affinity
for fibrinogen, fibronectin, vitronectin and VWF. This inside-out integrin
signalling occurs via Ca2+-dependent activation of protein kinase C or
CalDAG-GEFI, culminating in Rap1b activation and binding of the actin
cytoskeletal proteins talin-1 and kindlin-3 to the cytoplasmic αIIbβ3

domains (Fig. 7A) [112–114]. In the activated state, αIIbβ3 supports
platelet adhesion to fibrinogen and platelet aggregation. Ligand binding
to αIIbβ3 furthermore leads to a train of signalling events, mediated by
Src and Syk protein tyrosine kinases, a process known as outside-in sig-
nalling (Fig. 7B) [115]. This process drives the spreading of platelets on
fibrinogen, the retraction of fibrin clots, and the procoagulant activity of
platelets [116].

Mutations in the genes encoding for αIIb and β3 give rise to one of
the most common platelet disorders, Glanzmann's thrombasthenia.
Glanzmann patients have platelets lacking αIIbβ3 or with non-functional
αIIbβ3, and characteristically show mucocutaneous and gastrointestinal
bleeding symptoms as well as excessive trauma-related bleeding [117].
Platelets from these patients show impaired aggregation, spreading and
clot retraction. Mice lacking expression of the αIIb or β3-chain are greatly
impaired in arterial thrombosis, and have a bleeding phenotype, with
prolonged tail bleeding times and spontaneous haemorrhages
[118,119].

The autosomal recessive syndrome, leukocyte adhesion deficiency
type III (LAD-III or LAD-1/variant), refers to a dysfunction of integrins
β1, β2 and β3 in platelets and leukocytes. While the integrin expression
levels are normal, LAD-III patients experience severe bleeding and
recurrent infections. Recently, it was established that this disorder is
caused by mutations in the gene of kindlin-3, which result in abrogated
integrin inside-out signalling [120,121]. The bleeding phenotype is
explained particularly, but not exclusively, by the inability of αIIbβ3-
mediated platelet aggregation [7].

Three inhibitors of αIIbβ3 are available for clinical use, namely
Abciximab, Eptifibatide and Tirofiban. These drugs are given intrave-
nously to patients undergoing percutaneous coronary intervention
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after acute coronary syndrome. Integrin inhibitors have been reported
to cause more haemorrhagic events in women, but this might be due
to improper weight-adjusted dosing [122]. Cardiologists mostly use
αIIbβ3 inhibitors in high-risk patients not pretreated with P2Y12

blockers [123]. In the past, also oral αIIbβ3 inhibitors have been tested,
but clinical trials were cancelled due to increased mortality, likely due
to a ligand-mimetic function of the compounds, provoking fibrinogen
binding to αIIbβ3 [124]. Summarizing, given the fundamental role of
αIIbβ3 in haemostasis, inhibition of this glycoprotein need to be per-
formed with great care.

2.9. Other platelet integrins

Platelets also express other integrins than αIIbβ3, which serve as
receptors for adhesive proteins. At least for integrinα2β1, receptor func-
tion depends on conformational changes and leads to outside-in signal-
ling events. Integrin α2β1 (GPIa/IIa) serves as receptor for fibrillar
collagens. Its activation depends on cytoskeleton-mediated kindlin-3
and talin-1 interactions (Fig. 7A) [114]. Likely, lack of activation of α2β1

explains why LAD-III patients (with defective kindlin-3) suffer from a
more severe bleeding tendency than Glanzmann patients (missing
only αIIbβ3) [125].

In mice, deficiency in α2β1 results in limited impairment in arterial
thrombus formation, which is detected as increased thrombus instabil-
ity [126]. Mice lacking α2 or β1 show unchanged tail bleeding times
[97,127]. However, combined deficiency of GPVI and α2β1 leads to a
severe bleeding tendency, accompanying major defects in thrombus
formation [128]. This suggests that α2β1 plays a supportive rather
than essential role in the interaction between platelets and collagen
[114], although recent evidence indicates thatβ1 integrins do contribute
to platelet activation processes [129]. Twopatients suffering fromminor
bleeding are described with reduced expression of α2β1 and impaired
platelet adhesion to collagen [130,131]. However, whether the bleeding
is due to the altered glycoprotein expression is unclear [78]. In studies of
thrombus formation with mouse and human blood, α2β1 enforces the
GPVI-dependent platelet adhesion to collagen and ensuing platelet
activation [62]. Taken together, α2β1 seems to have a dispensable but
still relevant role in haemostasis and thrombosis.

Recently, also the platelet receptor for vascular laminins, integrin
α6β1, was found to play an important role in murine platelet activation
and arterial thrombosis in vivo [132], suggesting that also this integrin
could be a target of antithrombotic treatment.

3. Thrombus formation— interactions ofmultiple platelet receptors

Flow studies have gained considerable insight into the combinatory
roles of various platelet ligands and receptors in the process of
thrombus formation, reflecting those in haemostasis and arterial throm-
bosis. Current models of thrombus formation start with shear-
dependent platelet adhesion to VWF via GPIb–V–IX followed by platelet
activation via collagen, but also other platelet substrates will contribute
to initial platelet adhesion [133]. Platelet activation via GPVI, and likely
also CLEC-2, initiates responses like shape change (pseudopod forma-
tion),α/δ-granule secretion, thromboxane release and integrin activation
which, together, evoke a train of autocrine stimulatory events to activate
and trap flowing platelets into the growing thrombus [61,82]. Thrombus
formation is thus seen as a multifactorial event with amplification loops
by receptor interactions of thrombin/PAR isoforms, ADP/P2Y isoforms,
ATP/P2X1, thromboxane/TP receptors and fibrinogen/αIIbβ3 (Fig. 8).
However, also many other ligand-receptor interactions – not discussed
in this review – contribute to this complexity. These involve, for instance,
contact-dependent signalling processes, activation via α-granule secre-
tion products (Gas6, thrombospondin), tyrosine phosphatase-linked
receptors, andmechanisms controlling fibrin formation, thrombus con-
traction and thrombus stability [134–136]. Moreover, these processes
may occur at different loci in a growing thrombus. Below, we discuss
platelet activation processes that are most relevant for haemostasis in
man.

The combined involvement of multiple ligand-receptor combinations
in thrombus formation becomes especially apparent, when more than
one interaction is absent. This is the case for patients lacking α- or δ-
granules in platelets, often associated with bleeding symptoms of various
severities. Patients with the rare Hermansky–Pudlak syndrome havemu-
tations in one of nine HPS genes, resulting in complete δ-granule and
lysosome deficiency [7,137]. The functional defect of platelets is at least
in part explained by impaired ADP and ATP secretion. More common is
a partial impairment of δ-granule secretionwith unknown genetic causes
[137]. Abnormalities in theα-granules, which store a large variety of pro-
teins, are seen in several syndromes.Well studied is theGray platelet syn-
drome, a mild bleeding disorder characterized by absence of α-granules
and accompanied with thrombocytopenia, due to mutations in the
NBEAL2 gene [7,137]. Mice deficient in Nbeal2 phenocopy this syndrome
and are protected from arterial thrombus formation; their platelets
show diminished adhesion, aggregation and procoagulant activity [138].
It is still unclear which of the α-granule stored proteins mediate these
platelet responses. Platelet cytoskeleton defects, such as May–Hegglin
anomaly (MYH9 gene mutation) and Wiskott–Aldrich syndrome (WAS
mutation) are accompanied by changes in platelet size and thrombocyto-
penia [7]. Pharmacological interventions to inhibit platelet granule secre-
tion or cytoskeletal changes are not known.

A few intracellular signalling proteins with major roles in platelet
functions have been studied as potential targets for therapy. Well
advanced are studies on pharmacological inhibition of PI3K, particularly
of the β isoform. In flow perfusion studies, PI3Kα/β blockers suppress
collagen-induced Ca2+ mobilization, secretion, integrin activation and
platelet procoagulant activity [85]. A phase I study consisting of intrave-
nous infusion of the PI3Kβ blocker AZD6482 (an analogue of TGX-221)
indicated a strong platelet-inhibiting effect ex vivo [139].

4. Bleeding and platelet dysfunction or inhibition

4.1. Predicting mild platelet disorders with questionnaires

Typical bleeding symptoms that accompany quantitative or qualita-
tive platelet disorders are excessive bruising, prolonged menses and
abnormal bleeding after haemostatic challenges. The magnitude of
bleeding depends on the type and severity of the platelet defect [1].
Since patients with a platelet disorder often display only mild bleeding
symptoms, which are also features of vonWillebrand disease or coagu-
lation deficiencies, proper diagnosis is not always easy [140]. The
complexity is well illustrated by the outcome of the UK GAPP study
where, in subjects with suspected platelet function deficiencies and
abnormal bleeding symptoms, the genetic causes of the signalling
defects could only be determined in a minority of the subjects [18].

In the clinic, there is ongoing interest in the development of bleeding
assessment tools (BATs) for the diagnostic evaluation of haemorrhagic
symptoms by way of a questionnaire and bleeding score. Most ques-
tions concern the family history of spontaneous and challenged bleed-
ing events, as well as the frequency and severity of the bleeding
symptoms. Specific BATs have been developed for von Willebrand dis-
ease, paediatric patients, and women with menorrhagia [141]. In 2010
the ISTH published a consensus BAT to standardize the description of sig-
nificant bleeding symptoms and the diagnosis of bleeding disorders with
main focus on von Willebrand disease [142]. While useful for the docu-
mentation of all relevant bleeding symptoms in the prospective GAPP
study, the ISTH-BAT score was not predictive for platelet function defi-
ciencies, based on lumi-aggregometry measurements [143]. It should be
noted though, that a laboratory defect not always needs to be accompa-
nied by a bleeding phenotype. Since the ISTH-BAT documents on recur-
rent and mild haemorrhages, which are characteristic for platelet
function disorders, further refinement of this BATmay aid in thediagnosis
of mild platelet defects.
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For inherited platelet disorders bleeding symptoms are usually ex-
perienced lifelong, so that retrospective evaluation of the bleeding epi-
sodes is of particular importance. On the other hand, sudden
(acquired) bleeding due to the use of antiplatelet medication requires
description of the acute symptoms [142]. Detailed registration of bleed-
ing events byphysicians is important not only for prediction, but also for
safety reasons. Bleeding events related to the use of antiplatelet therapy,
whether or not in combination with invasive procedures, are systemat-
ically reported, although this occurs not always according to the same
bleeding definitions. Records are made of events during clinical trials
and after the prescription of approved drugs (particularly Aspirin and
P2Y12 inhibitors). Informative BATs to evaluate such acquired bleeding
tendencies have not yet been published. At present, listed are only clin-
ically relevant bleedings, requiring transfusion of red blood cells and/or
serious adverse events (e.g. intracranial haemorrhages). In an attempt
to accomplish uniformity in bleeding definitions for cardiovascular clin-
ical trials, a consensus classificationwas published allowing safety com-
parisons between studies, which deserves proper attention [144].

4.2. Laboratory testing of platelet dysfunction

Particularly in the last years, efforts have been made to standard-
ize laboratory methods for platelet function testing. Quantitative
platelet disorders can be detected by measuring platelet count and
mean platelet volume in blood samples. Platelet aggregation in
platelet-rich plasma in response to a panel of agonists, determined
by light transmission aggregometry (LTA), is the current golden
standard for detecting functional abnormalities [1]. Since LTA is rel-
atively insensitive in identifying defects in δ-granule secretion,
platelet release of ATP needs to be determined additionally, e.g. by
lumi-aggregometry. Recommendations have recently been pub-
lished for the use of standardized LTA tests for UK laboratories
[145] and the ISTH [146]. A streamlined, validated panel of platelet
agonists (ADP, adrenaline, arachidonic acid, collagen, TRAP,
ristocetin) has been developed for diagnosing heritable platelet
function disorders by testing with LTA and ATP secretion [18].

Replacing the earlymethod ofwhole blood impedance aggregometry,
the Multiplate and VerifyNow devices are increasingly used for
determining platelet aggregation in whole blood, but still require more
clinical validation. The PFA-100 is particularly used for testing shear-
dependent platelet aggregation in response to collagen/ADP or collagen/
adrenaline. The test is capable of detecting severe platelet functiondefects
(Bernard–Soulier, Glanzmann's thrombasthenia) and most types of von
Willebrand disease [147]. However, its sensitivity for less severe defects,
like δ-granule storage pool deficiencies, is low [148].

Flow cytometry is frequently used for specific platelet function test-
ing or for conditions where platelet counts are too low for LTA [149].
Flow cytometry allows the quantification of platelet receptors, the de-
tection of platelet surface activation markers, and of platelet
procoagulant activity. Hence, agonist-induced integrin activation,
secretion of α- and δ-granules, and phosphatidylserine expression can
easily be determined. This technique has already been used as a read-
out to determine the genetic determinants of platelet signalling pathways
[95]. Flow cytometric tests for assessing (agonist-induced) platelet func-
tion in whole blood are in the experimental phase [150,151].

Since platelet activation and coagulation are interdependent pro-
cesses [3], platelet function – in particular procoagulant activity – can
also be tested in platelet-rich plasma by way of thrombin generation
assays [4,152]. Recommendations for standardized measurement of
platelet-dependent thrombin generation have recently been published
by the ISTH [153]. Developments of a CAT-based assay in whole blood
can improve clinical applicability of this type of tests [154]. However,
their predictive value for platelet-related bleeding still needs to be
established. Flow chambers have been used tomeasure thrombus forma-
tion in combinationwith coagulation (fibrin) at defined shear stress con-
ditions [155]. Efforts are undertaken for better standardization of these
flow-based assays and adaption to smaller volumes of blood [156,157].

4.3. Laboratory testing of platelet inhibition

For optimal patient care it is considered to be important to assess the
effectiveness of antiplatelet therapy. This is predominantly an issue in
cases of dual antiplatelet therapy with Aspirin and P2Y12 receptor
blockers, as is the standard therapy for patients with acute coronary syn-
drome or undergoing percutaneous coronary intervention. Due to hetero-
geneity in individual responses to especially Clopidogrel treatment,
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inhibition of platelet function is suboptimal in a considerable part of the
treated patients. This so-called high on-treatment platelet reactivity
(HPR) associates with an increased risk of secondary atherothrombotic
events [42,158]. In this context, also the reportedvariability in responsive-
ness to Aspirin requires attention [159]. Platelet function testing in rela-
tion to bleeding is also important in patients using the new, potent
P2Y12 blockers, Prasugrel and Ticagrelor,where lowon-treatment platelet
reactivity (LPR) is a matter of concern [160]. Together, this would advo-
cate for monitoring platelet reactivity under treatment and concomitant
individualized dosing of P2Y12 blockers.

A platelet function-tailored approach with Clopidogrel may be most
effective for patients with a high risk of stent thrombosis [159]. Further
studies, especially with the new P2Y12 blockers, are required to support
the rationale for personalized treatment [158]. First efforts have been
made for defining a therapeutic window for on-treatment platelet reac-
tivity upon intake of P2Y12 blockers to minimalize both ischemic and
bleeding events [160]. Several platelet function assays are currently
available for testing the efficacy and safety of antiplatelet therapy. Al-
though LTA is still the golden standard, currently available point-of-
care tests are more convenient for use in daily clinical practice. Of
these, the VerifyNow and Multiplate tests may reflect most accurately
the variable responsiveness to Aspirin and P2Y12 blockers, while the
predictive value of the PFA-100 test for P2Y12 inhibition is limited [161].
5. Concluding remarks

Recent research on platelet responses in whole blood flow studies
and experimental thrombosis studies has greatly contributed to our in-
sight into main platelet receptors in thrombosis and haemostasis. In
man, haemorrhagic complications can be caused by defective platelet
receptors or by therapeutic inhibition of these receptors. It would be im-
portant to register these bleeding events in similar ways by using uni-
form assessment tools and function tests.
Practice points

• Study of thrombus formation, in whole blood flow studies
and experimental murine thrombosis studies, is of relevance
to understand the platelet responses in thrombosis and
haemostasis in man.

• Main platelet receptors with established or potential clinical
relevance are those of thrombin, thromboxane A2, ADP,
ATP prostaglandins, von Willebrand factor, collagen, CLEC-
2 ligand, fibrinogen and laminin.

• Platelet dysfunction, either inherited or acquired due to med-
ication, may lead to bleeding, but bleeding symptoms are
assessed in different ways.

Research agenda

• Establishment of the therapeutic window for (potential) anti-
platelet agents for optimal efficacy in preventing thrombosis
with minimal bleeding.

• Development of bleeding assessment tools for identifying
platelet function disorders or low on-treatment platelet
reactivity; comparison of these tools to outcome of platelet
function tests.
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