
 

 

 

How neuronal oscillations code for temporal statistics

Citation for published version (APA):

ten Oever, S. (2016). How neuronal oscillations code for temporal statistics. Maastricht:
Proefschriftmaken.nl || Uitgeverij BOXPress.

Document status and date:
Published: 01/01/2016

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

https://cris.maastrichtuniversity.nl/portal/en/publications/how-neuronal-oscillations-code-for-temporal-statistics(9548b975-03f8-49d8-8796-1b0c46d605a3).html


 

 

 

 

 

 

HOW NEURONAL OSCILLATIONS CODE 

 FOR TEMPORAL STATISTICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Sanne ten Oever, Maastricht 2016. 

All rights reserved. No part of this publication may be reproduced, stored 

in a retrieval system or transmitted in any form or by any means, 

electronic, mechanical, photocopying, recording or otherwise, without 

prior written permission of the publisher. 

Cover   Sanne ten Oever 

Production   Proefschriftmaken.nl || Uitgeverij BOXPress 

ISBN   978-9462-954-89-2 

  



 

 

 

 

 

HOW NEURONAL OSCILLATIONS CODE 

 FOR TEMPORAL STATISTICS 

 

 

 

 

 

 

 

Dissertation 

 

To obtain the degree of Doctor at Maastricht University, 

on the authority of the Rector Magnificus, Prof. Dr. L.L.G. Soete, 

in accordance with the decision of the Board of Deans, 

to be defended in public 

on Thursday 9th of June 2016, at 14.00 hours 

 

by 

 

Sanne ten Oever  



 

 

 

Promotor 

Prof. Dr. A.T. Sack 

 

Copromotor 

Dr. N.M. van Atteveldt 

 

Assessment Committee 

Prof. Dr. B. Jansma   Chair 

Prof. Dr. R. Goebel 

Prof. Dr. J. Obleser  University of Lübeck, Germany 

Prof. Dr. J.H.M. Vroomen University of Tilburg, The Netherlands 

 

 

  



 

 

Table of content 

Chapter 1 General introduction 7 

 

Part I  Short term temporal statistics  

 

Chapter 2 Rhythmicity and cross-modal temporal cues 

facilitate detection 

33 

Chapter 3 Evidence for entrainment to sub-threshold 

rhythmic auditory stimuli 

59 

Chapter 4 Sensory entrainment effects are stronger when 

using varying entrainment lengths 

79 

Chapter 5 Increased stimulus expectancy triggers low-

frequency phase reset during restricted vigilance 

97 

 

Part II  Long term temporal statistics during audio-visual speech 

 

Chapter 6 Audiovisual onset differences are used to 

determine syllable identity for ambiguous 

audiovisual stimulus pairs 

125 

Chapter 7 Oscillatory phase shapes syllable perception 161 

Chapter 8 Oscillatory phase shapes syllable representations 193 

 

Chapter 9 

 

Summary and discussion 

 

217 

 

 

 

 

Valorization addendum 

Acknowledgements 

Publications and curriculum vitae 

 

 

 

231 

241 

247 

 



 

 

 

  



 

 

CHAPTER 1 
 

 

 

 

GENERAL INTRODUCTION 



Chapter 1 

8 

 

In daily life the environment is full of abundant sensory information. A 

system that has to process all this input needs to be able to extract and 

organize this information in a meaningful way. Accordingly, information 

can be grouped as belonging to either the same or to a different event. 

Grouping two separate sensory input sources to one event is achieved by 

using statistical regularities in the environment [see e.g. (Perruchet & 

Pacton, 2006)]. For example, we know that a specific voice belongs to a 

specific person because the vision and the sound of the two virtually 

always occur together. The automaticity of this binding process becomes 

very clear if we for the first time see a person we only heard before, such 

as a radio presenter; somehow the voice and the vision of the person do 

not seem to belong together. 

The environment is full of these regularities and without them 

making sense of the world would be a complicated task. The current 

thesis focusses on a special form of such regularities, namely temporal 

statistics. Temporal statistics refers to the consistent relation between two 

separate inputs in time. Music is a great example as it is clear that it has a 

specific temporal structure and subsequent tones are systematically 

presented with a specific delay. But temporal information is more 

omnipresent. For example in speech there are systematic temporal 

regularities in how spoken words follow each other. We even use 

temporal information to localize sounds in the environment.  

The examples described above show that temporal information can 

be implicitly acquired through experience. This is fundamentally 

different from making explicit judgments about the duration of an event. 

While implicit temporal information is used to optimize integration 

processes during perception; extracting temporal information is a goal in 

itself during explicit temporal judgments (Coull & Nobre, 2008). In daily 

life, temporal cues will be mostly used to guide our perception and this is 

also the focus of the current thesis.   

Most sensory information gets conveyed to the brain as a 

consequence of a cascade of different active neurons, initiated through 

the activation caused by a physical change in sensory neurons. For 

example, sound pressure changes induce movements of hair-cells in the 

cochlea, subsequently activating downstream neurons in the auditory 

pathway (Hudspeth, 1989). Temporal information is qualitatively 

different from these types of sensory information as it by itself is not 
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conveyed through any physical medium. Instead, temporal information 

represents the experience of the succession of different events. Since 

temporal information relates two different sensory events to each other, 

it always needs a reference to the external sensory world [(James, 1886; 

Pöppel, 1997) but see (Newton, Motte, & Cajori, 1987) for another 

account]. This property makes studying the process of extracting and 

coding temporal regularities in the sensory input challenging. The work 

in the current thesis investigates the behavioral benefits afforded by 

extracting the temporal relationships from the environment and how 

these learned temporal associations might be encoded in the brain.   

 

Temporal statistics in the environment 

Rhythms and temporal cueing 

Temporal associations require a consistent temporal relationship between 

two re-occurring events. These associations can be formed as soon as the 

two stimuli systematically occur in the environment. Two basic forms of 

associations can be distinguished: rhythms (e.g. in music) and temporal 

cueing (e.g. the delay that exists between dropping a ball and the sound of 

the ball). For the most basic rhythm one unique temporal delay exists 

between subsequent stimuli that are presented repeatedly. Therefore, 

three events are sufficient to understand the temporal relationship 

between these repeating stimuli (see figure 1). For temporal cueing one 

specific stimulus acts as a cue how long the time delay for a subsequent 

target stimulus will be (also called foreperiod). However, the arrival time 

of the initial cue is unknown. To understand these types of associations at 

least four stimuli are required (cue-target, cue-target). For both types of 

associations the stimulus modality is in principle irrelevant and stimuli 

could even be from different modalities. 

 

Figure 1. Two different types of temporal associations, rhythms and temporal 

cueing. Rhythms establish their relation after 3 stimuli (2 delay periods), while 

temporal cueing only establishes the relation after 4 stimuli (2 delay periods). 



Chapter 1 

10 

 

The behavioral benefits afforded by either rhythms or temporal 

cueing have been shown in various studies (Correa, 2010; Jones, 

Moynihan, MacKenzie, & Puente, 2002; Los, Knol, & Boers, 2001; Niemi 

& Näätänen, 1981). On the one hand, temporal information guides the 

motor system to prepare a motor response at the time point of the 

expected stimulus (Los & Van der Burg, 2013; Niemi & Näätänen, 1981), 

thereby responding faster. This will have maximal benefit if the time 

interval for motor preparation is shorter as the temporal cued interval. 

On the other hand, perceptual processes at the time point of expected 

stimulus arrival are enhanced, improving the detection (Cravo, 

Rohenkohl, Wyart, & Nobre, 2013; Lasley & Cohn, 1981; Rohenkohl, 

Cravo, Wyart, & Nobre, 2012) and discrimination of stimuli (Ellis & 

Jones, 2010; Jones, et al., 2002; Mathewson, Fabiani, Gratton, Beck, & 

Lleras, 2010). For both motor and perceptual processes behavioral 

benefits decrease for too long intervals as temporal estimates are less 

reliable for longer intervals (Luce, 1986; Niemi & Näätänen, 1981; 

Woodrow, 1914).  

From the previous paragraph it is clear that for more reliable 

temporal estimates behavioral benefits are stronger. However, the 

reliability of an estimate is not only limited by the inaccuracies of our 

internal estimation, but also by the external temporal consistency in 

which sensory input is provided. For example, when throwing a ball at 

the wall, the time point of arrival is variable, caused by difference in the 

speed of the ball. In this situation, temporal estimates reflect an interval 

at which it is likely that the ball will arrive (Luce, 1986; Niemi & 

Näätänen, 1981). The wider the estimation interval, the less benefit one 

has from the estimation.  

Although influencing the temporal interval of stimulus occurrence 

decreases the benefit, it is important to realize that temporal estimations 

can be updated as time passes. This can drastically change the benefits 

afforded by them. This is nicely demonstrated in experimental settings 

that have two time points at which targets can occur (Woodrow, 1914; 

Zahn & Rosenthal, 1966). In these experiments a stimulus can for 

example occur at either 200 or 1000 ms after a temporal cue. There is a 

50% chance that the stimulus arrives at 200 ms or at 1000 ms after the 

cue. However, as time passes and the stimulus did not occur at 200 ms, 

the chance of stimulus occurrence in the late interval increases to 100%. 
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Response times at this late interval are typically faster than for the early 

interval (Correa, Lupiáñez, Milliken, & Tudela, 2004). This demonstrates 

that temporal estimations are updated online and can be nicely displayed 

in a hazard function that shows over time the chance that a stimulus can 

occur (Correa, et al., 2004; Coull & Nobre, 1998). To counteract temporal 

estimation updating, it is necessary to introduce catch trials (Correa, 

Lupianez, & Tudela, 2006) or to incorporate these probabilities in the 

study design.  

Although rhythmicity and temporal cues both require the orienting 

of attention to a specific point in time, it is not yet clear whether they 

operate with the same temporal mechanisms (Correa & Nobre, 2008). On 

the one hand, electroencephalogram (EEG) recordings point to similar 

neuronal mechanisms as the both temporal structures show similar 

electrophysiological responses (Correa & Nobre, 2008). Additionally, 

behavioral benefits are generally in similar magnitude (also see Chapter 

2). On the other hand, patients with right frontal lesions seem to be able 

to perform temporal orienting tasks based on rhythms but not on 

temporal cueing (Triviño, Arnedo, Lupiáñez, Chirivella, & Correa, 2011). 

Moreover, rhythmic information seems to overrule temporal cueing 

when they are both presented at the same time (Ellis & Jones, 2010). 

Although the exact mechanisms are not clear it thus seems that rhythmic 

cues have a stronger and dominating effect. It might be easier to infer the 

temporal relationship in rhythms (as less stimuli are required to 

understand the temporal statistics in a rhythm, figure 1). Consequently, 

they might require less higher order control processing (which would 

explain why patients with right frontal lesions can perform this rhythmic 

cueing tasks). 

  

Short or long term 

Much research has investigated temporal associations by manipulating 

temporal relations between different stimuli in the lab. This implies that 

these associations can be learned relatively fast and can be updated almost 

instantaneously. However, some temporal associations are very 

systematic in the environment, for example the dropping of a ball with 

the same weight: if a ball is dropped from the same distance, the time it 
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takes to fall on the floor is always exactly the same. It is an open question 

whether the exact timing of these associations are stored in the brain. 

There has been extensive research investigating the malleability of 

processing temporal information during paradigms where participants 

explicitly have to judge the simultaneity of two presented stimuli [see for 

a review (Vroomen & Keetels, 2010)]. There is a specific interval in 

which stimuli are judged to be presented at the same time. This time 

interval varies for different stimulus types, that is, for simple stimuli such 

as beeps and flashes the interval is relatively narrow, while for more 

complex and natural stimuli such as speech this interval is much wider 

(Vatakis & Spence, 2006; Zampini, Shore, & Spence, 2003). However, the 

width of the interval and the exact delay at which participants mostly 

judge the stimulus to be simultaneous can be influenced. For example, the 

width of the interval can be changed by explicitly giving feedback about 

the performance to the participants (Powers III, Hillock, & Wallace, 

2009). This narrowing of the perceived simultaneity window was 

maintained even a week after the training. Also during development the 

integration window significantly narrows (Hillock‐Dunn & Wallace, 

2012; Lewkowicz & Flom, 2014). Moreover, the point of most perceived 

simultaneity can be shifted if participants are presented with a constant 

lag of auditory and visual stimuli (so-called temporal recalibration; 

Fujisaki, Shimojo, Kashino, & Nishida, 2004; Vroomen, Keetels, de 

Gelder, & Bertelson, 2004). This adaptive mechanism seems important in 

the real world when objects are presented at a distance: in that case visual 

information is faster as the transduction time through the air is faster for 

visual than for auditory information (although a definite answer that this 

mechanism is in place for this reason is lacking). Again, the strength of 

the recalibration seems stronger for more complex stimuli as for simple 

stimuli (Roseboom, Kawabe, & Nishida, 2013). Collectively, these studies 

seem to suggest that temporal associations can be changed rapidly. 

However, in temporal recalibration experiments the temporal shift of 

perceived simultaneity does not tremendously change. Typically, the 

exposure delay is around 240 ms while the shift in perceived simultaneity 

is in the order of 20-60 ms. 

Although explicit temporal associations have been investigated 

extensively, there has been strikingly little research investigating the 

flexibility of implicitly learned temporal associations. While it has been 
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shown that newly presented complex temporal associations can be 

learned within one training session [see e.g. (Fiser & Aslin, 2002)], it is 

unknown whether real-world temporal structure – which can be highly 

consistent – bears the same flexibility. For example, in speech there are 

systematic delays between mouth movements and speech sounds 

(Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 2009) that 

most likely are learned over the lifetime (see Chapter 6). One would 

predict that these consistencies are coded in the brain and have less 

plasticity as newly presented stimulus pairs. 

Conclusively, research has shown temporal associations can be 

made very fast and are used to aid perception. However, there is very 

limited research investigating whether the flexibility by which temporal 

associations are updated depends on the consistency that these 

associations have in the environment. Part I of this thesis focusses on the 

benefits afforded by learning new temporal dynamics within one 

experimental session. In contrast, part II of this thesis shows that the 

consistent temporal relation existing between mouth movements and 

speech sounds seems to be coded more rigidly as this learned temporal 

association biases the identification of speech.  

 

Temporal statistics in audiovisual settings 

Experimental findings 

When investigating temporal properties of cross-modal stimuli one has to 

take into account characteristic temporal differences between sensory 

modalities in both brain processing time and the transduction time 

through the air. On the one hand, auditory information is processed 

much faster as visual information in the brain (Musacchia & Schroeder, 

2009), that is, in the maquace brain auditory information arrives in 

primary auditory cortex 10 ms post-stimulus and visual information 

arrives in primary visual cortex 35 ms post-stimulus. On the other hand, 

visual information is transduced through the air much faster as auditory 

information. Furthermore, auditory information seems to be sampled by 

the brain at a higher rate as visual information and auditory perception 

seems to dominate in temporal processing (Fendrich & Corballis, 2001; 

Repp & Penel, 2002). For example, participants are much better at 
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judging the simultaneity of two auditory compared to two visual stimuli 

(Virsu, Oksanen-Hennah, Vedenpää, Jaatinen, & Lahti-Nuuttila, 2008). 

Although there are intrinsic and extrinsic timing differences 

between different senses, cross-modal temporal statistics are easily 

learned since we quickly adapt to the natural existing timing delays. As 

mentioned before, the point of perceived simultaneity shifts adaptively to 

an induced timing delay in the environment (Fujisaki, et al., 2004; 

Vroomen, et al., 2004). Moreover, participants can learn about specific 

audio-visual delays and subsequently optimize perception and action 

(Niemi & Näätänen, 1981). Interestingly, there is higher sensitivity for 

events in which visual cues precede auditory cues (Fujisaki, et al., 2004; 

Vroomen & Stekelenburg, 2011). For example, maximal integration in 

brain responses in superior colliculus have been reported when visual 

cues precedes auditory stimuli with 50 ms (Wallace, Wilkinson, & Stein, 

1996). Moreover, the width of the window in which participants perceive 

an audio-visual stimulus pair to be synchronous is typically broader on 

the side at which visual information precedes auditory information and 

the highest synchrony of audiovisual input is perceived when vision 

precedes audition (Vroomen & Stekelenburg, 2011). Yet, almost 

exclusively the visual preceding side of the temporal integration window 

can be narrowed (Fujisaki, et al., 2004) while for auditory preceding 

stimuli this is less easy. This seems logical as in the natural environment 

we are typically exposed to auditory lagging events, partly because 

auditory information transduces slower, but also because usually some 

physical motion (which is perceived by vision) has to occur before any 

sound pattern can be produced.  

 

Audio-visual Speech 

Speech is full of temporal dynamics that contain unimodal rhythmic as 

well as cross-modal temporal cues. For example, the production of 

syllables typically lasts 200-250 milliseconds and therefore speaking 

seems to occur at a 3-9 Hz rhythm, so-called theta. The adding of visual 

information significantly improves speech perception; it has been shown 

multiple times that seeing a speaker improves the intelligibility of a noisy 

auditory stream (MacLeod & Summerfield, 1987; Sumby & Pollack, 1954). 

Visual mouth movements seem to typically precede auditory speech 
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sounds and therefore act as a cue for the onset time of the auditory speech 

[(Chandrasekaran, et al., 2009) but also see Schwartz and Savariaux, 

2014]. Consequently, the listener can optimally focus at time points in 

which auditory speech is most informative.  

Simultaneity judgments of syllables indicate that the temporal 

binding window of audiovisual speech is rather broad [up to 400 ms wide 

(Dixon & Spitz, 1980; Massaro, Cohen, & Smeele, 1996)]. This seems to 

indicate that audiovisual speech is temporally not very specific. 

Conversely, syllables have a unique visual-to-auditory delay that is 

syllable specific (Chandrasekaran, et al., 2009). This delay seems to fit the 

width of the binding window, ranging between 50 and 250 ms. It is 

therefore conceivable that the width of the temporal binding window is a 

consequence of the temporal statistics in the environment in which 

different syllables can occur. This however does not directly imply that 

all temporal information within this window is lost, but merely the 

percept of synchrony. This is partly confirmed by a shorter width of this 

window when participants are forced to judge whether vision of auditory 

occurred first (Vroomen & Stekelenburg, 2011). Moreover, it seems that 

automatic perceptual processes have more access to temporal information 

compared to our conscious knowledge (Repp, 2000). 

If information about the unique visual-to-auditory delay of specific 

syllables is available it should contain cues about the content of the 

upcoming stimuli. Indeed, some studies show that participants can learn 

content representations dependent on the time point of presentation 

relative to a cue (Hamid, 2014; Hamid, Wendemuth, & Braun, 2010). 

However, there is only limited research especially in the field of speech 

and multisensory processes investigating the hypothesis that temporal 

information about cue-target delays could constrain the specific content 

in the target stimulus based on their stimulation history. In Chapter 6 we 

show that indeed participants use the unique delay between mouth 

movements and speech sounds to guide their syllable perception. 

 

Using oscillations to code temporal statistics 

Neurons function through electrical activity. This activity is governed by 

positively and negatively charged ions present within the cells and in the 
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extracellular space that transfer in and out of the cell. Neurons actively 

maintain an electrical potential of around -65 mV with the extracellular 

space. Communication between neurons is initiated when many 

positively charged ions enter the cell and the potential reaches -20 mV. 

This is the threshold for an action potential, which is a cascade of events 

in which the neuron first depolarizes (getting closer to 0 mV potential 

and even above it), then repolarizes to the resting potential, 

hyperpolarizes (< -65 mV), and then turns back to the original resting 

potential (figure 2A). In this process the neurons sends an electric signal 

(‘fire’) to other neurons through its axon, thereby changing the potential 

of the receiver neuron. This change can either be positive (excitatory cell) 

or negative (inhibitory cell), moving the resting potential closer or 

further away from -65 mV.  

Neuronal ensembles seem to naturally operate in an oscillatory 

pattern. These oscillations reflect the collective shifts in membrane 

potentials of cells relative to the extracellular space moving around the 

resting potential (Buzsáki & Draguhn, 2004). Let’s imagine a neuronal 

population of excitatory neurons that has a stable resting potential and a 

Figure 2. Oscillatory mechanisms. A) Action potential. B) Firing rates are 

clustered at the most excitable phase of an oscillation. C) Rhythms (top) and 

temporal cues (bottom) are better perceived when aligning the stimuli with 

excitable phases of ongoing oscillations. D) Temporal associations might cause 

natural categorization of specific stimuli by aligning specific phases with specific 

stimulus types.  
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constant in input to the full population. Due to small random fluctuations 

one neuron might reach an action potential (figure 2B). This will induce a 

short increase in the membrane potential (due to the depolarization) and 

will subsequently be followed by hyperpolarization. Directly surrounding 

cells are influenced by this firing as more positively charged ions will be 

present in the extracellular space during the hyperpolarization, 

effectively also partly hyperpolarizing the surrounding cells. Therefore, 

the resting potential for a collection of cells will be in a hyperpolarized 

(more negative) state and cells are less likely to reach the threshold for an 

action potential during this period if the input is not strong enough. 

Consequently, surrounding cells are more likely to fire after this 

inhibitory period is finished (if enough input is provided). Once cells start 

collectively firing after the inhibitory period is over the excitatory and 

inhibitory strength of the neuronal ensemble will grow. This will make 

the firing of cells even more clustered after the next inhibitory period. 

This collective inhibition and excitation makes any oscillation a self-

sustaining process as long as there is no disruptive strong input. 

Although in theory, excitatory neurons (as described above) could 

induce an oscillation due to the properties of the action potential, the 

action potential only influences a minimal amount of neighboring cells 

and interactions with input patterns in a dynamic system of firing cells 

disrupts the sustainment of this type of oscillation. Instead, oscillations 

predominantly occur when there is stronger and more sustained 

inhibition that is more widespread (Van Vreeswijk, Abbott, & 

Ermentrout, 1994). Therefore, in most settings inhibitory cells are the 

primary force of oscillations. When inhibitory cells fire, they directly 

create a hyperpolarized membrane potential at receiving (mostly 

excitatory) neurons. This is the main inhibitory force which makes the 

excitatory cells cease to fire. This inhibition causes a much stronger 

hyperpolarization as the hyperpolarization caused by the action potential 

of the excitatory cells alone. As the strength of the inhibitory period 

increases, more neurons collectively fire after the strong inhibition is 

finished, significantly increasing the strength of the oscillation (Buzsáki, 

2004). Moreover, many inhibitory neurons inhibit a more widespread 

area of cortex and it has been shown that specifically these long-ranging 

inhibitory neurons increase the strength of the oscillation (Buzsáki, 

Geisler, Henze, & Wang, 2004). The exact properties of inhibitory cells 
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and the way they interact with excitatory neurons in a neuronal 

ensemble determine the duration of the inhibitory period and thereby 

the frequency of an oscillation. As many different inhibitory cells have 

been identified and there combinations are almost endless oscillations can 

be adapted differentially. 

 

Rhythms and temporal cueing: optimal phase 

As described above, oscillations reflect a natural temporally varying 

property of the brain and it therefore seems efficient to code temporal 

information on these oscillations [see e.g. (Buhusi & Meck, 2005; 

Karmarkar & Buonomano, 2007; Pöppel, 1997; Schroeder & Lakatos, 

2009; VanRullen & Koch, 2003), but see e.g. (Ivry & Schlerf, 2008) for 

another account or (Muller & Nobre, 2014) for an elaborative review]. 

Much work has focused on investigating these patterns during rhythmic 

stimulation (Besle et al., 2011; Cravo, et al., 2013; Henry & Obleser, 2012; 

Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008; Thorne, De Vos, 

Viola, & Debener, 2011). When there is a temporal expectancy of 

stimulus occurrence it might be useful to have high sensitivity of 

detecting this stimulus. This could theoretically be achieved by aligning 

neuronal ensembles to the external input at the phase of the oscillation 

closest to the threshold for firing as there is a higher chance that an 

impulse from an outside stimulus will reach an action potential (figure 

2C). 

When stimuli are presented at a specific rhythm strong oscillatory 

patterns develop as evoked (excitatory) responses are induced for every 

impulse, effectively entraining the neuronal ensembles to the external 

stream of events. This changes the phase of the ongoing oscillatory 

patterns in the brain to the external stimulation as excitatory events in 

the cortex are aligned to strong input arriving in the cortex (Makeig, 

Debener, Onton, & Delorme, 2004). These patterns are induced 

differentially compared to the natural ongoing oscillations in the brain 

described in the previous section as they arise due to external input and 

not through the ongoing interaction between excitatory and inhibitory 

processes in the brain. However, they seem to preserve some of the same 

functional properties. For example, sorting trials based on the phase of 

ongoing oscillations shows that there is an optimal phase of detection 
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(Busch, Dubois, & VanRullen, 2009). This optimal phase also exists when 

aligning oscillatory phases to externally presented stimuli (Lakatos, et al., 

2008). This shows the behavioral benefits afforded by temporal 

information, especially in rhythms. When the optimal phase co-occurs 

when stimuli are expected, these stimuli are processed more efficiently. 

The entrainment and subsequence benefit of presenting a stimulus at the 

optimal phase has been shown repeatedly (Cravo, et al., 2013; Henry & 

Obleser, 2012; Mathewson, et al., 2010).  

The properties of the entrainment stimuli and task seem to 

determine which neuronal ensembles get entrained. For example, Lakatos 

and colleagues (2013) presented pure tone stimuli at a presentation rate of 

1.5 Hz. Only neuronal ensembles that were selective to the specific 

frequency of the tone showed entrainment. Interestingly, other neuronal 

ensembles showed entrainment at the opposite phase of the presentation 

rate, effectively being inhibited at the time point at which stimuli 

occurred. This indicates that the processing of both the pitch and the time 

point of the target tone was enhanced, revealing the selectivity such 

entrainment can induce. The phase and strength of the entrained 

oscillation can also be influence by attentional resources (Besle, et al., 

2011; Lakatos, et al., 2008). When not only tones, but also visual stimuli 

are presented in anti-phase of a 1.5 Hz stimulus stream, the alignment of 

ongoing oscillations changes depends on whether attention is directed to 

the visual or auditory stimuli (Lakatos, et al., 2008). Moreover, the 

strength of this entrainment is influenced by the likelihood of a target 

stimulus occurring (Stefanics et al., 2010).  

While for rhythms it is intuitive that oscillations can align to the 

temporal input they provide, for temporal cueing this relation is less 

straightforward. However, already for a single impulse, ongoing 

oscillations seem to align to one specific phase point (Makeig, et al., 2004; 

Mercier et al., 2015). Timing of subsequently presented stimuli relative to 

the new induced phase will determine whether the stimulus will arrive at 

a high or low excitable phase (figure 2C) and the strength of the 

oscillation determines the behavioral benefits afforded at the optimal 

phase (Fiebelkorn et al., 2013). If the phase of the oscillation is vital for 

detection, one could predict that the exact phase to which the cue aligns 

the oscillations might changes dependent on the time point at which a 

target is expected, to ensure that the optimal phase would overlap with 
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the expected time of the target. In a behavioral study Fiebelkorn et al. 

(2011) show that the point of maximum behavioral benefit in a foreperiod 

paradigm indeed depends on the time point that participants expect a 

stimulus. However, brain data linking phase effects to behavioral benefits 

afforded by temporal cueing seems to be limited (see e.g. Thorne et al., 

2011; Lakatos et al., 2009).  

Other foreperiod period paradigms have shown an overall decrease 

in alpha power (9-13 Hz) at expected time points (Rohenkohl & Nobre, 

2011). This power decrease is associated with the role of alpha oscillation 

in the brain to inhibit the activity of specific areas (Jensen, Bonnefond, & 

VanRullen, 2012; Pfurtscheller, Stancak Jr, & Neuper, 1996). But no 

differential phase reset has been shown (but also see Chapter 5). On the 

one hand, it might be that there is only one specific period to which an 

impulse can reset oscillations. On the other hand, the temporal difference 

used for most foreperiod paradigms is often over a second which might be 

a too long interval to see these effects.  

 

Parsing of information 

The enhancement of processing at a specific point on the oscillation is not 

only beneficial to optimize perception at that specific time point, it also 

provides a means to separate information from each other, thereby 

parsing the incoming information in separate chunks (VanRullen & Koch, 

2003). This could be useful as the storage of continuous data might be 

inefficient and the separation of information in continuous data could be 

very difficult. It therefore seems useful to sample the environment during 

bursts of high excitable periods of oscillations instead of storing a 

continuous stream. This is illustrated by the continuous wagon wheel 

illusion: in movies we typically perceive the motion direction of a fast 

spinning car wheel as moving backwards. This occurs as the sampling 

frequency of the sequential images in the movie is too slow to capture the 

fast dynamics. In daily life we sometimes also perceive this backward 

moving wheel. VanRullen, Reddy, and Koch (2006) have shown that this 

illusion is related to the strength of ongoing oscillations around 13 Hz. 

They propose that information might be subsampled at 13 Hz, therefore 

evoking the illusion especially when power is high. As such this 
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subsampling serves as a temporal reference frame to code information in 

separate chunks.  

Another good illustration of the sampling of information seems to 

be in the tracking of speech. Speech is composed of different levels of 

information. At the highest level are there the sentences that are 

composed of words which are subsequently composed of syllables and 

phonemes (smallest units of speech sound pronounceable). To understand 

a word first the phonemes and syllables have to be extracted and 

understood. Therefore, continuous speech needs to be parsed in useful 

information. Syllables last around 250 ms and tracking of this information 

therefore has to occur at a 4 Hz rate. Brain responses to continuous 

speech do occur around this theta range (Giraud & Poeppel, 2012; Zion 

Golumbic et al., 2013). More importantly, the response is reduced when 

the speech is played backward (Peña & Melloni, 2012). However, it is at 

this moment difficult to dissociate the theta response as an evoked 

response to meaningful stimuli, or a response induced as a prediction 

mechanism to track the relevant moments of the rhythmic speech. It is 

however clear that this range is important for the intelligibility of speech 

(Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995). 

 

Phase coding 

One of the strongest ongoing oscillatory patterns in the brain is the 

hippocampal theta oscillation around 4-9 Hz [see e.g. (Vinogradova, 

1995)]. Hippocampal theta oscillations are coupled to higher frequency 

gamma oscillations such that the phase of the theta oscillations 

determines the amplitude of the gamma oscillations (Bragin et al., 1995; 

Soltesz & Deschenes, 1993). When a rat has to move through a maze 

different neuronal populations coding for different locations in space 

(place cells) fire at a specific phase of the theta oscillation (O'Keefe & 

Recce, 1993). The order of the firing is in sequence with the order at 

which the rat will move through the maze, such that place cells coding 

the first upcoming location will fire directly after the inhibitory period of 

the theta oscillation. When a rat does not know the room, this pattern is 

absent. Therefore, this pattern of firing has been associated with memory 

traces representing a stored memory pattern of sequential upcoming 

locations [for a review see (Buzsáki & Moser, 2013)]. As soon as the rat 
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starts moving along the planned path the firing pattern changes. Since the 

rat moves, place cells will start firing earlier and earlier on the oscillation 

cycle as the location they are coding for is closer to the path of the rat. 

This process is called phase precession. In this way the rat codes the 

upcoming points in space through a phase code.  

The idea of this type of phase coding seems attractive and more 

widespread over the brain. For example, Kayser, Ince, and Panzeri (2012) 

have shown that adding information about theta phase significantly 

improves the discriminability of spike trains coding for different 

representations recorded from primary auditory and primary visual 

cortical areas. Multiple other studies have also shown the added value of 

phase information for categorization (Rey, Fried, & Quiroga, 2014; 

Turesson, Logothetis, & Hoffman, 2012; Lopour et al., 2013). The idea of 

temporal segregation of representations is useful as neurons coding for 

one representation could be located in distant areas and only through 

temporal coherence form a code (Fries, 2005; Singer, 2009). Moreover, 

neurons can be dynamically engaged depending on the context, thereby 

enforcing a flexible coding scheme.   

It is an open question what the organization principles of phase 

coding might be as it does not follow directly why specific stimuli should 

be encoded on specific phases. For the place cells the first upcoming 

closest location is encoded ‘earliest’ on the theta phase. This early phase 

point corresponds to the earliest point in the theta phase at which an 

action potential might occur and at which the gamma oscillation has only 

a moderate amplitude. In this coding the most salient representation (the 

one that is the closest in time) has a strong enough impulse to be encoded 

on a relatively low excitable level on the theta oscillation. This coding 

scheme has recently also been proposed for cortical oscillations (Jensen, 

Gips, Bergmann, & Bonnefond, 2014). However, for some representations 

it might not be so clear why one representation would be more salient as 

the other and this might require another type of coding.  

 

Phase coding of time 

The concept of phase precession and place cells seems closely related to 

temporal processing. As discussed above, temporal information can be 

viewed as the reference to a sequence of events and the information 
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about time is only defined relative to this sequence. The coding of 

location on hippocampal theta phase is exactly this: the temporal order in 

which the rat will pass locations in the future. This type of coding does 

not have a direct relationship to exact temporal parameters, as the phase 

difference between the sequential locations does not have to correspond 

to the exact temporal difference at which the rat passes the subsequent 

locations (as this is dependent on the velocity of the rat). However, in 

theory it would be possible to have a direct mapping between temporal 

intervals and phase differences. Yet, there is not much evidence showing 

that the temporal relation between two stimuli is encoded in phase 

differences. In an elegant study Kosem, Gramfort, & van Wassenhove 

(2014) have shown in an audiovisual recalibration experiment that after 

recalibration the phase relation between slow delta oscillations in the 

auditory cortex is shifted toward the perceived simultaneity difference. 

There was a strong correlation between the shifted time point of 

perceived simultaneity and the phase different. This study indicates that 

perceived timing matches neuronal oscillatory timing.  

If phase reset consistently occurs after an initial cue [see e.g. 

(Makeig, et al., 2004)], any target occurring after the cue will always be 

presented at a specific point on the oscillatory phase. This could provide 

an intuitive way to code temporal information on phase and also ensure 

that different representations are clearly separated from each other 

(figure 2D). Up to date, this hypothesis needs to be verified (but see 

Chapter 7 and 8).  

 

Outline of Thesis 

The work described in the current thesis focusses on how temporal 

information is used to guide behavior. On the one hand, in a dynamic 

environment temporal statistics are learned fast and implicitly to attend 

to specific moments in time. On the other hand, consistent temporal 

statistics between stimulus pairs are encoded in the brain to guide 

perception in the future. This thesis focusses on both types of perceptual 

influences.  

Part I of this thesis investigates temporal statistics that are acquired 

within one experimental session and uses behavioral as well as brain data 
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to investigate how temporal information is used to optimize our 

perception. In chapter 2 we investigate whether adding two types of 

temporal cues, rhythmicity and temporal cueing, can improve detection 

performance more than the benefits afforded by an individual temporal 

cue on its own. The benefit acquired via rhythmicity is further 

investigated in chapter 3, in which we show how low intensity sounds 

become audible by resonating brain response to sub-threshold, not yet 

audible stimuli. This resonance property seems to depend on the 

expectations of participants that a rhythmic stream will continue, as is 

shown in chapter 4. This chapter demonstrates that temporal information 

is not only extracted from the immediately preceding temporal cues, but 

also from broader contextual information. The active role of the brain in 

attending to time is further explored in chapter 5 in which we show that 

low frequency oscillatory patterns are used to attend to stimuli that have 

a more uncertain temporal occurrence.      

Part II of this thesis focusses how the consistent temporal 

relationship between the onset of mouth movements and speech sounds 

influences behavioral and brain mechanisms for perceiving speech. In 

chapter 6 we show that there exists a consistent temporal relationship 

between the onset of mouth movements and specific syllable types and 

that this information aids identification of these syllables. Chapter 7 

demonstrates that this consistent relationship expresses itself in the 

neuronal coding of syllables: oscillatory phase biases syllable 

identification, suggesting that different syllables are preferentially 

processed at one specific phase. This was demonstrated using both EEG 

patterns as well as an entrainment paradigm. We verify in chapter 8 with 

functional magnetic resonance imaging (fMRI) that phase indeed seems 

to be part of the representation of these syllables. In this chapter we show 

increased information about syllable identity when syllables are 

presented at their “preferred” phase.  
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Abstract  

Temporal structure in the environment often has predictive value for 

anticipating the occurrence of forthcoming events. In this study we 

investigated the influence of two types of predictive temporal 

information on the perception of near-threshold auditory stimuli: 1) 

intrinsic temporal rhythmicity within an auditory stimulus stream and 2) 

temporally-predictive visual cues. We hypothesized that combining 

predictive temporal information within- and across-modality should 

decrease the threshold at which sounds are detected, beyond the 

advantage provided by each information source alone. Two experiments 

were conducted in which participants had to detect tones in noise. Tones 

were presented in either rhythmic or random sequences and were 

preceded by a temporally predictive visual signal in half of the trials. We 

show that detection intensities are lower for rhythmic (vs. random) and 

audiovisual (vs. auditory-only) presentation, independent from response 

bias, and that this effect is even greater for rhythmic audiovisual 

presentation. These results suggest that both types of temporal 

information are used to optimally process sounds that occur at expected 

points in time (resulting in enhanced detection), and that multiple 

temporal cues are combined to improve temporal estimates. Our findings 

underscore the flexibility and proactivity of the perceptual system which 

uses within- and across-modality temporal cues to anticipate upcoming 

events and process them optimally. 
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Introduction 

Increasingly, the brain is thought of as intrinsically proactive, not merely 

relying on bottom-up sensory information to interpret perceptual 

information. Instead, even low-level sensory cortices are thought to be 

constantly creating and updating internal models of the external world, to 

anticipate and predict upcoming events (Bar, 2011; Friston, 2011; Nobre, 

Correa, & Coull, 2007; Schroeder, Wilson, Radman, Scharfman, & 

Lakatos, 2010; Schubotz, 2007; Summerfield & Egner, 2009; Summerfield 

et al., 2006). In addition to predicting the content of upcoming stimuli - 

e.g. features or location – recent research indicates that anticipating the 

timing of upcoming sounds significantly improves perceptual judgement. 

Specifically, at least two types of temporal expectations are shown to 

improve behavioural performance: Rhythmic regularity within a stimulus 

sequence decreases reaction times and improves accuracies of responses to 

supra-threshold stimuli when target stimuli occur at an anticipated 

moment, compared to stimuli occurring randomly or at unanticipated 

times (Ellis & Jones, 2010; Jones, Moynihan, MacKenzie, & Puente, 2002; 

Mathewson, Fabiani, Gratton, Beck, & Lleras, 2010; Niemi & Näätänen, 

1981), as well as improving stimulus sensitivity (Rohenkohl, Cravo, 

Wyart, & Nobre, 2012). In addition, temporal cueing within- and across 

modalities has been used extensively to show that a constant time-

interval between a cue and target can improve the speed of target 

detection (Correa, Lupiáñez, Milliken, & Tudela, 2004; Coull & Nobre, 

1998; Lange & Röder, 2006) and recognition (Griffin, Miniussi, & Nobre, 

2001) by means of temporal preparation (Los & van den Burg, 2013). In 

particular, visual cues appear to be a natural temporal cue for audition 

(Thorne & Debener, 2008; Van Wassenhove, Grant, & Poeppel, 2005, 

2007). A prominent example is speech, since observed lip movements and 

facial gestures are temporally correlated with, and precede, the auditory 

input (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 

2009; Schroeder, Lakatos, Kajikawa, Partan, & Puce, 2008; Ten Oever, 

Sack, Wheat, Bien, & Van Atteveldt, 2013; Van Wassenhove, et al., 2005, 

2007). Moreover, lip movements and facial gestures have intrinsic 

rhythmic regularities (Giraud & Poeppel, 2012; Greenberg, Carvey, 

Hitchcock, & Chang, 2003; Luo, Liu, & Poeppel, 2010; Zion Golumbic, 

Poeppel, & Schroeder, 2012).  Thus, in natural situations, such as speech, 
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we are faced with intermixed temporal information to predict upcoming 

events, provided by cross-modal as well as rhythmic temporal cues.  

 The behavioral advantages afforded by these two types of temporal 

expectations – stimulus rhythmicity and cross-modal temporal cueing – 

imply that attentional resources can be dynamically allocated to points in 

time when input is expected (Jones, Johnston, & Puente, 2006; Jones, et 

al., 2002; Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008; Large & 

Jones, 1999; Nobre, et al., 2007; Nobre & Coull, 2010). However, it is not 

clear whether multiple types of cues are used jointly to improve temporal 

prediction and optimally allocate attention. Since many naturalistic 

stimuli, such as speech, music and biological motion combine both cross-

modal temporal cues and intrinsically rhythmic properties (Zion 

Golumbic, et al., 2012), investigating the joint contribution of temporal 

cues from these two sources bears substantial ecological relevance. 

 Here, we used two complementary auditory detection paradigms to 

investigate the influence of temporal cues on threshold intensities, since 

the above-described ‘attention in time’ framework predicts that reliable 

temporal prediction can enhance perceptual sensitivity to subtle stimuli. 

We manipulated both the temporal structure within the sound stream as 

well as the presence of cross modal (visual) cues, and investigated the 

influence of each cue on detection intensities, as well as the combination 

of both cues. Our hypothesis was that both types of temporal predictions 

– rhythmicity and cross-modal cueing - would lower sound detection 

intensities. Rhythmic prediction during the auditory only conditions 

might not have a strong effect on detection thresholds since, by 

definition, sounds are “below threshold” before participants indicate that 

they have heard them. Adding visual input could significantly improve 

the rhythm percept, thus enriching the temporal prediction. Therefore, 

we expect an interaction effect in which the combination of cross-modal 

and rhythmic temporal cues would provide the lowest detection 

thresholds (Trommershauser, Kording, & Landy, 2011).  
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Materials and Methods 

Participants 

Twelve volunteers participated in Experiment 1 (age 20-40; average age: 

23.5, 5 male) and twenty volunteers participated in Experiment 2 (age 21-

33; average age 25.4, 7 male). All had normal or corrected to normal 

vision. Informed consent was obtained before the study, which was 

approved by the New York University Committee on Activities Involving 

Human Subjects (NYU UCA/HS; Experiment 1) and by the Local Ethical 

Committee at the Department of Psychology and Neuroscience at the 

Maastricht University (Experiment 2). Participants were randomly 

selected and were unaware of the purpose of the study during the 

experiment. For taking part in the experiment participants received 

monetary compensation.  

 

Stimulus material 

Auditory stimuli were sinusoidal 1 kHz beeps of 50ms duration (including 

a linear rise and fall time of 5ms) embedded in continuous white noise 

(53 dB) and presented diotically via headphones (Sennheiser HD 380 

Professional, Sennheiser Electronic Corporation, Wedemark, Germany in 

Experiment 1, Sennheiser HDM25-1 in Experiment 2). The visual stimuli 

were Gaussian white circles of 50ms duration (generated using the 

Gaussian generator of the Visual Stimulus Generation Toolkit 

implemented in the software Presentation used for stimulus delivery, 

with parameters: mu = -10 and sigma = 60; Neurobehavioral Systems, 

Inc., Albany, NY), presented foveally on a gray background (rgb: 

115,115,115). The visual angle of the Gaussian was 3.1 degrees 

(corresponding to the width of the 95% contrast interval relative to the 

center intensity). Both experiments were run in dimly lit sound shielded 

rooms and participants were seated approximately 57 cm from the screen. 
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Experimental procedure 

In order to investigate the influence of temporal cues on auditory 

detection we ran two experiments, using complementary approaches for 

evaluating detection thresholds.  

 Experiment 1: In the first experiment we employed the “method of 

limits” approach to evaluate perceptual thresholds (Gescheider, 1997), 

using an ‘increasing’ paradigm followed by a ‘decreasing’ paradigm. In the 

‘increasing’ paradigm participants heard a stream of auditory beeps 

embedded in continuous white noise (figure 1).  

 The signal to noise ratio (SNR) of the tone targets was initially 

below threshold, and the intensity of the tones increased monotonically 

over the trial. Participants were asked to indicate via button press when 

the target signals were first detected. In the first four trials, the starting 

SNR was 0.25 % (none of the participants were able to detect the stimulus 

with this SNR). SNR was defined as the maximal amplitude in the 

presented sound divided by the maximal amplitude of the white noise. In 

subsequent trials, the starting intensity was set to be 7.5% SNR lower 

than the lowest intensity previously-detected, and this level was 

Figure. 1. Illustration of a trial in the rhythmic audiovisual condition (A) and a 

trial in the random audiovisual condition (B), both in the ‘increasing’ paradigm. 

In the auditory channel, beeps (red) were embedded in white noise (blue), with 

their intensity increasing monotonically over the trial. In the audiovisual 

conditions, a white Gaussian circle was presented 65 ms prior to each beep (C). 

The button press (purple) indicates the moment that the participant indicates 

hearing the sound for the first time. 
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monitored throughout the experiment to ensure a minimum of 5% SNR 

difference with the lowest detected intensity judgment. Over the trial, 

sound intensities increased incrementally in steps of either 0.5 or 1% 

SNR. The two different incremental steps were randomized to ensure that 

the sequence of sounds and length of the trials were not identical across 

trials. After participants indicated detection of auditory stimuli, 4-6 

additional beeps were presented at the same intensity level. The 

‘decreasing’ paradigm paralleled the ‘increasing’ paradigm, but the sounds 

started well above detection threshold and decreased in intensity over the 

trial. Participants had to indicate when they could no longer hear the 

sounds. Here too, the first four trials were used to determine the 

individual starting intensities per trial (starting intensity of the first four 

trials was 17.5% SNR), and ensured that the starting intensity was at least 

5% above the highest intensity of the detection judgment. 

 We manipulated the temporal structure of each trial by changing 

the inter-stimulus interval (ISI) between the tones. In half of the trials 

there was a constant ISI of 666 ms (Rhythmic condition), whereas in the 

other half the ISI was randomized among one of 21 evenly spaced time 

points between 300 and 1000 ms, maintaining an average ISI of 666 ms 

(Random condition). Additionally, in half of the trials the Gaussian white 

circle preceded every auditory stimulus, with a fixed audio-visual 

stimulus onset asynchrony (SOA) of 65 ms (AudioVisual condition). We 

choose this interval since it has previously been shown to give optimal 

cross-modal effects for audiovisual tasks (Thorne & Debener, 2008). Thus, 

in total there were four conditions: Random Auditory (RaAu), Rhythmic 

Auditory (RhAu), Random AudioVisual (RaAV), and Rhythmic 

AudioVisual (RhAV). Designing the paradigm in this way served the 

purpose of implementing a distinct rhythmic or random temporal 

structure to a continuous stream of stimuli, which is closer to natural 

listening conditions. It also mimics natural situations in which visual 

information is salient, but auditory stimuli vary in intensity over time, for 

example when listening to a person in a noisy environment. In all 

conditions, participants were explicitly instructed to maintain fixation on 

a gray cross in the middle of the screen when no visual input was 

presented. Trials were randomized across conditions (20 trials per 

condition) and the experiment was divided in four blocks of 
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approximately seven minutes each. After every block participants were 

encouraged to take a break. 

 Experiment 2: One drawback of Experiment 1 is that perceptual 

thresholds calculated using the method of limits approach confounds 

perceptual sensitivity with response-bias (Green & Swets, 1966). To 

control for the possibility that the results of Experiment 1 were driven 

purely by response-bias, we ran a second experiment, using the same four 

conditions, in which detection thresholds were determined using a 

staircase procedure in a two alternative forced choice task (2AFC; Green 

& Swets, 1966). In this task participants were presented sequentially with 

two 3-second-duration intervals of white noise at 53 dB. In one of the 

intervals (randomly chosen on every trial) five sounds were embedded in 

the noise, and the subjects were instructed to indicate in which interval 

(first or second) they heard the sounds The four conditions were the same 

as in Experiment 1 (RaAu, RhAu, RaAV, and RhAV). For the two visual 

conditions, both intervals contained visual stimuli. Since it is difficult to 

create a temporally-random sequence of stimuli within a finite interval of 

3 seconds, a constant set of 5 ISIs was chosen (350, 500, 814, and 1000 ms) 

to maximize the temporal variability within each trial. The order of these 

ISI was randomized in each trial. In addition, in all conditions the onset 

of the first sound was jittered between 200, 300, 400 and 500 ms after the 

white noise onset, to reduce expectation effects. 

 To obtain a measure of the detection threshold we implemented 

four independent weighted staircase procedures (Kaernbach, 1991) in 

which the order of the conditions was randomized.  In these procedures, 

every correct response led to a decrease in sound intensity in the next 

trial of the same condition and every incorrect response led to an increase 

in sound intensity. Since correct responses can be achieved via 1) actually 

hearing the stimulus or 2) guessing, the decrease in sound intensity was 

three times smaller than the increase in sound intensity, which 

corresponds to a detection threshold of 75% at staircase convergence. 

Volume increases were approximately 7.5% SNR in the beginning, after 

the second reversal 3% SNR, and after the fourth and later reversals 

0.75% SNR. A reversal was defined as a change from correct to incorrect 

responses or vice versa for one specific condition. After 12 reversals the 

staircase of that specific condition was terminated. Starting intensity was 

19% SNR, which was for all participants above detection threshold. If for 
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three of four conditions the staircase was finished, additional trials of the 

other conditions were randomly added to remove predictability about 

condition type. Participants were encouraged to take a break after every 

30 trials. 

 If not stated otherwise procedures were the same as in Experiment 1. 

 

Data analysis 

Experiment 1: First, we constructed psychometric functions for detection 

thresholds for each condition. To construct these functions, we calculated 

the mean detection rate at each intensity level (in bins 1% SNR wide), 

separately for each condition. A cumulative Gaussian was fitted to the 

individual data with the psychometric fitting toolbox modelfree v1.1 

(Zchaluk & Foster, 2009). To eliminate effects of hysteresis (see e.g. 

Fender & Julesz, 1967; Palmer, 1999; Ratlifl et al., 1986) it is common to 

average the 50% detection values over the two paradigms (increasing and 

decreasing). These calculated averages per condition were used as the 

dependent variable in a two-way repeated measures ANOVA with factors 

Rhythmicity (Rhythmic versus Random) and Modality (Auditory versus 

AudioVisual).  

 Experiment 2: An exponential decay was fitted for the four 

conditions separately for all the SNR values presented during the whole 

experiment (Treutwein, 1995), using the lsqnonlin function implemented 

in MATLAB. The function was as follows: 

SNR(x)=19e^λx+C 

where λ corresponds to the decay constant, C to the convergence value, 

and x to the trial number. The starting quantity was fixed at 19 (identical 

to the starting SNR in Experiment 2). To ensure that the lsqnonlin 

estimation did not result from a local minimum we repeated the 

procedure 30 times and took the final estimate as the fit with the most 

variance explained. The final convergence values¬¬ of the exponential 

decay were used as the dependent variables in a two-way repeated 

measures ANOVA with the factors Rhythmicity (Rhythmic versus 

Random) and Modality (Auditory versus AudioVisual).   
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Results  

Experiment 1 

For all participants, the mean percentage detection rate distribution had a 

shape typical of detection paradigms and could be reliably fit with a 

cumulative Gaussian function (figure 2; average explained variance 

98.6%; see e.g. Florentine, Buus, & Geng, 1999; Green, 1995; Nachmias, 

1981). The analysis using average 50% detection levels of the fitted 

Figure. 2. Averaged detection percentages. Lines represent the average 

detection rate per intensity bin for the decreasing (A) and increasing (B) 

paradigm. All error bars represent the within-subjects standard error of the 

mean as described by (Morey, 2008).  
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psychometric functions (figure 3) revealed a main effect for Modality  

[Fig 3b; F(1,11) = 40.41, p < 0.001, partial η2=0.786], that indicated that 

Audiovisual stimuli yielded lower thresholds than Auditory stimuli. Also 

a main effect for Rhythmicity was found [F(1,11) = 62.62, p < 0.001, 

partial η2=0.851], that showed lower threshold for Rhythmic stimuli 

compared to Random stimuli. The interaction effect was not significant   

[F(1,11) = 1.30, p = 0.279].  

 

 

 

 

Figure 3. (A) Example of fitted decay functions for all conditions for a 

representative participant. Red dots indicate the actual SNR values and blue 

lines indicates the fitted decay. (B) Average SNR for the convergence values of 

the fitted exponential decay shown for all conditions separately. (C) The results 

for the two main effects of Rhythmicity and Modality. Error bars indicate the 

within-subjects standard error of the mean described by Morey (2008). 

Asterisks and double asterisks indicate significance at p-values of 0.05 and 0.01, 

respectively. 



Chapter 2 

44 

 

Experiment 2 

The results of the 2AFC task are displayed in figure 4. The fitted 

exponential decay explained on average 60.2% of the variance and 

converged to the threshold (Fig 4a). A main effect for Modality was found 

[F(1,19) = 38.68, p < 0.001, partial η2=0.671] in which Audiovisual stimuli 

yielded lower thresholds than Auditory stimuli. Additionally, a main 

effect for Rhythmicity was found [F(1,19) = 6.22, p = 0.022, partial 

η2=0.247], in which Rhythmic stimuli yielded lower threshold than 

Random stimuli. The interaction effect was not significant [F(1,19) = 0.45,  

p = 0.510].  

 

Discussion 

The aim of the current study was to investigate how temporally-

predictive visual cues and within-modality temporal regularities might 

change the detection of near-threshold auditory stimuli. As anticipated, 

we found that both types of predictive information improve auditory 

perception, such that sounds at lower intensity levels are judged as 

audible if they are preceded by visual input and/or are part of a rhythmic 

Figure 4. (A) Averaged SNR for 50% detection rate derived from the two 

psychometric curves are shown for all conditions separately. (B) Rhythmicity 

and modality main effects were significant in both the increasing and 

decreasing paradigms. Error bars indicate the within-subjects standard error of 

the mean described by Morey (2008). Double asterisks indicate significance at 

p-values of 0.01. 
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sequence. Critically, we further show that the combination of two types 

of predictive information lowered detection intensities even further 

(Trommershauser, et al., 2011), indicating that different sources of 

temporal information can be combined to optimize perception. We 

replicated the same pattern of results using two independent methods for 

quantifying perceptual thresholds, and show that these effects are not 

explained merely by participants’ internal determinants such as response 

bias. Rather, our results suggest that temporal predictability can change 

perceptual sensitivity, and provides strong evidence for the ‘attention in 

time’ hypothesis (Barnes & Jones, 2000; Large & Jones, 1999; Schroeder, 

et al., 2008). This is consistent with electrophysiological results showing 

increased neuronal excitability at moments in time that stimuli are 

expected (Cravo, Rohenkohl, Wyart, & Nobre, 2011; Besle et al. 2011; 

Cravo, Rohenkohl, Wyart, & Nobre, 2013; Lakatos, et al., 2008; 2009; 

2013).  

 

Audiovisual Effects  

Visual cues lowered the auditory detection intensity in both experiments. 

Since there was a constant temporal delay between visual and auditory 

stimuli, we suggest that the temporal predictability between the stimuli 

can be used to temporally prepare for the auditory stimulus, as has been 

shown in previous studies (Lange & Röder, 2006; Los & Van der Burg, 

2013). Indeed, in cued reaction time tasks, the largest decrease in reaction 

times is typically found when there is a constant delay between the cue 

and the target, and this advantage is reduced as the delay becomes more 

variable (Niemi & Näätänen, 1981). Moreover, there is a crucial temporal 

window during which audiovisual stimuli are integrated (Lindström, 

Paavilainen, Kujala, & Tervaniemi, 2012; Van Atteveldt, Formisano, 

Blomert, & Goebel, 2007; Van Wassenhove, et al., 2007; Zampini, Shore, 

& Spence, 2003) and although the width of the window varies, the point 

of maximal integration is consistently when visual stimuli precede 

auditory stimuli (Thorne & Debener, 2008; Van Wassenhove, et al., 

2007). Similarly, electrophysiological recordings show an enhancement of 

the neural response to auditory tones when they are preceded by a 

somatosensory or visual stimulus (Lakatos, Chen, O’Connell, Mills, & 
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Schroeder, 2007; Kayser & Logothetis, 2009; Lakatos et al., 2009; Thorne, 

De Vos, Viola, & Debener, 2011; Wallace, Wilkinson, & Stein, 1996), 

with the largest AV effect found at an audiovisual SOA of ~ 65 ms. This 

SOA has also been found to have the largest behavioral AV facilitation 

effect (Thorne & Debener, 2008) and therefore we choose this SOA in the 

current study. Although in other studies 300 ms has been found as 

optimal reaction time facilitation effect (Niemi & Näätänen, 1981), we did 

not choose this SOA since then the visual stimulus would be exactly in 

anti-phase of the auditory rhythm. Additionally, when audiovisual 

information is presented repeatedly with a fixed SOA temporal 

‘recalibration’ occurs such that the audiovisual stimuli are more often 

perceived as synchronous at that SOA (Fujisaki, Shimojo, Kashino, & 

Nishida, 2004; Vroomen, Keetels, de Gelder, & Bertelson, 2004). 

Although we did not specifically test for this, the fixed SOA used here 

probably induced this recalibration effect, which may have increased the 

integration of the audiovisual stimulus pair. 

 We cannot rule out the possibility that additional factors known to 

promote multisensory processing, such as spatial proximity (Plank, 

Rosengarth, Song, Ellermeier, & Greenlee, 2012; Wallace, et al., 1996) or 

content congruency (Beauchamp, Lee, Argall, & Martin, 2004; Van 

Atteveldt, Formisano, Goebel, & Blomert, 2004) also contribute to the 

observed effects. For example, visual input was also found to increase 

detectability for low intensity auditory stimuli presented simultaneously 

(Lovelace, Stein, & Wallace, 2003). Nonetheless, it seems plausible that 

the temporal relationship of the audiovisual stimulus pair used here, with 

the visual stimulus leading with a consistent, effective SOA contributed 

to reduction of the detection intensities by promoting temporal 

preparation. 

 

The additive effects of Rhythmicity and Audiovisual cues 

In the audiovisual conditions, Rhythmicity further reduced auditory 

detection compared to the Random condition. This result suggests that 

even though the visual input could perfectly predict the timing of 

auditory stimuli (since there was a constant lag of 65 ms), having 

temporal regularity within the sequence provides a significant additional 
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benefit for perception. One reason for this finding could be that, since 

people’s temporal estimates are not entirely accurate (Eisler, 1976), 

particularly in the visual domain (Welch & Warren, 1980), having two 

sources of predictive information in different time scales (666 ms between 

two sequential visual cues and 65 ms from the visual cue to the sound) 

sharpens temporal predictions. This is consistent with previous studies 

showing that complementary cues about a stimulus can be expressed by 

integrating the reliability of the perceptual estimates of individual cues, 

with the combination yielding higher reliability than each single cue 

alone (e.g. Bulthoff, 1996; Landy, Maloney, Johnston, & Young, 1995; 

Oruç, Maloney, & Landy, 2003). Moreover, our data show an almost 

perfect additive effect of rhythm and visual cues which suggest that the 

two temporal prediction processes might convey two separate and 

possibly independent mechanisms (Sternberg, 2001, Woodman, Kang, 

Thompson, & Schall, 2008). One possibility for how these two types of 

information may work in concert to additively lower detection thresholds 

is a 'winner take all' approach, in which the occurrence of upcoming 

events is predicted by parallel mechanisms separately utilizing either the 

rhythmic structure or the known cross-modal SOA, and behavioral 

detection occurs when a stimulus is detected through one of those 

mechanisms. Alternatively, it could be that the type of benefit afforded 

by rhythmic-visual cues is synergistic in essence and is qualitatively 

different from that provided by non-rhythmic visual cues (Correa & 

Nobre, 2008; Nobre, et al., 2007; Schroeder & Lakatos, 2009). According 

to this view, visual cues occurring at random times invoke a ‘vigilance 

mode’ of operation (Schroeder & Lakatos, 2009), since the participant 

cannot anticipate when the cue will occur, and once it has occurred only 

has 65 ms to orient attention towards a potential auditory stimulus, 

requiring the swift allocation of computational resources. However, if the 

visual cues themselves are presented rhythmically, participants can enter 

a ‘rhythmic mode’ in which the timing of all stimuli – both visual and 

auditory – is completely predictable. It has been suggested that such a 

‘rhythmic mode’ is a more automatic and implicit process, requiring less 

metabolic demand, whereas a ‘vigilance mode’ requires explicit and 

controlled processing (Capizzi, Sanabria, & Correa, 2012; Correa, 2010; 

Schroeder, et al., 2010; Van Atteveldt et al., 2011). Additional research is 

required to further characterize how these two modes of attention in time 
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interact and work together to affect perceptual processing, particularly 

since the interpretation of additive effects on perceptual thresholds as 

reflecting contribution of sequential or parallel processes is not 

straightforward (Dubois, Poeppel, & Pelli, 2013; Sternberg 2001; Miller, 

van der Ham, Sanders, 1995).  

 

The effect of Rhythmicity in the absence of Visual cues 

Although not as effectively as the visual input, adding rhythmicity to the 

auditory stream also decreased detection thresholds. What is striking is 

that this effect occurred even when no visual stimulus was presented and 

auditory stimuli were not yet detected. This exciting finding implies that 

the rhythmic pattern of tones is detected at lower intensities than each 

individual tone. It suggests a central role for temporal integration and 

detection of temporal regularities in near-threshold perception. This 

pattern is in line with previous findings that auditory detection 

thresholds are reduced for low intensity auditory stimuli when they are 

presented for a longer duration, supposedly brought about by the 

aggregation of subthreshold information (Florentine, Fastl, & Buus, 1988; 

Lütkenhöner, 2011; Yrttiaho, Tiitinen, Alku, Miettinen, & May, 2010) 

(similar effects are found in the visual system, see: Anstis, Geier, & 

Hudak, 2012; Daikhin & Ahissar, 2011; Minelli, Marzi, & Girelli, 2007). 

Since it has been shown that 3-4 stimuli are sufficient for a neuronal 

population to identify a rhythmic structure (Lakatos, et al., 2008; Thorne, 

et al., 2011), it seems plausible that the (even subliminal) processing of a 

few rhythmic stimuli provides enough information about the temporal 

structure of the auditory stream to decrease perceptual thresholds. One 

intriguing question is how precisely isochronous a stimulus trains needs 

to be to still provide a perceptual benefit. Neuronal entrainment has been 

previously demonstrated for tone sequences with a temporal jitter of up 

to 20% (SOAs distributed between 666 ±150 ms ;Lakatos, et al. 2008). 

This suggests that the system can tolerate some degree of jitter and still 

maintain temporal predictions that can facilitate perception, which would 

be beneficial from an ecological perspective since many real-life stimuli 

such as speech and music have temporal regularities but are not perfectly 

isochronous. The robustness of temporal prediction to jitter, and its 
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influence on both perception and on neural processing needs to be 

systematically studied in future work. 

 

Conclusion 

We show that both temporal regularity within a stimulus stream and 

cross-modal temporal cueing decrease auditory detection thresholds. 

Moreover, both types of temporal information are used in combination to 

prepare our system for incoming stimuli and may play complementary 

roles in focusing ‘attention in time’. These findings are a testament to the 

flexibility and proactivity of the perceptual system (Schroeder, et al., 

2010; Zion Golumbic, et al., 2012; Van Atteveldt, Murrary, Thut, & 

Schroeder, 2014), in that thresholds for reporting auditory detection are 

not necessarily fixed but rather are strongly influenced by contextual 

factors, like those tested here. Our findings have implications for 

understanding the role of temporal prediction in processing more 

complex and natural stimuli, such as speech, which contain both intrinsic 

regularities (Giraud & Poeppel, 2012; Greenberg, et al., 2003; Luo & 

Poeppel, 2007) as well as temporally predictive cross-modal cues such a 

facial and head movements (Schroeder, et al., 2008; Chandrasekaran, et 

al., 2009; Grant & Seitz, 2000; Munhall & Vatikiotis-Bateson, 2004; 

Schwartz, Berthommier, & Savariaux, 2004; Zion Golumbic, Cogan, 

Schroeder, & Poeppel, 2013), both of which are likely to influence the 

fundamental operations of auditory cortex (Lakatos et al., 2013; 

Schroeder, et al., 2008). Although additional research is needed to 

understand the usage of multiple contextual factors during perception, we 

show that contextual information can be combined from different sources 

to allocate our attention in time, thereby sensitizing and optimizing 

perception.  
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Abstract 

Many environmental stimuli contain temporal regularities, a feature 

which allows predicting the occurrence of forthcoming input. It has been 

proposed that ambient low-frequency neuronal oscillations phase-lock 

(entrain) to rhythmic stimuli, thus aligning high excitability phases with 

events within the stream, effectively enhancing neuronal responses to 

them (Besle et al., 2011; Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 

2008; Schroeder & Lakatos, 2009) and subsequently enhancing feature 

sensitivity (Arnal, Doelling, & Poeppel, 2014; Cravo, Rohenkohl, Wyart, 

& Nobre, 2013). As most studies use highly-salient rhythms, it is unclear 

whether the effect arises purely from the rhythmic evoked responses or 

alternatively could also arise through subtle subthreshold modulations in 

absence of clear evoked responses. To evaluate these possibilities we 

investigated the changes in neural dynamics as sub-threshold rhythmic 

stimuli gradually become audible. Here, using magnetoencephalographic 

(MEG) recordings, we report significant delta phase-locking to rhythmic 

sounds prior to report of their detection. Importantly, this subthreshold 

entrainment could be dissociated from auditory evoked responses, as 

these only appeared when sounds were loud enough to be detectable. The 

current findings support the proposition that entrainment of low-

frequency oscillations serves a mechanistic role in enhancing perceptual 

sensitivity to rhythmic stimuli. This framework also has broad 

implications for understanding the neural mechanisms involved in 

generating temporal predictions and their relevance for perception, 

attention and consciousness (Large & Jones, 1999; Schroeder, Lakatos, 

Kajikawa, Partan, & Puce, 2008; Zion Golumbic, Poeppel, & Schroeder, 

2012).  
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Results 

Entrainment of neural electrical activity to temporal regularities in the 

environment enhances neuronal responses by aligning depolarized phases 

of ongoing oscillations to the arrival time of expected events (Besle, et al., 

2011; Lakatos, et al., 2008; Schroeder & Lakatos, 2009). Since these phases 

correspond to periods of high neuronal excitability, weaker inputs can 

elicit action potentials and thus facilitate downstream information 

processing (Buzsáki & Draguhn, 2004). It has been shown repeatedly that 

perceptual sensitivity varies systematically as a function of low-frequency 

phase (Arnal, et al., 2014; Cravo, et al., 2013; Fiebelkorn et al., 2013), and 

that rhythmic temporal regularities within a stimulus carry behavioral 

benefits (Arnal, et al., 2014; Cravo, et al., 2013). In most studies 

entraining stimuli are presented at supra-threshold levels. This has the 

drawback that the resulting rhythmic patterns of electrical activity are 

dominated by large evoked responses, which obscure the smaller 

underlying fluctuations in the membrane potential. The latter would 

show the true added value of rhythmic stimulation for stimulus detection: 

already during subthreshold stimulation oscillatory entrainment patterns 

develop and these align the optimal excitability state of the neuronal 

ensemble to the events in the stimulus stream, increasing the chance of 

detection. In a previous study we showed that rhythm can indeed have a 

beneficial effect on detection thresholds even when the rhythm itself is 

below perceptual detection threshold (Ten Oever, Schroeder, Poeppel, 

Van Atteveldt, & Zion Golumbic, 2014). This indicates that temporal 

information is extracted and exploited even before a stream is consciously 

perceptible. The current study aimed to investigate the neural mechanism 

that renders these low intensity sounds audible.  

We presented participants with auditory tones (1 kHz beeps of 50 

ms) presented in a rhythmic (inter-stimulus interval 667 ms, 1.5 Hz) or 

random (inter-stimulus interval varying between 300-1000 ms, on 

average 1.5 Hz) sequence. The tones were embedded in noise and initially 

below threshold. Over the course of the trial the intensity increased 

gradually in different steps to ensure that the time point of detection was 

not predictable (in steps of 0.25, 0.5 or 0.75% of signal to noise (SNR) 

increases) and participants indicated when they started to hear the sounds 
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(figure 1A). Trials varied in length, but were on average relatively long; 

often being longer than 30 seconds.  

Analysis focused on the three channels with the largest auditory 

response in each hemisphere from each participant, as obtained from an 

independent auditory localizer (figure 1B; see experimental procedures 

for details). For the main experiment, we first aligned and epoched the 

data around the time of sound onset between -1 to 1 sec. We classified all 

epochs as either pre- or post-threshold. Pre-threshold epochs were 

classified as follows: for each participant we first determined the 

“minimal-detection intensity”, which was the lowest intensity over both 

conditions in which the participants detected the sound. Only epochs in 

which all the sounds were of intensities below this minimal-detection 

intensity were classified as “pre-threshold.” This served as a conservative 

Figure 1. Illustration of the trials and auditory localizer. A) Beeps (red) were 

embedded in white noise (blue), with their intensity increasing monotonically 

over the trial. The button press (purple) indicates the moment that the 

participant indicates hearing the sound for the first time. B) Example for the 

determination of peak amplitude, latency, and electrodes of the M100n for one 

participant in an independent auditory localizer. The ERF of the average of 

the six highlighted channels is displayed (multiplying the left channels with -

1; this will be the convention in the following figures). Topography reflects 

the average of the grey shaded area in the time course. C) Pre and post 

threshold epoch selection. All sounds below the softest detected sound over all 

trials are classified as pre threshold. All sounds after threshold indication of 

that specific trial are classified as post threshold. 
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threshold estimation, as “pre-threshold” epochs only included sounds at 

intensities that were never detected. Post-threshold epochs included all 

the epochs in which the sound was at or above the detection threshold in 

that specific trial (figure 1C).  

Figure 2A shows the event related fields (ERF) for pre- and post-

threshold intervals filtered at 1-2 Hz and at 1-20 Hz. Overall it seems that 

a 1.5 Hz modulation is present in the rhythmic condition, even in the 

pre-threshold window. The inter-trial coherence (ITC) also shows clear 

peaks at 1.5 Hz and its harmonics for the rhythmic, but not for the 

random condition, in both the pre and post detection threshold intervals 

(figure 2B). A repeated measures ANOVA for ITC at 1.5 Hz with the 

factors Condition (random and rhythmic), Detection Threshold (pre and 

post), and Hemisphere (left and right) indicated that the rhythmic 

condition had a significantly stronger ITC than the random condition 

Figure 2. Inter trial coherence (ITC) analysis. A) Average ITC over participants of 

all the pre and post detection threshold epochs for both the random (blue) and 

rhythmic (red) condition. Clear peaks at 1.5 Hz and its harmonics are visible in 

the rhythmic condition. B) Event related fields (ERF) for the pre and post 

detection epochs for both condition for data filtered between 1-20 Hz and 

between 1-2 Hz. C) ERF traces of the full trial, locked to the last stimulus prior to 

detection (t=0) for data filtered between 1-20 Hz and 1-2 Hz. Vertical black lines 

indicate the times of sound presentation in the rhythmic condition. D) ITC over 

the course of the trial. Error bars indicate the standard error of the mean. 

Asterisks indicate significant differences between the random and rhythmic 

condition.  
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 [F(1,14) = 28.90, p < 0.001]. No other effects were significant. In figure 

2B the stronger ITC for the rhythmic condition is evident, even in the 

pre-threshold interval.  

To better understand the development of entrainment over the 

time-course of the trials we sorted the sounds relative to their detection 

(stimulus number 0 indicating the sound that was first detected). From 

figure 2C it is evident that the phase of the averaged MEG signal at sound 

onset is quite stable already early in the time course. To test the 

consistency of these phases within each trial we re-labeled the epochs 

according to their position relative to detected sound in that specific trial. 

To get a reliable estimate of the ITC we used a moving window approach 

in which the epochs of 2 adjacent sound stimuli were included for the 

estimation of the ITC (figure 2D). This was necessary as we were limited 

in trial numbers (due to the length of each trial often being longer than 

30 seconds). We again performed a repeated measures ANOVA for the 

ITC at 1.5 Hz with the factors Condition (random and rhythmic), 

Hemisphere (left and right), and Stimulus number (16 levels ranging from 

-11.5 to 3.5. Half numbers represent that the moving window includes 

two epochs of adjacent sounds). We found an interaction between 

condition and stimulus number [F(15,224) = 2.248, p = 0.022]. 

Additionally, we found a main effect for stimulus number [F(15,224) = 

7.195, p < 0.001] and condition [F(1,14) = 21.909, p < 0.001]. We 

performed a simple effects analysis comparing the random and rhythmic 

condition at each stimulus number (tests were corrected for multiple 

comparisons using false discovery rate). From stimulus number -5.5 on 

the ITC of the rhythmic condition was higher than the random 

condition, and this effect lasted for the rest of the trial (excluding 

stimulus number 2.5). This analysis indicates that inter-trial coherence 

increases well before stimulus detection, minimally 4 stimuli before 

sound detection (considering the length of the epochs and the moving 

window approach). 

In a next step, we wanted to verify more directly that the effect of 

interest indeed reflects sub-threshold entrainment of neuronal 

oscillations, and not a series of evoked responses to sub-threshold stimuli. 

To this end we measured two different measures that could be indicative 

of evoked responses: 1) the overall power and 2) the N100m response. We 

calculated the power using the same trial selection as for the ITC 
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analyses, but extracting the square of the absolute value of the complex 

Fourier spectra for each trial and averaging the power. For statistical 

analysis we normalized the power by calculating the relative change 

subtracting the mean of all conditions of the individual power values and 

dividing it by this mean. In figure 3A the non-normalized overall power 

is shown for both the pre- and post-threshold interval. In both spectra a 

clear 1/f distribution is visible, typical of any EEG/MEG response (Miller, 

Sorensen, Ojemann, & Den Nijs, 2009; Pritchard, 1992). The ANOVA for 

difference in 1.5 Hz power [with the factors Condition (random and 

rhythmic), Detection Threshold (pre and post), and Hemisphere (left and 

right)], showed a significantly higher 1.5 Hz power for the post-threshold 

trials compared to the pre-threshold trials [see inset at figure 3A; F(1,14) 

= 6.029, p = 0.028]. Moreover, a three-way 

detection*hemisphere*condition interaction was visible [F(1,14) = 25.950, 

p < 0.001] as well as a hemisphere*condition interaction [F(1,14) = 5.192, 

p = 0.039]. The three-way interaction seemed to be driven by a stronger 

power increase in the left compared to right hemisphere only in the 

random condition. This effect was absent for the rhythmic condition 

[detection effect in the random left hemisphere: F(1,14) = 3.912, p = 

0.003; hemisphere*detection interaction in the random condition: F(1,14) 

= 7.286, p = 0.017; hemisphere*detection interaction in the rhythmic 

condition: F(1,14) = 0.237, p = 0.634]. Direct contrasts between the two 

Figure 3. Power analysis. A) Average power over participants of all the pre and 

post detection threshold epochs for both the random (blue) and rhythmic (red) 

condition. The MEG shows a typical 1/f distribution, but no peaks at 1.5 Hz are 

present. The inset on the right indicates the relative change in 1.5 Hz power 

(relative to the average of all conditions) which is significant (as indicated by the 

asterisk) B) 1.5 Hz power over the course of the trial. The relative change in 

power is presented for both conditions (compared to stimulus number -11.5). 

Error bars indicate the standard error of the mean.  
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conditions were not significant [main effect condition F(1,14) = 0.327, p = 

0.576]. The development of the 1.5 Hz power also showed that prior to 

sound detection no clear power increases are visible, but they seemed to 

develop after detection (figure 3B; relative change to stimulus number -

11.5). The ANOVA for the development of 1.5 Hz power showed a 

significant effect of stimulus number [F(14,196) = 3.035, p = 0.033]. To 

verify the seemingly present increase in power after sound detection we 

compared the power values at each stimulus number with zero. However, 

none of these contrasts survived multiple comparisons.  

In a second step to estimate the evoked responses we measured the 

amplitude within the time-window associated with the N100m responses 

to each auditory stimulus in the rhythmic condition from -11.5 stimuli 

prior to indication of detection until +3.5 after detection performing the 

same moving window approach as before. This N100m 

Figure 4. ERF and N100m effects. A) ERF average over the different hemispheres 

only using the epochs of the first detected sound (filtered between 0.5 and 20 Hz). 

The arrow indicates the location of the N100m. B) The topographies of the 

N100m using the individual peak timing per participant. C) Development of the 

N100m over the course of the trial for the random (blue), rhythmic (red), and 

their average (black). Error bars indicate the standard error of the mean. Asteriks 

indicate where the N100m is significantly stronger as the -11.5 stimulus number. 

D) Motor evoked field aligned to the response. Topography indicates the peak 

response. White marked channel in the topography of the motor evoked field are 

the plotted channels in the time course.  
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latency was individually determined via an independent localizer. Here, 

we extracted the latency of the peak amplitude in a window between 80 

and 150 ms which had a matching N100m topography (figure 1B). This 

latency was used in the following analysis to extract the N100m 

amplitude calculating the average of all data points around a 50 ms wide 

interval. Initially, the analysis did not show any results; however it is 

known that stimuli with a low intensity have a significantly later N100m 

latency compared to high intensity stimuli (see e.g. (Elberling, Bak, 

Kofoed, Lebech, & Saermark, 1981; Lütkenhöner & Klein, 2007)), which 

were used in the localizer. Therefore, we shifted the individual latencies 

with fifty milliseconds (conform to the latency shift in the literature) and 

extracted the amplitude at this new latency (again using a 50 ms wide 

interval). A shifted N100m (around 180 ms) with low amplitude is also 

evident from figure 4A, which displays the grand average ERF of the first 

detected sound (figure 4B shows the topography). We entered the shifted 

N100m amplitudes into a Repeated Measures ANOVA with factors 

Hemisphere, Condition, and Stimulus number. This analysis revealed a 

significant effect of stimulus number [F(15, 210) = 5.339, p < 0.001] and 

an interaction between hemisphere and stimulus number [F(15,210) = 

2.059, p = 0.044]. Evaluating this interaction effect further, we split up 

the data for each separate stimulus number and performed a t-test 

comparing the two hemispheres. This did not reveal any significant 

effects. To test the main effect of stimulus number, we performed t-tests 

comparing for each stimulus number the N100m amplitude with N100m 

amplitude of the first stimulus (-11.5). This analysis shows whether over 

the course of the trial an evoked response to the sounds would appear 

(assuming that no evoked response is present for stimuli 11 stimuli prior 

to detection). A significant effect for the stimulus numbers ranging from -

0.5 to 3.5 was present, indicating that an evoked response only occurred 

after participants detected the sounds (figure 4C. It is important to note 

that the amplitudes of stimulus number 0.5 and 1.5 were likely 

influenced by visual evoked responses, as the fixation cross changed from 

grey to green after participants pressed the button). These effects could 

not be attributed to any motor evoked responses as the motor response 

was present at the more anterior right hemisphere (figure 4D) and all the 

channels used for the auditory analyses came from the posterior channels 

of the N100m response.  
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Discussion 

We investigated the effects of stimulus rhythmicity on observers’ 

detection thresholds by measuring neural responses to streams of sub-

threshold auditory stimuli that gradually became audible, presented 

either with a rhythmic or random timing. We show significant delta 

entrainment for sub-threshold rhythmic sounds. This entrainment was 

dissociated from sensory evoked responses, which appeared only near the 

indication of conscious detection. These novel results show that despite 

being below conscious detection level, the rhythmic structure of sub-

threshold stimuli is nonetheless sufficient for entraining delta oscillations. 

This may underlie our previously reported findings of perceptual benefits 

and lower detection-thresholds for rhythmic stimuli (Ten Oever, et al., 

2014).  

 

Sub-threshold effects 

Our results are consistent with the “neural entrainment hypothesis” 

(Schroeder & Lakatos, 2009; Schroeder, et al., 2008) which postulates that 

phase alignment of delta oscillations to the rhythm of external sounds 

ensures that upcoming stimuli will fall on a high excitable phases of the 

oscillation, thereby increasing processing efficiency and reducing 

detection thresholds. However, entrainment to rhythms below perceptual 

threshold has to our knowledge not been reported before. This novel 

finding suggests that environmental rhythmic information is utilized by 

the brain even before we are aware of any stimulation.  

The environment is full of different rhythmic structures that are 

important for human behavior, such as music, biological motion, and 

speech. Considering that the brain during rest seems to be composed of 

complex oscillatory patterns of rhythmically varying membrane 

potentials rather than purely random fluctuations (Berger, 1929; Buzsáki 

& Draguhn, 2004) its machinery seems especially sensitive to rhythmic 

inputs.  Subthreshold inputs have been shown to align the phases of slow 

fluctuations of groups of neurons, even when the number of spikes does 

not increase (Buzsáki, 2004; Buzsáki & Draguhn, 2004; Pike et al., 2000). 

Here, we show that rhythmic input from the environment seems to act 
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upon this machinery thereby influencing the phase of these ongoing 

oscillations even when clear evoked responses are absent.  

 

Absence of evoked responses 

We measured evoked responses via a power analysis and the N100m 

response. Both measures showed increased responses when participants 

detected the sounds. These two separate measures complement each 

other and indicate that evoked responses do not seem to be driving any 

pre detection effects. One could argue that the absence of this effect is 

due to a lack of power to reach statistical significance in the measured 

evoked responses. We believe this unlikely as both measures did show 

reliable responses after sound detection. Moreover, both effects measure 

different aspects of the evoked response and show the same pattern. 

Additionally, the inter-trial coherence measure would also be negatively 

influence by changes in noise level as phase estimates are less reliable 

under these circumstances. Therefore, we conclude that our results 

reflect the alignment of ongoing oscillatory patterns to the presented sub-

threshold rhythmic stream in absence of clear changes in evoked 

patterns.  

 

Conclusion 

Many natural stimuli contain temporal regularities, and the brain is tuned 

to process the natural statistics of the environment (Bonte, Mitterer, 

Zellagui, Poelmans, & Blomert, 2005; Schroeder, Wilson, Radman, 

Scharfman, & Lakatos, 2010; Simoncelli & Olshausen, 2001). Our study 

has implications for understanding the neural mechanisms involved in 

utilizing these temporal regularities. We show that even when 

rhythmically presented sounds are not consciously detected, they can 

proactively enhance subsequent processing. Specifically, we provide 

evidence supporting the ‘entrainment hypothesis’, which posits that 

alignment of neuronal excitable phases to the temporal structure of 

incoming stimuli enhances sensory processing. Our study indicates that 

this alignment occurs without any increase in evoked responses, strongly 

suggesting that it is the phase alignment, and not sensory evoked 

responses that drive the entrainment. This mechanism has broad 



Chapter 3 

70 

 

implications for understanding the neural basis of perception, attention, 

and consciousness (Large & Jones, 1999; Schroeder, et al., 2008; Zion 

Golumbic, et al., 2012), as it emphasizes the predisposition of the system 

to identify and utilize temporal statistics in the environment to form 

predictions and ultimately facilitate neural processing. 

 

Experimental procedures 

Participants 

Sixteen participants completed the experiment (range: 23-37, mean age 

27, 7 male). All had normal or correct to normal vision and gave written 

informed consent. Participants received monetary compensation. The 

study was approved by the New York University Committee on Activities 

Involving Human Subjects (NYU UCA/HS). One participant was removed 

of the data analyses since he did not follow the instruction of the 

behavioral task.  

 

Stimulus material 

Auditory stimuli were sinusoidal 1 kHz beeps, lasting 50 ms (with a linear 

rise and fall time of 5 ms) embedded in continuous white noise (53 dB). 

The software Presentation used for stimulus delivery; Neurobehavioral 

Systems, Inc., Albany, NY).  

 

Procedure 

Auditory localizer: Before the main experiment, participants in the MEG 

experiment underwent an auditory localizer procedure. This localizer 

consistent of a total of 200 auditory beeps (400 ms long) of which half had 

a high frequency (1000 Hz) and the other half a low frequency (250 Hz). 

Inter-stimulus interval (ISI) was varied between 1.2, 1.3, or 1.4 seconds. 

ISI and stimulus frequency was randomized. The task lasted 

approximately 5 minutes and participants had to fixate the screen. 

Main experiment: Participants heard a stream of auditory beeps 

embedded in continuous white noise. The signal to noise ratio (SNR) of 

the beeps was initially below threshold, and the intensity of the beeps 

increased monotonically over the trial. Participants were asked to 
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indicate via button press when the auditory beeps were first detected. 

The starting SNR was 7%. Over the trial, SNR increased incrementally in 

steps of 0.25, 0.5 or 0.75%. The different incremental steps were 

randomized to ensure that the sequence of sounds and length of the trials 

were not identical across trial. Stimuli were presented until an SNR of 

17.5%, independent of the participant’s response. After the participant 

indicated to hear a sound the fixation cross changed color from grey to 

green and stayed like this for five consecutive sound before turning back 

to grey. 

In the rhythmic condition there was a constant inter-stimulus 

interval (ISI) of 667 ms between the beeps, whereas for the random 

condition the ISI was randomized amid one of 21 evenly spaced time 

points between 300 and 1000 ms, maintaining an average ISI of 667 ms,. 

The current results were part of an experiment that also included an 

audiovisual condition where a Gaussian white circle preceded every 

auditory stimulus, however, the audiovisual trials were not included in 

the data analyses since in the current paper we were mainly interested in 

how rhythmic stimuli become audible from a noisy background.  

Participants were explicitly instructed to maintain fixation on a grey cross 

in the middle of the screen. Trials were randomized across conditions (20 

trials per condition) and the experiment was divided in four blocks of 

approximately eleven minutes each. After every block participants were 

encouraged to take a break. A trial was defined as the whole period from 

the onset of the white noise until the last sound was presented.  

 

MEG recordings and data pre-processing 

A 160-channel axial gradiometer (157 data, and 3 reference channels) 

whole-head MEG system (KIT, Kanazawa, Japan) was used for data 

acquisition. Head position was monitored via five electromagnetic coils 

attached to the participant’s head located in respect to the nasion and 

both preauricular points using 3D digitizer software (Source Signal 

Imaging, Inc.) and digitizing hardware (Polhemus).  Sampling rate was 

1000 Hz with online filtering of DC-200Hz. Initial noise reduction was 

using the CALM algorithm (Adachi, Shimogawara, Higuchi, Haruta, & 

Ochiai, 2001) implemented in the MEG160 software (KIT, Kanazawa, 

Japan). All other analyses were performed using the Fieldtrip toolbox 
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(Oostenveld, Fries, Maris, & Schoffelen, 2011) implemented in MATLAB 

(MathWorks). First, data was resampled to 256 Hz and bad channels were 

replaced by the average of the neighboring channels. Then, independent 

component analyses (ICA; using the logistic infomax ICA algorithm (Bell 

& Sejnowski, 1995), extracting 75 principle components) was performed 

to remove artifacts related eye blinks, eye movements, and heartbeat. 

Extreme trials were removed via visual inspection. 

 

MEG Analyses 

First we extracted from the independent auditory localizer which 

channels had the strongest N100m response on the left and the right 

hemisphere and their latency (collapsed over both frequencies). We took 

the three most positive channels on the left side and the three most 

positive channels on the right side for each individual; conform to the 

auditory topography of MEG (see figure 1).  

ITC estimation: First we epoched the data around sound onset (-1 

to 1 sec) and baseline corrected to the 200 ms prior to trial onset (similar 

for all upcoming analyses). Then we sorted the epochs either as pre- or 

post-threshold. Pre-threshold epochs included all the epochs that had a 

lower threshold than the minimum threshold value per condition. Also 

the epochs centered around the sounds directly before the value reached 

this minimum value were excluded. As the epoch window is longer as the 

inter-stimulus interval window this ensured that we only included 

intervals in which the stimulus intensity was never detected. Then we 

extracted the phase angles by performing a frequency analysis using 

hanning tapers over all individual epochs and calculated the ITC. Effects 

of 1.5 Hz entrainment were statistically tested using a repeated 

measurements ANOVA with the factors Condition (random or rhythmic), 

Hemisphere (left or right), and Detection Threshold (pre or post 

threshold). All filtering present in the figures was done prior to epoching 

to eliminate edge effects.  

To evaluate the development of the ITC over the trial we re-labeled 

the epochs now reflecting their position relative in the trial in which zero 

indicates the first sound detected (-1 indicates the one sound prior to 

detection etc.). As we had a limited trial amount and therefore limited 

epochs (due to the length of the trials), we performed a moving window 
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approach to reliably estimate the ITC: two sequential epochs were used to 

estimate the ITC for all stimulus numbers ranging from -12 to 4. We 

again calculated the ITC and statistically tested the effect using a repeated 

measures ANOVA with factors Condition, Hemisphere, and Stimulus 

number (16 levels ranging from -11.5 to +3.5; the half number reflect the 

moving window approach). We used the Huyn-Feld method to correct 

for violations for spericity. Simple effects analyses were performed for 

significant interactions using false discovery rate to correct for multiple 

comparisons.  

Power estimation: We repeated the analyses for the ITC estimation, 

except using the square of the absolute value of the complex Fourier 

spectra for the different ANOVA’s. The power spectra for the pre- versus 

post-threshold analysis were normalized by subtracting the average over 

all conditions from the individual values and dividing by this average. 

Power spectra for the second analysis evaluating the development of the 

trial were normalized by subtracting the power of the -11.5 stimulus. 

Trials with extreme power values were removed. 

Evoked response and N100m. The same epochs as the previous analyses 

were used evaluate the development of the N100m response. To exclude 

any effects caused by the delta entrainment, we filtered the data between 

3 and 20 Hz. Then, we extracted the individual N100m responses by 

using the latency of the individually determined N100m latency. Fifty 

milliseconds was added to this latency as it is know that stimuli with a 

low intensity have a significantly later N100m latency compared to high 

intensity stimuli used in the localizer (see e.g. (Elberling, et al., 1981; 

Lütkenhöner & Klein, 2007)) and extracted the N100m amplitude around 

a 50 ms wide window around this latency. For statistical comparisons we 

first performed a 2*2*16 repeated measures ANOVA with factors 

Condition (random and rhythmic), Hemisphere (left and right), and 

Stimulus number (ranging from -11.5 to +3.5). We multiplied all the left 

hemispheric values with -1 since it is evident that via our channel 

selection the right hemisphere would have the opposite N100m sign as 

the left hemisphere. As a post-hoc analysis we performed pair-wise 

comparisons investigating whether the amplitude of the -11.5 was 

significantly different from all the other time points (corrected for 

multiple comparisons via false discovery rate).  
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To test whether we were not extracting motor responses we also 

epoched the data locked to the response and extracted the motor evoked 

field. This analysis indicated that the chosen channels did not overlap 

with the motor evoked response. 
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Abstract 

Sensory entrainment is becoming a popular method to investigate the role 

of oscillatory phase in perception. By rhythmically presenting stimuli at a 

specific rate, neuronal responses follow an oscillatory pattern at the 

presentation rate. Target stimuli that are presented at different delays 

after the entrainment can subsequently be associated with specific 

oscillatory phases. To reliably estimate phase effects it is essential to 

optimize entrainment parameters to induce entrainment as strong as 

possible. In the current study we investigate the effect of having varying 

entrainment lengths on entrainment strength. We presented a train of 

noise bursts at various presentation rates and entrainment lengths after 

which an ambiguous syllable was presented (this stimulus type has been 

shown to be phase dependent in a previous study) while recording EEG. 

Both behavioral and EEG data showed stronger entrainment effects for 

the shorter compared to the longer entrainment lengths. The enhanced 

entrainment effect for short trains likely reflects participants’ expectation 

of entrainment continuation for these short trains. Our results provide a 

way to improve the sensitivity for behavioral phase dependent effects.  

  

  

  



Sensory Entrainment and Entrainment Length 

81 

 

Introduction 

In recent years the role of oscillation phase in perceptual processes has 

been systematically uncovered. It has been shown that the phase of 

oscillations is important for detection (Cravo, Rohenkohl, Wyart, & 

Nobre, 2013; Fiebelkorn et al., 2013; Ten Oever, Van Atteveldt, & Sack, 

2015) and improves reaction times to simple stimuli (Ellis & Jones, 2010; 

Mathewson, Fabiani, Gratton, Beck, & Lleras, 2010). Also the role of 

oscillatory phase in categorization seems evident (Kayser, Ince, & 

Panzeri, 2012; Lopour, Tavassoli, Fried, & Ringach, 2013; Ten Oever & 

Sack, in press; Watrous, Fell, Ekstrom, & Axmacher, 2015). The gained 

interest in the relevance of phase has triggered different ways to 

investigate oscillatory processes beyond methods that passively measure 

oscillations and post-hoc sort trials according to their respective phase. 

Instead, the causal role of these phases can be explored better by 

externally inducing these oscillations. One the one hand, this can be done 

by electrical stimulation with an alternating current (Herrmann, Rach, 

Neuling, & Strüber, 2013; Riecke, Formisano, Herrmann, & Sack, 2015). 

On the other hand, sensory entrainment has been extensively used to 

induce oscillations (Henry & Obleser, 2012; Lakatos, Karmos, Mehta, 

Ulbert, & Schroeder, 2008). 

During sensory entrainment one sensory stimulus (e.g. a sound) is 

repeatedly presented at a specific presentation rate [or a stimulus feature 

is modulated at a specific rate, e.g. (Henry & Obleser, 2012)], thereby 

causing a cascade of evoked responses entraining an oscillation at this 

rate. When target stimuli are subsequently presented at different time 

points relative to the entrained frequency, a time course evolves, 

representing different oscillatory phases. In this manner, the role of phase 

for detection and categorization can be causally inferred.  

A problem in sensory entrainment is that there should be no 

confounding of the entrainment stimuli and the target stimulus. When 

one systematically presents targets at different time points, one of the 

time points will overlap with the time point at which the entrainment 

stimulus is presented in the entrainment stream. Therefore it is a 

reasonable choice to stop entraining when one wants to present their 

target stimuli. However, this causes fading of the entrainment, reducing 
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the amplitude of the oscillation and thereby the strength of the effect 

(Lakatos et al., 2013).  

The speed of the fading of the oscillations might be influenced by 

different factors. While entrainment seems primarily driven by evoked 

responses in the brain, there are accounts that attention and expectations 

also influence the entrainment (Lakatos, et al., 2008; Stefanics et al., 2010; 

Ten Oever, et al., 2015). For example, when entraining with an auditory 

and visual stream that are presented in anti-phase, the entrainment phase 

depends on whether one either attends to the visual or to the auditory 

stream (Besle et al., 2011; Lakatos, et al., 2008). Expectancy has been 

shown to influence entrainment by Stefanics and colleagues (2010). They 

presented a stream of auditory beeps in which some of the beeps 

indicated that there was a high chance that the next stimulus (which was 

always in phase with the stimulus train) would be a target. It was shown 

that entrainment is stronger when there is a higher chance that a 

following stimulus will be a target. In summary, it thus seems that the 

strength of entrainment depends on top-down mechanisms such as 

attention and expectancy, being strongest when participants pay 

attention to the stimulus train and expect a stimulus to occur. 

So how could we use these top-down mechanisms to reduce the 

fading of the oscillations? Increasing attention to the stimulus train could 

be difficult, as the participants’ task is always directed towards the target 

stimulus. Moreover, entrainment aids to attend to the predictable, 

rhythmic moments in time that are in phase with the entrainment stream 

(Jones & Boltz, 1989; Nobre, Correa, & Coull, 2007; Schroeder & Lakatos, 

2009). Since the timing of the target is not in phase with the stimulus 

train, the entrainment will most likely also be reduced when the stimulus 

train finishes as the timing of target stimuli is variable. However, 

expectancy mechanisms might benefit entrainment when using different 

entrainment lengths that are presented in random order: while for the 

longest used entrainment length stimulus timing is relatively 

unpredictable (as only target stimuli can follow), participants have some 

temporal expectations for shorter entrainment lengths. Specifically, as 

participants are unaware of the length of the entrainer the likelihood of 

the following stimulus occurring in phase with the previous sounds is 

relatively high for short lengths [also see (Correa, Lupianez, & Tudela, 

2006)]. It is therefore expected that entrainment paradigms would be 
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optimized for short lengths embedded with stimulus trains that also last 

longer. 

In the current study we try to probe expectancy mechanisms by 

having three different entrainment lengths. We used part of the data 

from a paradigm that has been shown to produce entrainment effects 

[(Ten Oever & Sack, in press); also additional data was collected] and 

show that fitting performance was best for the shortest entrainment 

length used. Moreover, we verified with EEG that at the time points that 

target stimuli could occur inter-trial coherence was higher for the 

shortest compared to the longest entrainment length. These results show 

that sensory entrainment paradigms might be improved by using a 

multiple of entrainment lengths. This provides better methods to try to 

find entrainment effects and to discover the causal role of oscillatory 

phase in any cognitive and perceptual tasks.  

 

Methods  

Participants 

In total 27 participants (8 male; age range: 18-52, mean age: 24.64) 

participated in the experiment. Three participants were excluded as they 

had a ceiling performance and 12 participants underwent EEG. All 

participants had normal or corrected-to normal vision and gave written 

informed consent prior to participation. Ethical approval was provided by 

the local ethical committee of the Faculty of Psychology and 

Neuroscience at Maastricht University. All participants were rewarded 

with a monetary compensation for participating. 

 

Stimuli 

Entrainment stimuli were bandpassed white noise burst (2.5-3.1 kHz) 

lasting for 50 ms. They were presented at a rate of either 1, 6.25 or 10 Hz. 

The length of the entrainment was varied. For 6.25 Hz and 10 Hz, the 

trains lasted either 2, 3, or 4 seconds. For 1 Hz the trains lasted either 4, 5, 

or 6 seconds to ensure that enough stimuli were presented to induce 

entrainment. After the entrainment finished a target stimulus was 

presented. This stimulus was an ambiguous stimulus that could either be 
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perceived as /da/ or /ga/ (a morph between /da/ and /ga/; for 7 of the 

participants of the 6.25 Hz EEG the stimulus was a complex tone, 

behavioral data not shown). This ambiguous stimulus was presented at 

different intervals after the last stimulus finished of which all stimulus 

onset asynchronies (SOAs) exactly covered two periods (the exact timing 

depending on the frequency; 6.25 Hz: from 0.1 to 0.58 sec in steps of 

0.0267 sec. 10 Hz: from 0.1 to 0.28 in steps of 0.017 sec. 1 Hz: from 0.1 to 

1.93 in steps of 0.167 sec).  

 

Procedure 

First, the most ambiguous stimulus of a da-ga morphed spectrum [see 

(Ten Oever & Sack, in press) for more details on the morphing] was 

determined. Morphed stimuli at each point of the spectrum (9 stimuli in 

total, each presented 15 times) were repeatedly presented and 

participants had to indicate whether they heard /da/ or /ga/. Trial onset 

was either 1.6, 1.8, or 2 seconds after the response to the previous trial. 

The mean proportion /da/ responses was calculated for each morph after 

which a cumulative Gaussian was fitted with the fitting toolbox 

modelfree v 1.1 (Zchaluk & Foster, 2009). The morph closest to 50% /da/ 

identification was used for the rest of the experiment. For the main 

experiment there were in total 108 trails per entrainment length (27 per 

SOA). All trials were presented in random order. Participants were 

required to fixate the screen at all times. Presentation software was used 

for stimulus delivery. 

Not all participants went through all conditions. Specifically, for 

some of the participants the 6.25 Hz in the EEG data reflects another task, 

namely tone identification, while the behavioral task was the syllable 

identification (with different participants). The entrainment however was 

the same.  

 

EEG acquisition and preprocessing 

31 EEG channels were recorded using the easycap M22 set-up with 

additional channels TP9, TP10, C1, C3 and CPz. Eye movements were 

recorded from four electrodes above and below the left eye and lateral of 

both eyes. Online reference and ground were the tip of the nose and AFz 
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respectively. Data was online recorded with a bandpass filter of 0.1-200 

Hz and a sampling rate of 500 Hz using BrainAmp EEG amplifiers 

(BrainProducts GmBh, Munich, Germany) and BrainVision Recorder 

(BrainProducts, GmBh, Munich, Germany). Impedance was kept below 

15 kOhm (5kOhm for the ground and reference).  

Eye blinks were removed using the function scrls_regression of the 

eeglab plugin AAR [(Gómez-Herrero et al., 2006); filter order: 3, 

forgetting factor: 0.999, sigma: 0.01, precision: 50]. Then, data was 

epoched from -3 – 3 seconds around entrainment offset. Trials with 

extreme variance were removed.  

 

Data Analysis 

Behavioral Analysis: The proportion of /da/ response was calculated for 

each SOA and entrainment length collapsed over all participants. These 

time courses were each fitted with a sinus using the function lsqnonlin in 

matlab (mathworks). The frequency of the fit was fixed to the 

entrainment frequency and we extracted the explained variance. 

Statistical testing was performed via bootstrapping (n = 1,000). The 

likelihood of getting such a high explained variance value was estimated 

for each entrainment length by randomly shuffling the SOA labels and 

estimating the relevance value again for each entrainment length and 

presentation rate separately.  

In a second analysis we wanted to investigate more directly 

whether the explained variance reduced for increasing entrainment 

lengths. To get an estimate that both includes the strength of the decrease 

over the entrainment lengths and also the variance of diverting from a 

linear distribution over the three lengths we estimated the statistical 

value later used for bootstrapping as follows: 1) we subtracted the 

explained variance of entrainment length 3 from entrainment 1 (which 

would yield a positive value for decreased explained variance for 

increased lengths), and 2) subtracted the variance of entrainment length 2 

from this difference (variance was calculated as the distance of 

entrainment length 2 from a line connecting entrainment lengths 1 and 

3). This value would be positive if both the decrease in explained variance 

is high and the dispersion of the middle entrainment length is low. This 

value was calculated for the original labels and for the bootstrapped labels 
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(n = 1000) labels. In this analysis we did not bootstrap the SOA, but the 

entrainment lengths as we were interested in the effect that entrainment 

length had on the explained variance.  

Presentation rates were only analysed when they showed a 

frequency modulation of syllable identification on the data collapsed over 

entrainment length (Ten Oever & Sack, in press), that is, presentation 

rates of 6.25 and 10 Hz (and thus not for 1 Hz and the tone 

identification). All bootstrapping was performed on the average instead of 

the individual participants due to a lack of power. This analysis has been 

performed in other studies as well (de Graaf et al., 2013; Fiebelkorn et al., 

2011). 

 

EEG analysis: For each entrainment length and each presentation rate we 

calculated the inter-trial coherence (ITC) by extracting the phase of the 

complex Fourier transform calculated via Morlet wavelets using 4 cycles. 

To estimate the effects of the entrainment we averaged the ITC for the 

relevant frequencies (1, 6.25, and 10 Hz for the three different 

presentation rates at an interval +/- 0.75 multiplied by the presentation 

rate) at all time points that target stimuli could occur for the respective 

conditions. Channels used for the analysis included the central channels 

where auditory EEG responses end up (CP2, CPz, CP1, C2, Cz, C1, FC2, 

FCz, FC1). As we were not interested in overall ITC differences over 

presentation rates we normalized the ITC values by calculating the z-

values over the three entrainment lengths for each participant and 

presentation rate separately. We entered these z-values in a regression 

analysis including the predictors entrainment length and the interaction 

with the entrainment length and frequency (using two dummy variables 

for presentation rate 6.25 and 10 Hz and the interaction with 

entrainment length). We used a step-wise method to enter the variables 

(using SPSS software). 

The same analysis as above was repeated for the time period just 

before entrainment offset (averaging over the same interval as above but 

before entrainment onset). 
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Results 

Behavior 

We fitted for both the 6.25 and 10 Hz presentation rates a sinus (figure 

1A). For both presentation rates the explained variance was highest for 

the shortest entrainment length and lowest for the longest entrainment 

length (figure 1B). This was also reflected in the bootstrap statistics. P-

values dropped for longer entrainment lengths and only for the shorter 

entrainment lengths showed a significant effect or a trend (6.25 Hz: p = 

0.04, p = 0.09, and p = 0.91 for the three respective entrainment lengths. 

For 10 Hz this is p = 0.07, p = 0.34, and p = 0.52).  

To further elaborate on this effect we subtracted the explained 

variance of entrainment length 3 from entrainment length 1 and 

subsequently subtracted the variance of the explained variance of 

entrainment length 2 (figure 1C). This statistical significance was 

Figure 1. Behavioral results. A) Time course of proportion /da/ responses for each 

entrainment length and presentation rate the original data (crosses) and fitted data 

(solid line) is shown with mean subtracted. Longer entrainment length typically have a 

worse fit compared to short lengths. B) The explained variance for the fit for each 

entrainment length. C) The histograms of the bootstrapped data for the comparison of 

the strength of the entrainment length effect. The red solid lines indicate the value of 

the original data. The red dotted lines indicate the 95 percentile of the bootstrapped 

data. 
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determined via bootstrapping the entrainment length labels. Results 

showed a significant effect for 10 Hz (p=0.04) and a trend for 6.25 Hz  

(p=0.06) indicating that indeed it seemed that the explained variance 

parametrically reduced dependent on entrainment length.  

 

EEG 

Figure 2A displays the ITC for all presentation rates and entrainment 

lengths around entrainment offset. Especially in the 1 Hz condition only 

for the shortest entrainment length there is strong 1 Hz ITC after the 

entrainment finished. This effect is also present for the other two 

entrainment lengths, but less strongly. Also strong ITC are visible at other 

frequency bands, especially in the 10 Hz condition. However, the time 

point directly after the entrainment is highly influenced by the evoked 

response to the target stimulus. This is especially strong in the 10 Hz 

condition as the time interval of target presentation is very narrow. 

 

Figure 2. EEG results. A) The ITC values for each presentation rate and entrainment 

frequency. Time point zeros indicates entrainment offset. B) The extracted ITC 

values at the interval at which target stimuli could be presented. C) The extracted 

ITC values at the interval before target stimuli could be presented. Error bars 

indicate the standard error of the mean. 
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We extracted the ITC at the relevant frequency points for each of 

the three presentation rates at the interval at which target stimuli could 

be presented and entered the z-normalized scores in a multiple regression 

(including interaction terms). The final regression model only included 

the predictor entrainment length [F(1,106) = 9.921, p = 0.002; r-square = 

0.293]. This indicates that for longer entrainment lengths ITC values 

were lower (figure 2B). Although in figure 2B it seems that the 6.25 Hz 

presentation rate showed a different ITC pattern over entrainment 

lengths, this was not statically demonstrated by a significant interaction 

between entrainment length and 6.25 Hz presentation rate.  

Figure 2C shows the ITC values for the time interval prior to 

entrainment offset. The overall pattern seems to indicate a slight increase 

in ITC for longer entrainment lengths. The conducted regression did not 

include any predictors in the model indicating that there was no linear 

pattern for the entrainment length. However, when just including 

entrainment length there was a trend suggesting stronger ITCs for longer 

entrainment lengths [F(1,106) = 3.835, p = 0.053; r-square = 0.187].  

 

Discussion 

We investigated the effect of entrainment length on the strength of 

sensory entrainment with EEG as well as behavioral responses. We 

presented auditory noise bursts at presentation rates of 1, 6.25, and 10Hz 

after which ambiguous syllables were presented after three different 

entrainment lengths. It was predicted that for shorter entrainment 

lengths effects would be stronger as participants are unaware of the 

length of the stimulus train and it is therefore likely that entrainment 

would continue for shorter lengths. We found that behavioral 

entrainment as well as inter-trial coherence was stronger for shorter 

entrainment lengths. The current results show how sensory entrainment 

protocols could be improved. This modulation in entrainment protocols 

could thereby enhance the sensitivity of detecting behavioral phase 

effects.  
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Improving sensory entrainment protocols 

There is growing interest to investigate the causal role of oscillatory phase 

for behavior. This requires optimizing sensory entrainment protocols. 

The current results show one way to improve entrainment protocols by 

adding variable entrainment lengths. In this way entrainment effects will 

be the strongest for the shortest entrainment length used as participants 

expect the entrainment to continue. Alternatively, expectation 

mechanisms could be probed by having a continuous stream of 

entrainment in which target stimuli are presented at random time points 

which are unknown to the participant [see e.g. (Mathewson, et al., 

2010)].  

Besides the effect of temporal expectations that can be counteracted 

with having varying entrainment lengths, also other parameters can 

influence the final behavioral outcome. For example, one also has to 

decide the presentation rate of stimulation, which is often inferred from 

EEG or electrophysiology research, as well as the specific stimulus 

properties of the entrainer. Would one systematically modulate a specific 

feature that induces the oscillations, such as for example a frequency 

modulated tone (Henry & Obleser, 2012), or would one rather repeatedly 

present the same stimulus at a specific rate (Jones, Johnston, & Puente, 

2006; Lakatos, et al., 2008)? Furthermore, the stimulus choice should 

predominantly depend on the region one wants to entrain. Primary 

auditory regions should be stimulated with narrow band noise, while 

higher order regions are more sensitive to broadband noise (Kaas & 

Hackett, 1998). Moreover, many auditory regions are frequency selective 

and it has been shown that regions non-selective for the entrainer 

frequency might show the opposite entrainment compared to regions 

selective for this frequency (Lakatos, et al., 2013). Correct choice of 

entrainment parameters is vital to ensure that the correct areas are 

entrained at the correct time points with minimal amount of fading of the 

evoked oscillation. In this way, sensory entrainment protocols could 

become a more powerful tool to investigate the role of oscillatory phase 

of perception. 
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Proactive expectations of stimulus occurrence 

There is a growing consensus that our brain is not a passive monitor of 

sensory input but rather proactively acts towards future input by 

predicting the input and selectively changing its response (Friston, 2005; 

Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010). The current 

results also reflect a mechanism of expectations: for short entrainment 

lengths participants expect the entrainment train to continue, thereby 

producing a stronger entrainment. This is consistent with findings of 

stronger entrainment for increased target expectation (Stefanics, et al., 

2010). An alternative explanation is that for longer entrainment trains 

there is more response suppression (Bourbon, Will, Gary, & 

Papanicolaou, 1987; Näätänen, Paavilainen, Rinne, & Alho, 2007; Ritter, 

Vaughan, & Costa, 1968), selectively reducing the response to subsequent 

stimuli. We believe this explanation is not very likely as for most 

mismatch paradigms maximal suppression is already present for a small 

amount of repetition of stimuli (Näätänen, et al., 2007). Moreover, there 

was no evidence of reduced entrainment for longer trains just before the 

entrainment finished. On the contrary, there was an indication that ITC 

increases with longer entrainment. We therefore hold that the most 

likely explanation is that entrainment length influences the temporal 

expectations of participants of entrainment continuation.  

 

Conclusion 

As sensory entrainment is becoming a more popular paradigm to 

investigate effects of oscillatory phase it is vital to optimize all 

entrainment parameters to ensure detecting behavioral phase effects. Our 

study provides one way to enhance entrainment by inducing varying 

entrainment lengths. Besides the improved methodology we also provide 

evidence for the proactive nature of the brain (Bar, 2011; Schroeder, et 

al., 2010; Summerfield & Egner, 2009), which rather than only directly 

responding to the presented stimuli, responds differentially when stimuli 

are expected. Our study provides contributions revealing how attention is 

selectively driven to specific points in time (Nobre, et al., 2007; Ten 

Oever, Schroeder, Poeppel, Van Atteveldt, & Zion Golumbic, 2014) and 

how this mechanism can be used to optimize entrainment in 

experimental settings. 
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Abstract 

Temporal cues can be used to selectively attend to relevant information 

during abundant sensory stimulation. However, such cues differ vastly in 

the accuracy of their temporal estimates, ranging from very predictable to 

very unpredictable. When cues are strongly predictable, attention may 

facilitate selective processing by aligning relevant incoming information 

to high neuronal excitability phases of ongoing low-frequency 

oscillations. However, top-down effects on ongoing oscillations when 

temporal cues have some predictability, but also contain temporal 

uncertainties, are unknown. Here, we experimentally created such a 

situation of mixed predictability and uncertainty:  a target could occur 

within a limited time window after cue, but was always unpredictable in 

exact timing. Crucially to assess top-down effects in such a mixed 

situation, we manipulated target probability. High target likelihood, 

compared to low likelihood, enhanced delta oscillations more strongly as 

measured by evoked power and inter-trial coherence. Moreover, delta 

phase modulated detection rates for probable targets. The delta frequency 

range corresponds with half-a-period to the target occurrence window 

and therefore suggest that low-frequency phase-reset is engaged to 

produce a long window of high excitability when event timing is 

uncertain within a restricted temporal window. 
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Introduction 

Ongoing neuronal oscillations reflect fluctuations of neuronal ensembles 

between low and high excitable phases, during which incoming stimuli 

are less or more efficiently processed, respectively (Buzsáki & Draguhn, 

2004; Lakatos et al., 2005). When events are highly temporally predictive, 

for example in rhythms, high excitable phases can be aligned to the 

arrival time of incoming information, effectively changing the phase of 

ongoing oscillations (Kayser, Logothetis, & Panzeri, 2010; Lakatos, 

Karmos, Mehta, Ulbert, & Schroeder, 2008). The strength of this phase-

reset increases when extra top-down resources are employed, for instance 

when there is an expectancy cue about the occurrence of relevant stimuli 

(Stefanics et al., 2010). In contrast, during absence of any temporal 

predictability - for example when a cat is waiting for a mouse to exit its 

mouse hole without any cues of when this will happen - Schroeder and 

Lakatos (2009) proposed a ‘vigilance mode’ of processing. In this mode, 

increased attention enhances the amplitude of high-frequency gamma 

oscillations to produce many, densely distributed, high excitable phases, 

and hereby optimizes the chance that an unpredictable stimulus will 

arrive during a high excitable phase.  

Dichotomizing all possible temporal contexts in ‘predictable’ versus 

‘unpredictable’ might not be sufficient since in many natural situations 

there is a mixture of both regularities and uncertainties in our temporal 

estimates, which has been tested in variable foreperiod studies (Los, Knol, 

& Boers, 2001; Niemi & Näätänen, 1981; Wright & Fitzgerald, 2004). 

Considering the cat-mouse-hole example, when the cat briefly hears the 

mouse toddling, its attention will be raised for a short while, because the 

mouse might come out very soon. In this example there are temporal cues 

(i.e. the sound of the mouse) which indicate that an event is expected to 

occur soon, but their temporal precision is not very accurate, leaving the 

exact event timing uncertain. With these kinds of intermediate temporal 

cues, it seems beneficial to allocate attention continuously for a 

constrained time, which we will define here as restricted vigilance. We 

hypothesize that low-frequency oscillations will be reset when attending 

for a restricted period of time, to ensure high-excitability during the 

entire window of stimulus occurrence while not using metabolically 

demanding gamma oscillations (Mukamel et al., 2005; Niessing et al., 
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2005). These low-frequency oscillation would thereby efficiently cover 

the restricted vigilance window with the high-excitability half of the 

oscillation period. 

To investigate top-down influences on phase-reset mechanisms 

during a situation of restricted vigilance we presented a blue or yellow 

circle which indicated a high (80%) or low (50%) probability of a target 

sound following. This probability manipulation allowed us to vary the 

top-down expectancy about the probability that a temporally 

unpredictable, but behaviorally relevant event will occur while keeping 

the restricted vigilance window constant. After these expectancy cues, 

low-intensity auditory stimuli were presented in the corresponding 

proportion of the trials, with stimulus onset asynchronies (SOA’s) ranging 

from 0 to 450 ms, while recording EEG. Our findings reveal enhanced 

low-frequency oscillations (1-3 Hz) in evoked power as well as inter-trial 

coherence in the high-probability condition. The restricted vigilance 

window matches with half-a-period the revealed oscillatory frequency 

range, suggesting that the whole temporal attention window may be 

enclosed within the high excitability phase of the low-frequency 

oscillations, while the low excitable phases fall outside the window in 

which stimuli are expected. This low-frequency oscillation enhancement 

was significantly stronger in case of high as compared to low sound 

likelihood and moreover, only in the high probability condition delta 

phase modulated auditory detection. This influence of probability 

suggests that when event occurrence is likely delta phase is consistent 

over trials and this phase determines whether stimuli are perceived or 

not, while for unlikely events there is less phase consistency and 

subsequent delta phases do not determine the percept. These results 

reflect that phase-reset of low-frequency oscillations lead to a longer 

temporal attention window for likely relevant events that are presented 

in a restricted temporal window and underline the flexibility of phase-

resetting as an important mechanism underlying selective processing.  
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Materials and Methods 

Participants 

Fourteen healthy volunteers took part in our study (mean age: 24, range 

19-35, 7 male). All participants reported to have normal hearing and 

normal or corrected to normal vision. Before participating all gave 

informed consent. Ethical approval was given by the Ethical Committee 

of the Faculty of Psychology and Neuroscience at the University of 

Maastricht. Participants received a monetary compensation. One 

participant was excluded from the analyses; see section data analyses for 

details. 

 

Stimuli and procedure 

First, the individual detection threshold of participants was determined 

with the method of constant stimuli. Low intensity sounds (1 kHz beeps 

lasting 75 ms with on and off ramp of 5 ms) varying from 27 dB up to 42 

dB in steps of 1.56 dB were presented in constant white noise (46 dB) and 

participants had to indicate whether they detected the sounds or not. A 

trial was 1 second long and the sound onset was randomized between 

300-800 ms after trial onset. In total twenty stimuli were presented per 

intensity. Thereafter a cumulative Gaussian was fitted using the 

psychometric fitting toolbox modelfree v 1.1. (Zchaluk & Foster, 2009), 

implemented in MATLAB (mathworks), and the 70% detection threshold 

was calculated. This intensity was used in the main experiment. During 

the experiment detection rates between 30% and 85% were ensured by 

manually changing the intensity if the intensity was not in this range for 

a block. 

After the threshold was determined the EEG cap was mounted and 

the main experiment started. In this experiment, a trial consisted of the 

presentation of a visual circle (visual angle 15 degrees, color blue (rgb: 0, 

191, 255) or yellow (rgb: 238, 238, 0), lasting 75 ms), after which the low 

intensity sound was presented or not (Fig. 1). The task of the participant 

was to indicate whether they heard a sound or not on a four point scale (1 

= I did not hear the sound, 2 = I think I did not hear the sound, 3 = I think 

I did hear the sound, 4 = I did hear the sound). The auditory stimulus 
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could be presented at the same time as the visual stimulus or up to 450 ms 

after the visual stimulus in steps of 50 ms (of which the order was 

randomized). Additionally, the sound could also be presented within the 

interval 1-1.5 second to ensure participants were still paying attention at 

the end of the trial. The detection question did not appear before the end 

of the trial (lasting 1.8 sec) and a random delay was inserted varying 

between 500 and 800 ms before the onset of the next trial. The 

probability of sounds presented depended on the visual color. For one 

color, a sound was presented in 50% of the trials, in 80% for the other 

color. The specific colors with a low vs. a high probability of sounds were 

counterbalanced over participants. Participants were informed about this 

difference by the instruction that for one color there was a high chance of 

the occurrence of a sound and for the other color there was a low chance 

of the occurrence of a sound. Hereby, we manipulated the participants’ 

top-down expectancies of sound occurrence.  

In total there were 1300 trials, resulting for the low probability in 

25 trials per SOA (75 for SOA = 0) and 325 trials without a sound and for 

the high probability in 40 trials per SOA (120 for SOA = 0) and 130 trials 

without a sound. There were more trials of SOA 0 to ensure to 

participants were focusing at the beginning of the trial (see also 

(Fiebelkorn et al., 2011)). All trials were divided over 10 blocks lasting 

approximately 5 minutes each. Background color was grey (rgb: 100, 100, 

100), and a black fixation cross was presented throughout the experiment. 

Participants were seated approximately 57 cm from the screen and 

Presentation software was used for stimulus delivery (Neurobehavioral 

Figure 1. Example of a trial. After a variable delay a visual cue was presented. 

The color of the visual cue indicated high or low probability of auditory 

stimulus occurrence (LP or HP). One auditory stimulus (black) was presented 

per trial. All grey notes indicate when the auditory stimulus could occur. After 

1.8 seconds the question trial appeared in which participants had to indicate 

whether they detected the stimulus or not. 
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Systems, Inc., Albany, NY). Participants were instructed to fixate the 

entire trial and to try to blink only after the question appeared on the 

screen. 

 

EEG acquisition and preprocessing. 

EEG data were recorded (DC-200 Hz, sampling rate 500 Hz) in a sound-

attenuated and electrically shielded room with a 61 channel cap (Easycap, 

Montage No. 1), and two BrainAmp Standard EEG amplifiers 

(BrainProducts GmbH, Munich, Germany). The left mastoid was used as 

reference and Afz as ground. Three additional electrodes were placed to 

record eye movements (below the left eye, and at the lateral sides of both 

eyes). Impedance levels were kept below 15 kΩ. Data were analyzed 

using the Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011), 

the circular statistics toolbox (Berens, 2009), and custom MATLAB 

scripts.  

Preprocessing steps were as follows. First, data were re-referenced 

to the average of the left and right mastoid. This reference was kept 

throughout all data analyses to keep the reference of the different 

analyses steps the same, but therefore might differ from commonly used 

average reference topographies. Second, data were notch filtered (50 Hz) 

to remove electrical noise. Additionally, epochs were created for all the 

trials (-1-3 sec relative to the visual stimulus), the mean of each single 

epoch was subtracted for all epochs, and data were resampled to 256 Hz. 

Independent component analysis was performed to remove blink and 

muscle artifacts (fast ICA with 50 PCA components). Remaining trials 

with high variance were removed by visual inspection.  

 

Data analyses 

Behavioral analyses: We calculated for each SOA and each conditions the 

sensitivity and bias (Green & Swets, 1966). Hits were defined as all the 

trials in which there was a sound and the participants pressed button 3 or 

4. Misses were trials with a sound and participants choose option 1 or 2. If 

there was no sound presented, but participants pressed 3 or 4, there was a 

false alarm. Since any false alarm cannot be associated with one specific 
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SOA (as there is no sound), the sensitivity and bias estimates were 

calculated using the same false alarm rate for each SOA. A repeated 

measurement ANOVA with the factors SOA (eleven SOA points) and 

probability (low and high probability) was conducted with Greenhouse-

Geisser correction for both the sensitivity and the bias. Post-hoc pairwise 

comparisons were conducted for significant effects, correcting for 

multiple comparisons via false discovery rate. One participant had a 

difference of 60.8% between the false alarm rates of the two conditions, 

indicating that the participant based his choices purely on the visual 

stimulus, and was therefore excluded. 

 

EEG analyses 
ERP analyses: Single epochs were band-pass filtered from 0.05-20 Hz 

(second order Butterworth filter) and corrected for the -200-0 ms 

baseline. Only epochs in which no sound was presented and in which 

participants indicated that there was no sound (button 1 or 2) were used 

for the EEG analyses (baseline correction and epoch selection is the same 

for all henceforth described analyses excluding the delta phase analysis). 

We used only these trials 1) because the participant would stop attending 

after hearing a possible sound and 2) we intended to focus our analyses on 

trials without any auditory evoked responses. For each individual, trials 

were averaged per condition and the two conditions were compared with 

each other using cluster analyses implemented in Fieldtrip (Maris & 

Oostenveld, 2007). On average for the low probability condition 248 

trials were used (standard deviation is 59.3), and for the high probability 

condition 93 (standard deviation is 24.5). The same trials were used in the 

evoked and total power analyses. For the cluster analysis, first the paired 

samples t-values are calculated for all channels and time points (0.05-1.8 

sec after visual stimulus onset and after the question onset), then clusters 

are defined based on these t-values and statistical significance is 

determined via Monte Carlo randomizations (the following parameters 

were used: cluster alpha of 0.05, dependent samples t-test alpha of 0.01, 

10,000 randomizations, and the maximal sum of all the time and channel 

bins in one cluster as dependent variable. All reported p-values reflect a 

two-sided test).  
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Time frequency analyses – evoked power: Primarily, we were 

interested in the power spectrum directly evoked by the stimulus, that is, 

the stimulus phase locked power responses. This analysis would give us 

an idea which frequency bands could relate to a phase reset (Makeig, 

Debener, Onton, & Delorme, 2004). We therefore averaged the epochs 

for each individual for each condition and applied hanning tapers (time 

window linearly rising from 2 cycles at 1 Hz up to 10 cycles at 40 Hz. 

Frequencies below 1 Hz had a time window of 2 seconds) for frequency 

range 0.2-40 Hz and time range of 0-1 sec. Data were baseline corrected 

for the -0.2-0 seconds time interval. Also here a cluster analysis was 

performed. Since we were only interested in the frequency of the evoked 

response we averaged over 0.08-0.40 sec (since it had the highest 

amplitudes in the ERP results) and calculated significant frequency 

clusters with the same analyses as before.  

Time frequency analyses – total power responses: To all individual 

epochs the same hanning tapers as for the phase locked time frequency 

analyses were applied. Thereafter, the power spectra were averaged 

within subjects. We analyzed using channel Fz (since it had the strongest 

effect for the evoked power), and took the same time and frequency 

range as in the phase locked time frequency analyses (again averaging 

over time). Data were baseline corrected for the -0.2-0 seconds time 

interval. We used Monte Carlo simulations (10,000 repetitions) for all the 

frequency points separately, using the t-values (of the paired t-tests) as 

dependent variable (Maris & Oostenveld, 2007). This method creates a 

simulated distribution of t-values by shuffling the labels of the two 

conditions and repeating the t-test calculation for these shuffled labels. 

This is done 10,000 times and the subsequently reported p-values reflect 

the proportion of shuffled labels that have a higher t-value as the original 

t-value. We report the average p and t-value of the significant frequency 

bins. We corrected for multiple comparison using the false discovery rate. 

Inter-trial coherence: Inter-trial phase coherence characterizes 

how consistent the phases of different frequencies are over multiple trials, 

independent of power (Tallon-Baudry, Bertrand, Delpuech, & Pernier, 

1996), and therefore provides an indication for pure phase resetting. We 

calculated for the single epochs Fourier spectra for Fz using hanning 

tapers for 0.2-40 Hz with the same parameters as for the time frequency 

analyses. Thereafter, we extracted the phases of the Fourier spectra of the 
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single epochs and calculated for each participant and each condition the 

inter-trial coherence (ITC). Since the ITC is inflated with fewer trials (i.e. 

trials with a high probability of a sound had fewer trials without a sound 

than trials with a low probability of a sound), we applied permutations to 

the low probability trials. Therefore, we first only calculated the ITC for 

the high probability trials. Then, we randomly selected an equal amount 

of trials for the low probability condition and calculated the ITC. This 

randomized trial selection procedure and ITC calculation was repeated 

500 times and we took the mean of the repetitions as the ITC for the low 

probability trials. Then we used the same averaged time interval (0.08-0.4 

sec) and frequency range (0.2-40 Hz) for statistics with the same methods 

as for the total power time frequency analysis.  

Delta phase during misses and hits: To test whether indeed delta 

phase is important for detecting the stimuli we sorted all the trials 

containing sounds to hits and misses per probability condition. Thereafter 

we filtered all the data around delta (second order IIR Butterworth filter, 

using a causal bandpass filter with cut-off frequencies at 1-1.75 Hz, cut-

off = -3 dB) and extracted per participant the mean angle and inter-trial 

coherence of the Hilbert transformation at sound onset. Across 

participants there were on average 104 hit trials and 132 miss trials for 

the low probability condition (standard deviation is 45.0 and 46.7 

respectively), and 159 hit trials and 220 miss trials for the high 

probability condition (standard deviation is 57.4 and 65.7 respectively). A 

causal filter was used since we wanted to exclude any effects that could 

be due to differences in the evoked response between hits and misses 

(Zoefel & Heil, 2013). To estimate whether an interaction effect between 

probability condition and detection exists we first calculated the circular 

distance between hits and misses for both conditions separately for each 

participant. Then, we used the Zar’s Hotelling test to investigate whether 

these distances have a different mean angle for different conditions (van 

den Brink, Wynn, & Nieuwenhuis, 2014; Zar, 1998). This test has the 

advantage that it takes into account the inter-trial coherence such that 

mean angles corresponding to a low inter-trial coherence are also 

considered to be less consistent in phase. Since for the distance measure 

two inter-trial coherences need to be considered (i.e. the one from the 

hits and the one from the misses), we choose to incorporate the minimum 

inter-trial coherence of the two. This seemed valid as the lowest ITC of 
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the hits and misses determines how consistent the overall phase 

difference will be. Thereafter, we used the same Zar’s Hotelling test to 

test whether the mean angle for the hits and misses are different for the 

two conditions separately. All trials with SOA’s ranging between 0 and 

100 ms were excluded since effects of phase-reset are unlikely at such an 

early SOA considering the different transmission latencies between 

auditory and visual responses (see e.g. (Schroeder, Lakatos, Kajikawa, 

Partan, & Puce, 2008)). 

  

Results 

Behavioral results 

Sensitivity: The repeated measure ANOVA showed a main effect of SOA 

(F(10,120) = 8.647, p < 0.001; Fig 2A). Pairwise comparison showed that 

all the SOA points were significantly different from the 1000-1500 ms 

time point (Table 1). Furthermore it seems that the middle time points 

are detected best relative to earlier and later time points. This is 

confirmed with a significant quadratic contrast (F(1,12) = 21.995, p = 

0.001). No higher order polynomials were significant. This contrast was 

also significant when excluding the last time point (F(1,12) = 6.534, p = 

0.025). The main effects of Probability and the interaction of 

Probability*SOA were not significant (F(1,12) = 1.700, p = 0.217 and 

(F(10,120) = 0.478, p = 0.776, respectively).  

Bias: The bias estimate showed the reversed pattern of the 

sensitivity (Fig. 2B). Again there was a main effect of SOA (F(10,120) = 

8.647, p < 0.001) and a significant quadratic contrast (F(1,12) = 21.995, p = 

0.001. The main effect of Probability and the interaction were not 

significant, although the main effect showed a slight trend of higher bias 

for the low probability condition (F(1,12) = 3.180, p = 0.100 and F(10,120) 

= 0.478, p = 0.776). As the false alarm rate does not change for different 

SOAs and both the bias and sensitivity are calculated as a linear 

transformation relative to the false alarm rate the pairwise comparisons 

for the main effect of SOA are the same for the bias as for sensitivity and 

therefore not reported. 
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Figure 2. Behavioral results. A) Sensitivity and B) bias for the high (green) and 

low (red) probability condition over SOA. Error bars indicate the standard 

error of the mean. To calculate the SEM the individual data were normalized 

by subtracting the overall mean of the sensitivity/bias for the individual 

participants. 
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Although in this behavioral analyses no clear difference between the 

two probability conditions was present, the later EEG-behavioral analyses 

indicates a more subtle behavioral difference between these conditions.  

 

EEG results 

ERP results: The event-related potentials (ERP’s) show two clear evoked 

responses, one in response to visual stimulus onset and one in response to 

question onset (Fig 3A). The cluster analyses (see methods for details) 

showed no significant effects of condition (high vs low probability) for 

the whole interval up to the question (0-1.8 sec) and after the question 

Table 1. Crosstab of all the Pairwise Comparisons 

 50 100 150 200 250 

0 -1.71 (.190) -.74 (.554) -1.83 (.171) -2.78 (.044)* .21 (.894) 

50  .75 (.554) .62 (.628) -.75 (.554) 1.51 (.240) 

100   -.46 (.717) -1.87 (.163) .87 (.503) 

150    -1.42 (.269) 1.21 (.327) 

200     2.33 (.084) 

250      

300      

350      

400      

450      

      

 300 350 400 450 1000-1500 

0 .50 (.706) 2.09 (.120) 2.91 (.038)* 1.74 (.184) 4.21 (.007)** 

50 1.62 (.214) 2.65  (.053) 3.47 (.021)* 2.11 (.120) 4.95 (<.001)** 

100 1.17 (.336) 2.57  (.060) 4.03 (.010)** 2.34 (.084) 5.04 (<.001)** 

150 1.38 (.272) 2.68  (.052) 4.09 (.010)** 3.05 (.037)* 5.41 (<.001)** 

200 2.93  (.038)* 5.27 (<.001)** 5.51 (<.001)** 3.08 (.037)* 6.87 (<.001)** 

250 .18 (.894) 1.38 (.272) 1.77 (.181) 1.35 (.280) 3.90 (.010)** 

300   1.54 (.236) 2.03 (.128) 1.29 (.297) 4.14 (.007)** 

350     .09 (.930) -.07 (.894) 3.95 (.021)** 

400       -.16 (.894) 3.44 (.038)* 

450         2.96 (.038)* 

All values in the table represent the results of the t-test for the two stimulus onset 

asynchronies (SOA’s) corresponding to the SOA’s of the row and column. The initial 

number is the t-value and the number between brackets the corrected p-value. Asterisk 

and double asterisks correspond to significance at the 0.05 and the 0.01 level, respectively. 
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(1.8-2.5 sec).  

Time frequency analyses – evoked power: The evoked power 

analysis revealed a higher evoked response for low delta frequencies (Fig 

3B; 1-3.25 Hz, cluster statistics = 462.19, p = 0.042) during the high 

probability condition that was frontal/centrally organized (Fig 3C). Also, 

a higher evoked alpha (9.5-17.25 Hz) response was found at occipital 

Figure 3. Event related potentials (ERP’s) and evoked power for the trials 

without a sound. A) ERP of Fz for the whole trial time course. The red shaded 

area indicates the interval used for subsequent analyses. B) Phase locked time 

frequency spectra with two significant clusters (p < 0.05) estimated within the 

0.08-0.4 time window, indicated by the two black rectangles. C) The 

corresponding topographic distributions with white asterisks indicating the 

significant channels. Topographies show the data of the high minus the low 

probability.  
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channels for the high probability condition. Although the highest 

difference values were occipitally located, a significant frontal cluster was 

found for this effect (cluster statistics = 1511.1, p = 0.004). This cluster 

likely relates to the visual evoked response. Although the figure might 

suggest a difference in the 5-10 Hz frequency range, no significant cluster 

was found.  
Time frequency analyses – total power: The total power showed no 

significant effect at delta range. However, a significant difference at alpha 

range was found (Fig 4A; 11.5-15 Hz; average t-value over all significant 

alpha frequency bins (11) = 2.21, average p-value = 0.026), with stronger 

alpha power for the high probability condition.  

Inter-trial phase coherence: The ITC plot shows a significant 

stronger delta ITC for the high probability conditions (Fig 4B; 1-1.75 Hz, 

Figure 4. Power and inter trial coherence (ITC) estimates in Fz. A) Induced 

power for both conditions. Insert on the right shows t-values of the Llow vs. 

Hhigh probability comparison for the entire frequency range. B) ITC for both 

conditions. Insert on the right shows t-values of the low vs. high probability 

comparison for the entire frequency range. C) Difference topographic 

distributions of three different significant clusters (alpha power, delta ITC, and 

alpha ITC (cluster between 11.25 and 15 Hz)). Red shaded areas and black 

rectangle indicates significance (p < 0.05) within the 0.08-0.4 time window.   
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average t-value(11) = 2.89, average p-value = 0.01). Additionally, a strong 

response at alpha band is again present, significantly stronger for the high 

probability condition which was separated in two different bands in alpha 

range (from 8-8.5 Hz, average t-value(11) = 2.03, average p-value = 0.037, 

and from 11.25-15.00, average t-value(11) = 2.40, average p-value = 

0.019).  

Delta phase during misses and hits: The polar plots in figure 5 show 

the angle distribution separate for hits and misses and separate for the 

two conditions when SOA’s from 150-450 ms were included. It seems 

that the mean direction between the hits and misses in the low 

probability condition does not show any difference, while in the high 

probability condition there is a phase difference. Indeed, the phase 

distances of the hits and misses were significantly different between the 

low and high probability condition (F(2,11) = 4.793, p = 0.032). 

Additionally, the two individual Zar’s Hotelling tests showed that for the 

low probability condition there was no difference between mean phases  

 

Figure 5. Delta phase effects. A) Circular histogram plots for all trials with a 

sound, sorted for hits and misses for both conditions (LP = low probability, HP 

= high probability). Blue arrows indicate the mean direction. For the LP the 

mean direction is the same for both hits and misses, while for the HP it differs. 
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(F(2,11) = 0.139, p = 0.872), while for the high probability condition there 

was a significant difference between the mean phase of the hits and the 

misses (F(2,11) = 5.39, p = 0.023).  

 

Discussion 

Attention is thought to optimize selective information processing by 

orchestrating the synchronization between incoming temporally 

predictive information and high-excitability phases of ongoing low-

frequency neuronal oscillations (Buzsáki & Draguhn, 2004; VanRullen & 

Koch, 2003). In many situations temporal cues are not highly predictive, 

containing some predictability as well as uncertainties. We hypothesized 

that in one of such situations, that is to say when attention has to be 

allocated continuously but within a restricted window in time (‘restricted 

vigilance’), a longer, but not excessively long period of high neuronal 

excitability should provide optimal processing. An efficient way to 

accomplish this is phase-resetting of low-frequency oscillations; this 

provides high excitability over longer periods, but does not excessively 

use metabolically demanding gamma oscillations (Mukamel et al., 2005; 

Niessing et al., 2005). To investigate whether top-down expectancy of 

stimulus occurrence during a restricted period of vigilance results in a 

stronger reset of low-frequency oscillations, we manipulated the 

probability that a low-intensity, temporally non-predictive, auditory 

target would be presented in a given time window (450ms) following a 

visual cue. We indeed found stronger representations of low-frequencies 

(1-3 Hz) in the evoked power and phase coherence for the high 

probability condition. Moreover, delta phase determined hits and misses 

in the high probability condition, but not in the low probability 

condition. These findings indicate that during restricted vigilance, low-

frequency phase-reset increases the window of enhanced excitability, 

with the strength of this mechanism being amplified with greater 

stimulus probability.  
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Attention window created through low-frequency phase-reset 

Our current paradigm of restricted vigilance, in which attention has to be 

allocated for a constrained time window, seems to bridge two attention 

modes that have been suggested in the literature to operate for 

unpredictable versus predictable inputs (see also (Niemi & Näätänen, 

1981)). Specifically, in the absence of any temporal predictability, 

Schroeder and Lakatos (2009) proposed a ‘vigilance mode’, in which 

primarily high frequency gamma oscillations are amplified. Boosting 

gamma oscillations may improve stimulus detection since they produce 

many, densely distributed, high-excitability phases, and this increases the 

chance that a temporally unpredictable input will arrive during a state of 

high neuronal excitability (Fries, 2005; Fries, Nikolic, & Singer, 2007). 

This mechanism is complementary to the ‘rhythmic mode’ which 

employs low-frequency oscillations to selectively process temporally 

predictable stimuli. During ‘rhythmic mode’ processing, the amplitude of 

gamma oscillations is phase coupled to lower frequencies, providing 

limited temporal windows during which processing is enhanced. 

Restricted vigilance requires parsing for a constrained time window and 

low frequency oscillations seem a plausible candidate, as these produce a 

high excitability phase for a longer period of time. Since in our paradigm 

the restricted vigilance window is 450 ms, an oscillation of approximately 

1 Hz will fit this vigilance window with half-a-cycle (i.e. the high-

excitability phase of the oscillation). We indeed find effects of stimulus 

probability (high vs. low probability) on phase consistency to be 

pronounced at low frequencies (around 1 Hz), that were related to the 

participants’ behavior. This means that when relevant information can 

only occur within a limited time interval, processing is specifically 

enhanced by aligning high excitable phases to this interval via phase-reset 

of low-frequency oscillations. In future studies, it will be interesting to 

investigate whether for longer time intervals restricted vigilance will still 

operate and what will happen if the vigilance window occurs not right 

after the expectancy cue onset, but later in the trial.  

The expectancy cue modulated the low-frequency effect by 

changing the strength of the phase reset. A similar effect has been shown 

in another EEG study (Stefanics, et al., 2010) in which rhythmic stimuli 

provided a predictable temporal structure. The pitch of the stimuli 
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indicated the chance of the next stimulus being a target. Similar as in the 

current study the strength of the phase reset depended on the likelihood 

of stimulus occurrence indicated by the expectancy cue. It thus seems 

that a rhythmic processing mode is strengthened by expectancy cues. It is 

an open question whether these effects can be purely attributed to 

changes in expectations or are modulated by changes in attention to the 

time window of the target stimulus occurrence (Summerfield & Egner, 

2009). While expectancies are created by changing the probability of 

stimulus occurrence, attention guides perception via goal-directed 

amplification of responses. As in the current experimental setting 

stimulus probabilities of task-relevant features are manipulated, the effect 

of attention is difficult to dissociate from expectations (Summerfield & de 

Lange, 2014). While increases in stimulus expectancy often lead to 

decreases in neuronal responses (Näätänen, Paavilainen, Rinne, & Alho, 

2007), increases in attention are associated with increased responses 

(Maunsell & Treue, 2006). Therefore, our results seem more compatible 

with the latter view, but studies separately controlling for attention and 

expectancy have to be conducted to verify this view. 

 

Implicit versus explicit timing 

In our paradigm, it seems that the temporal structure of the task is 

implicitly acquired and consequently influences perception (Coull & 

Nobre, 2008). This is in contrast with explicit timing during which an 

overt estimate of temporal information has to be made, for example when 

participants have to discriminate between the lengths of two intervals. 

During a task with implicit timing participants are required to make a 

motor or perceptual judgment while using the knowledge of when 

stimuli are more likely to occur (Niemi & Näätänen, 1981; Wright & 

Fitzgerald, 2004). Therefore the task is not temporal. There is evidence 

that the neuronal substrates of the two timing mechanisms are different 

(Coull & Nobre, 2008). Implicit timing uses mechanisms of the brain to 

temporally predict arriving targets (Schubotz, 2007). One such 

mechanism is the use of slow ongoing oscillations to align phases at a high 

excitable phase at the arrival time of a target (Lakatos et al., 2008). The 

current results indeed show that delta phase modulates perception when 
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events are more likely to occur. Additionally, there seems to be a 

difference whether implicit rhythmic temporal cues or single temporal 

cues (as in the current study) are guided via different mechanisms 

(Wilsch, Henry, Herrmann, Maess, & Obleser, 2015; Triviño, Arnedo, 

Lupiáñez, Chirivella, & Correa, 2011). Our study highlights that 

oscillatory phase reset mechanisms seem to play a role also with single 

temporally predictive cues, but it is still unclear whether the exact 

mechanism is the same as with a predictive input stream. 

 

Alpha versus delta effects: evoked response versus phase-reset 

In addition to the low-frequency effects in the delta range, the evoked 

response in the time-frequency analyses showed significantly stronger 

alpha band oscillations when events were more likely to occur. This 

effect likely reflects differences in the visual evoked response caused by 

increased likelihood. As mentioned above, the direction of the effect 

depends on the mechanism in place (i.e. attention or expectancy). Both 

increases (Hillyard, Hink, Schwent, & Picton, 1973; Näätänen, Gaillard, & 

Mäntysalo, 1978; Yamagishi et al., 2003) and decreases (Näätänen, et al., 

2007) in evoked responses have been reported. The evoked delta band 

modulation however cannot easily be explained as a difference in the 

visual evoked response. Firstly, the topographic distribution does not 

include any occipital channels. Secondly, this low frequency band 

generally does not emerge for simple visual evoked responses. Moreover, 

we could show that the mechanism behind the modulation of evoked 

power in the delta band is different from the alpha band evoked power, 

by looking at the induced power and ITC: whereas the induced power as 

well as the ITC showed modulations in the alpha band, only the ITC 

showed significant changes for the delta band. It has been shown that 

when power changes are absent, ITC increases can be explained via a 

phase-reset mechanism that aligns the phases of ongoing oscillations 

without changing the amplitude (Makeig, et al., 2004). Therefore, we 

believe that alpha oscillations drive visual evoked responses, while delta 

oscillations have a modulatory role, and the collective delta effects found 

here reflect a phase-reset of which the frequency is likely influenced by 

the temporal predictions (i.e. 1 Hz frequencies are used to cover the 
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restricted vigilance window of 450 ms with half-a-cycle). The neuronal 

origin of this effect could reflect a change in auditory cortex excitability 

at the predicted arrival time of the auditory stimulus, as has been 

reported before (Lakatos, et al., 2008). However, the topography could 

also fit with an origin in the anterior cingulate cortex. This brain 

structure has been related to the monitoring and guidance of attentional 

selection (Buckley, et al., 2009; Womelsdorf, Ardid, Everling, & Valiante, 

2014) and could therefore guide the temporal attention network to attend 

to relevant moments in time in the current task.  

 

Delta phase determines percept 

We found that especially in the high probability condition hits and misses 

depended systematically on delta phase since there was a significant 

phase difference between hits and misses for this condition. For the low 

probability conditions this was not the case and therefore suggests that 

the delta phase modulation is primarily present when expectations are 

high, thus reflecting a top-down mechanism. These results add to a 

growing set of findings showing that delta phase is important for auditory 

detection (Henry & Obleser, 2012; Lakatos, et al., 2008). As has been 

shown in a recent study, it is vital to ensure that no post-stimulus 

portions of the data are including in the phase estimation (Zoefel & Heil, 

2013) which can be avoided by using causal filters.  

 

Implications for multisensory research 

The use of low-frequency phase-reset in multisensory settings is 

becoming increasingly evident (Schroeder, et al., 2008; Van Atteveldt, 

Murray, Thut, & Schroeder, 2014). Thus far, influences of low-frequency 

oscillations on multisensory perception have been associated with cross-

modal phase resetting which results in subsequent periodic increases in 

detection thresholds or reaction times (Lakatos, Chen, O'Connell, Mills, 

& Schroeder, 2007; Naue et al., 2011; Romei, Gross, & Thut, 2012; 

Thorne, De Vos, Viola, & Debener, 2011; Thorne & Debener, 2013). 

However, these studies have a different emphasis than classical 

multisensory integration studies, which generally do not have a main 
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focus on unisensory detection or reaction times, but on integration and 

unity of multisensory information (Calvert, Campbell, & Brammer, 2000). 

For example, temporal unity is created when two stimuli are presented in 

temporal proximity (Spence & Squire, 2003; Van Wassenhove, Grant, & 

Poeppel, 2007). If reset frequency is modulated by the width of the 

restricted vigilance window, as our findings seem to suggest, integration 

of multisensory information might be confined in a similar framework. 

Specifically, an ambiguity in the requirement of temporal unity is that 

more complex stimuli, as well as stimuli that naturally belong together, 

seem to tolerate more variation in their temporal relation to still be 

integrated, compared to simple flashes and beeps (Van Wassenhove, 

Grant, & Poeppel, 2005; Vatakis & Spence, 2007; Zampini, Shore, & 

Spence, 2003). If integration occurs only when cross-modal stimuli fall 

within the same oscillation period (see e.g. (Fries, 2005; VanRullen & 

Koch, 2003), resetting of lower frequency oscillations for stimuli that 

naturally occur together (i.e. they predict each other) would result in 

wider temporal integration windows, since there is a longer temporal 

window in which the two stimuli will fall in the same period. Supporting 

the idea that oscillation period is vital for temporal integration is the 

finding that when two visual stimuli are presented with a specific delay, 

they are only judged as synchronous when they fall within the same 

visual alpha cycle (Gho & Varela, 1988; Valera, Toro, Roy John, & 

Schwartz, 1981). In brief, interplay between the likelihood that cross-

modal stimuli can occur together and reset frequency might be related to 

the width of the temporal integration window. However, this prediction 

needs to be verified in future studies.   

 

Conclusion 

Selective information processing is crucial to our survival considering the 

constant presence of abundant sensory information. Therefore, it seems 

beneficial to exploit temporal cues in our environment as this enables 

proactive mechanisms for selective processing. When events are highly 

predictable, low-frequency phase-reset appears to guide selective 

processing (Cravo, Rohenkohl, Wyart, & Nobre, 2013; Lakatos, et al., 

2008; Schroeder & Lakatos, 2009). Here, we show that also in the absence 
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of a fully predictable temporal structure, low-frequency phase-reset is 

employed to attend to a time window in which events are more likely 

(also see (Fiebelkorn, et al., 2011)), revealing the full flexibility of this 

neural mechanism supporting selective processing. These results shed 

light on the adaptive nature of phase-reset to optimally sample the 

incoming information depending on top-down expectancies of stimulus 

occurrence and timing (Ten Oever, Schroeder, Poeppel, Van Atteveldt, & 

Zion Golumbic, 2014; Van Atteveldt, et al., 2014; Zion Golumbic, 

Poeppel, & Schroeder, 2012). Future research should confirm that phase-

reset frequency is flexibly used to modify the temporal attention window, 

which could subsequently inform us about the functioning of other 

cognitive mechanisms, for example the variable temporal integration 

windows for multisensory inputs, or the flexible use of different time-

scales during verbal communication.  

 

Acknowledgments: We thank Kirsten Petras and Marie Marinelli for all 

their work during data collection.  This work was supported by a grant 

from the Dutch Organization for Scientific Research (NWO; grant 

number 406-11-068). 

 

  



Chapter 5 

120 

 

References 

Berens, P. (2009). CircStat: a MATLAB toolbox for circular statistics. Journal of 
Statistical Software, 31(10), 1-21. 

Buckley, M. J., Mansouri, F. A., Hoda, H., Mahboubi, M., Browning, P. G., Kwok, S. 

C., et al. (2009). Dissociable components of rule-guided behavior depend on 

distinct medial and prefrontal regions. Science, 325(5936), 52-58. 

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. 

Science, 304(5679), 1926-1929. 

Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional 

magnetic resonance imaging of crossmodal binding in the human heteromodal 

cortex. Current Biology, 10(11), 649-657. 

Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation 

with fMRI. Current Opinion in Neurobiology, 18(2), 137-144. 

Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal 

expectation enhances contrast sensitivity by phase entrainment of low-

frequency oscillations in visual cortex. The Journal of Neuroscience, 33(9), 

4002-4010. 

Fiebelkorn, I. C., Foxe, J. J., Butler, J. S., Mercier, M. R., Snyder, A. C., & Molholm, S. 

(2011). Ready, set, reset: stimulus-locked periodicity in behavioral performance 

demonstrates the consequences of cross-sensory phase reset. The Journal of 
Neuroscience, 31(27), 9971-9981. 

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication 

through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480. 

Fries, P., Nikolic, D., & Singer, W. (2007). The gamma cycle. Trends in 
Neurosciences, 30(7), 309-316. 

Gho, M., & Varela, F. (1988). A quantitative assessment of the dependency of the 

visual temporal frame upon the cortical rhythm. Journal de physiologie, 83(2), 

95. 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics (Vol. 

1974): Wiley New York. 

Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural 

oscillations and optimizes human listening behavior. Proceedings of the 
National Academy of Sciences, 109(49), 20095-20100. 

Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of 

selective attention in the human brain. Science, 182(108), 177-180. 

Kayser, C., Logothetis, N. K., & Panzeri, S. (2010). Visual enhancement of the 

information representation in auditory cortex. Current Biology, 20(1), 19-24. 

Lakatos, P., Chen, C. M., O'Connell, M. N., Mills, A., & Schroeder, C. E. (2007). 

Neuronal oscillations and multisensory interaction in primary auditory cortex. 

Neuron, 53(2), 279-292. 



Low Frequency Phase Reset During Restricted Vigilance 

121 

 

Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). 

Entrainment of neuronal oscillations as a mechanism of attentional selection. 

Science, 320(5872), 110-113. 

Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. 

(2005). An oscillatory hierarchy controlling neuronal excitability and stimulus 

processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904-1911. 

Los, S. A., Knol, D. L., & Boers, R. M. (2001). The foreperiod effect revisited: 

Conditioning as a basis for nonspecific preparation. Acta psychologica, 106(1), 

121-145. 

Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain 

dynamics. Trends in Cognitive Sciences, 8(5), 204-210. 

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and 

MEG-data. Journal of neuroscience methods, 164(1), 177-190. 

Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in 
Neurosciences, 29(6), 317-322. 

Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., & Malach, R. (2005). 

Coupling between neuronal firing, field potentials, and FMRI in human 

auditory cortex. Science, 309(5736), 951-954. 

Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect 

on evoked potential reinterpreted. Acta psychologica, 42(4), 313-329. 

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity 

(MMN) in basic research of central auditory processing: a review. Clinical 
Neurophysiology, 118(12), 2544-2590. 

Naue, N., Rach, S., Strüber, D., Huster, R. J., Zaehle, T., Körner, U., et al. (2011). 

Auditory Event-Related Response in Visual Cortex Modulates Subsequent 

Visual Responses in Humans. The Journal of Neuroscience, 31(21), 7729-7736. 

Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological 
Bulletin, 89(1), 133. 

Niessing, J., Ebisch, B., Schmidt, K. E., Niessing, M., Singer, W., & Galuske, R. A. W. 

(2005). Hemodynamic signals correlate tightly with synchronized gamma 

oscillations. Science, 309(5736), 948-951. 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source 

software for advanced analysis of MEG, EEG, and invasive electrophysiological 

data. Computational intelligence and neuroscience, 2011, 1. 

Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal 

expectation improves the quality of sensory information. The Journal of 
Neuroscience, 32(24), 8424-8428. 

Romei, V., Gross, J., & Thut, G. (2012). Sounds reset rhythms of visual cortex and 

corresponding human visual perception. Current Biology, 22(9), 807-813. 

Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as 

instruments of sensory selection. Trends in Neurosciences, 32(1), 9-18. 



Chapter 5 

122 

 

Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S., & Puce, A. (2008). Neuronal 

oscillations and visual amplification of speech. Trends in Cognitive Sciences, 
12(3), 106-113. 

Schubotz, R.I. (2007). Prediction of external events with our motor system: towards a 

new framework. Trends in Cognitive Sciences, 11, 211-218 

Spence, C., & Squire, S. (2003). Multisensory integration: maintaining the perception 

of synchrony. Current Biology, 13(13), R519-R521. 

Stefanics, G., Hangya, B., HernÃ¡di, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). 

Phase entrainment of human delta oscillations can mediate the effects of 

expectation on reaction speed. The Journal of Neuroscience, 30(41), 13578-

13585. 

Summerfield, C., & de Lange, F. P. (2014). Expectation in perceptual decision making: 

neural and computational mechanisms. Nature Reviews Neuroscience, 34(25), 

8519-8528. 

Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. 

Trends in Cognitive Sciences, 13(9), 403-409. 

Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus 

specificity of phase-locked and non-phase-locked 40 Hz visual responses in 

human. The Journal of Neuroscience, 16(13), 4240-4249. 

Ten Oever, S., Schroeder, C. E., Poeppel, D., Van Atteveldt, N., & Zion Golumbic, E. 

M. (2014). The influence of temporal regularities and cross-modal temporal cues 

on auditory detection. Neuropsychologia, 63,43-50. 
Thorne, J. D., De Vos, M., Viola, F. C., & Debener, S. (2011). Cross-modal phase reset 

predicts auditory task performance in humans. The Journal of Neuroscience, 
31(10), 3853-3861. 

Thorne, J. D., & Debener, S. (2013). Look now and hear what’s coming: on the 

functional role of cross-modal phase reset. Hearing research, 307, 144-152. 
Triviño, M., Arnedo, M., Lupiáñez, J., Chirivella, J., & Correa, Á. (2011). Rhythms 

can overcome temporal orienting deficit after right frontal damage. 

Neuropsychologia, 49(14), 3917-3930. 

Valera, F. J., Toro, A., Roy John, E., & Schwartz, E. L. (1981). Perceptual framing and 

cortical alpha rhythm. Neuropsychologia, 19(5), 675-686. 

Van Atteveldt, N., Murray, M. M., Thut, G., & Schroeder, C. E. (2014). Multisensory 

integration: flexible use of general operations. Neuron, 81(6), 1240-1253. 

van den Brink, R. L., Wynn, S. C., & Nieuwenhuis, S. (2014). Post-Error Slowing as a 

Consequence of Disturbed Low-Frequency Oscillatory Phase Entrainment. The 
Journal of Neuroscience, 34(33), 11096-11105. 

Van Wassenhove, V., Grant, K. W., & Poeppel, D. (2005). Visual speech speeds up 

the neural processing of auditory speech. Proceedings of the National Academy 
of Sciences of the United States of America, 102(4), 1181. 

Van Wassenhove, V., Grant, K. W., & Poeppel, D. (2007). Temporal window of 

integration in auditory-visual speech perception. Neuropsychologia, 45(3), 598-

607. 



Low Frequency Phase Reset During Restricted Vigilance 

123 

 

VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in 
Cognitive Sciences, 7(5), 207-213. 

Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the “unity 

assumption” using audiovisual speech stimuli. Attention, Perception, & 
Psychophysics, 69(5), 744-756. 

Womelsdorf, T., Ardid, S., Everling, S., & Valiante, T. A. (2014). Burst Firing 

Synchronizes Prefrontal and Anterior Cingulate Cortex during Attentional 

Control. Current Biology, 24(22), 2613-2621. 

Wilsch, A., Henry, M.J., Herrmann, B., Maess, B., & Obleser, J. (2015). Slow-delta 

phase concentration marks improved temporal expectations based on the 

passage of time. Psychophysiology, 52(7), 910-918.  

Wright, B. A., & Fitzgerald, M. B. (2004). The time course of attention in a simple 

auditory detection task. Perception & psychophysics, 66(3), 508-516. 

Yamagishi, N., Callan, D. E., Goda, N., Anderson, S. J., Yoshida, Y., & Kawato, M. 

(2003). Attentional modulation of oscillatory activity in human visual cortex. 

Neuroimage, 20(1), 98-113. 

Zampini, M., Shore, D. I., & Spence, C. (2003). Audiovisual temporal order 

judgments. Experimental Brain Research, 152(2), 198-210. 

Zar, J. H. (1998). Biostatistical Analysis (4 ed.). Englewood Cliffs, New Jersey: 

Prentice Hall. 

Zchaluk, K., & Foster, D. H. (2009). Model-free estimation of the psychometric 

function. Attention, Perception, & Psychophysics, 71(6), 1414-1425. 

Zion Golumbic, E. M., Poeppel, D., & Schroeder, C. E. (2012). Temporal context in 

speech processing and attentional stream selection: A behavioral and neural 

perspective. Brain and Language, 122(3), 151-161. 
Zoefel, B., & Heil, P. (2013). Detection of near-threshold sounds is independent of 

EEG phase in common frequency bands. Frontiers in Psychology, 4.  



 

 

 

  



 

 

 

CHAPTER 6 
 

 

 

 

AUDIOVISUAL ONSET DIFFERENCES 

ARE USED TO DETERMINE SYLLABLE 

IDENTITY FOR AMBIGUOUS 

AUDIOVISUAL STIMULUS PAIRS 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Manuscript: 

Ten Oever, S., Sack, A., Wheat, K. L., Bien, N., & Van Atteveldt, N. 

(2013). Audio-visual onset differences are used to determine syllable 

identity for ambiguous audio-visual stimulus pairs. Frontiers in 
Psychology, 4. 

 



Chapter 6 

 

126 

 

Abstract  

Content and temporal cues have been shown to interact during 

audiovisual (AV) speech identification. Typically, the most reliable 

unimodal cue is used more strongly to identify specific speech features; 

however, visual cues are only used if the audiovisual stimuli are presented 

within a certain temporal integration window (TWI). This suggests that 

temporal cues denote whether unimodal stimuli belong together, that is, 

whether they should be integrated. It is not known whether temporal 

cues also provide information about the identity of a syllable. Since 

spoken syllables have naturally varying audiovisual onset asynchronies, 

we hypothesize that for suboptimal AV cues presented within the TWI, 

information about the natural AV onset differences can aid in speech 

identification. To test this, we presented low-intensity auditory syllables 

concurrently with visual speech signals, and varied the stimulus onset 

asynchronies (SOA) of the audiovisual pair, while participants were 

instructed to identify the auditory syllables. We revealed that specific 

speech features (e.g. voicing) were identified by relying primarily on one 

modality (e.g. auditory) Additionally, we showed a wide window in 

which visual information influenced auditory perception, that seemed 

even wider for congruent stimulus pairs. Finally, we found a specific 

response pattern across the SOA range for syllables that were not reliably 

identified by the unimodal cues, which we explained as the result of the 

use of natural onset differences between audiovisual speech signals. This 

indicates that temporal cues not only provide information about the 

temporal integration of audiovisual stimuli, but additionally convey 

information about the identity of audiovisual pairs. These results provide 

a detailed behavioral basis for further neuro-imaging and stimulation 

studies to unravel the neurofunctional mechanisms of the audio-visual-

temporal interplay within speech perception. 
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Introduction 

Although audition is our main informant during speech perception, visual 

cues have been shown to strongly influence identification and 

recognition of speech (Campbell, 2008). Visual cues are used to increase 

understanding, especially in noisy situations when auditory information 

alone is not sufficient (Bernstein, Auer, & Takayanagi, 2004; Grant, 

Wassenhove, & Poeppel, 2004; Sumby & Pollack, 1954). It is known that 

temporal, spatial and semantic cues in visual signals are used to improve 

auditory speech perception (Stevenson & James, 2009; Wallace, 

Wilkinson, & Stein, 1996). However, it is largely unknown how these 

different cues are combined to create our auditory percept. In the current 

research, we used semantically congruent or incongruent audiovisual 

syllables presented with varied stimulus onset asynchronies (SOAs) 

between the auditory and visual stimuli, to investigate the interaction 

between temporal and content factors during audiovisual speech 

perception (see e.g. Van Wassenhove, Grant, & Poeppel, 2007; Vatakis, 

Maragos, Rodomagoulakis, & Spence, 2012; Vatakis & Spence, 2006). 

Specifically, we were interested whether natural onset asynchronies 

inherent to audiovisual syllable pairs influence syllable identification. 

Often, stop-consonant syllables (e.g. /ba/ and /da/) are used to 

examine syllable identification (see e.g. Arnal, Wyart, & Giraud, 2011; 

McGurk & MacDonald, 1976; Van Wassenhove, et al., 2007). Stop-

consonants are consistent in the manner in which they are produced (the 

vocal tract is blocked to cease airflow), but vary in the type and amount 

of identity information conveyed by the visual and auditory channels. 

Specifically, whether or not the vocal tract is used to produce a consonant 

(i.e. the voicing of a sound, /ba/ vs. /pa/) is not visible, since the vocal 

tract is located in the throat. Therefore, the auditory signal is more 

reliable than the visual signal in determining the voicing of a speech 

signal (McGurk & MacDonald, 1976; Wiener & Miller, 1946). On the 

other hand, which part of the mouth we use for producing a syllable is 

mostly a visual signal. For example, uttering a syllable with our lips (like 

/ba/) versus our tongue (like da/) is more visible than audible. Visual 

speech thus conveys mostly information about the place of articulation 

(POA) of the sound, and adding acoustic noise to a spoken syllable makes 

the place of articulation (POA) particularly difficult to extract on basis of 
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auditory information (McGurk & MacDonald, 1976; Van Wassenhove, 

Grant, & Poeppel, 2005; Wiener & Miller, 1946). However, the amount of 

visual information about the POA varies for different syllables: bilabial 

syllables (pronounced with the lips) are better dissociated than coronal 

and dorsal syllables (pronounced with the front or body of the tongue, 

respectively). Thus, it seems that auditory and visual speech signals are 

complementary in identifying a syllable, since voicing information is best 

conveyed by auditory cues and POA information by visual cues 

(Campbell, 2008; Summerfield, 1987).  

Auditory and visual stimuli can be linked based on their content 

information; the information about the identity (the ‘what’) of a stimulus. 

We will continue to use the term content information, although in other 

studies the term semantic information is also used (for a review see  

(Doehrmann & Naumer, 2008)). The amount of content information 

conveyed by a unimodal signal is variable, for different stimuli (as 

explained above) as well as for individuals perceiving the same stimuli, 

and the reliability of the information determines how strongly it 

influences our percept (Beauchamp, Lee, Argall, & Martin, 2004; Blau, 

Van Atteveldt, Formisano, Goebel, & Blomert, 2008; Driver, 1996; Van 

Wassenhove, et al., 2005). For example, the amount of content 

information present in visual speech signals is widely variable, as 

reflected in individual differences in lipreading skills (Auer Jr & 

Bernstein, 1997; MacLeod & Summerfield, 1987), and it has been shown 

that more profound lipreaders also use this information more (Auer Jr & 

Bernstein, 2007; Pandey, Kunov, & Abel, 1986). Additionally, visual 

speech signals that convey more content information (like bilabial vs. 

dorsal syllables, as explained above) bias the speech percept more strongly 

(McGurk & MacDonald, 1976; Van Wassenhove, et al., 2005). However, 

the influence of visual information on auditory perception often depends 

not only on the nature and quality of the visual signal, but also on the 

quality of the auditory signal, since visual input is especially useful for 

sound identification when background noise levels are high (Grant, et al., 

2004; Sumby & Pollack, 1954). Thus, during audiovisual identification 

unimodal cues seem to be weighted based on their reliability, to create 

the audiovisual percept (Massaro, 1987, 1997). Additionally, the amount 

of weight allocated to each modality depends not only on the overall 

quality of the signal, but also on the reliability of the signal for the 
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specific feature that needs to be identified. For example, spatial 

perception is more accurate in the visual domain, therefore spatial 

localization of audiovisual stimuli mostly dependents on visual signals 

(Driver, 1996). One of the aims of our study was to provide further 

support for the notion that reliable modalities are weighted more heavily 

(Beauchamp, et al., 2004; Massaro, 1997). Specifically, we investigated 

whether systematic difference in the reliability of the voicing and POA 

features of the syllable (see above) biases which modality is weighted 

more heavily. 

The main aim of our study was to investigate how the temporal 

relation between audiovisual pairs influences our percept. It is known 

that auditory and visual signals are only integrated when they are 

presented within a certain temporal window (Ernst & Bülthoff, 2004; 

Massaro, Cohen, & Smeele, 1996; R. Welch & Warren, 1986), this is the 

so-called temporal window of integration (TWI). The TWI is for example 

measurable with synchrony judgments, in which temporal synchrony of 

audiovisual signals is only perceived if audiovisual pairs are presented 

within a certain range of onset asynchronies (Meredith, Nemitz, & Stein, 

1987; Spence & Squire, 2003). The TWI highlights that the temporal 

relationship of auditory and visual inputs is another important 

determinant for integration, in addition to information about the ‘what’ 

of a stimulus.  The importance of this window has been replicated many 

times for perceptual as well as neuronal integration (Stein & Meredith, 

1993; Van Atteveldt, Formisano, Blomert, & Goebel, 2007; Van 

Wassenhove, et al., 2007). Typical for the TWI is that the point of 

maximal integration occurs with visual stimuli leading (Zampini, Shore, 

& Spence, 2003). This seems to relate to the temporal information  visual 

signals provide, namely a prediction of the ‘when’ of the auditory signal, 

since they naturally precede the sounds (Chandrasekaran, Trubanova, 

Stillittano, Caplier, & Ghazanfar, 2009; Zion Golumbic, Cogan, Schroeder, 

& Poeppel, 2013). However, the difference between the onset of the 

visual and auditory signal varies across syllables (Chandrasekaran et al., 

2009) and it is not known whether these natural onset differences can cue 

the identity of the speech sound. It has been shown that monkey auditory 

cortex and superior temporal cortex are sensitive to natural audiovisual 

onset differences in monkey vocals (Chandrasekaran & Ghazanfar, 2009; 

Ghazanfar, Maier, Hoffman, & Logothetis, 2005). In humans, it has been 



Chapter 6 

130 

 

shown that  onset differences within the auditory modality are used to 

identify auditory syllables (Miller, 1977; Munhall & Vatikiotis-Bateson, 

1998). For example, the distinction between a voiced or unvoiced syllable 

in the auditory signal is solely based on onset differences of specific 

frequency bands. However, it is not known whether audiovisual onset 

information is used to identify speech sounds. We hypothesize that 

inherent onset differences between auditory and visual articulatory cues 

can be used to identify spoken syllables. Specifically, we hypothesize that 

coronal (e.g. /da/) and dorsal (e.g. /ga/) stimuli (pronounced with the front 

or body of the tongue, respectively) might have audiovisual onset 

difference, in which dorsal stimuli produce longer onset differences due 

to a longer distance from the place of articulation to the external, audible 

sound.  

Traditionally, only a single dimension in the auditory or visual 

signal is altered to investigate the influence of visual cues. However, more 

and more studies are showing interactions between different crossmodal 

cues. For example, Vatakis and Spence (2007) found that if the gender of a 

speaker is incongruent for auditory and visual speech, less temporal 

discrepancy is allowed for the stimuli to be perceived as synchronous. 

Stimuli in the McGurk effect (McGurk & MacDonald, 1976), in which an 

auditory [ba], presented with an incongruent visual /ga/ is perceived as a 

/da/, are also perceived as synchronous for a narrower temporal window, 

compared to congruent audiovisual syllables (Van Wassenhove, et al., 

2007). Furthermore, in recent work we showed that auditory detection 

thresholds are lower if temporal predictive cues are available in both the 

auditory and visual domain (Ten Oever et al., submitted). In addition, 

interactions between semantic relatedness and spatial processing have 

been reported (Bien, Ten Oever, Goebel, & Sack, 2012; Driver, 1996; 

Parise & Spence, 2009), as well as interactions between temporal and 

spatial factors (Stevenson, Fister, Barnett, Nidiffer, & Wallace, 2012). 

However, it is still unknown how interactions between auditory and 

visual content as well as temporal cues influence speech identification. 

In sum, for stop consonants, auditory cues provide content 

information with regard to voicing, whereas visual cues provide content 

information with regard to POA (with varying reliability, e.g. for bilabial 

vs. dorsal/coronal). Therefore, we were able to make use of these 

properties in order to investigate whether incongruent pairs of stimuli are 
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identified depending on the modality that has the most reliable 

information for the specific features; POA and voicing. Additionally, we 

used different SOAs to investigate the temporal profile of this effect. 

Specifically, we were interested in the temporal window in which visual 

information influences the auditory percept, and whether ambiguity in 

the identity of auditory syllables can be resolved using differences in 

natural audiovisual onsets in speech. 

 

Materials and Methods 

Participants 

Eight healthy native Dutch volunteers (3 male, mean age 20.9, standard 

deviation 2.6) participated in the study. All participants reported to have 

normal hearing and normal or corrected to normal vision. Participants 

were unaware of the goal of the study before they completed the 

experiment. Informed consent was given before participating. Ethical 

approval was given by the Ethical Committee of the Faculty of 

Psychology at the University of Maastricht. Participants received €40 or 

student participation credits in compensation for their time.  

 

Stimulus material 

Six Dutch syllables, pronounced by a native Dutch female speaker, were 

used as auditory and visual stimuli (/pa/, /ba/, /ta/, /da/, /ka/, /ga/). For 

variability, we recorded three different versions of every syllable. Sounds 

were digitized at 44.1 kHz, with 16-bit amplitude resolution and were 

equalized for maximal intensity. Videos had a digitization rate of 30 

frames per second and were 300*300 pixels. We used a method similar to 

method used in Van Wassenhove et al. (2005) to create the videos. Videos 

lasted 2367 ms, including a fade-in of a still face (8 frames), the still face 

(5 frames), the mouth movements (52 frames) and a fade out of a still face 

(5 frames). MATLAB (Mathworks) scripts were used to create these 

videos. Additionally, for every stimulus there was a still face video with 

the fade out and fade in frames. First, we tested three participants with 
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stimulus onset asynchronies (SOAs) between auditory and visual stimuli 

ranging from VA (visual lead) 300 ms up to AV (auditory lead) 300 in 

steps of 30 ms, since this range covers the temporal window of 

integration for syllables used before (see e.g. Van Wassenhove, et al., 

2007; Vatakis & Spence, 2007). However, for the extreme VA and AV 

SOAs participants still seemed to use the visual information to determine 

their responses, therefore we chose to widen the SOA range (ranging 

from VA 540 to AV 540 ms in steps of 60 ms for the other participants). 

To align the incongruent auditory stimuli with the videos, the maximal 

intensity of the incongruent auditory stimulus was aligned with the 

congruent auditory stimulus. 

 

Procedure 

Each participant was tested in two separate experimental sessions, both 

lasting two hours. In the first session a staircase, a unimodal visual 

experiment, and the first part of the audiovisual experiment was 

conducted. The second session consisted of the remainder of the 

audiovisual experiment. 

The staircase procedure consisted of a six-alternatives forced choice 

procedure in which participants were asked to identify the six different 

syllables without presentation of the videos. Syllables were randomly 

presented over a background of white noise. Depending on the accuracy 

of the response, the intensity of the white noise was increased or 

decreased for the next trial. A two-up, one-down procedure (Levitt, 1971) 

with a total of 20 reversals was employed, which equals approximately 

70% identification threshold. The individually obtained white noise 

intensity was used in the following experiments as background noise for 

the individual participants.  

In the unimodal visual experiment participants were requested to 

recognize the identity of the syllable based on the videos only. White 

noise was presented as background noise. First, a fixation cross was 

presented for 800 ms, followed by a syllable video. Finally, a question 

mark was presented with the six possible response options to which 

participants were requested to respond. After participants responded 



Audio-Visual Onset Differences Aid Identification 

133 

 

there was a 200 ms break before the next trial started. In total, 360 stimuli 

were presented, 60 per syllable in four separate blocks. 

The audiovisual experiment had a similar trial configuration to the 

unimodal visual experiment, but consisted of the presentation of 

audiovisual pairs. Only two visual stimuli were used here; /pa/ and /ga/. 

These specific syllables were selected because they differ from each other 

in terms of place of articulation: /pa/ is a bilabial syllable, pronounced in 

the front of the mouth, whereas /ga/ is coronal syllable, pronounced in 

the back of the mouth. Furthermore, it has been shown that identifying 

/pa/ is much easier than /ga/ (McGurk & MacDonald, 1976; Van 

Wassenhove, et al., 2005; Wiener & Miller, 1946), thus serving our aim to 

manipulate the amount of information provided by the visual stimulus. 

Participants were instructed to identify the auditory stimulus only (again 

choosing between the six possible response options), while ignoring the 

identity of the visual stimulus.  

In total, 30 blocks were presented, distributed across the two 

sessions for all participants. Furthermore, per SOA there were 10 stimuli 

for every audiovisual combination for the five participants who saw the 

full range of SOAs, and 11 stimuli per SOA for the other three 

participants. Blocks lasted approximately 7 minutes each. Additionally, 

there were catch trials in which a visual or auditory unimodal stimulus 

(20 stimuli for each) was presented. During the auditory unimodal 

presentation randomly one of the still visual faces, which were also used 

during the fade-in of the moving faces, was presented. During the visual 

unimodal presentation white noise was presented at the same intensity as 

the audiovisual trials and participants had to indicate the identity of the 

visual stimulus. This ensured that participants were actually looking at 

the screen. 

Participants were seated approximately 57 centimetres from the 

screen and were instructed to look at the fixation cross at all times if 

presented. Presentation software (Neurobehavioral Systems, Inc., Albany, 

NYs) was used for stimulus presentation. Visual stimuli were presented 

on a grey background (RGB: 100,100,100). After each block participants 

were encouraged to take a break and it was ensured that participants 

never engaged continuously in the task for more than half an hour. 
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Data analysis 

With regard to the unimodal stimuli, we aimed to replicate previous 

findings stating that voicing is discriminated better in the auditory 

modality, whereas place of articulation (POA) is discriminated better in 

the visual modality (McGurk & MacDonald, 1976; Summerfield, 1987; 

Wiener & Miller, 1946). For the analysis concerning voicing, the 

percentage of voiced responses was calculated per voicing category. 

Thereafter, we averaged the response proportions and performed an 

arcsine-square-root transformation to overcome nonnormality caused by 

the restricted range of the proportion data (however in the figures 

proportions are kept for illustration purposes, since they are more 

intuitive). The calculated transformed response proportions per category 

were used as dependent variables in two repeated measurements 

ANOVAs, for the visual as well as for the auditory modality. For the 

visual unimodal analyses, the data from the unimodal visual experiment 

was used (although the data from the visual catch trials in the AV 

experiment gave comparable results), whereas for the auditory analyses 

the catch trials in the audiovisual experiment were analysed. To 

investigate whether participants could identify the voicing of the 

stimulus the factors Voicing of the stimulus (voiced versus unvoiced 

stimuli) and Voicing of the response were used. A similar analysis was 

performed to investigate whether POA could be identified in the auditory 

and visual modality. Here, the percentage of POA responses per POA 

category were calculated, arcsine-squared-root transformed, and the 

factors Place of Articulation of the stimulus (bilabial, coronal or dorsal) 

and Place of Articulation of the response were used in two repeated 

measurements ANOVAs for the visual and auditory modality. For 

significant interactions simple effect analyses per stimulus category were 

performed. If not otherwise reported, all multiple comparisons were 

Bonferroni corrected and effects of repeated measures were corrected for 

sphericity issues by Greenhouse-Geisser correcting the degrees of 

freedom. 

For the AudioVisual analyses, we first performed the same analyses 

as for the unimodal stimuli, collapsed over the SOAs, separately for visual 

/pa/ and /ga/. Thereafter, linear mixed models were used to investigate 

the SOA effects. This approach was chosen to accommodate for the 



Audio-Visual Onset Differences Aid Identification 

135 

 

missing data which arose because three participants were only presented 

with SOAs between VA 300 and AV 300 ms instead of VA540 to AV 540 

ms. Per visual stimulus and per voicing level a mixed model was run with 

the factors Stimulus POA, Response (only responses that were on average 

per VC category above chance level were used for further analyses) and 

SOA. This factor was created by binning the differently used SOAs in 

nine bins with centre points: VA 50, 125, 275, and 475, 0, and AV 50, 

125, 275, and 475. These bins were chosen to include all the SOAs used. 

Additionally, a random intercept was added to account for the individual 

variations in the baseline. 

We hypothesized differential effects as a result of natural 

differences in onset asynchronies of mouth movements and congruent 

speech sounds, for example between dorsal (earlier movements) and 

coronal syllables (later movements). In order to investigate this 

hypothesis, we calculated the velocity of the mouth movements as 

follows. For each visual stimulus we zoomed in on the area around the 

mouth (see figure 1). Then, the mean of the absolute differences of the 

three RGB values per pixel for adjacent frames was calculated. Thereafter, 

to quantify the movement from one frame to the other, the variance of 

the mean absolute RGB differences over the pixels was calculated and this 

was repeated for all the frames. This resulted in a velocity envelope of the 

mouth movement (i.e., comparable to the derivative of the mouth 

movement – it indicates changes in the movement) in which a clear 

opening and closing of the mouth becomes visible (see figure 1). The 

result of this method is similar to the methods used by Chandrasekaran 

and colleagues (2009), such that the point of maximum velocity coincides 

Figure 1. Example of the envelope of the velocity of the mouth movement of 

visual /pa/. Each dot represents the variance over all pixels of the mean RGB 

difference for two adjacent frames (the frame left and right of the dot). The 

orange dotted line represents the half opening of the mouth and the red dotted 

line represents the maximal opening of the mouth. 
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with a half open mouth and the minimum velocity coincides with a fully 

open mouth. To quantify the onset differences between the auditory and 

visual signals, the time point of maximal amplitude of the auditory signal 

was subtracted from the time point of maximal velocity of the visual 

signal. These values were later used in a linear mixed model (see Results 

section for details).  

  

Results 

Unimodal effects 

We replicated previous results showing that voicing is most optimally 

discriminated in auditory syllables and POA most optimally in visual 

syllables (see figure 2 and table 1 and 3). Table 1 indicates that the 

response POA interacts with the stimulus POA only for the visual 

stimuli, which means that for a stimulus with a specific POA the POA 

categories have different response proportions during the visual 

experiment. Simple effects show that especially bilabial stimuli were 

identified correctly during the visual experiment (as indicated by 

significantly higher bilabial than dorsal and coronal responses). Dorsal 

and coronal visual stimuli were more often confused with each other. 

However, for the unimodal auditory stimuli, the interaction between 

response and stimulus POA did not reach significance, indicating that 

participants were not able to dissociate the POA of the auditory stimuli. 

Table 3 (top rows) shows significant simple effects of the voicing of the 

response per stimulus level for the auditory, but not the visual modality. 

This means that in the auditory modality, voicing was primarily 

categorized correctly. 
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Multimodal effects collapsed over SOAs 

During the audiovisual experiment, the voicing of the stimuli was 

identified correctly most of the time (as indicated by significant simple 

effects for the voicing analyses; see figure 3 and table 3), and resembles 

the results from the unimodal auditory analyses. The results for the POA, 

when visual /pa/ was presented, resulted in high response proportions 

(more than 0.8) for bilabial stimuli (see table 2), paralleling visual 

unimodal results. The POA response*stimulus interaction effect indicates 

that bilabial responses are specifically reported when the auditory stimuli 

is also bilabial, but in the simple effects the comparisons did not show 

significant differences (table 2, row 3). Similarly, the response 

distributions for dorsal stimuli in the unimodal visual experiment and the 

visual /ga/ during the audiovisual experiment seem to resemble each 

other, that is, in the audiovisual experiment participants also confused the 

coronal and dorsal POA. 

 

  

Figure 2. Results of unimodal analyses for auditory and visual signals separately. 

Horizontal axis represents the category of the stimulus and vertical axis 

represents the response proportions of the respective categories. Dashed lines 

indicate chance level performance. As shown, vision can dissociate place of 

articulation (POA) and audition can dissociate voicing (VC). 
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Table 3. Results for Voicing for both unimodal and multimodal stimuli 

 Voicing  

interaction 

Response simple effects per stimulus level:  

Voiced vs Unvoiced 

  Stimulus Voiced Stimulus Unvoiced 

Auditory F/t 43.8 8.19 -2.83 

 p 0.00** 0.00** 0.03* 

Visual F/t 18.5 1.66 -0.13 

 p 0.00* 0.14 0.90 

AV F/t 112 8.71 -6.82 

  Visual /pa/ p 0.00** 0.00** 0.00** 

AV F/t 87.2 11.42 -3.94 

   Visual /ga/ p 0.00** 0.00** 0.01** 

The second column is the interaction of stimulus Voicing with response Voicing 

(Voicing interaction). The third and fourth columns are the simple effect 

analyses of the voicing of the response per stimulus level.Results for post-hoc 

analyses are only shown if ANOVA tests are significant. Single and double 

asterisks indicate p-values below 0.05 and 0.01, respectively. 

Table 2. Results for the POA analyses of the multimodal stimuli. 

 POA 

Interaction 

Simple effects for  

congruent response 

POA Response;  

main effect 

Pairwise Comparison  

of response level 

  BvsC BvsD CvsD  BvsC BvsD CvsD 

AV F/t 6.30 2.41 2.23 -1.89 92.2 8.33 10.6 1.15 

   visual /pa/ p 0.02* 0.14 0.19 0.29 0.00** 0.00** 0.00** 1.00 

AV, F/t 3.43 - - - 39.78 -4.80 -7.94 0.03 

   visual /ga/ p 0.07    0.00 0.01** 0.00** 1.00 

The second column is similar as in table 1. The third column shows the simple effect for the 

visual congruent response option (for visual /pa/ the bilabial response), comparing whether 

for specific stimuli the congruent visual POA option has a higher proportion. The fourth 

column shows the main effect of the response of the POA. The last column shows the 

pairwise comparisons whether overall, one POA response is given more often than another (B 

is bilabial, C is coronal, and D is dorsal). Results for post-hoc analyses are only shown if 

ANOVA tests are significant. Single and double asterisks indicate p-values below 0.05 and 

0.01, respectively. 
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The latter analysis shows that adding a visual stimulus changes the 

auditory percept for the different POA categories, such that with 

incongruent audiovisual POA, the correct POA response choice (i.e. the 

POA of the auditory stimulus) is nearly absent in the chosen responses. 

For example, although a dorsal auditory stimulus is presented (e.g. /ka/), if 

concurrently visual /pa/ is presented, the response options with dorsal 

POAs are only chosen approximately 10% of the times (see figure 3 and 

4). Therefore, we decided that, for the analyses including the temporal 

factors, we would only use the response options that were given more 

than chance level per stimulus voicing and POA (POA: 0.33, voicing: 

0.5). Mainly, because we were interested in the temporal pattern of the 

identification and a very low response rate could result in floor effects, 

biasing the statistical analyses. Thus for visual /pa/, auditory-unvoiced we 

only used response /pa/ (see figure 3; stimulus unvoiced and POA bilabial) 

and for visual /pa/, auditory-voiced we only used response /ba/ 

 

Figure 3. Results of multimodal analyses for visual /pa/ and /ga/ separately 

collapsed over stimulus onset asynchronies (SOAs). Horizontal axis represents 

the category of the stimulus and vertical axis represents the response proportions 

of the respective categories. Dashed lines indicate chance level of responding. 

Voicing (VC) is dissociable, but place of articulation (POA) responses depended 

on the unimodal visual response in Figure 2. 
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(stimulus voiced and POA bilabial). For visual /ga/, auditory-unvoiced 

response options /ta/ and /ka/ were used (stimulus unvoiced and POA 

coronal and dorsal respectively) and for visual /ga/, auditory-voiced 

response options /da/ and /ga/ were used (stimulus voiced and POA 

coronal and dorsal respectively).  

 

Temporal effects during visual /pa/ 

Overall effects of SOA difference are shown in figure 4. The mixed model 

analyses for visual /pa/, auditory-unvoiced showed an main effect for 

POA and SOA (figure 5A; F(2,180) = 34.04, p < 0.001 and F(8,180) = 

10.88, p < 0.001, respectively). Bilabial responses were reported 

significantly more than coronal and dorsal responses (t(180) = 7.60, p < 

0.004 and t(180) = 6.59, p < 0.001, respectively). The main effect of SOA 

indicated that compared to an SOA of zero, for AV 475 and AV 275 lower 

/pa/ response proportion were given (t(180) = -4.60, p< 0.001 and t(180) = 

-4.583, p < 0.001, respectively). Thus, the proportion /pa/ responses were 

the least for incongruent bilabial presentation, and when auditory stimuli 

were leading more than 125 ms.  Visual /pa/, auditory-voiced stimuli 

resulted in similar results: an main effect for POA and SOA (figure 5B; 

F(2,180) = 13.59, p < 0.001 and F(8,180) = 4.83, p < 0.001, respectively). 

Bilabial response proportions were higher than coronal and dorsal 

response proportions (t(180) = -4.49, p < 0.001 and t(180) = -4.54, p < 

0.001, respectively). Here, for a smaller window /ba/ responses were 

given compared to visual /pa/ - unvoiced /pa/ responses, that is, the SOAs 

of AV 475, AV 275 and VA 475 were significantly different from an SOA 

of zero (AV 475: t(180) = -4.027, p < 0.001; AV 275: t(180) = -3.639, p = 

0.003; and VA475: t(180) = -3.584, p = 0.004).   

 

Temporal effects during visual /ga/ 

The multilevel analyses for the visual /ga/ unvoiced showed an 

interaction effect between response and SOA (F(8,371) = 4.540, p < 

0.001). Results from the simple effects analyses in which the /ta/ and /ka/ 

responses per SOA level were compared indicated that for  SOA VA 275 

/ka/ was indicated more and for SOA AV 50,125, and 475 /ta/ was 
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indicated more (uncorrected values: -275 = -2.813, p = 0.008; 50: t(24) = 

2.088, p = 0.041; 125: t(24) = 2.394, p = 0.022;. 475: t(24) =2.650, p = 

0.014), but these effects did not survive correction for multiple 

comparisons. The interaction effect however, seems to be caused by more 

answered /ka/ with negative SOAs, and more answered /ta/ with positive 

SOAs (see figure 6A). For the visual /ga/, auditory-voiced the multilevel 

Figure 4: Overall results of the multimodal experiment for the different visual 

stimuli, auditory stimuli and stimulus onset asynchronies (SOAs) for visual /pa/ 

(A) and visual /ga/ (B). Negative SOAs indicate that the visual stimulus was 

shifted to an earlier point in time compared to the auditory stimulus. 
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analyses also showed an interaction of response and SOA (see figure 6B; 

F(8,367) = 11.996, p < 0.001). Additionally, it showed an interaction 

between stimulus POA and response (F(8,367) = 26.480, p < 0.001). One 

explanation for this last effect could be that our [da] stimulus was better 

identifiable unimodally than the other auditory stimuli (see figure 4), 

such that for stimulus POA coronal a higher proportion /da/ responses 

were given (since this was the right answer). This was similar during 

visual /pa/, auditory [da], which also showed a higher proportion /da/ 

compared to the correct responses during other incongruent 

combinations (figure 4A). For the response * SOA interaction we 

performed simple effects analyses per SOA level. For all AV SOAs and 

SOA 0 /da/ was reported significantly more than /ga/ (475: t(24) = 4.667, p 

< 0.001; 275: t(24) = 7.624, p < 0.001; 125: t(24) = 9.089, p < 0.001; 50: 

t(24) = 6.615, p < 0.0001; 0: t(24) = 3.922, p = 0.004).  

 

‘Crossing’ identification for visual /ga/ 

Around the zero point, we observed a quick incline or decline in the 

response choice of participants for visual /ga/ (see figure 4B and 6), such 

that participants chose with positive SOAs more often coronal responses 

(/da/ or /ta/) and with negative SOAs more often dorsal responses (/ga/ or 

/ka/). The decline seems to be less strong for visual /ga/, auditory [da]. 

This is probably related to the better unimodal auditory identification of 

auditory [da]. However, also here the incline for /ga/ responses and 

Figure 5. Results for visual /pa/ presentation for unvoiced stimuli (A) and voiced 

(B) stimuli. Only response proportions are shown for the response options that 

were given above chance level. These response options were /pa/ and /ba/, for 

unvoiced and voiced stimuli respectively. 
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decline for /da/ responses around zero is observable. The ‘crossing’ could 

relate to inherent differences in onsets between visual and auditory 

signals for coronal and dorsal stimuli. Indeed, a 2*3 ANOVA with factors 

POA and VC comparing onset differences between the maximal 

amplitude for visual velocity and auditory signal showed an effect of 

POAs (see figure 6C; F(1,12) = 8.600, p = 0.005). Pairwise comparisons 

showed that dorsal stimuli had significantly bigger AV onset differences 

than coronal or bilabial stimuli (dorsal-coronal: t(5) = 2.757, p = 0.012; 

dorsal-bilabial: t(5) = 1.941, p = 0.033; bilabial-coronal: t(5) = 0.466, p = 

1.000). In our stimulus set we did not find a significant difference 

between voiced and unvoiced stimuli (F(1,12) = 0.800, p = 0.389),  so we 

collapsed this for further analyses and figures.  

To model whether these inherent differences in onset asynchronies 

could explain the observed crossing, a new mixed model analysis was 

conducted. Therefore, we changed the factor SOA into a quantitative 

Figure 6. Results for visual /ga/ presention for unvoiced (A) and voiced (B) 

auditory stimuli. (C) shows the onset differences in visual velocity and auditory 

amplitude for the different place of articulations (POAs). (D) shows the 

predictor for the mixed model analyses using the natural dorsal and coronal 

onset asynchronies. The fit of the model together with the other significant 

predictors in the mixed model analyses is represented in (A) and (B) as dashed 

lines. 
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factor as described in figure 6D. The logic of the model is as follows: since 

both unimodal stimuli alone cannot conclusively define the identity of 

the stimulus (auditory unimodal can differentiate voicing, but visual 

unimodal can only exclude bilabial), two options are left. Our perceptual 

system might resolve this issue by using another cue, namely time 

differences between audiovisual syllable pairs. In our stimulus set, a SOA 

of zero is equal to the onset asynchronies of dorsal stimuli, because we 

aligned the stimuli based on the maximal amplitude of auditory [ga] (see 

figure 6C and 6D). The difference between dorsal and coronal onsets is on 

average 80 ms (average audiovisual asynchrony for dorsal is 135 ms and 

for coronal 55 ms). Therefore, the SOA for coronal stimuli in our stimulus 

set would be around + 80ms. With SOAs bigger than 80 ms the onset 

asynchronies match closer to coronal than to dorsal asynchronies. The 

opposite is true for audiovisual pairs with a long (experimental) visual 

lead: the onset asynchronies are close to dorsal asynchronies. In between 

these natural lags there is an ambiguity with regard to the identity of the 

stimulus. This factor therefore specifically tests our hypothesis that 

dependent on the audiovisual onset difference, participants would be 

biased in choosing the dorsal or coronal option, which provides new 

insight in the mechanism of how the percept is formed in case of 

ambiguous inputs. Additionally, we added a second order polynomial to 

the analyses to account for the downslope at the extremes. 

The results of this mixed model showed an interaction between 

response and the created factor in both the unvoiced and voiced analyses 

(figure 6B; F(1,385) = 22.446, p < 0.001 and F(1,379) = 58.166, p < 0.001, 

respectively), indicating that indeed modelling the natural lag in 

audiovisual syllables explains the difference in the response choice for the 

different SOA. In both voicing levels dorsal responses had positive and 

coronal responses negative values for the parameter estimate (Unvoiced: 

parameter estimate -0.1410 and 0.0689 for /ta/ and /ka/ respectively and 

Voiced: parameter estimate -0.2212 and 0.1674 for /da/ and /ga/ 

respectively), verifying the hypothesized pattern of the effect in which 

negative SOAs should result in a dorsal percept. As in the previous 

analyses, POA showed an interaction with response for the visual /ga/ 

stimulus (F(2,379) = 26.731, p < 0.001). The second order factor was only 

of significance in the analyses with the voiced stimuli and showed an 
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interaction with response (F(1,379) = 22.279, p < 0.001), such that the 

parameter estimate was more negative for the /ga/ response.  

  

Discussion 

The current study investigated the influence of content and temporal 

cues on the identification of audiovisual syllables. We hypothesized that 

visual input influences the percept only within a constrained temporal 

window. Furthermore, we predicted that the more reliable unimodal 

content cues determine the percept more strongly. Finally, we 

hypothesized that information about natural audiovisual onset differences 

can be used to identify syllables. We revealed that during audiovisual 

speech perception visual input determines the POA and auditory input 

determines the voicing. Moreover, we confirmed the prediction of a wide 

window in which visual information influences auditory perception that 

was wider for congruent stimulus pairs. Interestingly, within this 

window, the syllable percept was not consistent, but differed depending 

on the specific SOA. This was particularly pronounced when the POA 

could not be reliably identified (i.e. between dorsal and coronal stimuli). 

We explained this temporal response profile using information about 

natural onset differences between the auditory and visual speech signals, 

which are indeed different for the dorsal and coronal syllables.  

 

Multiple unimodal cues for audiovisual speech identification  

Our data suggest that participants used the visual signal to identify the 

POA and the auditory signal to identify voicing during audiovisual 

presentation. We suggest that it is the reliability of the cue for the specific 

features of the syllable that determined the percept, since it has been 

shown before that the reliability of a cue can determine the percept 

(Andersen, Tiippana, & Sams, 2004; Massaro, 1997). This is also in line 

with our replication of the results that unimodally, visual stimuli are best 

dissociable by using POA and auditory stimuli are best dissociable by 

using voicing (Summerfield, 1987; Van Wassenhove, et al., 2005; Wiener 

& Miller, 1946).  It appears that irrespective of the task, which was to 

identify the auditory stimulus, visual input influences perception. 
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Therefore, it seems that audiovisual speech is automatically integrated, 

since participants were not able to perform the task using only auditory 

cues as instructed. Integration in our study is shown by different 

identification responses for auditory and audiovisual presentation of the 

same spoken syllables. This perceptual effect is similar to the McGurk 

effect, in which identification of an auditory syllable is involuntarily 

influenced by an incongruent visual input (Gentilucci & Cattaneo, 2005; 

Soto-Faraco, Navarra, & Alsius, 2004). This indicates that during 

audiovisual speech perception, an integrated percept is created that uses 

the information of the visual as well as the auditory domain. In the 

current setting, since the auditory signal is non-optimal, this leads to a 

considerable bias in favour of the visual POA, for which the visual input 

is most reliable and thus dominant. In the McGurk effect, both signals are 

equally salient, resulting in a fused percept. So, when a unimodal signal is 

dominant during audiovisual integration, this predisposes perception.  

 

Content predictions in audiovisual speech 

In the current study we manipulated the predictability of the visual signal 

by using one visual syllable in which the POA can reliably be determined 

(/pa/) and another syllable in which the POA estimate is less reliable 

(/ga/). Previous research has shown that the information present in the 

visual signal is used to determine our percept, for example, Van 

Wassenhove (2005) showed facilitation of congruent speech dependent 

the amount of content information in the visual stimuli. Consistent with 

our results, Van Wassenhove and colleagues showed that, /pa/ stimuli 

which convey more content information about POA, influenced electro-

encephalographic recordings more than a less informative syllable /ka/. In 

their study, an analyses-by-synthesis framework was proposed in which 

the auditory signal is evaluated, based on the predictive strength the 

visual signal has for the content of the auditory signal. This predictive 

strength should determine whether there is a McGurk effect (Van 

Wassenhove, et al., 2005) and should also correlate with prediction error 

when an incongruent auditory stimulus is presented (Arnal, et al., 2011). 

In a study using congruent audiovisual speech with auditory speech in 

white noise, Pandey, Kunov and Abel (1986) showed that more proficient 
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lip readers can still detect the auditory signal at higher noise levels, 

indicating that the predictive strength or the amount of information 

conveyed by the visual signal, influences the amount of benefit during 

auditory perception. Here, we also show that more predictable visual 

bilabial stimuli bias the percept more strongly, because visual /pa/ shaped 

the percept more profoundly than visual /ga/. This is in line with results 

from Vatakis and colleagues (2012) who found that the point of perceived 

synchrony needed more visual lead for stimuli pronounced more in the 

back of the mouth compared to bilabial stimuli. They argue that for more 

salient visual stimuli (i.e. bilabial stimuli) a smaller visual lead is required 

to reach synchrony perception.  In our study, this is reflected in the 

amount of bias of the visual signal for the POA response choice. Since the 

auditory signal had a low signal to noise ratio, the visual signal biases the 

percept of POA completely, such that unimodal and audiovisual POA 

response proportions were the same. 

 

Interplay between two distinct temporal cues in audiovisual speech 

perception 

It is well-known that temporal cues are informative for audiovisual 

speech identification (Munhall & Vatikiotis-Bateson, 2004; Zion 

Golumbic, Poeppel, & Schroeder, 2012). Firstly, auditory and visual 

speech seems to temporally co-vary (Campbell, 2008). Especially in theta 

frequencies around 2-7 Hz, lip movement and the auditory envelope 

seem to correlate (Chandrasekaran, et al., 2009; Luo, Liu, & Poeppel, 

2010; Müller & MacLeod, 1982). This feature has been considered a main 

source of binding and of the parsing of information (Campbell, 2008; 

Ghazanfar, Morrill, & Kayser, 2013; Poeppel, 2003) and removing this 

frequency reduces auditory intelligibility (Ghitza, 2012; Vitkovitch & 

Barber, 1994). Secondly, visual signals generally precede auditory signals, 

providing temporal predictability of the arrival of the auditory signal 

(Schroeder, Lakatos, Kajikawa, Partan, & Puce, 2008). Finally, audiovisual 

speech perception has generally been shown to have a broad integration 

window (Dixon & Spitz, 1980; Grant & Greenberg, 2001), which has led 

to the conclusion that audiovisual speech perception has loose temporal 

associations (Munhall & Vatikiotis-Bateson, 2004). Our results also 
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indicate that visual input influences the auditory percept for a wide range 

of SOAs. For example, we show that with auditory [ba] and visual /ga/, 

the visual signal influences the percept for a time window in which the 

visual signal is shifted 500 ms earlier in time, relative to the auditory 

signal, up to when the visual signal was shifted 300 ms later in time, 

relative to the auditory signal (SOAs ranging from VA 500 up to AV 300 

ms). Only at the most positive SOA (AV 500) is visual information not 

used and the correct answer [ba] is present in the given responses.  

Although we find integration during a wide window, the results do 

not support a very loose temporal association, since we also found 

evidence for the use of natural temporal audiovisual onset differences in 

identifying the syllable. However, this information was only used when 

unimodal cues did not provide enough information. Therefore, we 

propose the following mechanism for the interplay of articulatory cues 

(POA and voicing), temporal integration cues, and temporal onset cues 

(see figure 7):  First, the visual and auditory components of a syllable 

activate syllable representations based on their “preferred” cue and 

reliability. However, these activations have some decay, such that at some 

point in time after the visual stimulus was presented, visual information 

does not influence the percept anymore (the temporal window of 

integration, TWI). Within this window more reliable cues will cause 

more activation of specific representations (i.e., visual cues will activate 

representations of syllables with corresponding POAs and auditory cues 

will activate representations of syllables with corresponding voicing). In a 

winner-takes-all framework, which is the case in an identification task, 

only one representation can win and that will be the representation with 

the strongest input. However, in addition to the visual and auditory 

articulatory cues, the activation of syllable representation is also based on 

the encoded natural onset differences. That is, for dorsal stimuli (e.g., 

/da/), maximal activation will occur later than for coronal stimuli (e.g., 

/ga/). When an ambiguous auditory stimulus arrives, it will activate 

multiple representations (the three voiced representations in the figure). 

The representation that is most active at that point in time, depending on 

the audiovisual onset difference, will win the competition. In the figure, 

visual /ga/ input cannot dissociate the coronal (/da/ and /ta/) from the 

dorsal (/ga/ and /ka/) POA, and auditory information cannot dissociate 

the POA at all. Therefore, if the auditory stimulus arrives early  
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(resembling natural coronal audiovisual onset differences), the most 

active representation will win the competition, in this example /da/. For 

later presentation, /ga/ will be more activated, and when the decay is 

completed there is no bias from the visual cue (since no representations 

are active), and one of the three voiced stimuli has to be chosen. This 

way, audiovisual onset differences only influence identification when 

ambiguous auditory stimuli are presented within the TWI, and only if the 

visual POA cues are not decisive.  

 

Figure 7. Proposed mechanism explaining the interplay between place of 

articulation (POA), voicing, temporal integration and temporal onset cues. The 

figure shows what happens during the presentation of visual /ga/ and an ambiguous 

voiced stimulus. For the visual syllable /ga/, POA cues present in the visual signal 

activate (indicated by darker circles) coronal (/ta/ and /da/) and dorsal (/ka/ and 

/ga/) representations in a time-dependent manner: the activation decays over time 

(indicating the TWI), and depending on the natural audiovisual onset differences, 

maximal activation occurs at different time points for the two POAs (later for 

dorsal than for coronal).Therefore, the time when auditory information activates 

representations of syllables (represented along the vertical axis) is important for 

winning the decision making process. When auditory syllables arrive early, and 

therefore resemble more closely natural audiovisual onset differences for /da/, /da/ 

is more active than /ga/, and has the highest chance to win the decision making 

process. In this example, the visual cues can not distinguish between the different 

coronal and dorsal possibilities, and the auditory cues cannot distinguish the POA 

at all, so the arrival of the auditory information (early vs. late) facilitates this 

decision; early onset will activate the coronal /da/ and late onset will activate the 

dorsal /ga/ syllable. 



Audio-Visual Onset Differences Aid Identification 

151 

 

Temporal window of integration is influenced by audiovisual congruency 

The temporal window of audiovisual integration (TWI) is generally 

measured by evaluating whether participants can indicate if audiovisual 

events are presented simultaneously or not (Vroomen & Keetels, 2010), 

assuming that when participants can reliably dissociate the two, the 

audiovisual event is perceived as two separate events and not bound 

together. However, little research has been done to assess whether 

audiovisual SOA differences also influence unimodal perception, which 

was one of the aims of the current study. Applying the same logic as that 

used for simultaneity judgments, events that are bound should influence 

unimodal perception more than when they are perceived separately. We 

here show that especially during congruent audiovisual voicing (visual 

/pa/, auditory unvoiced), the response proportions of /pa/ are higher 

(figure 5). Also, visual influence seems to have a wider temporal window 

of integration for the congruent pairing of visual /pa/ with auditory /pa/, 

as the visually determined /pa/ response proportion appears higher for a 

wider temporal window (although the statistical test did not show this). 

One explanation for these congruency effects is the ‘unity assumption’ 

stating that when two stimuli naturally belong together they are bound 

more strongly and therefore are more difficult to dissociate over a wider 

temporal window (Welch & Warren, 1980). However, it could be that 

with extreme SOAs, visual information is not used and participants rely 

only on the auditory signal, that is, in the case of congruent audiovisual 

/pa/ pairing they would also report /pa/ with auditory presentation only. 

Nonetheless, the unimodal auditory experiment showed that the POA for 

unvoiced stimuli could not be dissociated, neither could it for /pa/. Thus, 

the use of auditory information alone should not result in a higher 

proportion of /pa/ responses. For the incongruent pairs, identification 

with the most positive SOA seems similar to unimodal unvoiced auditory 

perception, hence participants did not seem to use visual information, 

indicating that for this SOA integration did not take place. Similar results 

have been found by Vatakis and Spence (2007), who showed that judging 

simultaneity is more difficult when the gender of the speaker is 

congruent with the speech sound. Although there are also conflicting 

results, for speech the unity assumption seems plausible (Vroomen & 

Keetels, 2010).  
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One difference between simultaneity judgments and stimulus 

identification across SOAs seems to be that the point of maximal 

integration is more biased towards visual leading when explicitly asking 

about identity (Van Wassenhove, et al., 2007; Zampini, et al., 2003). 

Therefore, varying SOAs and measuring unimodal perception might 

provide a different approach to measure whether integration occurs over 

a broader range of SOAs. This approach does not investigate whether two 

stimuli are perceived as simultaneously, but serves the goal to investigate 

the temporal patterns in which a unimodal stimulus influences the 

perception of another unimodal stimulus, for example the content of a 

stimulus. This judgment might be more natural, since in daily life, 

identifying stimuli is a more common act than explicitly judging their 

coincidence. 

 

Possible neuronal mechanisms 

Based on previous literature, the brain area most consistently involved in 

audiovisual integration is the posterior superior temporal sulcus (Calvert 

& Lewis, 2004). It has been found active during visual and audiovisual 

speech perception (Callan et al., 2004; Calvert et al., 1997), seems to be 

sensitive for congruent versus incongruent  speech signals (Calvert, 

Campbell, & Brammer, 2000; Van Atteveldt, Formisano, Goebel, & 

Blomert, 2004; Van Atteveldt, Blau, Blomert, & Goebel, 2010), and 

responds to audiovisual onset differences (Chandrasekaran & Ghazanfar, 

2009; Van Atteveldt, et al., 2007). In the temporal domain it seems that 

different temporal features (co-variations between mouth velocity and 

speech envelope and visual-auditory speech onset differences) have to be 

combined to shape our percept. Chandrasekaran and Ghazanfar (2009) 

showed that different frequency bands are differently sensitive for faces 

and voices in superior temporal cortex. Although theta oscillations have 

been shown to be influenced by input from other senses (Kayser, Petkov, 

& Logothetis, 2008; Lakatos, Chen, O'Connell, Mills, & Schroeder, 2007), 

they have not been shown to have specific effects dependent on the 

voice-face onset differences and might therefore mostly be used to parse 

the auditory signals, enhance auditory processing, and might even relate 

to the audiovisual TWI (Poeppel, 2003; Schroeder, et al., 2008). However, 
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higher frequency oscillations have been shown to vary dependent on 

voice-face onset differences, and might be involved in encoding the 

identity of a syllable, thus explaining the current results. This is 

consistent with the notion that the auditory speech system depends on 

theta as well as gamma frequencies (Poeppel, 2003), and this latter time-

scale might also be important in coding differences in natural audiovisual 

onset differences, and its influence on perception. These temporal 

constraints however would have to be investigated, for example by using 

combined behavioural and electrophysiological measures, or using 

transcranial magnetic stimulation at varying time points.  

 

Conclusion 

Our findings show that within the integration window, visual 

information biases the auditory percept, specifically regarding the 

features in which the auditory signal is ambiguous (i.e. POA). 

Additionally, these findings indicate that natural temporal onset 

differences between auditory and visual input have a noteworthy 

influence on auditory perception. Although visual input has an influence 

over a wide temporal window during our experiment, we show that this 

initial binding of information does not conclusively determine our 

percept. Instead, it serves as a prerequisite for other interaction processes 

to occur that eventually form our perceptual decision. The final percept is 

determined by the interplay between unimodal auditory and visual cues, 

along with natural audiovisual onset differences across syllables. These 

results shed light on the compositional nature of audiovisual speech, in 

which visual, auditory, and temporal onset cues are used to create a 

percept. This interplay of cues needs to be studied further to unravel the 

building blocks and neuronal basis of audiovisual speech perception.   
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Abstract  

The role of oscillatory phase for perceptual and cognitive processes is 

being increasingly acknowledged. To date little is known about the direct 

role of phase in categorical perception. Here, we show in two separate 

experiments that the identification of ambiguous syllables that can either 

be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as 

measured with EEG and sensory entrainment to rhythmic stimuli. The 

measured phase difference in which perception is biased towards /da/ or 

/ga/ exactly matched the different temporal onset delays in natural 

audiovisual speech between mouth movements and speech sounds, which 

lasts 80 ms longer for /ga/ than for /da/. These results indicate the 

functional relationship between pre-stimulus phase and syllable 

identification and signify that the origin of this phase relationship could 

lie in exposure and subsequent learning of unique audiovisual temporal 

onset differences. 
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Introduction 

In spoken language, visual mouth movements naturally precede the 

production of any speech sound and therefore serve as a temporal 

prediction and detection cue for identifying spoken language [(Campbell, 

2008), but also see (Schwartz & Savariaux, 2014)]. Different syllables are 

characterized by unique visual-to-auditory temporal asynchronies 

(Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 2009; Ten 

Oever, Sack, Wheat, Bien, & Van Atteveldt, 2013). For example /ga/ has a 

80 ms longer delay as /da/ and this difference aids categorical perception 

of these syllables (Ten Oever, et al., 2013). We propose that neuronal 

oscillations might carry the information to dissociate these syllables based 

on temporal differences. Multiple authors have proposed (Luo & Poeppel, 

2007; Peelle & Sommers, 2015; Schroeder, Lakatos, Kajikawa, Partan, & 

Puce, 2008) – and it has been demonstrated empirically (Luo & Poeppel, 

2007; Perrodin, Kayser, Logothetis, & Petkov, 2015; Van Atteveldt, 

Murray, Thut, & Schroeder, 2014) - that at the onset of visual mouth 

movements ongoing oscillations in auditory cortex align [see (Besle et al., 

2011; Lakatos, Chen, O'Connell, Mills, & Schroeder, 2007; Mercier et al., 

2015) for non-speech phase reset], providing a temporal reference frame 

for the auditory processing of subsequent speech sounds. Consequently, 

auditory signals fall on different phases of the aligned oscillation 

depending on the unique visual-to-auditory temporal asynchrony, 

resulting in a consistent relation between syllable identity and oscillatory 

phase.  

We hypothesized that this consistent “phase-syllable” relationship 

results in ongoing oscillatory phase biasing syllable perception. More 

specifically, the phase at which syllable perception is mostly biased 

should be proportional to the visual-to-auditory temporal asynchrony 

found in natural speech. A naturally occurring /ga/ has an 80 ms longer 

visual-to-auditory onset difference than a naturally occurring /da/ (Ten 

Oever, et al., 2013). Consequently, the phase difference between 

perception bias toward /da/ or /ga/ should match 80 ms, which can only 

be established with an oscillation with a period greater than 80 ms, that 

is, any oscillation under 12.5 Hz. The apparent relevant oscillation range 

is therefore theta, with periods ranging between 111-250 ms (4-9 Hz). 
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This oscillation range has already been proposed as a candidate to encode 

information and seems specifically important for speech perception 

(Kayser, Ince, & Panzeri, 2012; Peelle & Davis, 2012). 

To test this hypothesis of oscillatory phase biasing auditory syllable 

perception in the absence of visual signals, we presented ambiguous 

auditory syllables which could be interpreted as /da/ or /ga/ while 

recording EEG. In a second experiment we used sensory entrainment 

(thereby externally enforcing oscillatory patterns) to demonstrate that 

entrained phase indeed determines whether participants identify the 

presented ambiguous syllable as being either /da/ or /ga/.  

 

Results 

Experiment 1 

Psychometric curves: first, we created nine morphs between a /da/ and 

/ga/ by shifting the third formant frequency of a recorded /da/ from 

around 3000 to 2600 Hz (figure 1A). We determined the individual 

threshold at which participants would identify a morphed stimulus 50% 

as /da/ and 50% as /ga/ by repeatedly presenting the nine different 

morphs and participants had to indicate their percept (see SI experimental 

procedures for details). Indeed, 18 out of 20 participants were sensitive to 

the manipulation of the morphed stimulus and psychometric curves could 

be fitted reliably (figure 1B; average explained variance of the fit was 

92.7%, standard deviation of 0.03). The other two participants were 

excluded from further analyses.  

 

Consistency of phase differences: we used the individually determined 

most ambiguous stimuli to investigate whether ongoing theta phase prior 

to stimulus presentation influenced the identification of the syllable. 

Therefore we presented both the unambiguous /da/ (stimulus 1) and /ga/ 

(stimulus 9) and the ambiguous stimulus while recording EEG. Data was 

epoched -3 to 3 sec around syllable onset. To ensure that post-stimulus 

effects did not temporally smear back to the pre-stimulus interval [see e.g. 
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(Zoefel & Heil, 2013)] we padded all data points after zero with the 

amplitude value at zero. For every participant we extracted the average 

phase for each of the syllable types for the -0.3 to 0.2 sec interval. There 

were four syllable types: the /da/ and /ga/ of the unambiguous sounds and 

the ambiguous sound either perceived as /da/ or /ga/. Then, we 

determined the phase difference between /da/ and /ga/ for both the 

unambiguous and ambiguous condition. In the ambiguous condition pre-

stimulus phase is hypothesized to bias syllable perception and this should 

be reflected in a consistent phase difference between the perceived /da/ 

and /ga/. During the unambiguous condition phase in the pre-stimulus 

Figure 1. Results from the morphed /daga/ stimuli. A) Stimulus properties of the 

used /da/ and /ga/ stimulus. Only the third formant differs between the two 

stimuli (purple line). B) Average proportion /da/ responses for the 18 participants 

in Experiment 1. Error bars reflect the standard error of the mean. 
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time windows should mostly reflect random fluctuations as participants 

are unaware of the identity and arrival time of the upcoming syllable and 

participants generally identified stimulus 1 as /da/ stimulus 9 as /ga/, 

resulting in a low consistency of the phase difference. Note however that 

in principle phase differences are possible in this condition as we did 

exclude trials in which participants identified the unambiguous syllables 

as the syllable at the other side of the morphed spectrum. The mean 

resultant vector lengths    (MRVL) of the phase difference between /da/ 

and /ga/ were calculated and Monte-Carlo simulations with a cluster-

based correction for multiple comparisons were used for statistically 

testing. A higher MRVL indicates a higher phase concentration of the 

difference. We found that the ambiguous sounds had a significantly 

higher MRVL before sound onset (-0.25 to -0.1 ms) around 6 Hz (cluster 

statistics = 19.821, p = 0.006; figure 2A and B). When repeating the 

Figure 2. Pre-stimulus phase differences. A) The mean resultant vector length 

(MRVL) over participants for the phase difference between /da/ and /ga/ for the 

unambiguous sounds and for the phase difference between perceived /da/ and /ga/ 

for the ambiguous sounds. The white rectangle indicates the region of significant 

differences. B) Phase differences of individual participants at 6 Hz at -0.18 sec for 

the unambiguous and ambiguous sounds. The blue line indicates the 80 ms 

expected difference. The red line indicates the strength of the MRVL. C) The V-

statistics testing whether the phase differences are significantly non-uniformly 

distributed around 80 ms for all significant points at the MRVL analysis. The 

white rectangles indicate at which time and frequency point the analysis was 

performed (note the difference in the x and y axes between A and C). White dots 

indicate significance. 
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analysis including a wider frequency spectrum (1-40 Hz) the same effect 

was present (cluster statistics = 18.164, p = 0.030), showing the specificity 

of the effect for theta. Since any phase estimation requires integration of 

data over time, the significant data appears distant from the onset of the 

syllable. For example, the 6 Hz phase angle is calculated using a window 

of 700 ms (to ensure the inclusion of multiple cycles of the theta 

oscillation). The closer the center of the estimation is to an abrupt change 

in the data (such as a stimulus or the data padding to zero), the more the 

estimation is negatively influenced by the “post-change data” [see e.g. 

(Zoefel & Heil, 2013)]. 

 

80ms phase differences: a second hypothesis was that the phase difference 

of the ambiguous stimuli judged as /da/ vs. /ga/ would match 80 ms, 

consistent with the visual-to-auditory onset difference between /da/ and 

/ga/ found in natural speech (Ten Oever, et al., 2013). Therefore we took 

all the significant time and frequency points in the first analysis and 

tested whether the phase difference of all participants was centered 

around 80 ms (the blue line in figure 2B corresponds to an 80 ms 

difference). This is typically done with the V-test that examines the non-

uniformity of circular data centered around a known specific mean 

direction. We found that the ambiguous phase differences indeed 

centered around 80 ms for almost all tested data points, while for the 

unambiguous sounds no such phase concentration was present (figure 

2C). 

From figure 2B it is evident that there is a consistent phase 

difference over participants between /da/ and /ga/ for the ambiguous 

sounds. When looking at the consistency of the phases of the individual 

syllables /da/ and /ga/ this consistency drops (compare figure 2B with 

figure S1B). Statistical testing confirmed that that /da/ and /ga/ phases 

seemed distributed randomly (figure S1C). At this point we cannot 

differentiate whether this effect occurs due to volume conduction of the 

EEG or individual latency differences for syllable processing [see also 

(Lakatos, et al., 2007)]. When repeating this analysis for each participant 

we did find a significant (uncorrected) consistency for multiple 
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participants and a significant different phase between /da/ and /ga/ (figure 

S2; for only two participants this effect survived correction for multiple 

comparisons).  

The current reported effects could not be explained by any eye 

movements (no significant differences between conditions) or any 

artefacts due to the data padding (figure S3).  

 

Experiment 2 

To investigate whether neuronal entrainment results in oscillatory 

identification patterns we experimentally induced theta phase alignment 

using sensory entrainment (de Graaf et al., 2013; Henry & Obleser, 2012; 

Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008) in twelve different 

participants. In this experiment auditory stimuli of broadband noise 

(white noise band-pass filtered between 2.5 and 3.1 kHz, 50 ms length) 

were repeatedly presented (presumably entraining underlying oscillations 

at the presentation rate) after which ambiguous sounds were presented at 

different stimulus onset asynchronies (SOA’s; 12 different SOA’s fitting 

exactly 2 cycles). If ongoing phase is important for syllable identification, 

the time course of identification should oscillate at the presentation rate. 

Indeed, the time course of identification showed a pattern varying at the 

presentation rate of 6.25 Hz (figure 3A). To test the significance of this 

effect we calculated the relevance value (Fiebelkorn et al., 2011). This 

value is calculated by 1) fitting a sinus to the data and 2) multiplying the 

explained variance of the fit with the variance of the predicted values. In 

this way the relevance statistic gives less weight to models that have a fit 

with a flat line. Thereafter, we performed bootstrapping on the obtained 

relevance values (of the average curve) to show that of the 10,000 fitted 

bootstraps only 2.83% had a more extreme relevance value (figure 3B), 

suggesting that indeed syllable identity depends on theta phase.  

Three control experiments were performed. In the first two 

experiments the frequency specificity of the effect was investigated by 

changing the presentation rates of the entrainment train to 1 and 10 Hz. 

In a third experiment we wanted to rule out the possibility that the effect 

already occurs at a lower perceptual level instead of the syllable 
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identification level. Therefore, we band-passed filtered the syllables 

between 2.5 and 3.1 Hz, maintaining the formant frequency at which the 

two syllables differ, but distorting syllable perception. Participants had to 

indicate whether they felt the sound was of high or low frequency (this 

experiment will from now on be called frequency control). As a reference 

for what was considered a high or low frequency the band-passed filtered 

Figure 3. Results from experiment 2. A) Grand average proportion /da/ of all the 

participants with the respective error bars reflecting the within-subject standard 

error of the mean (plusses; vertical extend reflects the error bars) and the fitted 

6.25 Hz sinus (solid line). B) The bootstrap histograms for the relevance statistics 

for all four conditions. The long solid and dotted red lines represent the relevance 

value of that dataset and the 95 percentile of all bootstrapped values, respectively. 

The short solid lines indicate the twelve relevance values when iteratively taking 

out one participant. C) The grand average of all participants with the respective 

error bars reflecting the within-subject standard error of the mean (plusses; 

vertical extend reflects the error bars) for the three different control conditions 

used in the experiment and their respective best fitted sinus (solid line). D) The 

inter-trial coherence (ITC) plots for all three entrainment frequencies. Zero 

indicates entrainment offset. The left inset indicate the ITC averaged in the -0.5-0 

interval (ITC range 0.08-0.12). All the conditions show a peak at the respective 

entrainment frequency. However, for 1 Hz an evoked response of the last 

entrainment stimulus is present (around -0.8 sec). For 10 Hz, and in a lesser 

extend for 6.25 Hz, evoked responses to the target stimuli are present post-

stimulus (around 0-1 sec). This effect only arises in these frequencies as the 

interval a target presented is much narrower as for the 1 Hz.   
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stimulus number 1 and 9 were both presented at random order at the 

beginning of the trial.  

Results show that for both the 1 Hz and the frequency control no 

sinus could be fitted reliable (figure 3B and 3C; p = 0.80 and p = 0.69 

respectively). In contrast, for 10 Hz a sinus could be reliably fitted (p = 

0.011). For all three presentation frequencies there was entrainment at 

the expected frequency (figure 3D). 

 

Discussion 

In the current study, we investigated whether ongoing oscillatory phase 

biases syllable identification. We presented ambiguous auditory stimuli 

while recording EEG and revealed a systematic phase difference before 

auditory onset between the perceived /da/ and /ga/ at theta frequency. 

This phase discrepancy corresponded to the 80 ms difference between the 

onset delays of the speech sounds /da/ or /ga/ with respect to the onset of 

the corresponding mouth movements found in natural speech (Ten 

Oever, et al., 2013). Moreover, we could show that syllable identification 

depends on the underlying oscillatory phase induced by entrainment to a 

6.25 Hz or 10 Hz presented stimulus train of broadband noise. These 

results reveal the relevance of phase coding for language perception and 

provides a flexible mechanism for statistical learning of onset differences 

and possibly for the encoding of other temporal information for 

optimizing perception.  

 

Audio-visual learning results in phase coding 

The human brain is remarkably capable of associating events that 

repeatedly occur together (Fiser & Aslin, 2001; Summerfield & Egner, 

2009), representing an efficient neural coding mechanism for guiding our 

interpretation of the environment. Specifically, when two events tend to 

occur together, they will enhance the neural connections between each 

other, consequently increasing the detection sensitivity of one event in 

case the associated event is present (Hebb, 2002). We propose that this 
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could also work for temporal associations. In a previous study we showed 

that the onset between mouth movements and auditory speech signals 

differs between syllables, and that this influences syllable identification 

(Ten Oever, et al., 2013). For example, a naturally occurring /ga/ has an 

80 ms bigger visual-to-auditory onset difference than a naturally 

occurring /da/ [figure 4A; (Ten Oever, et al., 2013)]. Recent theories 

propose that visual cues benefit auditory speech processing by aligning 

ongoing oscillations in auditory cortex such that the ‘optimal’ high 

excitable period coincides with the time point at which auditory stimuli 

are expected to arrive, thereby optimizing their processing [figure 4B; 

(Mercier, et al., 2015; Schroeder & Lakatos, 2009; Van Atteveldt, et al., 

2014)]. If this indeed occurs, different syllables should be consistently 

presented at different phases of the reset oscillation (the green and blue 

line in figure 4B). A similar mechanism has also been proposed by Peelle 

and Davis (Peelle & Davis, 2012). As humans (or rather our brains) likely 

(implicitly) learn this consistent association between phase and syllable 

identity, one could hypothesize that neuronal populations coding for 

different syllables may begin to prefer specific phases, biasing syllable 

perception at corresponding phases even when visual input is absent 

(figure 4C). The current data indeed supports this notion as we show that 

the phase difference between /da/ and /ga/ fits 80 ms. The exact cortical 

origin of this effect cannot be unraveled with the current data, but we 

would expect to find these effects in auditory cortex.  

 

Generalization of this mechanism 

Temporal information is not only present in (audio-visual) speech. 

Therefore, any consistent temporal relationship between two stimuli 

could be coded in a similar vein as demonstrated here. For example, the 

proposed mechanism should also generalize to auditory only settings as 

any temporal differences caused by articulatory processes should also 

influence the timing of individual syllables within a word, for example, 

the second syllable in “baga” should arrive at a later time point as “bada”. 

It is an open question how these types of mechanisms generalize to 

situations in which speech is faster or slower. However, it is conceivable 

that when speaking faster the visual-to-auditory onset differences 
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Figure 4 Proposed mechanism for theta phase sensitization. A) Dependent on the 

natural visual-to-auditory delay voiced-stop consonants are identified as a /da/ or 

a /ga/ after presenting the same visual stimulus3. B) When visual speech is 

presented ongoing theta oscillations synchronize creating an optimal phase (black 

dotted line) at which stimuli are best processed. The phase at which a /da/ or a 

/ga/ in natural situations is presented is different (green and blue line 

respectively) caused by the difference in visual-to-auditory delay. C) Syllable 

perception is biased at phases at which /da/ and /ga/ are systematically presented 

in audio-visual settings even when visual input is absent. 
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between /da/ and /ga/ also reduce, thereby also changing their expected 

phase difference. It has already been shown that cross-modal mechanisms 

rapidly update changing temporal statistics in the environment (Fujisaki, 

Shimojo, Kashino, & Nishida, 2004), by for example changing the 

oscillatory phase relationship between visual and auditory regions 

(Kösem, Gramfort, & van Wassenhove, 2014).  

Our results show that during 10 Hz entrainment an oscillatory 

pattern of syllable identification is present. This frequency is slightly 

higher than what is generally considered theta. This likely reflects that 

the brain flexibly adapt to the changing environment, for example when 

facing a person that speaks very fast. Thus, although under ‘normal’ 

circumstances the effect seems constrained to theta (as shown in 

experiment 1), altering the brain state by entraining to higher frequencies 

still induces the effect and shows the flexibility of this mechanism. 

 

Excitability versus phase coding 

Much research has focused on the role of oscillations to systematically 

increase and decrease the excitability levels of neuronal populations 

(Jensen, Gips, Bergmann, & Bonnefond, 2014; Mathewson, Fabiani, 

Gratton, Beck, & Lleras, 2010; Schroeder & Lakatos, 2009). In this line of 

reasoning, speech processing is enhanced by aligning the most excitable 

phase of an oscillation to the incoming speech signal (Peelle & Sommers, 

2015; Schroeder, et al., 2008). Intuitively, our results seem in contrast 

with this idea as it appears that neuronal populations coding for separate 

syllables have phase specific responses. However, it could also be 

considered possible that one neuronal population biases identification in 

the direction of one syllable, succeeding this bias when excited and 

failing when suppressed. This interpretation is less likely considering that 

the exact phases at which syllable identification was biased varied over 

participants. Therefore, the phase at which identification is biased 

towards one syllable does not always fall on the most excitable point of 

the oscillation for each participant (unless the phases of the measured 

EEG signal are not comparable over participants). Considering that there 

are individual differences in the lag between stimulus presentation and 
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brain response [see e.g. (Henry & Obleser, 2012)], it would also follow 

that the phase at which syllable identification is biased does not match 

over participants. However, more research is needed to irrefutably 

demonstrate that different neuronal populations code information 

preferably at a specific oscillatory phase [see (Watrous, Fell, Ekstrom, & 

Axmacher, 2015)]. 

 

Conclusion 

Temporal associations are omnipresent in our environment and it seems 

highly unlikely that this data is ignored by our brain when information 

has to be ordered and categorized. The current study demonstrated that 

oscillatory phase shapes syllable perception and this phase difference 

matches temporal statistics in the environment. To determine whether 

this type of phase sensitization is a common neural mechanism it is 

necessary to investigate other types of temporal statistics. Especially since 

it could provide a mechanism for separating different representations 

(Fell & Axmacher, 2011; Jensen, et al., 2014; Kayser, Montemurro, 

Logothetis, & Panzeri, 2009) and offers an efficient way of coding time 

differences (Chakravarthi & VanRullen, 2012). Future research has to 

investigate whether also other properties are encoded in phase, revealing 

the full potential of this type of phase coding scheme. 

 

Materials and methods 

In total 40 participants took part in our study (20 per experiment). All 

participants give written informed consent. The study was approved by 

the local ethical committee at the Faculty of Psychology and 

Neuroscience at Maastricht University. Detailed methods are described in 

the SI materials and methods. 
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Supporting Information 

Supplementary figures 

 

Supplementary figure 1. Channel and phase consistency. A) The phase difference 

between /da/ and /ga/ of all individual channels (averaged over participants). For 

the ambiguous sounds there is a very strong consistency for the phases of the 

separate channels. B) For the ambiguous condition the mean phases are plotted 

for each participant for /da/ (red) and /ga/ (blue) separately. Although there is 

some phase consistency, it is considerably less strong as the consistency of the 

difference (compare with figure 2B). C) The minima of the MRVL of /da/ and /ga/ 

for both the unambiguous and ambiguous condition. 
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Supplementary figure 2. Single subject analysis. A) For each participant the 

lowest inter-trial coherence (ITC) of the two syllable types per time/frequency 

data point is displayed. White rectangles indicate areas of significant minimum 

ITC (uncorrected). B) For each participant the Watson’s U2 statistics comparing 

the mean phase of /da/ and /ga/ is displayed. White rectangles indicate areas of a 

significant Watson’s U2 value (uncorrected). The asterisks indicate the 

participants where the effect survived cluster-based corrections for multiple 

comparisons.    
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Supplementary figure 3. Pre-stimulus phase differences for the original non-

padded data and event related potentials (ERP’s). A) The mean resultant vector 

length (MRVL) over participants for the phase difference between /da/ and /ga/ 

for the unambiguous sounds and for the phase difference between perceived /da/ 

and /ga/ for the ambiguous sounds. The white rectangle indicates the region of 

significant differences. B) Phase differences of individual participants at 6 Hz at -

0.18 sec for the unambiguous and ambiguous sounds. The blue line indicates the 

80 ms expected difference. The red line indicates the strength of the MRVL. C) 

The V-statistics testing whether the phase differences are significant non-

uniformly distributed around 80 ms for all significant points at the MRVL 

analysis. The white rectangles indicate on which time and frequency point the 

analysis was performed. White dots indicate significance. D)  The ERP’s are 

displayed of the four different syllable types (the /da/ (red) and /ga/ (green) of the 

unambiguous (UA) sounds and ambiguous (A) sound either perceived as /da/ 

(blue) or /ga/ (black)). ERP’s are displayed for the average of the nine used 

electrodes (left), the vertical electrooculogram (VEOG; right top), and horizontal 

electrooculogram (HEOG; right bottom). Shaded areas indicate the standard error 

of the mean. No significant differences were found for the ERP. 
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Materials and Methods 

Experiment 1  

Participants: a total of 20 participants (9 male; age range: 18-32 years, 

mean age: 25) participated in the study. All participants reported to have 

normal hearing and normal or corrected to normal vision. The 

participants were native Dutch speakers. All gave written informed 

consent prior to the study. The study was approved by the local ethical 

committee at the Faculty of Psychology and Neuroscience at Maastricht 

University. Participants received monetary compensation for 

participating.  

 

Stimuli: stimuli were created by morphing a recorded auditory /da/ to an 

auditory /ga/ using the synthesis function of the program Praat (Boersma 

& Weenink, 2013), similar to Bertelson et al. (Bertelson, Vroomen, & de 

Gelder, 2003). First, the sound was resampled to 11 kHz. To extract the 

different formants a linear predictor was created using 10 linear-

prediction parameters (which would extract up to maximally 5 formants), 

using a sliding moving window of 25 ms, estimating the parameters every 

5 milliseconds. To shift the recorded /da/ to /ga/, we moved the third 

formant from the original frequency band of 3 kHz down to 2.6 kHz in 

steps of -19 Mel (Bertelson, et al., 2003), resulting in nine stimuli 

morphed from /da/ to /ga/ (85 dB). Stimuli were presented via ER-30 

insert earphones (Etymotic Research Inc., Elk Grove Village, IL, USA). 

 

Procedure: first, we assessed individual psychometric curves by 

measuring the exact point at which participants reported to hear a /da/ or 

/ga/ at 50% of the trials, respectively. To this end, the nine stimuli on the 

da-ga spectrum were presented in random order while participants 

indicated whether they heard /da/ or /ga/. The inter stimulus interval 

(ISI) was 1.6, 1.8, or 2 sec, which presentation order was random. In total 

135 trials were presented. A cumulative Gaussian was fitted to the data 

using the fitting toolbox modelfree v 1.1. (Zchaluk & Foster, 2009), 

implemented in MATLAB (mathworks). In the second part of this study, 

these individually calibrated parameters were used for EEG 

measurements. Here, only the three stimuli from the middle of the 
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individual psychometric curve as well as the two extremes were 

presented. Two out of twenty participants had a shifted psychometric 

curve, such that the point at which they detected /da/ 50% of the time 

was at the highest stimulus number used (stimulus 9) and were therefore 

excluded. Again participants had to indicate whether they heard /da/ or 

/ga/. The ISI was 3, 3.2, and 3.4 sec, which presentation order was 

random. For the two extremes a total of 80 trials and for the ambiguous 

stimuli a total of 120 trials were presented, divided in two blocks. During 

both tasks participants had to fixate to a white cross presented on a black 

background. Presentation software was used for stimulus delivery 

(Neurobehavioral Systems, Inc., Albany, NY). 

 

EEG acquisition and preprocessing: EEG data were recorded with online 

filters of 0.1-200 Hz and a sampling rate of 500 Hz. The BrainAmp MR 

Plus EEG amplifier (BrainProducts GmBh, Munich, Germany) was used 

as amplifier, and BrainVision Recorder (BrainProducts, GmBh, Munich, 

Germany) for recording. Nine central Ag-AgCl electrodes were 

positioned on the head (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2). The 

ground electrode was AFz, and the reference the tip of the nose. Four 

additional electrodes for eye movements were used (lateral to both eyes, 

below and above the left eye). All electrodes were positioned using Ten20 

paste (Weaver, Aurora, USA). Impedance was kept below 15 kOhm (5 

kOhm for ground and reference). Only nine electrodes were used as the 

experiment was part of a more extended set-up. However, only the EEG 

data is shown here.  

All data processing was done with Fieldtrip (Oostenveld, Fries, 

Maris, & Schoffelen, 2011) and the circular toolbox (Berens, 2009). Data 

was epoched from -3-3 around stimulus onset. Then, bad channels were 

removed (and replaced with the average of the other remaining recording 

channels). For most participants no channels were replaced (for 14 

participants no channels were replaced, for 3 participants 1 channel was 

replaced, and for 1 participant 2 channels). Eye blinks were removed 

using the function scrls_regression of the eeglab plugin AAR [(Gómez-

Herrero et al., 2006) filter order: 3, forgetting factor: 0.999, sigma: 0.01, 
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precision: 50], after which data was resampled to 200 Hz. Finally, with 

visual inspection trials with extreme variance were removed. 

 

Data analyses 
Consistency of phase differences: the complex Fourier spectra of 

individual epochs were extracted with Morlet wavelets between 2 and 10 

Hz (with the amount of cycles used linearly increasing from 1.4 at 2 Hz to 

7 at 10 Hz), stepsize of 0.5 Hz (time points of interest -0.3 to 0.2 seconds 

in steps of 0.01 sec), after which the phases were obtained. To ensure that 

post-stimulus effects did not temporally smear back to the pre-stimulus 

interval we padded all data points after zero with the amplitude value at 

zero. To investigate whether found effects were not due to this data 

padding we repeated the same analysis with the original data set. Then, 

we calculated for each individual the mean phase for each condition 

collapsed over channels. We had four conditions: 1) /Da/ of the 

unambiguous sounds (stimulus number 1; only trials that were identified 

as /da/ were included), 2) /ga/ of the non-ambiguous sounds (stimulus 

number 9; only trials that were identified as /ga/ were included), 3) 

ambiguous syllables that were identified as /da/ (on average 47.2 trials (SD 

= 18.5) per participant), and 4) ambiguous syllables that were identified as 

/ga/ (on average 69.9 trials (SD = 17.3) per participant). To ensure that 

effects were not due to difference in trial amounts we randomly drew 

trials of the three conditions with highest trial amount. The drawn 

amount corresponded to the trial amount of the condition with the 

lowest trial amount. We repeated this procedure 100 times, and took the 

average of this as our final phase estimate. To test whether the phase 

differences between /da/ and /ga/ were concentrated at a specific phase 

before sound onset we calculated the phase difference between /da/ and 

/ga/ for each time and frequency point for both ambiguous and 

unambiguous sounds. We expected that for the ambiguous sounds the 

pre-stimulus phase difference should correspond to the 80 ms difference 

found in the previous study. For the unambiguous sounds a less strong 

pre-stimulus effects was predicted since participants are unaware of the 

identity of any upcoming stimulus and therefore phase fluctuations 

should be random. Note that we did exclude trials were participants 
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indicated /ga/ for stimulus number 1 (mean amount of trials removed 2, 

range: 0-7 trials) and /da/ for stimulus number 9 (mean amount of trials 

removed 2.78, range: 0-13 trials), so this could cause small pre-stimulus 

phase differences. To test whether there was indeed such a difference in 

phase concentration dependent on condition we calculated the mean 

resultant vector length (MRVL) of the phase difference between /da/ and 

/ga/ for both conditions over the participants. The MRVL varies between 

0 and 1 and the higher the value the more consistent the phase difference 

over participants. We used Monte Carlo simulations implemented in 

Fieldtrip to statically test that the difference between the MRVLs was not 

due to random fluctuations (two-sided test with 1,000 repetitions). Data 

was corrected for multiple comparisons using cluster based correction 

implemented in Fieldtrip (parameters: cluster alpha of 0.05, using the 

maximal sum of all the time and channel bins as dependent variable. P-

values reflect two-sided p-values in all reported analysis). 

 

80ms phase differences: for all the time and frequency points at which a 

significant difference in MRVL was found we investigated whether the 

mean phase indeed corresponded to the 80 ms difference that was 

expected. Therefore, we performed for both conditions V-tests for non-

uniformity with a specified mean direction [corresponding to the 80 ms 

difference (Zar, 1998)] again using the average phase per participant per 

syllable averaged over channels. This test investigates whether the phase 

difference between /da/ and /ga/ is non-uniformly distributed around 80 

ms phase difference. The performed tests were corrected for multiple 

comparisons via False Discovery Rate [FDR; (Benjamini & Yekutieli, 

2001)]. 

 

Consistency of individual syllable types :we were interested whether the 

mean phase of individual syllable types had a strong phase consistency at 

similar frequency and time points.  This analysis would indicate that not 

only the phase difference is consistent over participants, but also the 

exact phase at which perception is biased towards /da/ or /ga/. We again 

calculated the MRVL, but this time for each syllable type (again using the 

mean phase per participant and syllable type). Then, we took the 
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minimum MRVL of /da/ and /ga/ for each time and frequency point for 

the ambiguous and unambiguous sounds separately. To statistically test 

the strength of the coherence we permuted the labels of the /da/ and /ga/ 

for each condition separately in Monte Carlo simulations (1,000 

repetitions). This analysis provides a map at which time and frequency 

point it is unlikely that such a high minimum MRVL is found, and thus 

reflects data points with high MRVL for both /da/ and /ga/. Data was 

corrected for multiple comparisons using the same cluster-size based 

correction as above. 

 

ERP analysis: we were interested whether there any differences between 

syllable types in the post-stimulus event related potentials (ERP) and 

whether eye channels could explain the pre-stimulus effects. To calculate 

the ERP we first bandpass filtered the data between 0.5 and 20 Hz using a 

second order Butterworth filter. Then we averaged the data of the four 

syllable types for each participant. To calculate the VEOG we took the 

mean of the eye channel below and above the eye (multiplying the 

channel above the eye with -1). The same was done for the HEOG (using 

the right and left eye channel. Here the right eye channel was multiplied 

with -1). We tested significant differences between /da/ and /ga/ for both 

the ambiguous and nonambiguous condition separately using paired 

samples t-tests. Data were corrected for multiple comparisons using FDR.  

  

Consistency of individual syllable types – individual participants: we 

performed the same analysis as in the section “Consistency of individual 

syllable types” for each individual participant. Instead of using the 

average phase, we took the individual phases of all trials (averaged over 

channels). This analysis would inform us whether for individual 

participants phases are consistently centered at one phase value. First, we 

calculated the inter trial coherence (ITC; which is mathematically 

equivalent to the MRVL but is the common used terminology for 

consistency over trials instead of constancy over average phases) for both 

/da/ and /ga/ (only for the unambiguous trials as we already showed that 

the effect is weaker for the ambiguous sounds). Then we again took the 
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minimum ITC as our test statistic. The strength of these minima were 

against statistically tested using Monte Carlo simulations (1,000 

repetitions) using cluster based corrections for multiple comparisons. For 

this analysis (and the one in the next section) we did not randomly drew 

trials when there were unequal trial amounts as for some participants this 

would result in very little trials to estimate the ITC. However, it is shown 

that if the variance in the two groups to be compared do not vary 

considerably the chance of a type I error does not change much 

(Mewhort, Kelly, & Johns, 2009). The variance difference between the 

conditions was extremely low (the ratio being on average 1:0.96 with a 

range of 1:0.94 to 1:1.04). 

  

Phase differences for individual participants: to test whether for 

individual participants there was a significant phase difference between 

perceived /da/ and /ga/ we performed the Watson’s U2 test for equal 

means to test the phase difference between /da/ and /ga/ for all time and 

frequency points for the phases of individual trials for each participant. 

Monte Carlo simulations and cluster based correction for multiple 

comparisons were used for statistical testing.  

 

Experiment 2 

Participants: a total of 14 participants (one author; 4 male; age range: 18-

31 years, mean age: 22.2) participated in the study. All participants 

reported to have normal hearing and normal or corrected to normal 

vision. They all gave written informed consent prior to the study. The 

study was approved by the local ethical committee at the Faculty of 

Psychology and Neuroscience at Maastricht University. For the control 

studies we were able to re-invite 6 of the original participants, but also 

had to recruit 6 new participants (2 male; age range: 20-31, mean age: 

25.0). Participants got a monetary compensation for participating. Two of 

the original 14 participants were excluded from analysis since they had a 

ceiling effect in their performance, and only heard /da/ for almost all 

auditory stimuli. 



Oscillatory Phase Shapes Syllable Perception 

187 

 

Stimuli: the same syllable stimuli were used as in Experiment 1. 

Additionally, to entrain the system to sensory stimuli we presented white 

noise, band-pass filtered between 2.5 and 3.1 kHz [second order 

Butterworth; (Hari, Hämäläinen, & Joutsiniemi, 1989; Rees, Green, & 

Kay, 1986)]. This filter was chosen since it included the both the third 

formant frequencies of /da/ and /ga/, increasing the chance that the 

correct regions will be entrained as entrainment has been shown to be 

frequency specific (Lakatos et al., 2013). Stimuli were 50 ms long. 

Different entrainment trains lasted 2, 3 or 4 seconds at a presentation rate 

of 6.25 Hz. This rate was chosen since then 80 ms would correspond to 

exactly half a period. After the stimulus train finished the ambiguous 

syllable stimulus was presented at SOA’s ranging from 0.1 to 0.58 sec in 

steps of 0.0267 sec (exactly fitting 2 cycles of 6.25 Hz). The stimuli were 

presented via headphones (stimuli in this experiment were presented 

around 60 dB). Three control tasks were implemented. In the first control 

experiment the presentation rate of the stimulus train was at 10 Hz 

instead of 6.25 Hz and the SOA’s were ranging from 0.1 to 0.28 in steps of 

0.017 sec. In the second control the presentation was 1 Hz. SOAs were 

ranging from 0.1 to 1.93 in steps of 0.167 sec. For this condition the 

entrainment trains lasted 4, 5 or 6 seconds to ensure that enough stimuli 

were presented to entrain the system. The third control was identical as 

the original experiment with the exception that the syllable stimuli were 

band-passed filtered between 2.5 and 3.1 kHz to only include the 

frequency range in which the two syllables differ. For this task the 

middle stimulus was used for each participant instead of individual 

tailored stimuli. The task of the participant was to indicate whether they 

believed the sound was of high or low frequency. At the start of each trial 

filtered syllable number 1 and 9 were presented to give a reference of 

what was ‘high’ and ‘low’. The order of presentation of these stimuli was 

randomized.  

 

Procedure: the same psychophysical procedure was used as in Experiment 

1 to find the most ambiguous stimulus on the da-ga spectrum for 

individual participants. The stimulus closest to the 50th percent threshold 

was used for the main experiment. In the main experiment three blocks 
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were presented in which the trains of band-passed noise were presented. 

In total there were 324 trials (27 trials per SOA, 108 per entrainment 

length). All trials were presented at random order. During the experiment 

participants were required to fixate a white cross presented on a black 

background. Stimuli were again presented via Presentation software 

(Neurobs) and participants performed the experiment in a sound-shielded 

room. The three control experiments were presented after each other in 

random order. For the rest the procedure was the same as in the original 

experiment. For 7 control participants EEG was recorded at the same time 

(the stimuli were here presented through speakers instead of 

headphones). 

 

Data analysis: first, the proportion of /da/ identification was calculated for 

every SOA, thereby creating a time course of proportion /da/ 

identification. We expected that this time course would follow an 

oscillatory pattern at 6.25 Hz. Hence, we fitted a sinus at a fixed 

frequency to the averaged behavioral time course using the function 

lsqnonlin in MATLAB. The test statistic calculated was the so-called 

relevance. This statistic is calculated by multiplying the explained 

variance of the model by the total variance of predicted values; thereby 

also endorsing predicted models that have a high variance instead of 

relatively flat lines. To check the likelihood of finding a bigger relevance 

value than the one in our own dataset we bootstrapped the labels of the 

phase bins to create randomized time courses and relevance values (n 

=10,000). We performed bootstrapping on the average instead of the 

individual time courses due to a lack of power in the individual data. For 

the three control analysis the same analysis was performed.  

 

Data Analysis – EEG: all recording parameters and preprocessing steps 

were the same as in Experiment 1, with the exception that data was 

recorded from the full scalp using 31 electrodes, using the easycapM22 

set-up (excluding electrode, TP9 and 10, but including channels C1, C3, 

and CPz). Data was epoched to -3 to 3 around entrainment train offset. 

Then, we extracted the ITC by extracting the angle from the complex 
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Fourier transform calculated via Morlet Wavelets (4 cycles included for 

the estimate) for each of the three control conditions (1 Hz, 10 Hz, and 

the frequency control). 
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Abstract 

Complex information is represented in the brain by a distributed pattern 

of activation from different neurons that each codes a subset of the 

features of the external input. At the same time, intrinsic features of the 

brain have been shown to influence stimulus categorization. For example, 

we have shown that the identification of an ambiguous syllable that can 

either be perceived as /da/ or /ga/ is biased by ongoing oscillatory phase. 

This suggests that phase is a cue for the brain to determine syllable 

identity and this cue could be an element of the representation of these 

syllables. If so, activation patterns for /da/ should be more unique when 

the syllable is presented at the /da/ biasing (i.e. its “preferred”) phase as 

one additional /da/ feature is present in the “input”. To test this 

hypothesis we presented non-ambiguous /da/ and /ga/ syllables at either 

their preferred or non-preferred phase (using sensory entrainment) while 

measuring 7T fMRI. Using multivariate pattern analysis we show that 

syllable decoding performance is higher when syllables are presented at 

their preferred compared to their non-preferred phase using activation 

patterns from auditory regions. These results suggest that phase 

information increases the distinctiveness of /da/ and /ga/ activation 

patterns and that sensory entrainment could be a method to investigate 

the effects of oscillatory phase on fMRI signals.   
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Introduction 

The role of oscillatory phase for perception and cognition is becoming 

increasingly clear (Kayser et al., 2009; Fell and Axmacher, 2011). While 

many studies have focused on the role of phase for stimulus detection 

[e.g. (Fiebelkorn et al., 2013; Henry et al., 2014; Ten Oever et al., 2015)], 

oscillatory phase also influences the categorization of stimuli (Watrous et 

al., 2015; Ten Oever and Sack, in press). We have for example shown that 

ongoing oscillatory phase as measured with electroencephalography 

(EEG) determines whether an ambiguous syllable that can either be 

perceived as /da/ or /ga/ is identified as one or the other syllable (Ten 

Oever and Sack, in press). In the same study, we entrained oscillatory 

patterns in the brain to rhythmically presented sounds after which the 

same ambiguous syllable was presented at different onset delays (figure 

1A). We found that depending on the delay (and thus the underlying 

phase) participants more likely identified the syllable as /da/ or /ga/ 

(figure 1B). This suggests that oscillatory phase is a cue for syllable 

identification and each syllable has one “preferred” phase. 

Patterns of activation in the (auditory) cortex have been shown to 

reflect distributed representations of speech (Formisano et al., 2008; 

Staeren et al., 2009; Mesgarani and Chang, 2012; Tsunada and Cohen, 

2014). These representations likely reflect the collective activation of 

numerous neurons active for different features that determine the 

external speech input. Generally, the more distinct two different types of 

input are (e.g. by having multiple cues that differentiate the inputs), the 

more distinct their activation patterns [or representations; (Hausfeld et 

al., 2014)]. As oscillatory phase is a cue for syllable identification, it might 

also enhance the distinctiveness of the representation of a syllable. 

Accordingly, we would predict that when both /da/ and /ga/ are 

presented at their preferred phase, their activation pattern is more 

distinct compared to when both syllables are presented at their non-

preferred phase.  

Multi-variate pattern analysis (MVPA) in functional magnetic 

resonance imaging (fMRI) has been used successfully to discriminate 

between distributed speech representations (Formisano et al., 2008; 

Kilian-Hütten et al., 2011), and seems to be more sensitive than classical 

univariate approaches to dissociate these distributed patterns of activation 
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(Haxby et al., 2001; Haynes and Rees, 2006). We used this method to 

investigate whether discrimination performance between /da/ and /ga/ 

would be better when both syllables were presented at their preferred 

compared to non-preferred phase. This would show that phase increases 

the distinctiveness of the representation or activation patterns of /da/ and 

/ga/.  

We induced brain oscillations by repeatedly presenting auditory 

stimuli at a 6.25 Hz rate (i.e. auditory entrainment), similar as in our 

previous study (Ten Oever and Sack, in press). Non-ambiguous /da/ or 

/ga/ syllables were presented at differing delays after the entrainment 

finished, either corresponding to the syllable’s preferred or non-preferred 

Figure 1. Previous results and stimulation protocol. A) Entrainment stimulus 

after which a syllable is presented at different intervals. B) The results from the 

previous study [adapted with permission from (Ten Oever and Sack, in press)]. 

The red and green SOAs represent the preferred phase for /ga/ and /da/ 

respectively. C) The stimuli were always presented in the silent gap after 

acquisition (AQ). Four different stimuli presentations of /ga/ are visualized in the 

figure: at a stimulus onset asynchrony (SOA) of 120 ms with an entrainment train 

of n = 11, an SOA of 120 ms with n = 13, an SOA of 200 ms with n = 11, and at an 

SOA of 200 ms with n = 13. While the syllable types (red and green lines) are 

always presented at 12.2 (or 12.28) seconds after the first acquisition (see black 

dotted line) the entrainment trains (black) start at different time points 

dependent on condition (see pink dotted line). D) The predicted BOLD response 

to the acquisition noise (black) and the syllable (grey) is displayed. Due to the 

long TR the response to the acquisition noise is reduced while estimating the 

peak BOLD response of the syllable. 
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phase (see red and green lines in figure 1). Then, with MVPA we 

calculated the accuracy of syllable identity discrimination. We found 

significantly better performance when both syllables were presented at 

their preferred phase compared to their non-preferred phase. These 

results show that syllable representations in auditory regions are 

processed at a preferred oscillatory phase and indicate the potential of 

fMRI to study oscillatory patterns.   

 

Methods 

Participants 

Ten healthy native Dutch speakers participated in the study (4 male, age 

range: 26-32, mean age: 29.1). One participant was left-handed. The study 

was approved by the local ethical committee at Maastricht University. 

Participants gave written informed consent prior to participation and 

filled out the safety screening from the Scannexus MRI facilities at 

Maastricht University. Participants received monetary compensation for 

participating. One participant was excluded from the analysis as the full 

fMRI session was not completed.  

 

Stimuli and experimental procedures 
In each trial first an entrainment sequence was presented, which 

consisted of band-passed noise-bursts (2.5 kHz-3.1 kHz, 50 ms) at a 

presentation rate of 6.25 Hz. The entrainment sequences were 11, 12, or 

13 stimuli long to reduce temporal expectations of the arrival time of the 

syllable. After the train finished, the sound of either the syllable /da/ or 

/ga/ was presented. The original syllable used was a /da/ pronounced by a 

Dutch female speaker, lasting approximately 300 ms. This syllable was 

then morphed into a /ga/ by changing the third formant frequency from a 

mean frequency of 3.0 kHz to 2.6 kHz using the program Praat (Boersma 

and Weenink, 2013; Ten Oever and Sack, in press). The syllables were 

presented after the entrainment sequence either 120 or 200 ms after the 

onset of the last noise burst (per run per condition 6 trials), which 

corresponded with the preferred phase of /ga/ and /da/ respectively (Ten 

Oever and Sack, in press). In another condition the middle /da/ -/ga/ 
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morph was presented at either 120 or 200 ms (per run per condition 6 

trials), but with reversed audio (data not shown). In four additional trials 

per run (condition type randomly selected) the last stimulus sequence had 

a wider filtered broadband noise (2.2 kHz-3.4 kHz). Participants were 

required to press a button when they heard this stimulus sequence. These 

trials were not analyzed.  

 

Scanning parameters 

MRI data was collected on a 7-tesla Siemens Magnetom scanner with a 

body gradient system with a whole brain coil at the Scannexus facilities, 

Maastricht, The Netherlands. Anatomical images were acquired via a T1 

weighted MPRAGE sequence (TR = 3100 ms; TI = 1500 ms; TE = 2.25 ms; 

0.6 mm isotropic) and a proton density (PD) weighted sequence with the 

same parameters (except the TR = 1440) not using the inversion module. 

This sequence was acquired to remove field inhomogeneities to improve 

image quality by dividing the T1 weighted image  by the proton density 

weighted image (Van de Moortele et al., 2009). Five functional runs with 

84 TRs were acquired for all participants. A blood oxygenation level-

dependent (BOLD)-sensitive echo-imaging (EPI) sequence was used 

(matrix = 128*128; field of view = 192*192 mm2; 66 slices; TR = 8100 ms; 

TE = 19 ms; acquisition time = 1.4 s resulting in a voxel size of 

1.5*1.5*1.5mm3) with a GRAPPA acceleration factor of 2 (Griswold et al., 

2002). Moreover, two slices were acquired simultaneously via an 

interleaved multiband sequence to improve the speed of acquisition 

(Moeller et al., 2010). To correct for the direction of acquisition 2 EPI 

sequences of 5 TRs were collected using both the anterior-to-posterior 

and posterior-to-anterior direction [main functional runs were acquired 

using the anterior-to-posterior acquisition direction; (Bowtell et al., 1994; 

Jezzard and Balaban, 1995; Andersson et al., 2003)].   

EPI sequences are inherently noisy, thereby challenging auditory 

research in the scanner. Even more troubling for the current paradigm is 

that the EPI sequence contains a strong rhythmic component as the 

separate images are acquired. To ensure that entrainment only occurs to 

our presented  stream and not to the scanner noise we used a sparse 

sampling paradigm with a repetition time of 8100 ms. In this way we 

could position our stimuli in between two acquisitions such that our 
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stimulus of interest (the syllable) would be presented 4 or 3.92 s before 

and 4.1 or 4.02 s after the start of the image acquisition, thereby 

collecting the data around the peak of the BOLD response while 

decreasing the signal related to scanner noise (figure 1C and D). At the 

following acquisition interval no stimuli were presented to ensure that 

the signal would recover the baseline. As the syllable positioning was 

fixed at either 4000 or 3920 ms prior to acquisition, the onset of the 

entrainment train was slightly different, depending on the specific 

condition.  

 

Data preprocessing 

Data preprocessing was performed with BrainVoyager QX 2.8 (Brain 

Innovation, Maastricht, The Netherlands) and FSL (www.fmrib.ox.ac.uk). 

For anatomical data, the reconstructed MPRAGE T1 weighted images 

were divided by the  images by the PD images to reduce inhomogeneities 

of the signal (Van de Moortele et al., 2009). An additional inhomogeneity 

correction was performed in Brainvoyager and the images were 

resampled to 0.5 mm isovoxel resolution and rotated to ACPC space. 

Then we performed automatic grey-white matter segmentation in FSL 

and manually adjusted the segmentation in Brainvoyager. A grey matter 

cortical mask of the temporal lobe was created to reduce the amount of 

voxels present in the multivariate pattern classification. 

Functional images were motion corrected and temporal high-

passed filtered using three cosine cycles and a linear trend regressor for 

each run separately. Slice acquisition timing was corrected with a sinc-

weighted interpolation. In FSL we used the TOPUP function to correct 

for susceptibility induced distortions caused by the acquisition direction 

to improve alignment with the anatomical data. Then images were co-

registered with the anatomical data.  

 

Data analysis 

Univariate analysis: Due to our long TR we only had 2 data points to 

model the BOLD response. Therefore, we estimated the activation 

patterns for each stimulus by calculating the proportion of signal change 

subtracting the activity of a single data point directly after the stimulus 
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from the data point before the stimulus (baseline) and further dividing by 

this baseline. We repeated this calculation for all the stimuli, providing us 

with an overall activation pattern for each participant that was later used 

for the MVPA analysis. To obtain a group map of activation we 

performed cortex based alignment of the surface maps (Goebel et al., 

2006) and a random effect GLM using a step function as predictor for 

each sound condition (with conditions /da/ time point 120, /da/ time 

point 200, /ga/ time point 120, /ga/ time point 200, reverse, and control) 

and a separate predictor for each run. 

MVPA analysis: All MVPA analyses were performed in ACPC 

space. Support vector machines (SVM) were used to decode the 

multivariate activation patterns. As a first analysis we tested whether we 

could reliably decode syllable identity irrespective on which time point 

on the entrainment the syllables were presented. Training data consistent 

of randomly picking 96 out of the 120 trials (48 per syllable); the 

remaining trails were used for testing. Ten cross-validations were 

performed (with replacements). Features consisted of the proportion of 

signal change as described above per voxel and per trial. Standardized z-

scores were calculated over each run. Excessive amounts of features can 

harm classification performances due to overfitting and it is therefore 

necessary to have the optimal amount of features present in your 

classification (Norman et al., 2006). Therefore we repeated the 

classification using between 50 and 2500 most active voxels (overall 

activation) in 15 logarithmically spaced steps and extracted the best 

classification (Kilian-Hütten et al., 2011). Voxels with activation patterns 

stronger than 5 standard deviations of the mean were never included as 

this high activity pattern likely does not arise from neuronal activity, but 

more likely from bigger veins [see e.g. (Lee et al., 1995; Turner, 2002)]. To 

investigate whether the classification performance was above chance 

level we performed permutation tests. Syllable labels of both the training 

and testing were permuted 100 times and the exact same analysis was 

performed. Then we compared using a one-sided Wilcoxon signed rank 

test whether the original classification performance was higher than the 

average permuted labels for all participants. The same analysis was 

performed to classify the two time points irrespective of the identity of 

the syllable. 
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Our main hypothesis was that decoding performance would 

increase when syllables are presented at their “preferred” phase. 

Therefore, we split the dataset in two parts to perform separate 

classifications: 1) syllables presented at their “preferred” (/ga/ at 120 ms 

and /da/ at 200 ms) and 2) syllables presented at their “non-preferred” 

phase (/da/ at 120 ms and /ga/ at 200 ms). The rest of the analysis was the 

same as above except that model training (testing) was based on 48 (12) 

trials. As a final test to investigate whether one specific time point/phase 

would have a higher classification performance we repeated the analysis, 

but performed the /da/-/ga/ classification when both syllables were 

presented at 120 ms or when both were presented at 200 ms.  

To investigate the spatial consistency of the voxels used for the 

classification we created group discriminate maps for the /da/-/ga/ 

classification when syllables were presented at their “preferred” phase. 

These maps represent the shared cortical locations that contributed to the 

discrimination of the syllables. We created these maps in two different 

ways. First, we created a map using all the voxels that went into the final 

optimized classification. This map shows the overlap over participants of 

all the voxels that were used for classification; however it does not 

dissociate which voxels contributed more to the discrimination. 

Moreover, the voxel size varies over participants. Therefore, we created a 

second map in which only the 150 most discriminating voxels where 

included. 150 voxels were chosen as it corresponded with the amount of 

voxels used for the classification of the participant with the least voxels in 

the initial feature selection. All maps were then transformed to the 

surface representation of one participant after cortex based alignment 

(Goebel et al., 2006).  

 

Results 

Univariate analysis  

The activation maps of syllable presentation versus baseline showed a 

bilateral network of activation mainly in primary auditory and auditory 

association cortex. Additionally, parts of the right cingulate motor areas 

were active (figure 2). This indicates that our sparse sampling method was 

successful in eliciting reliable brain responses to spoken syllables. Other 
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areas known to be activated by syllables or phonemes (Liebenthal et al., 

2005; Hickok and Poeppel, 2007; Desai et al., 2008), such as inferior 

frontal cortex and insula, showed responses when using a more liberal 

threshold. Any direct contrast between /da/ or /ga/ or between the two 

time points did not result in any significant difference [as estimated using 

false discovery rate (Benjamini and Yekutieli, 2001)]. 

 

Multivariate analysis 

/Da/ versus /ga/: In a first step we wanted to replicate the finding that 

syllable identity can be decoded from fMRI BOLD patterns (Formisano et 

al., 2008). Moreover, this finding would show that our paradigm of sparse 

sampling can be successfully used to perform classification. We found a 

mean classification accuracy of 0.578 (figure 3, left panel). Statistical 

testing of this performance by permuting the labels of the syllables 

indicated that the accuracies of the original labels was higher than the 

performance for permuted labels (Z = 38; p = 0.038). Note that the 

empirical chance level for classification is higher as 0.5 as we optimized 

the amount of voxels selected for the classification by using the 

classification with the best performance. However, permutation testing 

controls for this enhanced empirical chance level (Moeller et al., 2010).   

Time point comparison: In a second step we classified the two time points 

(120 vs 200 ms) irrespective of the syllable identity. Overall classification 

Figure 2.  Univariate results. Overall activation map of all presented syllables 

versus baseline as measured with a random effect GLM. Results are presented on 

the surface of one participant after cortex based alignment to this participant. 
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performance was 0.574 which was higher compared to classification 

performance with permuted labels (Z = 32; p = 0.049).  

/Da/ verus /ga/ at the preferred versus non-preferred phase: Our 

main expectation was that classification performance should be higher 

when syllables are presented at their preferred phase. This analysis is 

orthogonal to the previous two analyses as each syllable is presented in 

equal amounts at both phases. We split the data in two and repeated the 

/da/ versus /ga/ classification either when the syllables were both 

presented at their preferred or at their non-preferred phase. We found a 

higher /da/-/ga/ classification performance (0.605) for the preferred 

compared to the non-preferred phase (0.559; figure 4A, top panel; Z = 41; 

p = 0.016). Moreover, we found that only for the preferred phase the 

classification performance was higher as for the permuted labels (Z = 38; 

p = 0.037 and Z = 20; p = 0.410 for preferred and non-preferred phase, 

respectively).  
/Da/ versus /ga/ at 120 or 200 ms: To test whether there was one 

specific phase that increased classification accuracy, we repeated the 

previous analysis, but testing /da/-/ga/ classification when both syllables 

were presented at 120 ms or both presented at 200 ms. There was a 

classification performance of 0.578 and 0.550 when both syllables were 

presented at 120 ms or 200 ms, respectively. The classification 

performance did not significantly differ (Z = 28; p = 0.563; two-sided). 

Additionally, both classifications were not significantly different from the 

Figure 3.  Classification performance. Classification performance for each 

participant (black line) and the average (red dotted line) for the both original 

labels and permuted labels for the contrast /da/ versus /ga/ (left panel) and 120 

versus 200 ms SOA (right panel). 



Chapter 8  

204 

 

permuted labels (Z = 29; p = 0.248 and Z = 26; p = 0.367 for 120 and 200 

ms, respectively).  

Finally, we wanted to calculate the interaction between the factors 

/ga/ phase and /da/ phase. To do so with a non-parametric test we 

performed a singed rank test between two difference scores: 1) the 

difference in /da/-/ga/ classification performance between the preferred 

and non-preferred phase and 2) the difference in /da/-/ga/ classification 

Figure 4.  Classification performance main contrasts. A) /da/-/ga/ classification 

performance for each participant (black line) and the average (red dotted line) 

for the preferred and non-preferred phase (top panel). Bottom two panels reflect 

the comparisons with the actual labels of the preferred phases (left) and non-

preferred phases (right) and their respective permuted labels. B). /da/-/ga/ 

classification performance when syllables where presented at the early or late 

time point. C) The average classification performance excluding one outlier 

participant. Error bars represent the within subject standard error of the mean. 
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performance between 120 and 200 ms. Initially, there was no significant 

effect (Z = 32; p = 0.15). However, one participant had an extreme value 

in the 120-200 ms classification difference that was more than two 

standard deviations from the average (see figure 4B. One participant has a 

difference of almost 0.25). When removing this participant, the 

interaction was significant (Z = 32; p = 0.027; see figure 4C).  

Discriminative maps: Figure 5A shows the overlap of all the voxels 

that were used for the “preferred” phase classification. These were the 

voxels having the highest percent signal change. The amount of voxels 

was dependent on the participant as it was individually tailored to 

Figure 5.  Discriminative maps. A) The spatial overlap over participants of all 

voxels used in the optimized classification. Color indicates the amount of 

participants. B) The spatial overlap over participants when only using the 150 

most discriminative voxels. The overlap is highly reduced. 
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optimize the classification. It is clear that only a small proportion of 

voxels had overlap for more than 6 out of 9 participants, mostly 

overlapping around the left Heschl’s sulcus (HS) and in the right 

hemisphere anterior of Heschl’s gyrus (HG) at the first transverse sulcus 

(FTS). This overlap was reduced when looking at the 150 most 

discriminative voxels (figure 5B). Voxels only had showed overlap for 3 to 

5 participants. Supplementary figure 1 shows for each individual the 150 

most discriminative voxels that resulted in the highest classification 

performance. Although most participants have their most discriminative 

voxels around the main auditory regions including bilateral superior 

temporal gyrus (STG), FTS, planum temporale (PT), HG, and HS, the 

exact distribution varied across participants.  

 

Discussion 

In the current study, we investigated whether oscillatory phase 

information changes the distinctiveness of syllable representations as 

measured with fMRI. This study was based our previous results showing 

that syllable identification of an ambiguous stimulus (either perceived as 

/da/ or /ga/) is biased when it is presented at a specific oscillatory phase 

(Ten Oever et al., 2013; Ten Oever and Sack, in press). We used the same 

sensory entrainment paradigm and presented /da/ and /ga/ stimuli either 

at their “preferred” or “non-preferred” phase to investigate whether phase 

information would change the fMRI activation patterns to these syllables. 

As we hypothesized, we found that /da/-/ga/ classification (with MVPA) 

was more accurate when both syllables were presented at their preferred 

compared to non-preferred phase. These results verify that syllable 

processing is phase dependent and show that this information can be 

extracted even with slow fluctuating BOLD responses. 

 

Syllable dependent phase processing 

Phase coding has been a proposed as a mechanism to represent 

information in the brain (Fries, 2005; Jensen et al., 2014; Watrous et al., 

2015). Different electrophysiological studies have shown that adding 

phase information to classifiers aid classification performance (Kayser et 
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al., 2009; Lopour et al., 2013). Moreover, neuronal populations coding for 

similar representations seem to communicate with each other by 

synchronizing their firing rates to a specific phase (O'Keefe and Recce, 

1993; Fries, 2005; Lisman and Jensen, 2013). Since specific syllable 

representations prefer specific oscillatory phases (Ten Oever and Sack, in 

press) neuronal populations coding for one syllable might become active 

when another syllable is presented at their preferred phase. This could be 

reflected in for example /da/ sensitive neurons being active if a /ga/ 

syllable is presented at a /da/ preferred phase. Alternatively, /da/ sensitive 

neuronal populations might have more robust processing for specific 

phases. In either way, syllable representations are more distinctive from 

each other when syllables are presented at their preferred phase.  

 

Methodological considerations 

The noisy scanner environment makes any type of auditory experiment 

difficult (Cho et al., 1997; Griswold et al., 2002). In the current design we 

choose to overcome this problem by having a very long repetition time 

and only trying to sample the peak of the BOLD response. This of course 

has its drawbacks as the data amount is little and, if participants have a 

particularly slow or fast BOLD response, it might not sample the optimal 

point. However, we were still able to find normal activation patterns to 

auditory stimuli and above chance level classification performance. The 

increased signal-to-noise ratio of 7T MRI might have helped to increase 

the overall activation levels. Moreover, the BOLD response to the scanner 

noise that normally accompanies the BOLD response to the auditory 

target stimuli might be significantly reduced (Bandettini et al., 1998; 

Talavage et al., 1999). This shows the added value of high field fMRI and 

the feasibility of this type of silent paradigms [see also (Amaro et al., 

2002; Zaehle et al., 2007)]. For most experiments this type of sampling is 

not necessary, but if the rhythmic auditory patterns of the scanner noise 

are too intrusive for the specific experimental set-up, the proposed 

acquisition scheme represents one option to overcome this limitation of 

fMRI. 
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Spatial overlap 

Our discriminative maps (figure 5 and supplementary figure 1) indicated 

a limited spatial overlap of the voxels used for the syllable classification. 

The only area that showed clear overlap when using all the voxels used 

for optimal classification was left Helschl’s sulcus bordering the Planum 

Temporale (PT). Left Helschl’s sulcus is involved in the primary auditory 

analysis and largely part of the belt area (Moerel et al., 2014). It is 

normally sensitive to a broader tuning width of sounds (Rauschecker et 

al., 1995; Hackett et al., 1998; Moerel et al., 2013) and the most lateral 

part of the Helschl’s sulcus also seems speech/voice sensitive (Belin et al., 

2000; Moerel et al., 2014). In contrast, PT is viewed as a computational 

hub in which complex spectrotemporal inputs are matched to stored 

memories of auditory objects (Griffiths and Warren, 2002). It has been 

shown that this area plays an important role discriminating the perceived 

identity of an ambiguous syllable (Kilian-Hütten et al., 2011). However, 

in the study of Kilian-Hütten and colleagues (2011) the discriminative 

voxels extended more to the posterior part of PT, including sensory-

motor integration areas (Hickok and Poeppel, 2007), while our voxels are 

located more anteriorly. In sum, it seems that the most discriminate areas 

in our study include areas that perform a higher order acoustic 

transformation linking the acoustic input to stored auditory categories 

(Obleser and Eisner, 2009). On a critical note, it could be that the high 

activation of these broadly tuned areas is partly induced by the 

broadband noise used in the entrainment. Moreover, individual 

discriminative maps are much more diverse and include more widespread 

areas, covering almost all auditory and auditory association areas. 

 

Conclusion 

In this study, we showed that oscillatory phase contributes to the 

distinctiveness of the representation of /da/ and /ga/. These results add to 

a growing literature showing the role of oscillatory phase in perception 

and cognition (Lakatos et al., 2008; Cravo et al., 2011; Peelle and Davis, 

2012; Jensen et al., 2014). Furthermore, it indicates that intrinsic 

properties in the brain might be an essential part of the representation of 

categorical information. FMRI has thus far not been used to investigate 
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influences of oscillatory phase. We are one of the first to demonstrate 

that slow fluctuating BOLD patterns are indeed sensitive to this type 

temporal manipulation. This opens a new way to investigate phase, using 

the high spatial resolution that fMRI provides. This is important, as the 

phase coding mechanism that we demonstrate might be a unique strategy 

of the brain to memorize and organize perceptual input and future studies 

should aim to unravel the principles of this mechanism. 
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Supporting Information 

 
 

 

Individual maximum accuracy levels with corresponding amount of voxels. 

Supplementary table 1. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Accuracy 0.675 0.542 0.683 0.542 0.517 0.583 0.625 0.625 0.65 

Amount 

of voxels 

618 1891 50 153 1891 50 267 2500 116 

 

Supplementary figure 1: Individual discriminative maps. The top 150 

discriminative voxels for each participant are shown for the right and left 

hemisphere. The map labeled “overall map” shows all the top 150 discriminative 

voxels of all participants combined on one map. All voxels are plotted on the 

surface map of one representative participant after cortex based aligned. 
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The work in this thesis focuses on the influence of temporal associations 

between audio-visual stimulus pairs on perception. In the first part of the 

thesis the perceptual benefit of temporal associations acquired during one 

experimental session either through rhythmicity or temporal cueing is 

explored. In the second part the temporal association between the onset 

of mouth movements and onset of speech sounds and the consequences 

for behavior and syllable coding are central.  

 

Part I: Short term temporal statistics 

Temporal regularities in the environment have been shown to have 

behavioral benefits both decreasing reaction times through temporal 

preparation (Correa, Lupiáñez, Milliken, & Tudela, 2004; Coull & Nobre, 

1998; Los & Van der Burg, 2013; Niemi & Näätänen, 1981) as well as 

improving perception in discrimination (Ellis & Jones, 2010; Jones, 

Moynihan, MacKenzie, & Puente, 2002; Mathewson, Fabiani, Gratton, 

Beck, & Lleras, 2010) and detection tasks (Cravo, Rohenkohl, Wyart, & 

Nobre, 2013; Rohenkohl, Cravo, Wyart, & Nobre, 2012). In chapter 2 we 

show that this detection improvement is also acquired even when the 

temporal regularity itself is not yet perceived. Moreover, adding multiple 

types of temporal information (rhythmicity as well as temporal cueing) 

improves detection even more, even though one type of temporal 

information would already have been sufficient to estimate the temporal 

arrival exactly. This last effect is likely mediated by the fact that temporal 

estimates are never fully accurate (Eisler, 1976) and adding multiple types 

of not fully accurate estimates collectively improve perception. This 

finding relates to cue integration and Bayesian models of perception 

which state that the brain combines multiple perceptual cues to optimize 

perception (Ernst & Bülthoff, 2004; Fetsch, DeAngelis, & Angelaki, 2013; 

Knill & Pouget, 2004). Each sensory cue is typically weighted by its own 

reliability, improving perception in an optimal fashion. Conclusively, the 

benefit of combining multiple types of temporal information seems to be 

similar compared to other types of sensory cues (also see Elliott, Wing, & 

Welchman, 2014).  

The optimized percept in Bayesian models is not only influenced 

by directly preceding information. Instead, information from multiple 

time scales is integration and updated online to arise to an optimal
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percept (Kim, Basso, 2010; Montagnini, Mamassian, Perrinet, Castet, 

Masson, 2007; Ernst & Bülthoff, 2004). In chapter 4, there are two types 

of temporal information on two different time scales. Firstly, the 

rhythmic structure of the entrainment stimuli aids participants to attend 

to moments in time that they expect a stimulus to occur in the rhythm. 

Secondly, there are different lengths of the entrainment train, thus 

participants have an expectation of the entrainment train continuing. We 

show that temporal estimations of stimulus occurrence are influenced by 

expectations whether a rhythmically presented stream of stimuli will 

continue and thereby shows that the estimates do not just respond to the 

immediately preceding stimuli, but instead estimates are updated 

continuously to improve perception (Friston, 2011; Siegel, Buschman, & 

Miller, 2015; Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010).  

Rhythmicity of stimuli is picked up by the brain by resonating the 

neuronal responses to the presented rhythmic stimuli (Lakatos, Karmos, 

Mehta, Ulbert, & Schroeder, 2008). We also find this resonance effect 

both in chapter 3 and 4. Chapter 3 shows that these resonating properties 

can even be present when 1) the participant is unaware of the stimulus 

stream and 2) the stimuli do not induce any direct measurable evoked 

response. This chapter shows that it is the alignment of oscillatory phase 

and not the change in amplitude of an oscillation that drives the 

entrainment effect (Makeig et al., 2002). This alignment could be a 

mechanism to attend to specific moments in time, thereby increasing the 

sensitivity of detection at that time point (Schroeder & Lakatos, 2009). 

This has a benefit as there is one specific most excitable phase on an 

oscillation, where neurons are more likely to fire with less input (Buzsáki 

& Draguhn, 2004; Lakatos et al., 2005). The entrainment is also highly 

influenced by context. Stefanics et al. (2010) have shown stronger 

entrainment effects for more probable events. In chapter 4 we further 

elaborate on this finding, showing that expectancy of entrainment 

continuation also influences the strength of the entrainment. These 

results highlights that the brain’s response is not a direct reflection of the 

environmental input, but instead entrainment to environmental stimuli is 

mediated by mechanisms that predict whether the rhythmic input will 

continue.  

During temporal cueing the brain also seems to optimize perception 

at the time at which a stimulus is expected by using oscillatory 
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mechanisms. In chapter 5 we show low frequency oscillatory responses 

when temporal information is predicted over a longer time window. This 

effect occurs as there is an optimal detection window on the oscillation 

period when stimuli are closer to threshold (Buzsáki & Draguhn, 2004; 

Lakatos et al., 2005). By resetting lower frequencies this window is 

broadened, effectively increasing the window at which stimuli are 

optimally processed, which is beneficial when stimuli are predicted to 

occur for a longer time period (also see Wilsch, Henry, Herrmann, Maess, 

& Obleser, 2015). This is further verified since the phase of low frequency 

oscillations also determines whether a target will be detected or not. 

These findings fit closely to mechanisms proposed for temporal attention 

during rhythms (Schroeder & Lakatos, 2009; Peele & Davis, 2012) as they 

indicate that the phase of oscillations is reset to optimally improve 

detection also during temporal cues. Additionally, they indicate that the 

frequency of the phase reset seems to depend on the temporal statistics in 

the environment.   

Part I of this thesis shows that stimulus detection is pro-actively 

optimized by using the temporal regularities in the environment both 

afforded via rhythmicity and temporal cueing. It is shown that oscillatory 

brain responses change both their phase and frequency to align the most 

excitable phase of the oscillation to the time point that stimuli are 

expected. These results highlight that attention can be directed in time 

(Coull, Frith, Büchel, & Nobre, 2000) and that these mechanisms are 

mediated via oscillatory properties in the brain (Schroeder & Lakatos, 

2009; Zion Golumbic, Poeppel, & Schroeder, 2012). 

 

Part II: Long term temporal statistics during audio-visual speech 

Some temporal associations between audio-visual stimuli can be quite 

consistent. Especially in speech there are many temporal consistencies 

that have behavioral relevance to optimize speech perception both in 

audio only (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967; 

Poeppel, 2003; Rosen, 1992) and audiovisual speech (Myers, 1971; 

Schroeder, Lakatos, Kajikawa, Partan, & Puce, 2008; Zion Golumbic et al., 

2012). In chapter 6 we show that there is a consistent relationship 

between the onset of mouth movements and the onset of a speech sound. 

This relationship is unique to specific syllables [see also (Chandrasekaran, 
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Trubanova, Stillittano, Caplier, & Ghazanfar, 2009)] and is used to 

perceive syllable identity. These results indicate that audio-visual 

temporal cues do not only indicate when auditory information will occur, 

but also aid the identification and categorization of syllables (the what). 

These results go beyond the function of temporal information to drive 

attention in time (Nobre, Correa, & Coull, 2007), but show that temporal 

information itself is a cue for categorizing stimuli. 

The neuronal coding of these consistent temporal relationships has 

not been investigated thoroughly. The unique feature of varying temporal 

visual-to-auditory delays for different syllables provides an exclusive 

starting point to investigate whether temporal information in audiovisual 

settings can influence the neuronal coding of syllables. In chapter 7 we 

show that syllable identification of an ambiguous syllable (either 

perceived as /da/ or /ga/) is biased when the syllable is presented at a 

specific phase. The phase difference between whether the ambiguous 

syllable will be identified as /da/ or /ga/ exactly matches the audio-visual 

delay difference between these two syllables and indicates that the 

temporal information afforded by audiovisual presentation is transferred 

to the coding of the auditory information. This is further supported in 

chapter 8 where we show that temporal cortex can decode syllable 

identity better when the syllables are presented at their preferred phase. 

These results show that phase information is integral part of the 

representations of these syllables.  

The idea of a temporal code that codes different representations on 

oscillatory phase is not new (see Bernstein, 1967 for one of the first 

accounts). For example, O’Keefe and Recce (1993) found that specific 

neuronal populations coding for locations in the environment fire at 

specific phases of the ongoing theta oscillation in the hippocampus. 

Neuronal populations coding for different locations thus have one specific 

preferred phase of firing. More recently, the role of phase for content 

representation in the cortex is being uncovered (Kayser, Montemurro, 

Logothetis, & Panzeri, 2009; Lopour, Tavassoli, Fried, & Ringach, 2013; 

Panzeri, Petersen, Schultz, Lebedev, & Diamond, 2001; Watrous, Fell, 

Ekstrom, & Axmacher, 2015). It seems evident from these data that 

indeed different representations fire synchronously at one specific phase. 

On the one hand, this coding scheme binds the different features that the 

neurons are coding for (Crick & Koch, 1998; Engel & Singer, 2001; Fries, 
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2005; Singer & Gray, 1995). On the other hand, it provides a clear 

separation between different representations and this separation should 

improve the memory for these representations (Fell & Axmacher, 2011; 

Lisman, 2005; O’Keefe and Recce, 1993; Singer, 1999; Watrous et al., 

2015).  

The separation of representations by phase is very attractive. 

However, up to date it is not clear how specific neuronal populations start 

preferring one specific phase over another. Most accounts state that the 

changing excitability during an oscillatory period is the driving force for 

any phase influence on perception or cognition (Buzsáki & Draguhn, 

2004; Giraud & Poeppel, 2012; Jensen, Gips, Bergmann, & Bonnefond, 

2014; Lisman & Jensen, 2013; Schroeder & Lakatos, 2009). For example, it 

has been proposed that attention mechanisms reset the phase of the 

oscillation to be most excitable at the time point that stimuli are expected 

(Schroeder & Lakatos, 2009); as is supported by part I of this thesis. 

However, coding information is very different from this type of temporal 

attention. To incorporate excitability in the coding of information, Jensen 

et al. (2014) proposed that more salient input is processed earlier on the 

duty cycle of the oscillation as they can still reach an action potential 

even though the potential is further from threshold. This mechanism 

provides an intuitive manner by which different representations are 

ordered on the oscillatory period. This mechanism can also explain how 

sequential locations are ordered: the first upcoming location will be at the 

least excitable point as it is the most salient representation. However, it 

would predict that dependent on the saliency of the external stimuli, the 

associated phase would change. Consequently, the coding of specific 

representations on specific phases is not possible in this type of coding 

scheme. 

Excitability might be an intuitive way to code information, but the 

reported effects of preferred oscillatory phase for different syllables seems 

in contrast with this notion (chapter 7 and 8). There is no reason to 

believe that one syllable should be preferentially processed at the more 

excitable part of the cycle compared to another syllable. Moreover, we 

did not find a clear consistency in the phases coding the individual 

syllables over participants, suggesting that there is not one specific phase 

that codes for one syllable. This effect might be partly driven by variances 

in brain anatomy of the participants: different anatomies could shift the 
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phase as measured with EEG compared to the phase measured at the 

source of the oscillation. Nevertheless, it is striking that the phase 

difference between /da/ and /ga/ matches the exact temporal difference in 

visual-to-auditory delays found in natural speech between these syllables. 

The presence of a clear difference implies that at least one syllable 

representation is not preferentially processed at the most excitable phase 

of the oscillation. Our results instead suggest another way in which 

specific representations start preferring a specific phase: it is a 

consequence of the temporal associations that are present in the 

environment. As visual mouth movements are presented oscillatory 

patterns in auditory regions reset (Perrodin, Kayser, Logothetis, & 

Petkov, 2015). Dependent on the specific temporal delay to the auditory 

speech sound that is unique for each syllable, syllables are presented at a 

specific phase. This consistent sequence of events leads to the association 

of specific syllables to specific phases. In this scheme the phase of syllable 

coding is a consequence of the temporal association between stimulus 

pairs and becomes an integral part of the representation. This would 

suggest that it is not excitability, but temporal relationships in the 

environment that guide at which phase neurons start preferentially firing 

(also see Kösem, Gramfort, & van Wassenhove, 2014).  

There is an increasing amount of data showing that there might be 

a temporal phase code by which representations are stored (Fell & 

Axmacher, 2011; Lisman & Jensen, 2013). Part II of this thesis suggests 

that this phase code might consist of the wiring of temporal associations 

via statistical learning. This coding provides a unique and natural way to 

categorize information, thereby optimizing perceptual processes. In the 

future experiments directly testing the learning phase of temporal 

associations need to be conducted to investigate the evolvement of the 

coding of these associations. These experiments could account for part of 

the phase coding effects found in the literature (Kayser et al., 2009; 

Lopour et al., 2013; O'Keefe, & Recce, 1993; Watrous et al., 2015) and 

would explain how temporal information required for speech perception 

is stored (Giraud & Poeppel, 2012; Peelle & Davis, 2012).   
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Concluding remarks 

Temporal information is omnipresent in our environment, but as we use 

this information implicitly it is hard to imagine the influence that this 

information has on our perception and thereby behavior. In the current 

thesis we show that the use of temporal information cannot be 

underestimated. Ultimately, perceiving the environment around us 

requires the attentiveness to the changes in our environment (James, 

1886; Myers, 1971). Stationarity does not convey new information, but 

instead it is the temporal dynamics in the environment to which any 

living creature has to learn to adapt and usefully interact.     

  

  



Summary and Discussion 

225 

 

References 

Siegel, M., Buschman, T. J., & Miller, E. K. (2015). Cortical information flow during 

flexible sensorimotor decisions. Science, 348(6241), 1352-1355. 

Bernstein, N. (1967). The Coordination and Regulation of Movement. London: 

Pergamon Press. 

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. 

Science, 304(5679), 1926-1929. 

Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A., & Ghazanfar, A. A. 

(2009). The natural statistics of audiovisual speech. PLoS computational biology, 
5(7), e1000436. 

Correa, A., Lupiáñez, J., Milliken, B., & Tudela, P. (2004). Endogenous temporal 

orienting of attention in detection and discrimination tasks. Attention, 
Perception, & Psychophysics, 66(2), 264-278. 

Coull, J., Frith, C., Büchel, C., & Nobre, A. (2000). Orienting attention in time: 

behavioural and neuroanatomical distinction between exogenous and 

endogenous shifts. Neuropsychologia, 38(6), 808-819. 

Coull, J., & Nobre, A. C. (1998). Where and when to pay attention: the neural 

systems for directing attention to spatial locations and to time intervals as 

revealed by both PET and fMRI. The Journal of Neuroscience, 18(18), 7426-

7435. 

Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal 

expectation enhances contrast sensitivity by phase entrainment of low-

frequency oscillations in visual cortex. The Journal of Neuroscience, 33(9), 

4002-4010. 

Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8(2), 

97-107. 

Eisler, H. (1976). Experiments on subjective duration 1868-1975: A collection of 

power function exponents. Psychological Bulletin, 83(6), 1154. 

Elliott, M. T., Wing, A. M., & Welchman, A. E. (2014). Moving in time: Bayesian 

causal inference explains movement coordination to auditory beats. Proceedings 
of the Royal Society of London B: Biological Sciences, 281(1786), 20140751. 

Ellis, R. J., & Jones, M. R. (2010). Rhythmic context modulates foreperiod effects. 

Attention, Perception, & Psychophysics, 72(8), 2274-2288. 

Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of 

sensory awareness. Trends in Cognitive Sciences, 5(1), 16-25. 

Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. 

Trends in Cognitive Sciences, 8(4), 162-169. 

Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory 

processes. Nature Reviews Neuroscience, 12(2), 105-118. 



Chapter 9 

226 

 

Fetsch, C. R., DeAngelis, G. C., & Angelaki, D. E. (2013). Bridging the gap between 

theories of sensory cue integration and the physiology of multisensory neurons. 

Nature Reviews Neuroscience, 14(6), 429-442. 

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication 

through neuronal coherence. Trends in cognitive sciences, 9(10), 474-480. 

Friston, K. (2011). Prediction, perception and agency. International Journal of 
Psychophysiology, 83(2), 248-252. 

Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: 

emerging computational principles and operations. Nature Neuroscience, 15(4), 

511-517. 

James, W. (1886). The perception of time. The Journal of speculative philosophy, 
374-407. 

Jensen, O., Gips, B., Bergmann, T. O., & Bonnefond, M. (2014). Temporal coding 

organized by coupled alpha and gamma oscillations prioritize visual processing. 

Trends in Neurosciences, 37(7), 357-369. 

Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of 

stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313-

319. 

Kayser, C., Montemurro, M. A., Logothetis, N. K., & Panzeri, S. (2009). Spike-phase 

coding boosts and stabilizes information carried by spatial and temporal spike 

patterns. Neuron, 61(4), 597-608. 

Kim, B., & Basso, M. A. (2010). A probabilistic strategy for understanding action 

selection. The Journal of Neuroscience, 30(6), 2340-2355. 

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in 

neural coding and computation. Trends in Neurosciences, 27(12), 712-719. 

Kösem, A., Gramfort, A., & van Wassenhove, V. (2014). Encoding of event timing in 

the phase of neural oscillations. Neuroimage, 92, 274-284. 

Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. 

(2005). An oscillatory hierarchy controlling neuronal excitability and stimulus 

processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904-1911. 

Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). 

Entrainment of neuronal oscillations as a mechanism of attentional selection. 

Science, 320(5872), 110-113. 

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). 

Perception of the speech code. Psychological Review, 74(6), 431. 

Lisman, J. E. (2005). The theta/gamma discrete phase code occuring during the 

hippocampal phase precession may be a more general brain coding scheme. 

Hippocampus, 15(7), 913-922. 

Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 

1002-1016. 

Lopour, B. A., Tavassoli, A., Fried, I., & Ringach, D. L. (2013). Coding of Information 

in the phase of local field potentials within human medial temporal lobe. 

Neuron, 79(3), 594-606. 



Summary and Discussion 

227 

 

Los, S. A., & Van der Burg, E. (2013). Sound speeds vision through preparation, not 

integration. Journal of Experimental Psychology: Human Perception and 
Performance, 39(6), 1612. 

Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J., Courchesne, E., & 

Sejnowski, T. (2002). Dynamic brain sources of visual evoked responses. 

Science, 295(5555), 690-694. 

Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A. (2010). 

Rescuing stimuli from invisibility: Inducing a momentary release from visual 

masking with pre-target entrainment. Cognition, 115(1), 186-191. 

Montagnini, A., Mamassian, P., Perrinet, L., Castet, E., & Masson, G. S. (2007). 

Bayesian modeling of dynamic motion integration. Journal of Physiology-Paris, 
101(1), 64-77. 

Myers, G. E. (1971). William James on time perception. Philosophy of Science, 353-

360. 

Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological 
Bulletin, 89(1), 133. 

Nobre, A., Correa, A., & Coull, J. (2007). The hazards of time. Current Opinion in 
Neurobiology, 17(4), 465-470. 

O'Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place 

units and the EEG theta rhythm. Hippocampus, 3(3), 317-330. 

Panzeri, S., Petersen, R. S., Schultz, S. R., Lebedev, M., & Diamond, M. E. (2001). The 

role of spike timing in the coding of stimulus location in rat somatosensory 

cortex. Neuron, 29(3), 769-777. 

Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through 

to comprehension. Frontiers in Psychology, 3. 
Perrodin, C., Kayser, C., Logothetis, N. K., & Petkov, C. I. (2015). Natural 

asynchronies in audiovisual communication signals regulate neuronal 

multisensory interactions in voice-sensitive cortex. Proceedings of the National 
Academy of Sciences, 112(1), 273-278. 

Poeppel, D. (2003). The analysis of speech in different temporal integration windows: 

cerebral lateralization as ‘asymmetric sampling in time’. Speech 
Communication, 41(1), 245-255. 

Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal 

expectation improves the quality of sensory information. The Journal of 
Neuroscience, 32(24), 8424-8428. 

Rosen, S. (1992). Temporal information in speech: acoustic, auditory and linguistic 

aspects. Philosophical Transactions of the Royal Society of London. Series B: 
Biological Sciences, 336(1278), 367-373. 

Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as 

instruments of sensory selection. Trends in Neurosciences, 32(1), 9-18. 

Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S., & Puce, A. (2008). Neuronal 

oscillations and visual amplification of speech. Trends in Cognitive Sciences, 
12(3), 106-113. 



Chapter 9 

228 

 

Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H., & Lakatos, P. (2010). 

Dynamics of active sensing and perceptual selection. Current Opinion in 
Neurobiology, 20(2), 172-176. 

Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal 

correlation hypothesis. Annual review of neuroscience, 18(1), 555-586. 

Singer, W. (1999). Time as coding space? Current opinion in neurobiology, 9(2), 189-

194. 

Stefanics, G., Hangya, B., HernÃ¡di, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). 

Phase entrainment of human delta oscillations can mediate the effects of 

expectation on reaction speed. The Journal of Neuroscience, 30(41), 13578-

13585. 

Watrous, A. J., Fell, J., Ekstrom, A. D., & Axmacher, N. (2015). More than spikes: 

common oscillatory mechanisms for content specific neural representations 

during perception and memory. Current Opinion in Neurobiology, 31, 33-39. 

Wilsch, A., Henry, M. J., Herrmann, B., Maess, B., & Obleser, J. (2015). Slow‐delta 

phase concentration marks improved temporal expectations based on the 

passage of time. Psychophysiology, 52(7), 910-918. 

Zion Golumbic, E. M., Poeppel, D., & Schroeder, C. E. (2012). Temporal context in 

speech processing and attentional stream selection: A behavioral and neural 

perspective. Brain and Language, 122(3), 151-161. 



 

 

 

  



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

VALORIZATION ADDENDUM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Valorization Addendum 

232 

 

Valorization: “the process of creating value from 
knowledge, by making knowledge suitable and/or 
available for social (and/or economic) use and by 
making knowledge suitable for translation into 
competitive products, services, processes and new 
commercial activities” (Maastricht promotie 

regelement, 2013).  

 

 

Valorization of this thesis 

In this part of the thesis I am supposed to write about the value of the 

knowledge that I created with my research. Since 2014 this is an 

obligatory part of all theses that are produced at Maastricht University. At 

a first sight it sounds fair to make your research valuable by “making 
knowledge suitable and/or available for social use” as tax payers are 

investing in us. However, what does this exactly mean? 

I would interpret the definition “making knowledge suitable 
and/or available for social use” as implying that everybody in society can 

access the knowledge I created (“availability”). This thesis will be publicly 

available at the website of Maastricht University from the day of my 

defense on. Moreover, anybody can get a copy if they approach me. So 

the availability of my research is confirmed. Valorization seems to be an 

easy task. But I am forgetting one word here, the word “suitable”. This 

would mean that the knowledge I am creating should be at a level at 

which society can understand it. This is going to be trickier as this 

depends on people’s background knowledge. I operationalize “suitable” 

when people outside my research field can understand it. I guess this 

would require that I would rewrite my empirical chapters in short 

understandable language (I also refer to lolmythesis.com for others trying 

this). Fair enough: 

 

Chapter 2:  Detecting soft sounds is easier when you know when a 

sound is arriving.  

Chapter 3:  Brain waves track sounds when they are presented 

rhythmically.  

Chapter 4:  Brain waves only track sounds when you know that a 

sound will occur in the first place. 
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Chapter 5:  Brain waves are slower when you are unsure about the 

exact point in time when the sound will occur. 

Chapter 6:  People use timing information created by mouth 

movements in syllables to identify them. 

Chapter 7:  Different syllables are represented at different time points 

on a brain wave. 

Chapter 8:  Some regions in the brain respond to sounds. The same 

regions respond different when an identical sound is 

presented to different time points on a brain wave. 

 

Although this is a very brief summary, it is in more or less simple terms 

what all the chapters were about (“suitably available” knowledge). 

Anybody can use this for any social and/or economic purpose. If more 

detailed information is required I would be happy to communicate this 

further. It seems that I am done with this chapter. Let’s double-check 

with the guidelines in the regulations whether I fulfilled the 

requirements:  

 
“Five questions are provided that can guide candidates in writing this 
addendum  

1) (Relevance) What is the social (and/or economic) relevance of 
your research results (i.e. in addition to the scientific relevance)? 

2) (Target groups) To whom, in addition to the academic 
community, are your research results of interest and why? 

3) (Activities)/Products) Into which concrete products, services, 
processes, activities or commercial activities will your results be 
translated and shaped? 

4) (Innovation) To what degree can your results be called innovative 
in respect to the existing range of products, services, processes, 
activities and commercial activities? 

5) (Schedule & Implementation) How will this/these plan(s) for 
valorization be shaped? What is the schedule, are there risks 
involved, what market opportunities are there and what are the 
costs involved?” 

 

This seems relatively far from the core definition of valorization as 

defined in the regulations, in my opinion. While in the original definition 
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I am required to make my knowledge available at a suitable level for 

society, these guidelines require me to also decide on how this knowledge 

is utilized by deciding the relevance, possible products, and even when 

this is all going to be made. I thought that  as a scientist I was required to 

create knowledge. Just like an artist is creating art, a scientist creates 

knowledge (science literally means knowledge). Other professions and 

society should profit from this knowledge, I fully agree with this. But 

according to the operationalization of valorization above I should not 

only create the knowledge, but also implement it in society. Moreover, it 

seems that I should even let my research be guided by this, because how 

could I answer these questions if my research is not directly relevant for 

society in the first place? This would mean a goodbye for the pure 

scientist, the creator of knowledge and a hello to the periodontist, the 

creator of relevance.  

 

Valorisatie van onderzoek als taak van de universiteiten?  

More than ten years the government has been promoting valorization in 

the university. It first affected the universities in 2005 when the letter 

“valorisatie van onderzoek als taak van de universiteiten” appeared. In 

this letter it is explained that valorization is one of the core tasks of 

university, next to creating education and doing scientific research. It is a 

basic statement that universities should think about what type of research 

they are doing and how this information can be conveyed to the society 

(which in principle I do not oppose to). But let me just elaborate on the 

specification of this letter since this letter is one of the starting forces why 

I am writing this section in my thesis in the first place. The letter starts 

out as follows (freely translated): there is no discussion that a significant 

part of academic research should not be aimed for any direct or indirect 

societal use, but to maintain and contribute to worldwide scientific 

developments. The agenda is not decided by any societal question, but by 

the research possibilities. (“Buiten discussie staat dat een belangrijk deel 
van het universitaire onderzoek niet primair gericht moet zijn op direct 
of indirect maatschappelijk nut, maar op het bijhouden van en bijdragen 
aan wereldwijde wetenschappelijke ontwikkelingen. De agenda wordt 
echter niet bepaald door de maatschappelijke vraag, maar door de 
onderzoeksmogelijkheden”). This type of research was defined as “offer 

based”: research done to create scientific developments 
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(“aanbodgedreven: het wordt gedaan omdat er snelle wetenschappelijke 
ontwikkelingen zijn of te verwachten zijn”). Next to this offer based 

research, universities were required to provide “question based” research: 

research aimed for answering societal questions (“het geven van 
antwoord op maatschappelijke vragen. Het kan zowel gaan om vragen 
van bedrijven als van de overheid en van niet-commerciële 
maatschappelijke organisaties”). Let us ignore the poorly chosen 

definition as all (proper) research is based on a research question and 

agree that it is valid to have research performed for scientific 

developments as well as societal relevant questions and that a balance has 

to be found. Here comes the problem of this letter that universities face: 

universities are required to prioritize within the offer based research, 

research that has the possibility of creating a synergy between business 

and societal parties, and the subsequent possibilities for economical and 

societal valorization, and responsibly report the results of this 

“prioritization”. (“Wij verzoeken de universiteiten en 
onderzoekinstellingen dan ook om in hun strategische plannen aandacht 
te besteden aan de mogelijkheden om bij de prioriteitsstelling binnen het 
aanbodgedreven onderzoek de mogelijkheden tot het scheppen van 
synergie met het bedrijfsleven en maatschappelijke partijen, en de daaruit 
voortvloeiende mogelijkheden tot economische en maatschappelijke 
valorisatie, expliciet mee te wegen en om in hun verantwoording te 
rapporteren wat daarvan het resultaat is geweest.”). I freely interpreted 

this as the proposal that although offer based research should not be 

guided by societal questions, universities should fund offer based research 

that anyway answers these societal questions.  

How did the minister think about the practicalities of this? We, 

scientists come up with research questions in our “offer based”, non-

societal relevant manner and offer this research to the world. The 

universities just fund whatever by chance also seems to answer a societal 

question. And the scientific research questions are magically 

uninfluenced by this “prioritization” scheme of the university. Let us be 

honest here, if universities truly implement this suggestion funding only 

applies to scientists with research questions that have societal relevance. 

Thus, no more offer based research, but only societal relevant research. 

Is it a problem if we lose any fundamental research not aimed to 

answer societal questions? Yes, definitely. Many great inventions 
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appeared without the aim of any societal benefit (penicillin, electricity 

etc.), and even the minister seems to agree with this in her letter. I will 

not go into detail here why basic research not guided by societal 

questions is relevant as many before me provide convincing answers to 

this. I freely refer to: 

- Curiosity creates cures: The value and impact of basic research, 

National Institute of General Medical Sciences, National Institutes 

of Health. 

- ICSU position statement: The value of basic scientific research", 

International Council for Science, December 2004. 

- Liz Karagianis - MIT Spectrum (21 April 2015). "How discovery 

science is reinventing the world - MIT News". MIT News. 

- Karen Kashmanian Oates – The Importance of Basic Research – 

Huffington Post 

 

If you are not convinced of the role of basic research I would like to see 

you try to solve cardiac arrest without knowing how the heart works in 

the first place. The point that is important here is that there is no logical 

way to infer which knowledge will be relevant in the future and which 

knowledge will not be relevant. At what level of processing should we 

know all details of the heart to solve all heart diseases? Is the level of 

arteries enough, or should we go for the level of genes, or single atoms? 

Who knows what level will be sufficient? (see also a great and 

entertaining discussion at the cognitive neuroscience meeting 2016 about 

a related topic: https://www.youtube.com/watch?v=uSbNRyY2QH0). Is 

the researcher investigating the blood flow in the left anterior descending 

artery required to develop the cure for cardiac arrest? I say no, this person 

is merely obliged to share his knowledge within the community so that 

we know how this detailed piece of knowledge could aid in figuring out 

heart functioning as a whole.  

 

Reflection: Knowledge has to circulate 

In 2009 another beautiful document appeared from the government (Van 

voornemens naar voorsprong: Kennis moet circuleren). They created a 

vision what valorization would bring us in 2016. The following picture 

provided their vision. I leave this up for your own interpretation. 

  

https://www.youtube.com/watch?v=uSbNRyY2QH0
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Now, we are in 2016. So this is the perfect time to reflect on valorization 

as it is implemented. What has valorization in universities brought? Of 

course not much that this picture provides (although I would have liked 

to have a flying brain), but I guess that could have been expected in 2009. 

Valorization as it is implemented now forces PhD students to think about 

how their research is relevant for society in a five-to-eight page 

document at the end of their thesis. It forces bachelor students just 

learning about research for the first time to report on the relevance of 

their intended research. So already during their studies they are drilled 

that research is about societal questions. It requires every grant 

application to contain speculations and operationalizations of the possible 

impact of our research even if we are not qualified at all to actually 

implement the possible societal relevant output. Finally, less and less 

funding is available for fundamental research.  

 Are there only bad consequences of valorization? No, I think 

there are some clear positive changes that we should focus on. I think the 

main positive sign that is happening is focusing on the “availability” of 

knowledge. This is in the end the core of valorization for fundamental 

research to me. The Dutch government has been pushing publishing 
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agencies to publish research “open access”. This means that anybody can 

access your publication, instead of letting universities pay for specific 

journals, by which the normal public does not have any access. Moreover, 

many journals have been pushing you to rephrase your research findings 

in layman’s language. Although I would prefer that they call these 

sections “Layman’s message” instead of “significance”, they still provide a 

means to have a better understanding of the main message of a paper. 

These advances make it possible for societal or business partners to use 

the created knowledge. Knowledge exchange might be one of the core 

problem is modern-day science. We scientists have specialized knowledge 

about one small fraction of science. The exchange of this knowledge is 

still very difficult. Especially considering that different research fields are 

speaking with their own language. It is necessary to invest in ways to 

improve communication with each other. 

I fully agree that knowledge is there to be exchanged, indeed to 

circulate. However, let the different parties do what they are experts in. 

Basic scientists to create knowledge; applied scientists, businessmen and 

societal institutions to use this knowledge and implement it for products, 

programs etc. (also read about why many researchers unconsciously are 

busy with valorization in the first place 

https://pure.knaw.nl/portal/files/1514072/Hoe_onderzoekers_werkelijk_v

aloriseren.pdf). Let us focus on the exchange between these different 

groups instead of forcing basic scientists to perform all these steps. Create 

transparency and a platform to exchange knowledge at a suitable level 

such that qualified people get the relevant knowledge (the suitability 

level would vary according to the background knowledge of the 

exchanging parties. The one provided in this section would of course not 

suit many applications much more than my mom understanding a bit 

better what I do). Leave space (and funding) for basic research that has no 

direct societal influence and leave the research questions to the scientists 

and the implementation of knowledge to the implementers (which of 

course can include qualified scientists). Maybe then we can create our 

flying brain in 2025.   

https://pure.knaw.nl/portal/files/1514072/Hoe_onderzoekers_werkelijk_valoriseren.pdf
https://pure.knaw.nl/portal/files/1514072/Hoe_onderzoekers_werkelijk_valoriseren.pdf
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