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Abstract

First, we investigate the minimal univariate representation of some well known n�dimensional conditional
volatility models. Simple systems (e.g. a VEC(0,1)) for the joint behaviour of several variables imply

individual processes with a lot of persistence in the form of long order lags. We show that in the presence

of factors, parsimonious univariate representations (e.g. GARCH(1,1)) can result from large multivariate

models generating the conditional variances and conditional correlations.

Second, we propose an approach to use empirical results for these univariate processes in the analysis of

the underlying multivariate, possibly high-dimensional, GARCH process. We use reduced rank procedures

to discriminate between a system with seemingly unrelated assets (e.g. a diagonal model) from a set of

series with few common sources of volatility. Among the analyzed procedures, the cannonical correlation test

statistics on logs of squared returns proposed by Engle and Marcucci (2006) has quite good properties even

in the case of falsely omitted cross-moments. Out of 30 returns from the NYSE, six returns are shown to

display a parsimonious GARCH(1,1) model for their conditional variance. We do not reject the hypothesis

that a single common volatility factor drives these six series.

JEL: C10, C32

Keywords: Co-movements, factor models, ARMA, GARCH, VEC, Final equations, Long memory.

�Corresponding author: Franz Palm, Department of Quantitative Economics, Maastricht University, P.O.Box
616, 6200 MD Maastricht, The Netherlands. E-mail: f.palm@maastrichtuniversity.nl.

1



1 Motivation

Most �nancial econometrics textbooks start with univariate models to explain the presence of a time-varying

conditional volatility pattern in asset returns. Then the properties of di¤erent models (e.g. GARCH, EGARCH,

realized volatility, stochastic volatility,...) are discussed together with their most important features and their

relation with stylized facts observed in �nancial data. It is also explained that to correctly account for the link

between several series (e.g. contagion e¤ects) and to study time-varying conditional correlations, a multivariate

framework should be used. Indeed, understanding and predicting the dependence in the second order moments

of asset returns is important for many issues in �nancial econometrics and management.

Unrestricted multivariate GARCH models often su¤er from the curse of dimensionality. An n-dimensional

unrestricted VEC(0,q) already implies ((n2 + n)=2)2q unknown coe¢ cients plus n intercepts. As for reason of

diversi�cation most portfolios involve a large number of assets, the need for more parsimonious forms is obvious.

Let us just name the diagonal model, the constant conditional correlation (CCC), the dynamic conditional

correlation (DCC), the dynamic equicorrelation (DECO, see Engle and Kelly, 2008), the approach by Baba,

Engle, Kraft and Kroner (1999, hereafter BEKK), the orthogonal GARCH or factor GARCH models as examples

proposed in the literature to restrict the multivariate setting towards a manageable size as well as to impose the

positive de�nitiveness of the covariance matrix (see inter alia the surveys by Bauwens, Laurent and Rombouts

(2006) or Silvennoinen. and Terasvirta (2009)). To make their estimation feasible on large portfolios some of

these models impose very strong restrictions on the dynamics of the covariance or correlation. One simple way

to relax these constraints is to assume a block-triangular structure as Engle and Marcucci (2006) implicitly do

to obtain the pure variance model or to assume a block-diagonal structure where the dynamics is constrained to

be equal only within groups of variables (see for instance the BLOCK-DCC and BLOCK-DECO of respectively

Billio, Caporin and Gobbo, 2003 and Engle and Kelly, 2008).

Another route is taken in this paper. Indeed we revert to some extent the problem and we focus our analysis

on a group of assets that must be jointly analyzed. To do so, we compute the �nal equation representation of

multivariate GARCH models using a framework similar to that in Zellner and Palm (see inter alia 1974, 1975,

2004) for the conditional mean. This framework allows us to derive the marginal GARCH representation for the

conditional variances and conditional covariances of the multivariate GARCH model (e.g. Nijman and Sentana,

1996). However this implied univariate representation is often far from being parsimonious. There consequently

exists a paradox between theoretical marginal volatility models derived from a multivariate model and empirical

�ndings, a paradoxical issue similar to the one observed for the VAR(p) and the marginal implied ARMA models

(see Cubadda, Hecq and Palm, 2008, 2009).

Indeed in empirical work, estimated univariate GARCH models are, too a large extent, very parsimonious.

The GARCH(1; 1) speci�cation for instance is able to capture the time varying volatility in second moments of

many symmetric asset returns. Consequently we look at some multivariate representations that could at least

be compatible with the univariate structure obtained in empirical work (like a GARCH(1; 1)). We show that a

familiar multivariate model such as the �unrestricted�BEKK, generally does not imply low order dynamics for

the volatility of individual asset returns. Therefore, we extend the analysis that has been developed by Cubadda
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et al. (2009) for vector autoregressive models to factor representations in the second moments. These are the

factor GARCH speci�cation of Engle at al. (1990) and the Engle and Marcucci (2006) factor pure variance

model. These two speci�cations allow to obtain such parsimonious univariate representations for potentially

large multivariate systems. This also implies that obtaining a very parsimonious univariate representation of

individual returns might be an indication of co-movements in the volatility while on the opposite, �nding less

parsimonious univariate schemes is interpreted as a sign of absence of co-movements.

These common volatility systems are not the only ones yielding parsimonious GARCH orders. As illustrated

in Section 2, a low order diagonal model which implies no contagion e¤ects leads to similar low order univariate

GARCH models. This is also the case for the DCC which imposes a block-diagonal structure on its VEC

representation. A related paper to ours is Nijman and Sentana (1996). Indeed these authors also study the

marginal models derived from a multivariate GARCH process with a particular focus on the aggregation of

individual series. They also sketch that the presence of a factor model in volatility might be important in the

marginalization of multivariate systems but without giving the orders of the univariate representations nor the

proofs. These are the points we look at more closely in Sections 2 and 3.

The objective of this paper is twofold. First, we propose in Section 3 some multivariate models accounting

for co-movements and show that the implied marginal volatility processes are of low order. In particular we are

able to discriminate between a diagonal model and a general multivariate framework, with correlated conditional

variances and contagion e¤ects, driven by a small number of common factors in volatility. Second, we present

in Section 4 tests for the detection of co-movements in volatility and study their small sample properties. It is

shown that the approach proposed by Engle and Marcucci (2006) for the logarithms of squared returns performs

quite well although it omits the cross-moments. In Section 5 we apply our �ndings to a set of thirty �nancial

assets. We determine their univariate volatility processes and group these processes into parsimonious and non

parsimonious ones. Then we �nd evidence for the presence of co-movements between the six series with low

order univariate volatility schemes. The �nal section concludes.

2 The �nal equation representation of multivariate GARCH models

To state the notation for univariate processes, "1t is such that "1t = u1t
p
h11t, where u1t has any centered

parametric distribution with unitary variance and the conditional variance follows a GARCH(p; q) with h11t =

!1 +
Pp

j=1 �1;jh11t�j +
Pq

i=1 �1;i"
2
1t�i: Consequently here, p refers to the GARCH terms and q is the order of

the moving average ARCH term. The error in the squared returns is obtained as usual using �1t = "21t � h11t.
In a GARCH(1; 2) that we take on purpose to emphasize di¤erent orders p and q, substituting for the variances

in the variance equation and rearranging terms we can write our model in terms of the squared errors: "21t =

!1 + (�1;1 + �1;1)"
2
1t�1 + �1;2"

2
1t�2 + �1t � �1;1�1t�1 (see inter alia Bollerslev, 1996). Thus, the squared errors

follow a heteroskedastic weak GARCH univariate ARMA(2; 1) process. In general a GARCH(p; q) has got an

ARMA(max(p; q); p) representation for the squared errors. In most of the examples we have considered, we take

q � p:
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For multivariate modeling, we denote "t = H
1=2
t zt; t = 1; : : : ; T; the (n � 1) vector of excess returns1 of

�nancial assets observed at the time period t: T is the number of observations and zt is assumed to be an i.i.d.

random variable with mean 0 and variance In such that Ht is the conditional covariance matrix of the n assets.

To simplify the presentation, let us use a bivariate GARCH in its extensive VEC(0; 1) representation

h11t = !1 + �11"
2
1t�1 + �12"

2
2t�1 + �13"1t�1"2t�1

h12t = !2 + �21"
2
1t�1 + �22"

2
2t�1 + �23"1t�1"2t�1 (1)

h22t = !3 + �31"
2
1t�1 + �32"

2
2t�1 + �33"1t�1"2t�1;

where usual non-negativity and stationarity restrictions on the parameters are assumed to be met. hiit is the

conditional variance of asset i = 1; 2 and hijt stands for the conditional covariance for i 6= j: Let us write the

system (1) in terms of observed squared returns and covariances0B@ "21t

"1t"2t

"22t

1CA =

0B@ !1

!2

!3

1CA+
0B@ �11 �12 �13

�21 �22 �23

�31 �32 �33

1CA
0B@ "21t�1

"1t�1"2t�1

"22t�1

1CA+
0B@ �1t

�2t

�3t

1CA ; (2)

with �1t = "21t � h11t; �2t = "1t"1t � h12t; �3t = "22t � h22t; or simply for �t = f"21t; "1t"2t; "22tg0

�(L)�t = ! + vt; (3)

with the lag operator L such that Lzt = zt�1: �(L) = (I � �L) is a matrix polynomial of degree one in this
example, where � is the matrix of coe¢ cients. Note that (3) has the Wold representation �t = ��1(L)! +

��1(L)vt of squared disturbances and cross products with vt being a martingale di¤erence stationary process

as E(vtj
t�1) = 0; E(vtv
0
t�ij
t�i) = 0; i > 0 and 
t�i being the past of vt up to and including period t � i:

The vector vt is therefore serially uncorrelated. The dimension of vectors �t; ! and vt is N = (n2 + n)=2 and

consequently there are N2q unknown parameters in �(L) for a VEC(0; q):

Let us now premultiply both sides of (3) by the adjoint of the matrix polynomial �(L) to obtain

Adjf�(L)g�(L)�t = Adjf�(L)g! +Adjf�(L)g�t; (4)

or2

j�(L)j�t = !� +Adjf�(L)g�t (5)

= !� + �(L)�t;

1By excess return we mean that the conditional mean (a constant or an ARMA model for instance) has been substracted from

the returns rt, say "t = rt � E(rtj
t�1); where 
t�1 denotes the information set up to and including t � 1. So generally, it is a
martingale di¤erence sequence, not an i.i.d. random variable.

2Alternatively this can be shown from �(L)�t = ! + vt that leads to �t = �(L)�1! + �(L)�1vt: Using the de�nition �(L)�1 =

Adjf�(L)g= det[�(L)] we end up with the same result. However strictly speaking this necessitates conditions on the invertibility of
�(L):
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where j�(L)j = detf�(L)g; i.e. the determinant of the matrix polynomial �(L); is a scalar polynomial in L;
Adjf�(L)g denotes the adjoint (or the adjugate) of �(L) and !� = Adjf�(L)g!: In a VEC(0; q); each component
of the vector �t has a weak ARMA(Nq; (N�1)q) or Wold representation that can be written as follows for instance
for the �rst element "21t

j�(L)j"21t = !�1 + �
0
1(L)�t; (6)

= !�1 + �1(L)u1t;

where �01(L) is the �rst row of �(L) and u1t = "
2
1t � h11t is a white noise with h11t being the linear projection

of "21t on the space generated by the past of "
2
1t: The univariate weak GARCH representation of h11t is obtained

by substituting "21t � h11t for u1t:
Proposition 1 (see also Nijman and Sentana, 1996) summarizes the main features of the �nal equation

representation (5).

Proposition 1 In a n�dimensional VEC(0; q), each univariate component is weakly GARCH with a univariate
ARMA(Nq; (N�1)q) representation of the squared returns and cross returns with the same value of autoregressive
parameters, N = (n2 + n)=2. Consequently each component follows a weak GARCH((N � 1)q,Nq): The orders
should be taken as upperbounds for the orders of the univariate ARMA and GARCH models.

Proof. The proof is obvious from the de�nition of the determinant and the adjoint. This well known result

is simply due to the fact that in the VEC(0; q) for instance j�(L)j contains by construction up to LNq terms
and the adjoint matrix is a collection of f(N � 1)� (N � 1)g cofactor matrices, each of the matrix elements can
contain the terms 1; L; :::; Lq: As �t is a vector martingale di¤erence sequence it is serially uncorrelated and each

element of Adjf�(L)g�t can be represented as a univariate moving average and therefore it is a weak GARCH
process.

Proposition 2 Proposition 1 generalizes in a straightforward manner to show that for a n�dimensional VEC(p; q),
each univariate component (squared and cross returns) has a univariate ARMA(N maxfp; qg; (N�1)maxfp; qg+
p) representation at most with the same value of autoregressive parameters. Consequently each component follows

a weak GARCH((N � 1)maxfp; qg+ p,N maxfp; qg) process at most with N = (n2 + n)=2:

Proof. It is similar to that of Proposition 1.
The above outcomes, that apply the usual results of the VAR(p) and VARMA(p; q) are generally not in

agreement with empirical �ndings suggesting low order univariate GARCH schemes. Indeed, for n = 20 assets,

a VEC(0; 2) implies individual ARMA(420; 418) models in squared returns and cross-products and individual

GARCH(418; 420) processes. Obviously these orders should be taken as upperbounds. For instance in the

example with the VEC(0; 1) in (2) for n = 2; the determinant of �(L) is

j�(L)j = (�11�23�32 + �12�21�33 � �12�31�23 � �21�13�32 + �13�22�31 � �11�22�33)L3

+(�11�22 � �12�21 + �11�33 � �13�31 + �22�33 � �23�32)L2

�(�11 + �22 + �33)L+ 1;

5



and the adjoint minus the identity (to save space), i.e. Adjf�(L)g � IN ; is0B@ (�22�33-�23�32)L2-(�33+�22)L (�13�32-�12�33)L2+�12L (�12�23-�13�22)L2+�13L

(�31�23-�21�33)L2+�21L (�11�33-�13�31)L2-(�33+�11)L (�21�13-�11�23)L2+�23L

(�21�32-�22�31)L2+�31L (�12�31-�11�32)L2+�32L (�11�22-�12�21)L2-(�22+�11)L

1CA :
Therefore, each squared excess return and cross-products follows an ARMA(3,2) model at most, implying thus

GARCH(2,3) models for conditional variances and the conditional covariances. However, each element in the

power of L being the sum of the products of coe¢ cients smaller than one and possibly zero (e.g. �11�22�33); a

lower order structure can be identi�ed in small samples. There might also exist coincidental situations (Granger

and Newbold, 1986) in which there exist �quasi�common roots in the determinant and the adjoint (see Nijman

and Sentana, 1996 for an example). A particular case in which there are exact common roots between the implied

AR and MA parts is the diagonal model of Bollerslev (1990) where

(I � �L) =

0B@ 1 0 0

0 1 0

0 0 1

1CA�
0B@ �11 0 0

0 �22 0

0 0 �33

1CAL: (7)

Hence a diagonal multivariate strong GARCH process is identical to a set of strong GARCH univariate processes

with possibly contemporaneous correlated disturbances.3 Remark that we only work on marginalization of

processes and we do not extend these results to the aggregation as in Nijman and Sentana (1996).

Another popular multivariate GARCH model is the BEKK(p; q) of Baba et al. (1989). In this speci�cation

there are no common roots between the determinant and the adjoint and consequently the general results of

Proposition 1 apply. Indeed, let us take a BEKK(0; 1) representation for two time series

Ht = �
0
0�0 + �

0
1"t�1"

0
t�1�1;

where !i = [�00�0]ii and with the elements of �1 denoted 
ij : In terms of observed squared returns and covariances

using the same manipulation we used before, we obtain

(I � �L) =

0B@ 1 0 0

0 1 0

0 0 1

1CA�
0B@ 
211 2
11
21 
221


11
12 (
21
12 + 
11
22) 
21
22


212 2
12
22 
222

1CAL: (8)

Computing the �nal equations representations under the restrictions (8), it emerges that the determinant and the

adjoint of the matrix polynomial (8) are respectively of lag orders 3 and 2. Consequently this BEKK(0; 1); like the

unrestricted VEC(0,1), generates GARCH(2; 3) univariate processes for the conditional variances and covariances.

No further reduction occurs. General results that have been derived for the multivariate GARCH(p; q) apply

here.
3The conditional orthogonal model further assumes that the cross-product term �22 = 0 (and then !2 = 0):
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3 Factors GARCH models

Simple models (e.g. BEKK) do not imply parsimonious low order univariate GARCH processes. Independence

and non-contagion of the volatility, a feature that seems very unlikely, are able to explain it. Let us now look

at various factor models. Indeed, Cubadda, Hecq and Palm (2008, 2009) have derived the cases under which a

co-movement or factor structure in a VAR is able to explain the parsimony of marginal ARMA models. This

section gives the implications of the presence of a factor structure in second moments for the volatility observed

in �nancial assets. In summary and anticipating the results, it will be shown that the presence of co-movements

in the volatility might explain the gap between the theoretical orders and the empirical �ndings.

Next, we put forward a strategy consisting in using information on individual series and then testing for the

presence of co-movements in order to determine the set of assets that must be jointly modeled.

3.1 The factor GARCH

Let us denote a BEKK(p; q) model with k factors F-BEKK(p; q; k) and in particular a F-BEKK(0; 1; 1) such that

"t = H
1=2
t zt

Ht = �00�0 + 
'
0"t�1"

0

t�1'

0;

where in a bivariate system '0 = ('1 : '2); 

0 = (
1 : 
2) and hence rank('


0) = 1 and where 
0?�
0
0�0 6= 0: We

can write this system using the half vec operator vech such that vech(Ht) = vech(�00�0)+Avech("t�1"
0

t�1) or in

terms of squared errors and cross products vech("t"
0

t) = vech(�
0
0�0)+Avech("t�1"

0

t�1)+vt with the multivariate

martingale di¤erence sequence vt = vech("t"
0

t) � vech(Ht). Note that in the one-factor case, A can also be

obtained using ''0(
0"t�1)2 = 
'0"t�1"
0

t�1'

0: Therefore, the matrix ''0 is of rank one as well as the coe¢ cient

matrix A. Consequently, A can be written in a reduced form with

A =

0B@ 
21'
2
1 2
21'1'2 
21'

2
2


1
2'
2
1 2
1
2'1'2 
1
2'

2
2


22'
2
1 2
22'1'2 
22'

2
2

1CA

=

0BB@
1

2

1

(
2
1
)2

1CCA� 
21'21 2
21'1'2 
21'
2
2

�

such that there exists a cofeature matrix

� =

0BB@
�
2

1

�
22

21

1 0

0 1

1CCA
with �

0
A = 02�3: For the determinant

det(I �AL) = 1� (
1'1 + 
2'2)
2
L
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and the adjoint0B@ �(
22'22 + 2
1'1
2'2)L+ 1 2L
21'1'2 L
21'
2
2

L
1
2'
2
1 �(
21'21 + 
22'22)L+ 1 L
1
2'

2
2

L
22'
2
1 2L
22'1'2 �(
21'21 + 2
2'2
1'1)L+ 1

1CA
it is seen that conditional second moments, squared returns and their cross-products are GARCH(1; 1). These

�ndings generalize as follows:

Proposition 3 In a n�dimensional F-BEKK(0; q; k), each univariate component of the squared returns and
cross-returns has a univariate ARMA(p�; q�) representation with the same value of autoregressive parameters.

The orders of p� and q� are at most (N � (N � k))q = qk and hence do not depend on N . As a special case,

each component of a multivariate F-BEKK(0; 1; 1) follows a weak GARCH(1; 1) whatever the number of assets

jointly considered.

The propositions and the proofs are applications of the results obtained in Cubadda, Hecq and Palm (2009)

for the VAR(p). We only give the proof for the one-factor GARCH(0; q); i.e. the F-BEKK(0; q; 1). In this case

there exists an (N � (N � 1)) full column rank matrix � (with N = n(n+1)
2 ) such that �

0
vech("t"

0

t) = �
0
vt with

�
0
' = 0:

Proof. Let us rewrite the F-BEKK(0; q; 1) as follows

Q(L)xt = et;

where xt =Mvech("t"0t), et =Mvt, Q(L) =M�(L)M
�1, M 0 � [� : �?], �? is the orthogonal complement of �

with span( �?) = span('). Given that xt is a non-singular linear transformation of vech("t"0t), the maximum

AR and MA orders of the univariate representation of the elements of vech("t"0t) must be the same as those of

elements of xt. Since M�1 = [� : �?], where � = �(�
0�)�1, and �? = �?(�

0
?�?)

�1, we have

Q(L) =

"
I(N�1) 0(N�1)�1

�0?�(L)� �0?�(L)�?

#
;

from which it easily follows that det[Q(L)] = det[�0?�(L)�?] is a polynomial of order q. Hence, the univariate

AR order of each element of vech("t"0t) are at most q. To prove the order of the MA component, let P (L)

denotes a submatrix of Q(L) that is formed by deleting one of the �rst (N �1) rows and one of the �rst (N �1)
columns of Q(L). We can partition P (L) as follows

P (L) =

"
P11 P12

P21(L) P22(L)

#
: (9)

Now, P11 is a ((N � 1) � (N � 1)) identity matrix, P12 is a ((N � 1) � 1) vector of zeros, P21(L) is a (1 �
(N � 1)) polynomial vector of order q, and P22(L) is a scalar polynomial of order q. Hence, det[P (L)] =

det[P11] det[P22(L)], and therefore det[P (L)] is of order q. Since cofactors associated with the blocks of Q(L)

di¤erent from P11 are polynomials of degree not larger than q, we conclude that the univariate MA orders of each

element of vech("t"0t) are at most q. Using the same results, the orders of the AR and MA polynomials of the

univariate processes are qk when there are k factors.
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3.2 The pure variance model

In this model proposed by Engle and Marcucci (2006), there only exists a reduced rank structure between the

squared returns such that

"2t = 
0 + '

0
"2t�1 + vt;

for "2t = ("
2
1t; :::; "

2
1t)

0: This is also a special case of the VEC(0,1) given in (2). In practice however, Engle and

Marcucci (2006) assume an exponential form and thus take the log-transform to ensure strictly positive squared

returns (see Section 4).

The orders of the individual models are easy to obtain. Indeed note that there exists an (n � (n � k)) full
column rank matrix � such that �

0
"2t = �

0
vt with �

0
' = 0: Using the same type of proof that we have proposed

for the more general model it emerges that in an n-dimensional stationary GARCH(0; q) with k pure variance

component, the individual ARMA processes for the squared excess returns have both AR and MA orders not

larger than kq:

Engle and Marcucci (2006) explicitly ignore the cross-products. Before looking in the next sections at the

results of test statistics for the pure variance model when the correct speci�cation includes contagion e¤ects, let

us �rst develop the theoretical model representation. We can indeed write the N�dimensional VEC(0; q) with
N = n(n+ 1)=2 such that

ht = ! +Aq(L)

 
"2t

xt

!
with xt the vector of

n(n�1)
2 = N � n cross-product elements "it"jt; i 6= j: In terms of observable series we have

fI �Aq(L)g
 
"2t

xt

!
= ! + �t; �t = ht �

 
"2t

xt

!
;

or more explicitly  
�11 �12

�21 �22

! 
"2t

xt

!
=

 
!1

!2

!
+

 
�1t

�2t

!
; (10)

where to simplify notations �ij = �ij(L) are polynomial matrices of degree q in L: Similarly we denote by j�iij
and �aij respectively the determinant and the adjoint of �ij(L):

We now marginalize (10) with respect to xt: This can be done by �rst computing the �nal equation repre-

sentation of the second row of (10) using the identity j�22jIN�n = �a22�22. Next we multiply the �rst row of (10)
by j�22j and the new equation for xt by �12: One obtains the following system of equations8><>:

j�22j�11"2t + j�22j�12xt = j�22j!1 + j�22j�1t

�12�
a
22�21"

2
t + �12j�22jxt = �12�a22!2 + �12�a22�2t

: (11)

Remains to substract the second equation from the �rst in order to eliminate xt to get

[ j�22j|{z}
(N�n)q

�11|{z}
q

� �12|{z}
q

�a22|{z}
(N�n�1)q

�21|{z}
q

]"2t = !
� + j�22j|{z}

(N�n)q

�1t � �12|{z}
q

�a22|{z}
(N�n�1)q

�2t; (12)
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with !� = j�22j!1 � �12�a22!2 and where the maximal polynomial orders are reported beneath each polynomial
matrices.

This implies an n�dimensional VARMA((N �n)q+ q; (N �n)q) pure variance process for which the implied
maximal univariate orders can be determined using the general rules. This gives rise to several comments:

Remark 4 First, under the restrictions �12(L) = 0; the marginal process for "2t is a pure variance model

�11(L)"
2
t = !1 + �1t in the form of an autoregression as used by Engle and Marcucci (2006): This is the case

of absence of Granger-causality from xt to "2t in the sense that in the linear predictor (in the MSE sense) or

projection of "2t of its own past and on that of xt the slope coe¢ cients of the lagged values of xt are zero:

Remark 5 An important example in which the dynamics of conditional variances and covariances are assumed
to be independent, i.e. �12(L) = 0 and �21(L) = 0; is inspired by the DCC model of Engle (2002).

Remark 6 If in addition to �12(L) = 0; �11(L) has rank k � n; "2t is generated by a factor pure variance model.

Remark 7 If the rank of the (N � Nq) polynomial matrix Aq(L) of the F-BEKK(0,q,k) is k � n; we have

rank[(In � �11(L)) : �12(L)] = k and then 9� : �0[(In � �11(L)); �12(L)] = 0: Let us premultiply (12) by �0 to

obtain under the null hypothesis that k < n

�0j�22j�11"2t = �0j�22j!1 + �0j�22j�1t;

which implies

�0j�22j"2t = �0j�22j!1 + �0j�22j�1t;

and after common roots cancellation

�0"2t = �
0!1 + �

0�1t;

which means that we have the implication of the pure variance under the null of the presence of common factors.

4 Test statistic and Monte Carlo results

Let us start with the F-BEKK(0; q; k)

"t = H
1=2
t zt

Ht = �00�0 + �
0
1"t�1"

0
t�1�1 + :::+ �

0
q"t�q"

0
t�q�q;

for which the objective is the determination of the number of common factors driving Ht: From vech(Ht) =

vech(�00�0) +A1vech("t�1"
0

t�1) + : : : Aqvech("t�q"
0

t�q) we write

vech("t"
0

t) = vech(�
0
0�0) +A1vech("t�1"

0

t�1) + :::+Aqvech("t�q"
0

t�q) + vt; (13)

or equivalently

vech("t"
0

t) = vech(	) +AWt + vt; (14)

10



where vt = vech("t"
0

t) � vech(Ht) is a multivariate martingale di¤erence sequence, A = A1 : � � � : Aq is a
(n(n+ 1)=2� n(n+ 1)q=2) matrix and Wt = (vech("t�1"

0

t�1)
0 : � � � : vech("t�q"

0

t�q)
0)0. The number of factors is

now determined by k = rank(A).

In the F-BEKK, neglecting the cross-products in vech("t"
0

t) does not a¤ect the rank of A: For this reason,

one might also test the number of factors in a pure variance framework

diag("t"
0

t) = diag(�
0
0�0) +B1diag("t�1"

0

t�1) + :::+Bqdiag("t�q"
0

t�q) + ut; (15)

or in a more compact form

"2t = 
0 +BWt + ut; (16)

where 
0 = diag(�00�0) is a (n � 1) vector of constants, B = B1 : � � � : Bq is a (n � nq) matrix, Wt =

diag("t�1"
0

t�1) : � � � : diag("t�q"
0

t�q), ut = diag("t"
0

t)� diag(Ht) and k = rank(B). While the null assumptions
about the rank are the same in (15) or (16), the performance of these tests might be di¤erent in small samples

and consequently we consider both testing strategies in the sequel.

To test the rank of A and B, we can use the canonical correlation analysis as in Engle and Marcucci (2006),

i.e.,

��1Y Y �YW�
�1
WW�WY ; (17)

where �ij are covariance matrices, Y is the left hand-side variable of (15) or (16) (i.e., vech("t"
0

t) or "
2
t ) and W

the right hand-side variables (i.e. Wt).

For i.i.d. normally distributed random variables, the likelihood ratio test statistic for the null hypothesis that

there exist at least s linear combinations that annihilate (n� s) features in common to these random variables

is given by

LRs = �T
sX
i=1

ln(1� �̂i) s = 1; : : : ; n; (18)

where �̂i is the i-th smallest eigenvalue of the estimated matrix (17). The test statistic (18) follows asymptotically

a �2(v) distribution under the null where � = snq� s(n� s) or � = sNq� s(N � s). The MLE of the matrix � is
given by b� = [be1; � � � ; bes]; where bei is the eigenvector associated with �̂i for i = 1; 2; :::; s.
The main drawbacks in using the likelihood ratio test presented above are the normality and independence

assumptions on which the test is based on. Indeed, there is huge empirical evidence against normality of squared

returns and cross-products. Moreover, when we marginalize a multivariate, strong GARCH process to obtain

the process for a subset of variables, a weak GARCH process results, that is iid-ness is lost. The likelihood

ratio statistic (18) then becomes a quasi-likelihood procedure. Point estimates of the parameters are (strongly)

consistent (see e.g. Jeantheau, 1998) and asymptotically normally distributed (see Comte and Lieberman, 2003),

but the inverse of the information matrix is not a consistent estimator of the standard errors of the QMLE.

Rather one has to use the so-called sandwich formula which pre- and postmultiplies the covariance matrix of the

score of the likelihood function by the inverse of the Hessian matrix to consistently estimate the standard-errors

of the QMLE. Expressions for this estimator have been derived in the literature (see e.g. Francq and Zakoian,
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2007) but they cannot always be easily implemented in practice. It might be sensible to investigate whether

bootstrapping standard-errors or test statistics is a sensible procedure in empirical work.

Without a correct implementation of the QMLE estimator, applying the canonical correlation analysis to

squared returns and cross-products should lead to an overestimation of the number of common factors. To

overcome this problem, Engle and Marcucci (2006) propose to apply the likelihood ratio test on the log of Y and

W .4 In the case of (16), this would mean testing the rank of ~B in

ln("2t + �) = 
0 + ~B ln(Wt + �) + vt; (19)

where � is a tiny positive constant. Note here that the intuition behind the logarithmic transformation is clear

for univariate series and the diag("t"
0

t): Indeed we see for instance with ln("
2
1t) = 2 ln(u1t) + lnh11t that we

retrieve iid-ness properties: Things are much complicated with matrices because the log of the product of two

matrices is generally not equal to the sum of the logs of these matrices. We nonetheless evaluate this issue using

a naive extension of (19) to the general case (14).5

We investigate in this section the small sample behavior of quasi-LRs test statistics when both the pure vari-

ance model (s = 1; :::; n) and the factor model (s = 1; :::; n(n+1)=2) are estimated. The DGP is the BEKK(0; 1; 1)

with a single factor, hence common transmission dynamics for the variances but also the covariances. In this

setting the pure variance omits to consider these covariances in the estimation of � and no correction is applied

to the LR statistics to account for MA terms.6 We take �1 =
p
0:7�(�0�1=2) where � is (N�k) matrix of indepen-

dent standard normal random variables (di¤erent for each replication) such that rank(�1) = k; �0 = chol(
);


 � N(0; In).
We compare the log and the non-log transformation of the squared returns and the squared returns plus the

covariances. The entries PV (for pure variance) denote tests on squared returns only; rows with FM (for factor

model) denote a system with both squared returns and cross-product moments. We take T = 500; 1000 and

2000: The column labeled N � 1 refers to the empirical size; the column labeled N the size unadjusted power.

The tables report the rejection frequencies for 1000 replications. The correct number of instruments, i.e. the

number of lags l of the dependent variables, is taken in the estimated model with then l = q = 1:

It clearly emerges that the best strategy is to take the pure variance model with the logs of the squared

returns. Indeed this strategy gives an empirical size close to the 5% nominal one in large sample even when

4Engle and Marcucci (2006) mention altenative tests but the majority of them is based on elliptical distributions with possible

non-zero excess kurtosis and �nite fourth order moments. See Gunderson and Muirhead (1997) and Yuan and Bentler (2000) for

more details.
5 If S is a (N � N) PSD matrix, by the spectral decomposition theorem we have that S = E�E0, where the columns of the

(N � N) orthonormal matrix E correspond to the eigenvectors of S and � is a (N � N) diagonal matrix whose diagonal elements
are the eigenvalues of S. Then the matrix logarithm of S, denoted logm(S), is de�ned by logm(S) = E ln(�)E0. Recall that the

logarithm of a diagonal matrix is a diagonal matrix whose diagonal elements are taken in logs.
6An adjustment of the eigeinvalues for the presence of a MA component (see Tiao and Tsay, 1989) did not give better results.

These outcomes have therefore not been included. Moreover, a strategy based on the no ARCH null hypothesis associated with an

estimation of the eigenvectors based on partial least squares (see Cubadda and Hecq, 2010 for the development of this approach for

the null of no-autocorrelation) underperforms compared to the canonical correlation test statistics. Results can be obtained upon

request.
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n increases. Not taking logs in the pure variance model leads to very poor results in terms of size and power.

For the system with both squared returns and cross-products (i.e. rows FM), there are size distortions with the

non-log transformation. Taking logs seems to improve results but this is only a �nite n artefact. Increasing the

number of series leads to strong size distortions.

Let us then analyze the behavior of the pure variance estimated models on the log of the squared returns

when the DGP is a diagonal VEC(0; 1). Indeed we have seen that both the factor model and the diagonal model

provide quite parsimonious marginal GARCH orders. We consequently investigate now whether some of the

proposed strategies allow us to discriminate between these two models. We report in Table 2 the outcomes for

di¤erent sample sizes for n = 2; 5; 15 and l = 1; 3; 5 in the estimated models. It emerges that except when T is

small and l is large, the reduced rank procedure rejects quite well the presence of any common factors.

5 An illustrative example

The data set was obtained from TickData and consists of daily closing transaction prices for thirty large capi-

talization stocks from the NYSE, AMEX NASDAQ, covering the period from January 1, 1999 to December 31,

2008 (2489 trading days). The appendix provides a list of ticker symbols and company names.

For the conditional mean we have estimated AR(2) models with daily dummies to capture Monday and Friday

e¤ects. For the conditional variance we have run four di¤erent speci�cations. These are the GARCH(1,1), the

GARCH(1,2) and two long memory models, namely FIGARCH(1; d; 0) and FIGARCH(1; d; 1). Out of the 30

series, the GARCH(1,1) model is favoured in six cases using both formal likelihood ratio tests and the Hannan-

Quinn information criterion. The six returns with no indication of long memory are (and using their acronyms,

see Appendix) ABT, BMY, GE, SLB, XOM, XRX.

Therefore we consider these six return series and we apply our proposed test. The implications of FIGARCH

type processes is out of the scope of this paper. Consequently the study of the other 24 series is left for further

investigations. Table 3 shows the results for the pure variance model on the six squared returns only as well

as the system that also includes their �fteen cross-products, hence with 21 series. We have considered for the

moment 2 lags. The number n�k or N�k of linear combinations that do not have the GARCH feature gives the
number k of factors generating the pure variance or the factor GARCH model. For the pure variance model in

logs, a single common ARCH component generating the six returns is found, that is we take k = 1. The results

would be di¤erent for the model in levels and/or when one also stacks the covariances. However, the simulation

results of Section 4 revealed that the pure variance model for the logs of squared returns yields better results.

6 Conclusion and further research

This paper studies the orders of the marginal weak GARCH processes implied by a multivariate GARCH model.

We see that except for some coincidental situation the marginal models are non-parsimonious. We then show
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Table 1: Size and power of common volatility for the non-log version tests statistics

non logs�LR logs�LR
N � 1 N N � 1 N

n = 2 T = 500
PV

FM

14:5

19:4

99:9

100

4:6

5:7

99:2

100

T = 1000
PV

FM

17:8

25:3

100

100

6:3

5:6

100

100

T = 2000
PV

FM

20:9

29:5

100

100

5:3

5:6

100

100

n = 5 T = 500
PV

FM

30:9

52:7

99:9

98:8

3:4

11:2

80:9

97:8

T = 1000
PV

FM

38:0

63:0

100

100

4:0

10:3

99:3

100

T = 2000
PV

FM

48:4

73:5

100

100

6:8

9:0

100

100

n = 15 T = 500
PV

FM

41:6

100

91:3

100

3:5

100

37:9

100

T = 1000
PV

FM

45:5

100

99:4

100

3:9

100

59:5

100

T = 2000
PV

FM

57:0

100

100

100

4:3

100

88:2

100

Note: The DGP has 1 source of volatility. Hence, the columns N�1 report the empirical size while the column N
report the (size unadjusted) power. PV refers to the pure variance estimated model while FM refers to the factor model

in which we also stack the covariances. l = 1 in the estimated model. Non-logs LR columns refer to the likelihood

ratio test on the vech or the diag of "t"
0
t; logs-LR columns refer to the likelihood ratio test on the vech or the diag of

the matrix logs of "t"
0
t: Nominal size is 5%.
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Table 2: Power of the PV common volatility for the log version tests statistics for the diagonal BEKK

l = 1 l = 3 l = 5

T=500 1000 2000 T=500 1000 2000 T=500 1000 2000

n = 2
s = 1

s = 2

99:8

100

100

100

100

100

98:8

100

100

100

100

100

96:3

100

100

100

100

100

n = 5

s = 1

s = 2

s = 3

s = 4

s = 5

95:1

99:6

100

100

100

100

100

100

100

100

100

100

100

100

100

56:8

93:3

99:7

100

100

99:4

100

100

100

100

100

100

100

100

100

34:2

83:2

98:1

99:9

100

97:1

100

100

100

100

100

100

100

100

100

n = 15

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

s = 12

s = 13

s = 14

s = 15

5:0

11:9

27:6

49:7

73:4

89:7

96:3

99:2

100

100

100

100

100

100

100

94:2

99:7

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

0:0

0:0

0:0

0:1

2:4

14:5

39:0

71:1

91:4

98:7

100

100

100

100

100

3:3

24:1

58:3

87:9

98:0

97:7

100

100

100

100

100

100

100

100

100

98:5

100

100

100

100

100

100

100

100

100

100

100

100

100

100

0:0

0:0

0:0

0:0

0:7

4:1

22:0

53:6

81:1

96:7

99:7

100

100

100

100

0:2

3:8

19:7

51:7

81:9

96:4

99:4

100

100

100

100

100

100

100

100

86:1

99:4

100

100

100

100

100

100

100

100

100

100

100

100

100

Note: The DGP has n source of volatility within n variables. This is the diagonal VEC(0,1). We report the power

of the pure variance estimated model with the log version.
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Table 3: P-Value of LR tests (2 lags) for both the pure variance and the factor model

Pure Variance Factor Model

H0 non log logs H0 non logs logs

k � 6 0.936 0.983 k � 21 0.504 1.000

k � 5 0.051 0.983 k � 20 0.773 1.000

k � 4 0.000 0.984 k � 19 0.812 1.000

k � 3 0.002 0.883 k � 18 0.284 1.000

k � 2 0.503 0.443 k � 17 0.064 1.000

k � 1 0.000 0.000 k � 16 0.358 1.000

k � 15 0.240 1.000

k � 14 0.111 1.000

k � 13 0.159 1.000

k � 12 0.350 1.000

k � 11 0.148 1.000

k � 10 0.002 1.000

k � 9 0.004 1.000

k � 8 0.001 1.000

k � 7 0.007 0.999

k � 6 0.000 0.998

k � 5 0.002 0.921

k � 4 0.011 0.414

k � 3 0.126 0.015

k � 2 0.046 0.000

k � 1 0.000 0.000

16



that multivariate models with co-movements in the conditional volatility and cross products explain why we can

obtain GARCH with small orders in empirical work. This result would plead for looking at individual series

prior to a multivariate modelling.

We propose a simple strategy to detect the presence of such GARCH co-movements and we apply it to daily

returns from the NASDAQ. It emerges that when working with the six returns (out of 30) having parsimonious

univariate GARCH speci�cations we detect the presence of a single factor generating the volatility.

From our Monte Carlo study, the best strategy consists in applying the method proposed by Engle and

Marcucci (2006) for the logs of the squared returns (i.e. the pure variance model), omitting therefore the

cross-products (although they might matter in theory).

Many issues are currently under investigation. First we have focussed on a limited number of multivariate

models. We have not covered stochastic volatility models, or alternative multivariate models (GO-GARCH,

DECO,...). Second, we have still to study the properties of the tests proposed using appropriate estimators of

the asymptotic standard-errors of the QMLE and investigate the behavior of bootstrap procedures to estimate

standard-errors and to test for the number of common factors in multivariate weak GARCH processes.

Third, our test statistics seems to be tailored for multivariate GARCH(0; q) but we have not extensively

investigated in our Monte Carlo study its use in more general multivariate GARCH(p; q) although results for

the marginalization orders of the multivariate GARCH(p; q) are given in this paper. Whether this multivariate

modelling is more appropriate than a GARCH(0,q) is an empirical issue. In order to work in this framework,

and for separating the MA from the AR part possibly with matrices with di¤erent left null spaces, we believe

that another testing strategy should be implemented. A promising procedure we leave for further investigations

relies on realized variance and covariances.
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8 Stocks used in the empirical application

Symbol Issue name Symbol Issue name

AAPL APPLE INC JNJ JOHNSON &JOHNSON

ABT ABBOTT LABORATORIES JPM JP MORGAN CHASE

AXP AMERICAN EXPRESS CO KO COCA COLA CO

BA BOEING CO LLY ELI LILLY & CO

BAC BANK OF AMERICA MCD MCDONALDS CORP

BMY BRISTOL MYERS SQ MMM 3M COMPANY

BP BP plc MOT MOTOROLA

C CITIGROUP MRK MERCK & CO

CAT CATERPILLAR MS MORGAN STANLEY

CL COLGATE-PALMOLIVE CO MSFT MICROSOFT CP

CSCO CISCO SYSTEMS ORCL ORACLE CORP

CVX CHEVRON CORP PEP PEPSICO INC

DELL DELL INC PFE PFIZER INC

DIS WALT DISNEY CO PG PROCTER & GAMBLE

EK EASTMAN KODAK QCOM QUALCOMM

EXC EXELON CORP SLB SCHLUMBERGER N.V.

F FORD MOTOR CO T AT&T CORP

FDX FEDEX CORP TWX TIME WARNER

GE GENERAL ELEC UN UNILEVER N V

GM GENERAL MOTORS VZ VERIZON COMMS

HD HOME DEPOT INC WFC WELLS FARGO & CO

HNZ H J HEINZ CO WMT WAL-MART STORES

HON HONEYWELL INTL WYE WEYERHAEUSER CO

IBM INTL BUS MACHINE XOM EXXON MOBIL

INTC INTEL CORP XRX XEROX CORP
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