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Gut Colonization with Methanobrevibacter smithii is
Associated with Childhood Weight Development
Catherine A. Mbakwa1,2, John Penders2,3, Paul H. Savelkoul3, Carel Thijs2, Pieter C. Dagnelie2,4, Monique Mommers2,
and Ilja C.W. Arts2,4

Objective: To prospectively investigate the presence and counts of archaea in feces of 472 children in

association with weight development from 6 to 10 years of age.

Methods: Within the KOALA Birth Cohort Study, a single fecal sample from each child was analyzed by

quantitative polymerase chain reaction to quantify archaea (Methanobrevibacter smithii, Methanosphera

stadtmanae). Anthropometric outcomes (overweight [body mass index {BMI} � 85th percentile], age- and

sex-standardized BMI, weight, and height z-scores) were repeatedly measured at ages (mean 6 SD) of

6.2 6 0.5, 6.8 6 0.5, 7.8 6 0.5, and 8.8 6 0.5 years. Generalized estimating equation was used for sta-

tistical analysis while controlling for confounders.

Results: Methanobrevibacter smithii colonization was associated with an increased risk of overweight

(adjusted odds ratio [OR] 5 2.69; 95% confidence interval [CI] 0.96-7.54) from 6 to 10 years of age. Chil-

dren with high levels (>7 log10 copies/g feces) of this archaeon were at highest risk for overweight

(OR 5 3.27; 95% CI 1.09-9.83). Moreover, M. smithii colonization was associated with higher weight z-

scores (adj. b 0.18; 95% CI 0.00-0.36), but not with height. For BMI z-scores, the interaction (P 5 0.008)

between M. smithii and age was statistically significant, implying children colonized with M. smithii had

increasing BMI z-scores with age.

Conclusions: Presence and higher counts of M. smithii in the gut of children are associated with higher

weight z-scores, higher BMI z-scores, and overweight.

Obesity (2015) 23, 2508–2516. doi:10.1002/oby.21266

Introduction
Over the past decades, childhood overweight and obesity have reached

epidemic proportions in most industrialized countries (1). Since 1980,

there has been a two- to threefold increase in childhood overweight

and four- to sixfold increase in obesity in the Netherlands (2). Eventu-

ally, children with overweight or obesity are more likely to become

adults with obesity (3,4), leading to increased risk for chronic diseases,

including cardiovascular disease, hypertension, type 2 diabetes
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mellitus, and premature mortality (2). Moreover, once obesity is estab-

lished, it is difficult to reverse through interventions (5).

Recently, a role of the gut microbiota has been put forward. The human

gut microbiota is a complex, densely populated ecosystem, mainly con-

sisting of bacteria (6). Besides the many bacterial species, the human gut

contains several archaeal species, which are considered to play a crucial

role in the metabolic capacity of the human gut microbiota. To date,

only three distinct species within the group of methanogenic archaea

have been isolated from human feces, Methanobrevibacter smithii (7),

Methanospaera stadtmanae, (8), and Methanomassilicoccus luminyesis
(9). In children from 1 to 10 years of age, the prevalence of these metha-

nogenic species have been found in 88%, 11%, and 1% of the children,

respectively (10). Methanogens use hydrogen, a by-product of bacterial

fermentation, to produce methane. The removal of hydrogen accelerates

the bacterial fermentation of polysaccharides and carbohydrates, leading

to the more efficient production of short-chain fatty acids which can

serve as an additional energy source for the host (11-15).

Several studies, both in animal models and humans, have suggested a

potential role for archaea, specifically M. smithii, in the development

of overweight/obesity. Using a mouse model, Samuel et al. illustrated

that colonization with M. smithii leads to increased utilization of die-

tary fiber and increased adiposity (16). Another study revealed a signif-

icant increase in M. smithii in mice fed with high-fat chow compared

with those fed with normal chow (17). Only few studies have

addressed the relationship between archaea and host energy balance in

humans. In a small study including nine human participants, Zhang

et al. (18) detected significantly higher numbers of H2-utilizing metha-

nogenic archaea in individuals with obesity compared with normal-

weight as well as post-gastric-bypass individuals. In contrast, other

studies have reported lower amounts of M. smithii in individuals with

obesity compared with lean individuals (19,20). These results demon-

strate that more research is needed to understand the role of archaea in

obesity (20). Most of the studies reporting a positive association

between methanogenic archaea and obesity were based on breath meth-

ane measurements. A study among 58 subjects with obesity showed a

significantly higher body mass index (BMI) among breath methane-

positive as compared with methane-negative subjects (21). Moreover,

in a large study among 792 subjects, the presence of both hydrogen

and methane on breath testing was associated with a higher BMI and

percent body fat (22). Breath methane measurements alone may, how-

ever, underestimate the number of participants with methanogenic

archaea due to the lower sensitivity (62%) as compared with molecular

detection of methanogens in stools (23,24). Moreover, the main evi-

dence originates from animal studies, and the limited number of human

studies that used fecal samples had small sample sizes, hence low

power to detect a significant association, and a cross-sectional design.

Lastly, none of these studies has been performed in children.

Therefore, we aimed to investigate whether the presence and counts of

archaea in the fecal samples of 472 children at school age are associ-

ated with childhood weight development from 6 to 10 years of age.

Methods
Study design
The present study was conducted within the prospective KOALA Birth

Cohort Study, in the Netherlands. The design of this study has been

described in detail elsewhere (25). A total of 2,834 pregnant women

were recruited, at 34 weeks of gestation, from October 2000 until

December 2002. Healthy pregnant women with a conventional life-

style (n 5 2,343) were retrieved from an on-going cohort study on the

etiology of pregnancy-related pelvic girdle pain in the Netherlands.

An additional 491 pregnant women with alternative lifestyles were

recruited through organic food shops, anthroposophist doctors and

midwives, Steiner schools, and dedicated magazines. This latter group

of women was considered to have an alternative lifestyle that could

involve dietary habits (vegetarian, organic food choice), child-rearing

practices, vaccination schemes, and/or use of antibiotics. Exclusion

criteria for the present study were: prematurity (<37 weeks of gesta-

tion), twins, abnormalities linked to growth (such as Down’s syn-

drome, Turner syndrome, Fallot’s tetralogy, multiple disabilities, and

cystic fibrosis), and fecal samples whose transport time was greater

than 4 days. All children included in this study were Caucasians.

Informed consent was given by all parents, and the study was

approved by the Medical Ethics Committee of Maastricht University

and the National Ethical Committee for Medical Research.

Data collection and longitudinal outcome
measures
At 14 and 34 weeks of gestation, pregnant women received question-

naires collecting data on amongst others family size, pre-pregnancy

height and weight, and weight gain during pregnancy. Two weeks

after childbirth, data was collected from obstetric reports and question-

naires were completed by the mothers to obtain data on gestational

age, birth weight, and gender of the child. Food frequency question-

naires were filled out by the parents to report the dietary habits of

their children at the age (mean 6 standard deviation [SD]) of

5.0 6 0.6 years.

Parent-reported weight and height of children was repeatedly

assessed by mailing follow-up questionnaires to the parents in 2007,

2008, 2009, and 2010. This corresponds to longitudinal assessment

of the children’s height and weight at the ages (mean 6 SD) of

6.2 6 0.5, 6.8 6 0.5, 7.8 6 0.5, and 8.8 6 0.5 years, respectively.

BMI was computed as weight divided by height squared (kg/m2). The

BMI, weight, and height measurements were then converted into age-

and gender-specific z-scores using the Dutch National growth study (26)

as the reference population. BMI z-scores were used both as continuous

and dichotomous outcomes. Dichotomization into normal weight versus

overweight was based upon a cut-off of a z-score �1.04, equivalent to

BMI z-scores�85th percentile standardized for age and gender (27).

Fecal sample collection
A subgroup of this cohort (n 5 1,204), that is, the participants who

were visited at home for blood collection from the mother during

pregnancy and/or the child at age 2 years, and were still active par-

ticipants at child’s age of 6-7 years (see flowchart, Figure 1), was

asked to collect a single fecal sample from their children at school

age. Feces collection tubes with spoon attached to their lids (Sar-

stedt, N€umbrecht, Germany) together with collection instructions

were sent to the parents of participating children. A fecal sample

was collected and sent to the laboratory by mail. Upon arrival in the

laboratory, fecal samples were 10-fold diluted in peptone/water

(Oxoid CM0009) containing 20% (vol/vol) glycerol (Merck, Darm-

stadt, Germany) and stored at 2808C until further analysis.
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Fecal DNA isolation and real-time
quantitative polymerase chain reaction
DNA isolation from fecal samples has been described in detail else-

where (28). In brief, the DNA was isolated using a combination of

Repeated-Bead-Beading (RBB) plus column purification method.

Concentration and purity of the DNA were assessed with a Nanodrop

1000 spectrophotometer (Thermo Fisher Scientific, Wilmington).

DNA from all fecal samples was subjected to 50-nuclease based real-time

polymerase chain reaction (PCR) assays for the enumeration of M. smi-
thii and M. stadtmanae (primers and probes are listed in supplementary

Table 1). For both M. smithii and M. stadtmanae, amplifications were

conducted in a total volume of 25 lL, containing 13 Absolute quantita-

tive (qPCR) Mix (ABgene, Hamburg, Germany), 200 nM of forward and

reverse primers, 200 nM TaqMan probe, and 2 lL of tenfold diluted tar-

get DNA. The amplification (2 minutes at 508C, 10 minutes at 958C, and

42 cycles of 15 seconds at 958C and 1 minute at 608C) and detection

were conducted with an Applied Biosystems Prism 7900 sequence detec-

tion system (Applied Biosystems). Quantification of M. smithii and M.
stadtmanae was achieved by using a quantification plasmid containing

the target sequences. Plasmid constructs containing the sequence of inter-

est were created as positive controls (see Supporting Information S1 and

Figure S1(a) and (b) for standard curves). The lower limits of detection

were 3.81 and 4.82 log10 copies/g feces for M. smithii and M. stadtma-
nae, respectively. In the present study fecal samples were sent by mail

and transport time varied from 0 to 4 days. However, the proportion of

positive samples as well as the concentration of archaea did not signifi-

cantly differ between samples according to transport time (Chi-square

test, P-value>0.05).

Statistical analyses
Characteristics of the children are presented as mean 6 SD or median

(range) for continuous variables, and proportions for categorical varia-

bles. We used Generalized Estimating Equations (GEE) with autore-

gressive correlation structure to analyze the association between arch-

aea and childhood BMI, weight, and height (as z-scores for

continuous outcomes) and overweight status over time (as binary out-

come) including all available parent-reported repeated measurements

up to 10 years of age. For each of these outcomes we examined the

effects of colonization with either M. smithii or M. stadtmanae (yes/

no) and the counts of each of these species. For M. smithii, we con-

structed a variable accounting for the tri-modal distribution of the

counts (uncolonized, low levels [3.5-7 log10 copies/g feces], high lev-

els [>7 log10 copies/g feces]) observed (Figure 2). To evaluate

whether increasing levels of the counts of M. smithii were associated

with higher BMI z-scores, Cochran Armitage trend test was per-

formed for this exposure–outcome combination.

To investigate whether results differed across ages, we tested for sta-

tistical interaction between the main independent variables and age

of the child at the time of outcome measurement as a continuous

variable. The interaction term was statistically significant only for

M. smithii prevalence (yes/no) with BMI z-scores as the outcome

Figure 1 Flowchart illustrating how the present study population of 472 children
was obtained from the initial KOALA cohort of 2,834 healthy pregnant women.

TABLE 1 Real-time PCR primers and probe sequences for detecting M. smithii and M. stadtmanae 16S rRNAa

Target organisms (amplicon size) Primer/probe Sequence (50-30) Tm (8C)

M. smithii (123 bp) Forward primer 50-CCGGGTATCTAATCCGGTTC-30 63.0

Reverse primer 50-CTCCCAGGGTAGAGGTGAAA-30 64.0

Probe 50-CCGTCAGAATCGTTCCAGTCAG-30 61.0

M. stadtmanae (97 bp) Forward primer 50-AGGAGCGACAGCAGAATGAT-30 64.0

Reverse primer 50-CAGGACGCTTCACAGTACGA-30 65.0

Probe 50-TGAGAGGAGGTGCATGGCCG-30 71.0

aReference for information in table, Dridi et al. (2009) (11).
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(interaction P 5 0.008); hence an age-stratified analysis was per-

formed for this association.

Potential confounders considered for inclusion in the model were:

recruitment group (conventional or alternative), maternal pre-pregnancy

weight, maternal pre-pregnancy height, maternal educational level (lower

education, vocational education, higher general secondary/pre-university,

or higher vocational/academic education), weight gained during preg-

nancy, place and mode of delivery (vaginal delivery at home, vaginal

delivery in hospital, or caesarean section in hospital), gestational age,

birth weight, household size, antibiotic use (no antibiotics in past year,

antibiotic use >4 weeks ago, or antibiotic use �4 weeks ago), physical

activity, gender, and child’s dietary intake (total fiber, total energy, fats,

and carbohydrates both as percentage of total energy). Variables that

changed parameter estimates of the main independent variable by more

than 10% were included in the final models. All children (N 5 472) were

included in the unadjusted analyses and a total of 406 (86%) children

was included in the adjusted analyses. The latter was due to missing val-

ues in some confounders, ranging from 1.3% missing values for mode of

delivery and antibiotic use to 6.1% for physical activity. We checked

whether results obtained following multiple imputations deviated from

the results obtained without imputation. Multiple imputations were done

using all four repeated measurements for BMI z-scores, weight z-scores,

and height z-scores variables including confounders with missing values.

As results from combined imputed datasets (n 5 10) were comparable

with those of the original non-imputed data, we performed the final anal-

yses without imputation.

The following statistical software was used: SAS version 9.3 and

SPSS version 21.0 (SPSS Inc., Chicago, IL). A pre-selected signifi-

cance level of 0.05 was used.

Results
A total of 472 fecal samples were eligible for analysis (Figure 1).

M. smithii was present in 369 (78.2%), and M. stadtmanae in 39

(8.3%) of the 472 children (Table 2). From all these children, at

least one anthropometric measurement was available. At time point

1 (start of follow-up) anthropometric data were available for 407 out

of the 472 children, and 6.9% (28/407) of the children were over-

weight (Table 3). At this same time point, the percentage overweight

among children colonized with M. smithii was 7.6% compared with

4.4% for children not colonized with M. smithii. While the percent-

age overweight among children colonized with M. stadtmanae, was

6.2% compared with 6.9% among children not colonized with this

archaeon. For the subsequent follow-up time points, anthropometric

data were available for 376, 348, and 385 out of 472 children,

respectively.

Unadjusted and adjusted associations between the presence, counts

and levels of counts of M. smithii and M. stadtmanae and the differ-

ent outcome variables are presented in Table 4 (for overweight as

binary outcome) and Table 5 (for BMI, weight, and height z-scores

as continuous outcomes). In the unadjusted analyses we found no

statistically significant association between the presence/counts of

archaea and overweight status. Upon adjusting for confounders, chil-

dren that were colonized with M. smithii were at increased risk of

being overweight (adjusted odds ratio [OR] 5 2.69; 95% confidence

interval [CI] 0.96-7.54). Children with a low level of counts (3.5-7

log10 copies/g feces) of M. smithii were twice more likely to be

overweight compared with children without this archaeon, although

this association was not significant (ORadjusted 5 2.40; 95% CI 0.83-

6.95). Children having a high level of counts (>7 log10 copies/g

feces) of M. smithii were three times more likely to be overweight

(ORadjusted 5 3.27; 95% CI 1.09-9.83). P for trend across these levels

(none, low, and high) of M. smithii and overweight status approached

significance (Cochran Armitage P 5 0.066). Analyses on the counts

of M. smithii as a continuous variable also showed that, a log10

increase in the counts of M. smithii was associated with a 10%

increased risk of overweight (ORadjusted 5 1.10; 95% CI 1.00-1.21).

No statistically significant association between M. stadtmanae, neither

for presence nor counts, and overweight status was found.

Regarding BMI z-score as a continuous outcome variable, we found a

statistically significant interaction between the presence of M. smithii
and age (P-value 5 0.008), implying, colonization with M. smithii was

associated with an increasing BMI z-score as age increased (Figure 3).

However, differences at individual time (age) points after stratifying for

age did not reach statistical significance (data not shown).

Unadjusted analyses for the associations between the presence and

counts of M. smithii and M. stadtmanae with weight z-scores as a

continuous variable were not statistically significant. In the adjusted

analyses, the presence of M. smithii in children was statistically sig-

nificantly associated with higher weight z-scores (adj. b 0.18; 95% CI

0.00-0.36) compared with children without this archaeon. In addition,

low and high levels of M. smithii in children were also associated

with higher weight z-scores compared with uncolonized children,

although this only approached statistical significance (low: adj. b
0.18; 95% CI 20.01 to 0.36 and high: adj. b 0.20; 95% CI 20.01 to

0.40; Table 5). The P for trend across these levels (none, low, and

high) of counts of M. smithii approached significance in association

with increasing weight z-scores (P for trend 5 0.09).

There was no statistically significant association of M. smithii with

height z-scores.

Figure 2 Histogram showing the trimodal distribution of counts (log10 DNA copies/g
feces) for M. smithii.
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For M. stadtmanae, there were no statistically significant associa-

tions with any of the four outcomes (Tables 4 and 5) neither for

presence or the counts of M. stadtmanae.

Discussion
This prospective cohort study is the first to demonstrate that the

presence as well as the counts of methanogenic archaea, specifically

M. smithii, in the gut of children at school age is associated with

more overweight and higher weight z-scores. We also found that the

strength of the association between colonization with M. smithii and

BMI z-scores increased with age from 6 to 10 years.

Several previous studies (16,18) supported the hypothesis that arch-

aea (M. smithii) contribute to energy harvesting and hence weight

development. Samuel and Gordon (2006) (16), observed that M. smi-
thii played a critical role in facilitating an increased capacity of Bac-
teroides thetaiotaomicron to digest polyfructose-containing glycans

leading to increased production of short-chain fatty acids (SCFAs)

and total liver triglycerides in mice. Mice colonized with B. thetaio-
taomicron and Desulfovibrio piger instead of M. smithii, did not

show such an effect, highlighting the key role of M. smithii in

TABLE 2 Participant characteristics of the study population at start of the follow-up

Study
M. smithii M. stadtmanae

population

(N 5 472)a,

mean 6 SD

“Present”

(n 5 369),

mean 6 SD

“Absent”

(n 5 103),

mean 6 SD

“Present”

(n 5 39),

mean 6 SD

“Absent”

(n 5 433),

mean 6 SD

Dietary factors
Total energy intake (KJ) 6143.2 6 1255.0 6131.6 6 1223.3 6185.7 6 1370.4 6318.9 6 1402.9 6127.2 6 1241.8

% Energy intake from fats 29.7 6 4.2 29.6 6 4.2 29.8 6 4.0 29.5 6 4.6 29.7 6 4.1

% Energy intake from carbohydrates 56.7 6 5.9 55.7 6 4.9 55.5 6 5.1 56.4 6 5.3 55.6 6 4.9

Total fiber intake (g) 15.5 6 3.9 15.4 6 3.9 15.9 6 3.5 15.9 6 3.9 15.4 6 3.8

Total physical activity (hours/week) 9.4 6 4.4 9.3 6 4.4 9.7 6 4.1 9.6 6 4.7 9.3 6 4.3

Total household size 4.3 6 0.8 4.3 6 0.7 4.4 6 0.9 4.3 6 0.8 4.3 6 0.8

Birth weight (g) 3574 6 483 3560 6 481 3624 6 487 3676 6 498 3566 6 481

Place and mode of delivery, n (%)
Vaginal delivery at home 219 (47.0) 176 (48.6) 43 (41.8) 16 (41.0) 203 (47.6)

Vaginal delivery in the hospital 198 (42.6) 150 (41.5) 48 (46.6) 15 (38.5) 183 (43.0)

Caesarean section in the hospital 48 (10.4) 36 (9.9) 12 (11.6) 8 (20.5) 40 (9.4)

Time of last antibiotic course, n (%)b

No antibiotic use 398 (85.4) 310 (85.2) 88 (86.2) 35 (89.7) 365 (85.0)

>4 weeks ago 57 (12.2) 46 (12.6) 11 (10.8) 4 (4.3) 53 (12.4)

<4 weeks ago 11 (2.4) 8 (2.2) 3 (3) 0 (0.0) 11 (2.6)

Archaea counts (log10 DNA copies/g
feces), median [range]c

4.7 (3.8-10.8) 5.4 (4.8-9.2)

aTotals may not add up to 472 because of missing values (for number of missing, see “Results” section).
bTime of last antibiotic course at time of fecal collection.
cMedian counts were calculated from archaea (M. smithii and/or M. stadtmanae) positive samples only.

TABLE 3 Anthropometric measures of the study population at the four different follow-up time points

Time point 1 (2007), Time point 2 (2008), Time point 3 (2009), Time point 4 (2010),

mean 6 SD mean 6 SD mean 6 SD mean 6 SD

Children with anthropometric data, n (%) 407 (86.2) 376 (79.7) 348 (73.7) 385 (81.6)

Age (years) 6.2 6 0.5 6.8 6 0.5 7.86 0.5 8.8 6 0.5

Overweight, n (%)
Yes 28 (6.9) 22 (5.9) 31 (8.9) 41 (10.7)

No 379 (93.1) 354 (94.1) 317 (91.1) 344 (89.3)

BMI z-scores 20.33 6 0.95 20.37 6 0.90 20.26 6 0.97 20.22 6 0.96

Weight z-scores 20.37 6 0.95 20.35 6 0.96 20.27 6 0.98 20.19 6 0.91

Height z-scores 20.05 6 0.96 20.10 6 0.98 20.09 6 0.96 0.08 6 0.90
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promoting polysaccharide degradation and formation of SCFAs. It

should, however, be noted that animal studies often show that

increased fermentable fiber intake is associated with reduced body

weight gain and/or adiposity, which may also depend on the ani-

mals’ phenotype (29) likely due to differences in microbial fermen-

tation capacity. A potential mechanism whereby methanogens may

affect energy extraction and subsequently lead to overweight is

through signaling of the G protein-coupled receptor Gpr41, for

which SCFAs serve as ligands. Gpr41 expressed in the intestine and

adipocytes stimulates the expression of the adipokine leptin and the

intestinal peptide tyrosine–tyrosine (peptide-YY), which both influ-

ences energy metabolism and appetite level (17). Although, our

results were in line with the above studies, other studies showed

conflicting results compared with ours. Million et al. (30) found that

the gut microbiota of humans with obesity is depleted in M. smithii.
Two studies also reported that M. smithii was negatively correlated

with BMI (19,31). Fernandes et al. (23) found that archaea presence

was not associated with increased BMI. Armougom et al. (20) did

not find a difference in the abundance of M. smithii in individuals

with obesity compared with normal weight individuals. Differences

in the methods and designs, such as techniques to detect methano-

gens, sample sizes, geographical settings, and dietary habits of the

participants might all contribute to these different findings. More-

over, our study differs compared with most previous studies with

respect to participants’ weight status, which is in the normal range

for the majority of subjects, and their young age.

We collected feces from the children at an age where stability of the

gut microbiota is believed to be achieved and may be comparable to

the adult microbiota. A number of studies revealed that the child-

hood microbiota has evolved into an adult-like configuration by the

age of 2-3 years (32-34). Little is known whether the levels of arch-

aea present in children are comparable to adults and studies have

not yet been done on children above 3 years.

The large sample size and longitudinal design are major strengths of

the present study. Questionnaires were repeatedly collected during

the developmental stages of the children, yielding vast information

on anthropometric data over time. The presence of detailed and pro-

spective information on background factors enabled the adjustments

of many confounders, including physical activity and diet. Results

showed an independent association of archaea with weight out-

comes, regardless of such confounding factors.

Our study also has some limitations. Repeated weight and height

measurements in our study were parent-reported. A study by Schol-

tens et al. showed that this may lead to both an underestimation of

the children’s weight and an overestimation of their height, resulting

in a lower BMI and lower prevalence of overweight (35). Another

study showed the opposite, that is, an overestimation of weight

implying more overweight in parent-reported information (36). A

validation study using data from the KOALA Birth Cohort Study,

found an underestimation of overweight was found with parent-

reported data compared with data collected during home visits (37).

Based on this, it is likely that anthropometric measurements by

well-trained persons may lead to stronger associations between BMI

and archaea. This may have resulted in an underestimation of the

true associations.

Fecal samples of the children were collected only at one time

point. We assumed that the colonization with archaea in the chil-

dren is relatively constant over time. Indeed, previous studies

TABLE 4 GEE results showing association of overweight (yes/no) from 6 to 10 years of age with the prevalence of colonization
and counts (log10 DNA copies/g feces) of archaea species in the gut microbiota at 6-7 years of agea

n Crude OR [95% CI]b Adjusted OR [95% CI]c P-valued

OVERWEIGHT (YES/NO)
M. smithii prevalence

No 103 1.00 [reference] 1.00 [reference]

Yes 369 1.75 [0.77-3.96] 2.69 [0.96-7.54] 0.059

M. smithii count levels
None 103 1.00 [reference] 1.00 [reference]

Low (�7 log10 DNA copies/g feces) 251 1.64 [0.69-3.86] 2.40 [0.83-6.95] 0.108

High (�7 log10 DNA copies/g feces) 118 1.97 [0.80-4.85] 3.27 [1.09-9.83] 0.035

M. stadtmanae prevalence
No 433 1.00 [reference] 1.00 [reference]

Yes 39 1.20 [0.46-3.13] 1.14 [0.53-3.90] 0.483

Counts of archaeal species (log10 DNA copies/g feces)e, median [range]
M. smithii 1.05 [0.97-1.34] 1.10 [1.00-1.21] 0.047

M. stadtmanae 1.06 [0.92-1.22] 1.08 [0.94-1.25] 0.265

aGEE, generalized estimating equations.
bSample size used for crude analysis, N 5 472; OR 5 ecrudeb or eadjustedb.
cSample size for adjusted analysis, N 5 428 and N 5 406 for M. smithii and M. stadtmanae, respectively, due to missing values. Confounders in the final adjusted model
for M. smithii: household size, place and mode of delivery, birth weight, dietary intake (total fiber intake, total percentage energy intake, percentage energy intake for fats
and carbohydrates), antibiotic use, and physical activity; and for M. stadtmanae: household size, place and mode of delivery, birth weight, nutritional intake (total fiber
intake, total percentage energy intake, percentage energy intake for fats and carbohydrates), physical activity, maternal level of education (low, middle, and high), and
weight gain during pregnancy.
dColumn represents P-values for the adjusted analysis.
eGEE analysis was done using archaea (M. smithii and/or M. stadtmanae) positive samples only.
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TABLE 5 GEE results showing association of different continuous outcomes (BMI, weight, and height z-scores) from 6 to
10 years of age with the prevalence of colonization and counts (log10 DNA copies/g feces) of archaea species in the gut
microbiota at 6-7 years of agea

n Crude b [95% CI]b Adjusted b [95% CI]c P-valued

BMI Z-SCORESe

M. smithii count levels
None 103 0 [reference] 0 [reference]

Low (<7 log10 DNA copies/g feces) 251 0.07 [20.12 to 0.27] 0.10 [20.09 to 0.29] 0.286

High (>7 log10 DNA copies/g feces) 118 0.09 [20.14 to 0.32] 0.14 [20.07 to 0.38] 0.194

M. stadtmanae prevalence
No 433 0 [reference] 0 [reference]

Yes 39 0.04 [20.26 to 0.34] 0.15 [20.17 to 0.46] 0.358

Counts of archaeal species (log10 DNA copies/g feces), median [range]f

M. smithii 0.00 [20.02 to 0.03] 0.01 [20.01 to 0.03] 0.436

M. stadtmanae 0.02 [20.02 to 0.06] 0.03 [20.01 to 0.07] 0.186

WEIGHT Z-SCORES
M. smithii prevalence

No 103 0 [reference] 0 [reference]

Yes 369 0.13 [20.06 to 0.31] 0.18 [0.00 to 0.36] 0.046

M. smithii count levels
None 103 0 [reference] 0 [reference]

Low (<7 log10 DNA copies/g feces) 251 0.12 [20.08 to 0.32] 0.18 [20.01 to 0.36] 0.071

High (>7 log10 DNA copies/g feces) 118 0.15 [20.08 to 0.38] 0.20 [20.02 to 0.40] 0.077

M. stadtmanae prevalence
No 433 0 [reference] 0 [reference]

Yes 39 0.16 [20.15 to 0.48] 0.15 [20.16 to 0.46] 0.335

Counts of archaeal species (log10 DNA copies/g feces), median [range]f

M. smithii 0.01 [20.01 to 0.04] 0.01 [20.01 to 0.04] 0.228

M. stadtmanae 0.04 [20.01 to 0.08] 0.03 [20.01 to 0.08] 0.107

HEIGHT Z-SCORES
M. smithii prevalence

No 103 0 [reference] 0 [reference]

Yes 369 0.09 [20.09 to 0.27] 0.13 [20.05 to 0.31] 0.170

M. smithii count levels
None 103 0 [reference] 0 [reference]

Low (<7 log10 DNA copies/g feces) 251 0.10 [20.10 to 0.29] 0.14 [20.05 to 0.34] 0.134

High (>7 log10 DNA copies/g feces) 118 0.07 [20.16 to 0.29] 0.07 [20.13 to 0.29] 0.477

M. stadtmanae prevalence
No 433 0 [reference] 0 [reference]

Yes 39 0.15 [20.16 to 0.46] 0.06 [20.27 to 0.39] 0.726

Counts of archaeal species (log10 DNA copies/g feces), median [range]
M. smithii 0.01 [20.02 to 0.03] 0.01 [20.02 to 0.03] 0.708

M. stadtmanae 0.03 [20.01 to 0.08] 0.02 [20.02 to 0.07] 0.369

aGEE, generalized estimating equations.
bSample size used for crude analysis, N 5 472.
cSample size for adjusted analysis, N 5 428 and N 5 406 for M. smithii and M. stadtmanae, respectively, due to missing values. Confounders in the final adjusted model
for M. smithii: household size, place and mode of delivery, birth weight, dietary intake (total fiber intake, total percentage energy intake, percentage energy intake for fats
and carbohydrates), antibiotic use, and physical activity; and for M. stadtmanae: household size, place and mode of delivery, birth weight, nutritional intake (total fiber
intake, total percentage energy intake, percentage energy intake for fats and carbohydrates), physical activity, maternal level of education (low, middle, and high), and
weight gain during pregnancy.
dColumn represents P-values for the adjusted analysis.
eModel with M. smithii prevalence as main determinant in association with BMI z-score not presented due to significant interaction with age.
fGEE analysis was done using archaea (M. smithii and/or M. stadtmanae) positive samples only.
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have shown that the quantities of M. smithii in human feces

remained constant over time (38). This trend of stability of

M. smithii has also been reported over a 13-month period using

fecal specimens from two individuals (39). Additionally, a com-

parative analysis of the genome of M. smithii and its transcriptome

and metabolome in gnotobiotic mice in the absence and presence

of B. thetaiotaomicron indicated that M. smithii survives in the

intestinal tract of the gnotobiotic mice through different survival

and colonization mechanisms despite the presence of its competi-

tors for substrates (40). However, future studies are warranted in

which fecal samples are collected at different time points of

anthropometric measurements to accurately assess the change of

archaea prevalence or counts in an individual over time. This

could further establish changes in the archaeal microbiota due to

different physiological, pathological, and iatrogenic (e.g., adminis-

tration of certain antibiotics) conditions over time.

In conclusion, this study demonstrates that the presence as well

as the higher counts of M. smithii in the gut of children at school

age is associated with overweight, higher weight, and BMI

z-scores from 6 to 10 years of age. This finding further supports

the role of the methanogenic archaea in obesity after controlling

for diet and physical activity which are the main factors

associated with obesity. As such, manipulating the intestinal

(archaeal) microbiota represents a potential strategy to apply

together with dietary restrictions and exercise in the control of

obesity. So far, little is known about the factors that determine

archaea colonization in the gut. This indicates a pressing need for

further research on these determinants of archaeal colonization

which may be used to control colonization of the gut by archaea

in the future.

Supporting Information on plasmid construction for positive controls

(S1) and standard curves Figure S1(a) and (b) are available at www.

onlinelibrary.wiley.com.O

VC 2015 The Obesity Society
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