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BACKGROUND & AIMS: Non-alcoholic steatohepatitis is
characterized by hepatic steatosis with inflammation. Although
steatosis is benign and reversible, inflammation can increase
liver damage. Hepatic inflammation has been associated with
accumulation of cholesterol in lysosomes of Kupffer cells. 27-
Hydroxycholesterol (27HC), a derivative of cholesterol formed
by CYP27A1, can mobilize cholesterol from the lysosomes to
the cytoplasm. We investigated whether 27HC can change the
intracellular distribution cholesterol and reduce hepatic inflam-
mation in mice. METHODS: We transplanted bone marrow
from irradiated wild-type or Cyp27a1�/� mice to mice that do
not express the low density lipoprotein receptor (Ldlr�/�), which
are hyperlipidemic; 9 weeks later, mice were fed either regular
chow or a high-fat, high-cholesterol (HFC) diet for 3 months. In
a separate experiment, Ldlr�/� mice were given subcutaneous
injections of 27HC and placed on regular chow or HFC diets
for 3 weeks. Blood and liver tissues samples were collected and
analyzed for intracellular cholesterol distribution and inflam-
mation. RESULTS: In Ldlr�/� mice that received bone marrow
transplants from Cyp27a1�/� mice, lysosomes of Kupfer cells

ad a greater accumulation of cholesterol than those of mice
hat received bone marrow from wild-type mice, after the HFC
iet. Liver histology and gene expression analyses showed in-
reased inflammation and liver damage in mice given bone
arrow transplants from Cyp27a1�/� mice and placed on the
FC diet. Administration of 27HC to Ldlr�/� mice, following

the HFC diet, reduced the accumulation of lysosomal choles-
terol and hepatic inflammation, compared with mice that were
not given 27HC. CONCLUSIONS: Accumulation of choles-
terol in lysosomes of Kupfer cells promotes hepatic inflam-
mation in mice. The cholesterol derivative 27HC reduces
accumulation of cholesterol in lysosomes and might be
used to treat non-alcoholic steatohepatitis.

Keywords: Metabolic Syndrome; Fatty Liver; NAFLD;
Mouse Model.

Non-alcoholic fatty liver disease (NAFLD) is the hepatic
component of metabolic syndrome, a cluster of risk
actors that contribute to the development of type 2 diabetes
nd cardiovascular disease. Non-alcoholic steatohepatitis
NASH) is considered to be the most severe form of NAFLD
nd is characterized by fat accumulation in the liver (steato-
is) and hepatic inflammation. Whereas steatosis itself is
enerally considered a rather benign and reversible condi-
ion, the presence of inflammation in a fatty liver is the key
eature of NASH that precedes further disease progression and
nables the development of more advanced stages of the dis-
ase, such as fibrosis, cirrhosis, or hepatocellular carcinoma,
ften leading to the need for liver transplantation.1 Knowledge
f the intracellular mechanisms that trigger inflammation dur-

ng NASH is therefore of utmost importance.
Various mechanisms have been proposed for the intra-

ellular triggering of inflammation. In mice lacking the
ow-density lipoprotein receptor (Ldlr�/�), we have previ-

ously shown that hematopoietic deletion of the 2 main
scavenger receptors (CD36 and scavenger receptor A),
which are responsible for the uptake of modified lipopro-
teins, sets off a cascade of proinflammatory events leading
to the initiation of the inflammatory response in the
liver.2 Moreover, the reduced inflammatory response was

ssociated with less lysosomal cholesterol accumulation
nside Kupffer cells (KCs).3,4 However, a causal link be-
ween lysosomal cholesterol accumulation in KCs and
epatic inflammation has not yet been established.
Under normal conditions, lipoproteins circulating in

he blood will be endocytosed by macrophages and ini-
ially directed to lysosomes, where the lipoproteins are
ydrolyzed by lysosomal enzymes and transferred into the

Abbreviations used in this paper: 27HC, 27-hydroxycholesterol
(25(R)26 hydroxycholesterol); ALT, alanine aminotransferases; COL1A1,
collagenase 1A1; CTX, cerebrotendinous xanthomatosis; HFC, high-fat high
cholesterol; IL, interleukin; KC, Kupffer cell; LAL, lysosomal acid lipase;
Ldlr, low-density lipoprotein receptor; LXR, liver-X receptor; Mcp-1, mono-
cyte chemoattractant protein 1; NAFLD, non-alcoholic fatty liver disease;
NASH, non-alcoholic steatohepatitis; NPC, Niemann-Pick type C; TG, trig-
lycerides; TNF, tumor necrosis factor; tp, transplanted; Wt, wild type.
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cytoplasm.5 However, in foamy macrophages of inflamed
atherosclerotic plaques, cholesterol is not transferred into
the cytoplasm but rather accumulates in the lysosomes of
the macrophages.6 Accumulation of cholesterol inside ly-
osomes is also a key feature of Niemann–Pick disease
ype C (NPC1), a lipid storage disease resulting from a
eletion in the NPC1 gene, which encodes a key protein

nvolved in the translocation of cholesterol from the ly-
osomes to the cytoplasm. NPC1 deficient cells have a
everely reduced production of 27-hydroxycholesterol
27HC), one of the major oxysterols found in the human
irculation, which is produced by the mitochondrial en-
yme CYP27A1. Notably, the lysosomal cholesterol pool
n NPC1�/� fibroblasts is dramatically reduced upon in-
ubation with 27HC.7,8 Thus, 27HC has been shown to
educe lysosomal cholesterol accumulation in vitro.

The aim of the current study was to investigate whether
he mobilization of cholesterol inside the KCs from the
ysosomes to the cytoplasm can reduce hepatic inflamma-
ion in vivo. We injected bone marrow cells from
yp27a1�/� mice into lethally irradiated Ldlr�/� hyperlip-

demic host mice to generate bone marrow chimeras with
ecreased production of 27HC specifically in hematopoi-
tic cells. We hypothesized that this decreased production
f 27HC by KCs would inhibit the translocation of cho-

esterol from the lysosomes to the cytoplasm and thereby
ncrease hepatic inflammation. In agreement with our
ypothesis, we indeed demonstrated that mice trans-
lanted (tp) with Cyp27a1�/� bone marrow (Cyp27a1�/�-
p) showed higher lysosomal cholesterol accumulation in
Cs than mice transplanted with bone marrow from
ild-type (Wt) C57Bl/6. In addition, the increased lyso-

omal cholesterol accumulation in these mice was associ-
ted with increased inflammation and liver damage. Next,
o examine whether exogenous administration of 27HC
25(R)26-hydroxycholesterol) would decrease inflamma-
ion, Ldlr�/� mice were injected with 27HC. These mice

had reduced lysosomal cholesterol accumulation, which
was associated with far less hepatic inflammation than in
control injected Ldlr�/� mice. Altogether, these data sup-
port a causal role for lysosomal cholesterol accumulation
in hepatic inflammation and highlight the potential of
using 27HC as a novel treatment for NASH.

Materials and Methods
Mice, Diet, and Bone Marrow
Transplantation
Mice were housed under standard conditions and given

free access to food and water. Experiments were performed
according to Dutch regulations and approved by the Committee
for Animal Welfare of Maastricht University. In the first study,
12-week-old female Ldlr�/� mice were lethally irradiated and
ransplanted with Wt or Cyp27a1�/� bone marrow as previously
escribed.2 After a recovery period of 9 weeks, the mice were
iven either chow or HFC diet for 3 months (chow: n � 5; HFC:
� 10). In the second experiment, the effects of 27HC (25(R)26-

hydroxycholesterol) on NASH were investigated in female

Ldlr�/� mice by means of daily subcutaneous injections with 40
mg per kg of body weight of 27HC for 3 weeks. Two-hydroxy-
propyl-�-cyclodextrin (H5784; Sigma–Aldrich GmbH, Zwijn-

recht, the Netherlands) was used as a vehicle to dissolve 27HC,
s described by De Caprio et al.9 Two-hydroxypropyl-�-cyclodex-

trin was also used for the control injections. The mice were given
chow or HFC diet for 3 weeks (n � 9 for all groups). To
nvestigate the therapeutic effect of 27HC, one group of Ldlr�/�

mice on HFC diet received control injections for 2 weeks and
injections with 27HC in the third week (n � 9). In the chow diet,
no evidence for 27HC was found (or it was below the detection
limit). In the HFC diet, 27HC reached a concentration of 1.428
ng/mg. The HFC diet contained 21% milk butter, 0.2% choles-
terol, 46% carbohydrates, and 17% casein. Collection of blood
and tissue specimens, biochemical determination of lipids in
plasma and liver, liver histology, electron microscopy, RNA iso-
lation, complementary DNA synthesis and quantitative poly-
merase chain reaction, aminotransferases, and oxysterols were
determined as described previously.2– 4,10,11 Information about
the obese NASH subjects, the KC isolation, the cathepsin D
activity assay, the malondialdehyde assay, the antioxidant capac-
ity assay, and the statistical analysis are described extensively in
Supplementary Materials and Methods.

Results
Steatosis Is Not Affected by Hematopoietic
Deletion of Cyp27a1, Whereas Plasma Lipid
Levels Are Significantly Reduced
The role of CYP27A1 in diet-induced NASH was

investigated by transplanting Cyp27a1�/� (Wt) and
yp27a1�/� bone marrow into Ldlr�/� mice. After a recov-
ry period of 9 weeks, mice received chow or HFC diet for

months. Body weight did not differ significantly be-
ween groups (data not shown). After 3 months of HFC
iet, equal levels of steatosis developed in the 2 trans-
lanted groups. Neither hepatic triglyceride (TG) levels
or hepatic cholesterol differed between the groups (Table
). Additionally, Oil Red O staining showed no difference in
he levels of liver lipids in Wt-tp and Cyp27a1�/�-tp mice
pon HFC diet (Supplementary Figure 1). When compar-

ng chow and HFC fed mice, hepatic 27HC/cholesterol
evels were decreased upon HFC feeding (Wt-tp chow vs

FC diet: P � .0001; Cyp27a1�/�-tp chow vs HFC diet:
� .0001), although there were no differences between
t-tp and Cyp27a1�/�-tp mice (Table 1). In general, both

groups developed equal levels of hepatic steatosis.
In mice on an HFC diet, plasma lipid levels were increased,

whereas total cholesterol (P � .0014) as well as TG (P �
.0004) levels were significantly lower in Cyp27a1�/�-tp mice
than in their controls (Table 1). In addition, the levels of
27HC in plasma were lower in Cyp27a1�/�-tp mice than in
Wt-tp mice (P � .048). There were no differences between
the groups of mice fed a chow diet (Table 1).

CYP27A1 Influences the Foamy Appearance
and Lysosomal Cholesterol Storage of KC
To determine whether there was a difference in the

foamy appearance of KCs, liver sections were stained for
CD68, a macrophage marker that stains KCs. After dietary

intervention, CD68-positive cells were swollen and in-
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January 2013 ROLE OF CYP27A1 AND 27HC IN NASH 169
creased in size, resembling the aggregation of lipoproteins
in foamy macrophages during atherosclerotic lesion de-
velopment. This foamy phenotype of KCs is similar to
previous studies performed when Ldlr�/� mice are fed a
HFC diet.10,12 Of note, the increased size was correlated

ith the increased lipid content within these cells. The
omparison of CD68-positive cells revealed a clear differ-
nce between the KCs of the Cyp27a1�/�-tp and Wt-tp
ice. The KCs of Wt-tp mice on the HFC diet were

xtremely foamy, whereas the KCs of Cyp2a17�/�-tp mice
ere much less foamy after 3 months on the HFC diet

Figure 1A). These data were also confirmed by gene
xpression analysis of Cd68 (P � .015), which demon-
trated reduced expression of this macrophage marker in
he livers of mice with hematopoietic deletion of Cyp27a1
Figure 1B). These data suggest that Cyp27a1�/�-tp mice
n HFC diet have altered hepatic cholesterol metabolism.

Next, electron microscopy was performed to explore the
ntracellular cholesterol distribution inside KCs. As demon-
trated in Figure 1, Wt-tp mice on HFC diet had more lipid
roplets inside KCs than the Cyp27a1�/�-tp mice. Although
Cs of Cyp27a1�/�-tp mice were less foamy on HFC diet,

hese KCs had more lysosomal cholesterol accumulation
han Wt-tp mice, as indicated by the lysosomal acid phos-
hatase staining (Figure 1D). Acid phosphatase staining also
howed that a large amount of lipids was present outside the
ysosomes in the KCs of the Wt-tp mice. We also saw more
bnormal lipid structures resembling cholesterol precipita-
ions in the KCs of Cyp27a1�/�- tp mice than in those of

t-tp mice. The changes in intracellular lipid distribution in
yp27a1�/�-tp mice were accompanied by higher hepatic

levels of the lysosomal enzyme cathepsin D (P � .031) than
in Wt-tp mice on the HFC diet (Figure 1C). Altogether, these
data demonstrate disturbed lysosomal storage in KCs of
Cyp27a1�/�-tp mice.

Increased Liver X Receptor Expression in
Cyp27a1�/�-tp Mice
To investigate the effect of the Cyp27a1 deletion on

cellular cholesterol homeostasis, gene expression of the

Table 1. Liver and Plasma Lipid Levels: Wt-tp and Cyp27a1�/

Chow

Wt-tp C

iver
TG (�g TG/�g Prot) 0.21 (�0.032) 0.1
Chol (�g Chol/�g Prot) 0.090 (�0.017) 0.08
27HC/Chol 0.46 (�0.082) 0.5

lasma
TG (mmol/L) 0.46 (�0.093) 0.4
Chol (mmol/L) 6.79 (�0.31) 6.3
27HC/Chol (*10�3) 0.047 (�0.00061) 0.04

NOTE. Liver and plasma triglycerides, cholesterol, and 27HC levels af
Chol, cholesterol; Prot, protein; TG, triglycerides.
aP � .001.
bP � .01.
cP � .05.
nuclear receptor Liver X receptor (Lxr) and its down- o
stream target genes sterol regulatory element binding
protein 1c (Srebp-1c), adenosine triphosphate-binding cas-
sette transporter A1 (Abca1), and G1 (Abcg1) was analyzed
in total liver. The expression of Lxr-� (P � .037), together
with the target genes Srebp-1c (P � .033), Abca1 (P � .012),
and Abcg1 (P � .016) was higher in Cyp27a1�/�-tp mice
han in Wt-tp mice upon HFC diet (Supplementary Figure
). These data indicate that LXR is more active in
yp27a1�/�-tp mice than in Wt-tp mice.

Cyp27a1�/�-tp Mice Demonstrate Increased
Hepatic Inflammation and Liver Damage
To investigate the effect of hematopoietic deletion

of Cyp27a1 on hepatic inflammation, liver sections were
tained with antibodies against several inflammatory

arkers. This revealed a significantly higher level of in-
ammation in the livers of Cyp27a1�/�-tp mice than in
hose of Wt-tp mice (Figure 2A), as indicated by the
igher numbers of infiltrating macrophages (P � .0039),
eutrophils (P � .031), and T cells (P � .010) in these

mice. Moreover, Mac-1-positive cells were more clustered
in Cyp27a1�/�-tp mice than in Wt-tp mice (Figure 2B). To

efine further the differences in hepatic inflammation, we
nalyzed gene expression of the proinflammatory cyto-
ines tumor necrosis factor (Tnf), monocyte chemoattrac-
ant protein 1 (Mcp-1), interleukin 1 � (Il-1�), and Il-6,

which are known to be elevated in NASH patients and
animals and to activate nuclear factor-�B signaling and
acute phase protein production in the liver.13,14 As shown
in Figure 2C, gene expression of Tnf (P � .043), Mcp-1 (P �
050), Il-1� (P � .037), and Il-6 (P � .0034) was signifi-
cantly higher in Cyp27a1�/�-tp mice than in Wt-tp mice

n the HFC diet, confirming the histologic data.
To explore the role of CYP27 on oxidative stress, the

ipid peroxidation marker malondialdehyde and the anti-
xidant marker Trolox Equivalent Antioxidant Capacity
ere measured in livers of Wt- and Cyp27a1�/�-tp mice.

These data indicate that the level of oxidative stress was
not affected in both Wt- and Cyp27a1�/�-tp mice (Supple-

entary Figure 3A). In addition, hepatic expression levels

Mice

HFC

7�/�-tp Wt-tp Cyp27�/�-tp

0.024) 0.50 (�0.074) 0.49 (�0.072)
0.0049) 0.26 (�0.024) 0.26 (�0.033)
0.10) 0.15 (�0.026) 0.13 (�0.022)

0.086) 1.7 (�0.50) 0.79 (�0.24)a

0.54) 36.71 (�1.65) 22.48 (�2.62)b

0.00071) 0.051 (�0.0041) 0.045 (�0.0057)c

chow and HFC diet.
�-tp

yp2

5 (�
7 (�
1 (�

2 (�
9 (�
6 (�

ter
f several anti- and pro-oxidant genes such as Catalase,
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superoxide dismutase 2 (Sod-2), heme oxygenase (Hmox),
glutathione s-transferase (Gst), cytochrome P450 2E1
(Cyp2E1), and C/EBP homologous protein (Chop) con-
firmed that there were no significant differences in oxida-
tive stress between Wt- and Cyp27a1�/�-tp mice (Supple-

Figure 1. Foamy Kupffer cells in Wt-tp and Cyp27a1�/�-tp mice. (A) R
months of chow or HFC diet. (B) Gene expression of the macrophage m
epresentative electron microscopy pictures of KCs after 3 months of HF
rrows). Abnormal lipid structures resembling cholesterol precipitations
mentary Figure 3B).
Elevated alanine aminotransferase (ALT) levels in
plasma are considered to be sensitive indicators of liver
damage. After 3 months of HFC diet, plasma ALT levels
were higher in Cyp27a1�/�-tp mice than in Wt-tp mice
(P � .048) (Figure 3A). In line with these findings, hepatic

sentative pictures of CD68 staining (original magnification, 200�) after
ker Cd68. (C) Hepatic activity of the lysosomal enzyme Cathepsin D. (D)
iet. Lysosomes are indicated in black by acid phosphatase staining (solid
indicated by the broken arrows. *Indicates P � .05 and **P � .01.
epre
ar

C d
fibrosis was also higher in Cyp27a1�/�-tp mice than in
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Wt-tp mice, as demonstrated by collagen staining with
Sirius Red and gene expression analysis (Figure 3B–E).
Although fibrosis was moderate, Cyp27a1�/�-tp mice had
ncreased collagen content upon HFC diet than the Wt-tp

ice (Figure 3B and C). After 3 months of HFC diet,
hepatic gene expression of transforming growth factor �
(Tgf-�) (P � .044), metalloproteinase 9 (Mmp-9) (P � .050),

nd plasminogen activator inhibitor-1 (Pai-1) (P � .041)
as higher in Cyp27a1�/�-tp mice than in Wt-tp mice

Figure 3D). A similar trend was observed for the expres-
ion of collagen 1A1 (Col1a1) after 3 months of HFC diet;

Figure 2. Parameters of hepatic inflammation in Wt-tp and Cyp27a1
neutrophils, and T cells and the positive cells counted. (B) Representative
HFC diet. (C) Gene expression analysis of Tnf, Mcp-1, Il-1�, and Il-6. Gen

� .05 and **P � .01.
owever, this did not reach statistical significance (P �
08). Activated hepatic stellate cells could not be observed
n Wt- and Cyp27a1�/�-tp mice upon HFC diet, neither by

�-smooth muscle cell actin (�-SMA) staining nor by gene
xpression of �-Sma (Supplementary Figure 4). Altogether,

these data indicate that Cyp27a1�/�-tp mice are more
susceptible to hepatic inflammation and liver damage.

Administration of 27HC Does Not Affect
Steatosis but Lowers Plasma Cholesterol Levels
Next, to investigate whether exogenous adminis-

tration of 27HC can reduce inflammation during NASH,

-tp mice. (A) Liver sections were stained for infiltrating macrophages,
ctures of Mac-1 staining (original magnification, 200�) after 3 months of
xpression data are shown relative to Wt-tp mice on chow diet. *Indicates
�/�

pi
e e
Ldlr�/� mice were given daily injections of 27HC or con-
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trol vehicle for 3 weeks and received either chow or HFC
diet during this period. An extra group on the HFC diet
received a control injection for 2 weeks, followed by 27HC
injection in the last week. Plasma and liver 27HC levels
increased significantly upon 27HC administration (P �
0001), whereas HFC diet caused a reduction in hepatic

7HC/cholesterol levels compared with chow (control
chow vs HFC diet: P � .0001; 27HC chow vs HFC diet:
P � .0001) (Table 2). After 3 weeks of HFC diet, body
weights did not differ significantly (data not shown), and
equal levels of steatosis were observed in the different
groups, as confirmed by Oil Red O staining (Supplemen-
tary Figure 5). Although hepatic TG levels were similar,

Figure 3. Liver damage and
hepatic fibrosis in Wt-tp and
Cyp27a1�/�-tp mice. (A) Plasma
alanine aminotransferase (ALT)
levels. (B) Quantification of Sirius
Red staining after HFC diet. Liv-
ers were quantified by percent-
age of collagen present. (C) Rep-
resentative pictures of Sirius Red
staining (original magnification,
100�)ofWt-tpandCyp27a1�/�-tp
mice on HFC diet. (D) Hepatic
gene expression of Tgf-�, Col1a1,
Mmp-9, and Pai-1. Gene expres-
sion data are shown relative to
Wt-tp mice on chow diet. *Indi-
cates P � .05.
hepatic cholesterol levels were significantly lower in the
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27HC-treated mice on HFC diet than in control mice
(27HC vs control: P � .0023; 2 weeks control � 1 week

7HC vs control: P � .008) (Table 2). Plasma cholesterol
levels were lower in 27HC-injected mice than in control
mice on HFC diet (P � .013). There were no differences
between the groups on chow diet (Table 2).

KCs Are Less Foamy and Have Less Lysosomal
Cholesterol Storage After 27HC
Administration
After daily administration of 27HC to Ldlr�/�

mice, CD68 staining revealed a clear difference between
27HC and control-injected mice on HFC diet, with the
KCs in 27HC-injected mice having a less foamy appear-
ance (Figure 4A). These data are in line with reduced gene
expression of Cd68 (27HC vs control: P � .031; 2 weeks
control � 1 week 27HC vs control: P � .050) (Figure 4B).

lectron microscopy of KCs from 27HC-injected mice
emonstrated fewer lipids present inside lysosomes, indi-
ated by acid phosphatase staining, and lower numbers of
bnormal lipid structures resembling cholesterol precipi-
ations (Figure 4D). In addition, whereas cholesterol crys-
als were present in the KCs of control injected mice upon
FC diet, they were not detected in KCs of 27HC-injected
ice. The activity of the lysosomal enzyme cathepsin D in

he livers of 27HC-injected mice was also lower than in
ontrol mice (27HC vs control: P � .025) (Figure 4C).
ogether, these data indicate that 27HC plays an impor-

ant role in cellular cholesterol distribution.

Increased LXR Expression in Kupffer Cells,
but Not in Total Liver, Upon 27HC
Administration
To investigate the role of 27HC as physiologic LXR

ligand, gene expression of Lxr and its downstream target
genes Srebp-1c, Abca1, and Abcg1 were analyzed in total
iver and isolated KCs upon 27HC administration. The
xpression in total liver of Lxr-� (27HC vs control: P �
040; 2 weeks control � 1 week 27HC vs control: P �

Table 2. Liver and Plasma Lipid Levels: Control- and 27HC-Inj

Chow

Control 27HC

iver
TG (�g TG/�g Prot) 0.29 (�0.084) 0.28 (�0.11)
Chol (�g Chol/�g Prot) 0.091 (�0.0086) 0.088 (�0.0071)
27HC/Chol 0.36 (�0.067) 7.73 (�1.55)b

Plasma
TG (mmol/L) 0.93 (�0.24) 1.23 (�0.32)
Chol (mmol/L) 8.28 (�0.19) 7.31 (�0.16)
27HC/Chol (*10�3) 0.43 (�0.034) 19.15 (�7.33)b

NOTE. Liver and plasma triglycerides, cholesterol, and 27HC levels af
Chol, cholesterol; TG, triglycerides.
aP � .01.
bP � .001.
cP � .05.
.0083), together with the target genes Srebp-1c (27HC vs
control: P � .050), Abca1 (27HC vs control: P � .034; 2
weeks control � 1 week 27HC vs control: P � .041), and
Abcg1 (27HC vs control: P � .021; 2 weeks control � 1
week 27HC vs control: P � .018) was lower upon 27HC
administration than in control mice after HFC feeding
(Supplementary Figure 6A). In isolated KCs, expression of
Lxr-� (27HC vs control: P � .040), Srebp-1c (27HC vs
ontrol: P � .038), and Abca1 (27HC vs control: P � .044;
weeks control � 1 week 27HC vs control: P � .025) was
igher upon 27HC administration than in control mice

Supplementary Figure 6B). These data suggest that the
gonistic effect of 27HC on LXR in KCs is not dominant
n all liver cells but is restricted to KCs.

Hepatic Inflammation Is Reduced Upon 27HC
Treatment
Injections with 27HC reduced the number of in-

filtrating macrophages (27HC vs control: P � .0051; 2
weeks control � 1 week 27HC vs control: P � .0097),
neutrophils (27HC vs control: P � .021), and T cells (for
both 27HC vs control and 2 weeks control � 1 week
27HC vs control: P � .0001) in mice fed HFC diet (Figure
5A and B), demonstrating the anti-inflammatory proper-
ties of 27HC. In addition, gene expression of Tnf (27HC vs
control: P � .030), Mcp-1 (27HC vs control: P � .0027; 2

eeks control �1 week 27HC vs control: P � .029), and
l-1� (27HC vs control: P � .050) was lower in 27HC-
njected mice than in controls on HFC diet (Figure 5C).
Cs isolated from 27HC-injected mice on HFC diet also
ad a lower expression of Tnf (27HC vs control: P � .038;
weeks control � 1 week 27HC vs control: P � .046),
cp-1 (27HC vs control: P � .050; 2 weeks control � 1
eek 27HC vs control: P � .038), and Il-1� (27HC vs

ontrol: P � .021; 2 weeks control �1 week 27HC vs
control: P � .012) (Supplementary Figure 7), also demon-
strating the effect of 27HC on KCs. Furthermore, expres-
sion of these inflammatory genes in isolated KCs is more

ed Mice

HFC

Control 27HC
2 weeks Control � 1 week

27HC

0.64 (�0.14) 0.64 (�0.13) 0.63 (�0.15)
0.54 (�0.092) 0.41 (�0.060)a 0.44 (�0.040)a

0.10 (�0.014) 1.70 (�0.39)b 0.96 (�0.16)b

4.72 (�2.18) 3.80 (�2.57) 5.25 (�2.36)
2.02 (�2.39) 29.74 (�2.06)c 36.99 (�2.27)
0.60 (�0.026) 6.65 (�1.07)b 6.20 (�0.64)b

chow and HFC diet.
ect

4

ter
than 10-fold higher compared with total livers, demon-
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strating that the inflammatory response in the liver is
mainly derived from KCs.

No differences were observed in plasma ALT levels or hepatic
fibrosis after HFC diet (data not shown), which is probably
related to the short duration of the HFC diet. In addition, the
level of oxidative stress was not affected upon 27HC adminis-
tration (Supplementary Figure 8). In conclusion, 27HC plays an
important role during hepatic inflammation.

27HC Is Not Elevated in NASH Patients
To test the potential clinical utility of 27HC to

NASH patients, we measured plasma 27HC/cholesterol
levels in 69 obese subjects (average body mass index �

4.2), classified into normal, steatosis, or NASH according
o the criteria of Kleiner, as described previously.15–18 Male
ubjects had 15% higher 27HC levels than females (P �
021), independent of plasma cholesterol (Supplementary
igure 9A). Although a positive correlation between

Figure 4. Foamy Kupffer cells, electron microscopy, and Cathepsin D
CD68 staining (original magnification, 200�) after 3 weeks of chow or H
ctivity of the lysosomal enzyme Cathepsin D. (D) Representative electr
hosphatase staining (solid arrows), abnormal lipid structures resemb
holesterol crystals are indicated by asterisks. *Indicates P � .05 and **
lasma cholesterol and 27HC levels was observed (males: t
� 0.22, P � .0001; females: r � 0.58, P � .0001)
(Supplementary Figure 9B and C), there was no difference
in 27HC levels in NASH patients compared with subjects
with a healthy liver or steatosis (data not shown).

Discussion
Despite considerable efforts to unravel them, the

mechanisms underlying the causes of inflammation in
NASH are largely unknown, thereby limiting the treat-
ment options for NASH. We have previously shown di-
etary cholesterol to be an important factor in the devel-
opment of hepatic inflammation in mice.10 Here, we show
hat lysosomal cholesterol accumulation inside KCs may
e a major trigger for the development of hepatic inflam-
ation. This study also provides the first in vivo evidence

hat 27HC has an impact on intracellular cholesterol
istribution in KCs. Finally, the current study points to

ivity in control- and 27HC-injected mice. (A) Representative pictures of
diet. (B) Gene expression of the macrophage marker Cd68. (C) Hepatic
microscopy pictures of KCs. Lysosomes are indicated in black by acid

cholesterol precipitations are indicated by the broken arrows, and
.01.
act
FC
on
ling
he potential of 27HC as a novel treatment for NASH.
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Association Between Lysosomal Cholesterol
Accumulation and Inflammation in NASH
Whereas the intracellular cholesterol distribution

Figure 5. Parameters of hepatic inflammation in control- and 27HC-in
neutrophils, and T cells and the positive cells counted. (B) Representativ
HFC diet. (C) Gene expression analysis of Tnf, Mcp-1, and Il-1�. Data are
and ***P � .001.
specifically in KCs has not yet been shown to affect he-
patic inflammation, several lines of evidence have indi-
cated a general association between lysosomal cholesterol
accumulation and inflammation. One factor important in

ted mice. (A) Liver sections were stained for infiltrating macrophages,
ictures of Mac-1 staining (original magnification, 200�) after 3 weeks of
own relative to control mice on chow diet. *Indicates P � .05, **P � .01,
jec
e p
sh
preventing such cholesterol accumulation in lysosomes is
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the enzyme lysosomal acid lipase, essential for the hydro-
lysis of triglycerides and cholesteryl esters in lysosomes. A
deficiency in this enzyme leads to lysosomal cholesterol
accumulation and inflammation in multiple organs, phe-
nomena similar to our observations in hyperlipidemic
mice (Ldlr�/�). Likewise, patients with mutations in NPC

and 2, proteins that facilitate the movement of choles-
erol from the lysosomes to the cytoplasmic compart-

ent, commonly have a very poorly functioning liver, and
pproximately 10% of these patients die of liver failure.19

Whereas lysosomes have been assigned a central role in
many processes involving tissue injury and inflamma-
tion,20 the association between lysosomal cholesterol stor-
age and inflammation in relation to the metabolic syn-
drome is not fully understood. In the present study, we
show that increased lysosomal cholesterol storage leads to
increased hepatic inflammation. These data are in line
with the finding in Ldlr�/� mice on an HFC diet that a
decrease in lysosomal cholesterol storage by means of
exogenous lysosomal acid lipase administration leads to
significant reductions in hepatic inflammation, steatosis,
and atherosclerotic lesion size.21

By reducing lysosomal cholesterol storage and damage,
27HC can indirectly reduce inflammation by several
mechanisms. Because we observed decreased hepatic ca-
thepsin D activity and reduced lysosomal cholesterol stor-
age upon 27HC treatment, lysosomal instability can also
be a possible explanation for the inflammatory response
observed in our experiments because the stability and
integrity of lysosomal membranes are important to main-
tain normal levels of lysosomal enzymes in tissues and
body fluids.22 Furthermore, 27HC administration resulted
in reduced formation of cholesterol crystals inside KCs.
Because these crystals can induce rupture of phagolyso-
somes leading to the release of the proteolytic lysosomal
contents into the cytosol and thereby activation of the
NOD-like receptor protein 3 (NLRP3) inflammasome,
treatment with 27HC can prevent the proinflammatory
effects of inflammasome activation.23 Therefore, the re-
duced activity of cathepsin D and the absence of choles-
terol crystals inside KCs upon 27HC administration can
be a possible explanation for the beneficial effects of
27HC on lysosomal cholesterol storage and inflammatory
gene expression. Because KCs are a primary source of
inflammatory cytokines in the liver24 and can indirectly
nfluence the phenotype of neighboring hepatocytes and
ther immune cells via the production of inflammatory
ytokines and cross talking with other liver cell types,25 it
s very likely that 27HC is also contributing (indirectly) to
he inflammatory properties on hepatocytes.

27HC Has the Potential to Lower Plasma
Cholesterol Levels
Our study makes use of hematopoietic cells from

knockout mice lacking the Cyp27a1 gene. In humans,
CYP27A1 deficiency leads to cerebrotendinous xanthoma-
tosis (CTX), a disease associated with the accumulation of

cholesterol and cholestanol in many organs. However,
Cyp27a1�/� mice lack the classic symptoms of CTX.26

They have either normal plasma lipid levels, similar to
CTX patients,27 or are hyperlipidemic.28 These findings
are supported by our current data: although on normal
diet, plasma cholesterol levels were similar in Cyp27a1�/�-tp

ice and Wt-tp mice, as well as in both 27HC and control-
njected mice, after an HFC diet, plasma cholesterol levels
ere dramatically lower in Cyp27a1�/�-tp and 27HC-in-

ected mice than in the control groups. Despite the re-
uced foamy appearance of KCs in Cyp27a1�/�-tp mice,
epatic inflammation was still higher than in control
ice. Thus, the inflammation observed in Cyp27a1�/�-tp

occurs despite the reduction in cholesterol levels. In keep-
ing with these observations, Zhang et al demonstrated
that, in Npc1�/�-tp Ldlr�/� mice, serum cholesterol and

G levels are reduced after an HFC diet in the presence of
ncreased aortic atherosclerosis.29 Altogether, the data

suggest that 27HC can affect cholesterol metabolism in
mice fed an HFC diet.

By measuring the expression of 27HC/cholesterol in
plasma of patients with a wide variety of fatty liver disease,
no differences in 27HC levels in NASH patients compared
with subjects with a healthy liver or steatosis were ob-
served. The absence of correlation between 27HC levels to
severity of NAFLD is likely related to the tight regulation
of 27HC synthesis by the mitochondria, which prevents a
decrease in 27HC levels.30 Nevertheless, in patients with

TX, the extremely low 27HC levels are correlated with
ncreased liver damage.31 Relevantly, a study using chime-

ric Npc1�/� mice, where 27HC synthesis by macrophages
s decreased, reveals an association between the lowered
7HC levels in macrophages and elevated cholesterol ox-

dation products and oxidative stress in macrophages and
lasma.29 Altogether, these data suggest that, although

plasma 27HC levels cannot be used as a marker for NASH,
elevating 27HC levels in NASH patients might be benefi-
cial. Therefore, further experiments are needed to test the
efficiency of 27HC in humans.

Potential of 27HC to Reduce Hepatic
Inflammation
Treatment options for NASH are currently limited

because of lack of understanding regarding the mecha-
nisms that triggers hepatic inflammation in these pa-
tients. In the present study, we have shown for the first
time that 27HC potentially reduces hepatic inflammation
in Ldlr�/� mice, apparently associated with reduced lyso-
somal cholesterol storage inside KCs. In line with our
findings, lysosomal cholesterol accumulation in Niemann–
Pick disease type C is associated with considerably re-
duced 27HC production in human NPC1�/� fibroblasts;
incubation with 27HC dramatically reduces lysosomal
cholesterol in these cells.7,8 One possible explanation for
this phenomenon is that the added oxysterol somehow
eliminates the excess cholesterol in the cytoplasm, and
therefore cholesterol is transferred from lysosomes to the
cytoplasm to maintain homeostasis. However, intriguing

recent findings that 27HC binds to the N-terminal lumi-
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nal loop of NPC1 also suggest a direct molecular link
between oxysterols and NPC function.32 A further expla-
nation involves the suggestion that 27HC is a physiologic
LXR ligand, similar to other oxysterols.33 LXRs, together

ith other members of the nuclear receptor superfamily,
ontribute to cellular cholesterol homeostasis by regulat-
ng genes that control the storage, transport, and catab-
lism of cholesterol.34 However, it is also demonstrated
hat oxysterols can function as antagonistic ligands for
XR.35 27HC is found in large amounts in foam cells of
therosclerotic plaques, where it is thought to eliminate
xcess cholesterol by stimulating reverse cholesterol trans-
ort via LXR and inhibiting cholesterol synthesis and
ptake via sterol regulatory element binding protein.36

Therefore, a possible mechanism for the reduced expression
of inflammatory genes upon 27HC administration can be
related to LXR activation. In the present study, we observed
that the agonistic effects of 27HC were restricted to KCs and
were mainly LXR-� dependent, whereas 27HC acted as an
antagonistic ligand of LXR in total liver and was mainly
LXR-� driven. Therefore, the agonistic as well as antagonistic
ctions of 27HC on LXR are cell specific, indicating that
7HC functions as an endogenous selective LXR modulator.
aken together, these studies provide a possible explanation

or the controversial data in literature regarding the role of
7HC in cholesterol metabolism.

Oxysterols such as 27HC are therefore already considered
o be potential candidates for the reduction of cellular tox-
city. Although some in vitro studies have demonstrated that
xysterols may have some cytotoxic, oxidative, and/or in-
ammatory effects,37 most data are highly controversial, and
ore appropriate in vivo and in vitro models of investigation

s well as clinical investigations are required to improve
nowledge of oxysterol activities. The current study demon-
trates that 27HC administration can reduce hepatic inflam-

ation and modulate intracellular cholesterol distribution
nside KCs. The potential of 27HC as a novel tool for the
reatment of NASH should therefore be tested.

In conclusion, in the present study, lysosomal choles-
erol accumulation in KCs was associated with increased
epatic inflammation. These data support a mechanism
y which lysosomal cholesterol accumulation can act as a
rigger for hepatic inflammation and point to the poten-
ial of using 27HC as a novel treatment for NASH.

Supplementary Material

Note: To access the supplementary material
accompanying this article, visit the online version of
Gastroenterology at www.gastrojournal.org, and at http://
dx.doi.org/10.1053/j.gastro.2012.09.062.
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Supplementary Materials and Methods

Subjects
Sixty-nine obese patients (41 females, 28 males) were

recruited from the metabolic clinics at MetroHealth Medi-
cal Center and at the Cleveland Clinic. Non-alcoholic ste-
atohepatitis was confirmed by liver biopsy according to the
criteria of Kleiner et al.1 All subjects in the present study

ere evaluated by the investigators and were abstinent from
lcohol for at least 6 months. Their possible remote con-
umption of alcohol was less than that suggested to cause
iver injury. The study protocol was approved by the insti-
utional review boards at Cleveland Clinic and MetroHealth

edical Center. Written informed consent was obtained
rom all subjects after fully explaining the procedure.

Kupffer Cell Isolation
Small pieces of liver from all mice were pooled per

experimental group and digested in digestion buffer con-
taining Liberase TM (33.3 �g/mL) and 0.002% DNaseI
or 20 minutes at 37°C. Tissue was further disrupted by
ushing it through a 100-�m cell strainer using wash
uffer (phosphate-buffered saline, 1% fetal calf serum, 2.5
mol/L EDTA), and then the cells were pelleted at 1500

pm, 10 minutes, at 4°C. After resuspension of cells in
ash buffer, hepatocytes were removed by 1 low-spin

entrifugation step at 300 rpm, 3 minutes. Supernatant
as collected and centrifuged, and red blood cells were

ysed. Next, Kupffer cells were selected using magnetic
eads coated with a macrophage-specific monoclonal an-
ibody (F4/80). After incubation of cells with these F4/
0-Allophycocyanin (1 �L/80 � 106 cells) (Biolegend,

Breda, the Netherlands) for 20 minutes at 4°C, cells were
washed and anti-APC microBeads (200 �L/100 � 106

cells) (Miltenyi Biotec, Auburn, CA) were added, followed by
incubation in the dark for 20 minutes at 4°C. After wash-
ing, samples were run into LS columns, put on a Quadro
MACS magnet (Miltenyi Biotec), and rinsed with wash buf-
fer. Positively selected cells were flushed using wash buffer
and collected for further analysis.

Cathepsin D Activity Assay
Cathepsin D activity was measured using the ca-

thepsin D activity assay kit (MBL International, Woburn,
MA) according to the manufacturer’s protocol. In summary,
50 �g of liver homogenate was lysed in cathepsin D lysis
buffer on ice for 10 minutes. Following centrifugation for 5
minutes at top speed, 5 �L of clear cell lysate was trans-
erred to a well of a 96-well plate, and the total volume was

ade up to 50 �L with cathepsin D cell lysis buffer. To each
ssay, 52 �L of master mix (50 �L of CD Reaction Buffer
nd 2 �L of CD Substrate) was added, and the plate was
ncubated at 37°C for 1 hour. Samples were then measured
sing a fluorescence plate reader with a 328-nm excitation
lter and 460-nm emission filter. Cathepsin D activity is

xpressed by the relative fluorescence units.
Malondialdehyde Assay
The assay is based on the formation of a colored

adduct of malondialdehyde-like breakdown products of lip-
ids with 2-thiobarbituric acid (TBA)2,3 and is performed as
recently described.4 In brief, liver tissue was added to 1 mL

f reagent, containing 12 mmol/L TBA, 0.32 mol/L o-phos-
horic acid, 0.68 mmol/L butylated hydroxytoluene, and
.01% EDTA, and the mixture was incubated for 1 hour at
00°C in a water bath. After cooling, the TBA product was
xtracted with 100 �L of butanol. A portion (30 �L) of the
utanol layer was injected on to an high-performance liquid
hromatography system (Agilent Technologies, Amstelveen,
he Netherlands) equipped with a fluorescence detector, set
t an excitation wavelength of 530 nm and emission wave-
ength of 560 nm, and a Nucleosil C18 column (150 mm �
.2 mm; particle size, 5 �m; Supelco, Sigma-Aldrich, Zwijn-
recht, the Netherlands). Samples were eluted with 35%

vol/vol) methanol containing 0.05% trifluoric acid. A cali-
ration curve was constructed using malondialdehyde bis-
diethylacetal) as a standard.

Antioxidant Capacity Assay
The antioxidant capacity in liver was assayed us-

ing the method described by Fischer et al.5 Briefly, 950 �L
f ABTS●� radical solution was incubated for 1 minute at

37°C; thereafter, 50 �L of deproteinized liver was added.
fter incubation for 5 minutes, the absorption at 734 nm
as measured. The resulting value is expressed as trolox

quivalent antioxidant capacity. Because trolox equiva-
ent antioxidant capacity is partly determined by the uric
cid concentration, the raw data from this assay were
orrected for the uric acid content of the sample.

Statistical Analysis
Data were analyzed using Graphpad Prism 4.0.3

software (National Institutes of Health, Bethesda, MD).
Groups were compared using the unpaired t test. The
data were expressed as the mean and standard error of
the mean and were considered significantly different at
*P � .05; **P � .01, or ***P � .001.
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