
 

 

 

Processing of natural sounds and scenes in the
human brain
Citation for published version (APA):

Staeren, N. (2014). Processing of natural sounds and scenes in the human brain. Maastricht: Datawyse /
Universitaire Pers Maastricht.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

https://cris.maastrichtuniversity.nl/portal/en/publications/processing-of-natural-sounds-and-scenes-in-the-human-brain(cbc30f0c-41a0-4d27-8e08-a81b5f9ec31a).html


 

Processing of natural sounds and scenes 
in the human brain 

 
 
 
 
 
 
 
 
 
 
 
 
 

Noël Staeren 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2014 Noël Staeren, Maastricht 
 
ISBN 978 94 6159 311 5 
Datawyse / Universitaire Pers Maastricht 
 
The work in this thesis was supported by the The Netherlands Organisation for Scientific Research (NWO) and 
was conducted at Maastricht University, the Donders Institute for Brain, Cognition and Behaviour, Radboud 
University Nijmegen, and the Low Temperature Laboratory, University of Technology, Helsinki. 

  



 

Processing of natural sounds and scenes 
in the human brain 

 
 
 

DISSERTATION 
 

to obtain the degree of Doctor at  
Maastricht University 

on the authority of the Rector Magnificus, Prof. dr. L.L.G. Soete  
in accordance with the decision of the Board of Deans 

to be defended on  
Friday 21st of March 2014, at 10:00 hours 

 
door 

 
Noël Paul Marie Clement Staeren 

 
Geboren op 6 januari 1980 te Bilzen 

UNIVERSITAIRE
PERS MAASTRICHT

U P

M



Supervisor 
Prof. dr. E. Formisano  

 
Co-supervisors 

Prof. dr. R. W. Goebel 
Dr. H. Renvall  

 
Assessment Committee 

Prof. dr. A. T. Sack (Chairman) 
Dr. M. L. Bonte 
Prof. dr. F. Di Salle (University of Salerno, Italy) 
Prof. dr. B. Jansma  

 
 
 
 
 
 
 
 
 
 
 

  



 

Contents 

Chapter 1 General introduction 7

Chapter 2 Sound categories are represented as distributed patterns in the human 
auditory cortex 

15

Chapter 3 Of cats and women: Temporal dynamics in the right temporoparietal 
cortex reflect auditory categorical processing of vocalizations 

37

Chapter 4 Cortical processing of spatial cues in natural auditory scenes 57

Chapter 5 Brain-based un-mixing of vocal and instrumental streams during music 
listening 

71

Summary 87

Acknowledgements 91

Curriculum vitae 93

  





7 

 

CHAPTER 1 

General introduction 



8 

  



9 

Introduction 

The research described in this thesis investigates the relationship between human brain ac-
tivity and the perception of natural sounds. Most experimental studies in the field of audito-
ry neuroscience use synthetic sounds. These sounds are useful because they allow experi-
menters a great level of control over their physical parameters, which makes them most 
suitable for investigating the neural processing of basic acoustic features. However, for stud-
ying the auditory system “in action”, more complex and ecologically valid sounds may be 
more appropriate because they engage the cortex and the brain in meaningful processing. 
The research reported in this thesis uses natural sounds in combination with functional brain 
imaging to examine two relevant aspects of audition. The first aspect relates to the ability of 
humans and animals to recognize sounds in natural environments. What are the cortical 
mechanisms enabling this sound recognition? Does the brain have specific representations 
of natural sound categories? How do these putative representations relate to the physical 
properties of the sounds? These research questions are addressed experimentally using 
functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in com-
bination with advanced data analysis techniques (chapters 2 and 3). 
 The second part of the thesis deals with the so-called ‘auditory scene analysis’ problem. 
Auditory scene analysis refers to the processes required for deriving descriptions of individ-
ual sources (‘auditory objects’ or ‘auditory streams’) from mixtures of simultaneous sounds 
(Bregman, 1990). Because natural environments typically involve multiple sound sources, 
auditory scene analysis represents a crucial aspect of human (and animal) hearing, which lies 
at the heart of the ability to select and respond to relevant acoustic stimuli even when these 
are masked by competing sound sources or background noise. How are sounds extracted 
from the mixture of other overlapping sounds? Does the auditory cortex use spatial infor-
mation for segregating overlapping sounds? How does the representation of a sound in a 
mixture relate to the representation of the same sound presented against a silent back-
ground? These questions are considered in the second part of the thesis, which includes two 
fMRI studies employing respectively binaural natural scenes and musical recordings as 
stimuli (chapters 4 and 5). 

The human auditory system 

The auditory system translates the acoustic input at the ears into the experience of hearing. 
Sound waves that enter the ear are first filtered in the outer ear and middle ear before they 
are transmitted further to the inner ear (cochlea). The cochlea contains hair cells that trans-
late the physical motion produced by the sound wave into electrochemical signals. Each cell 
responds maximally to a specific part of the auditory frequency spectrum, the so-called best 
frequency of that cell. The hair cells are arranged across the longitudinal axis of the cochlea 
such that cells with neighboring best frequencies are located adjacently. This arrangement is 



10 

others, the thalamus and the primary auditory cortex (Lee et al., 2004). The human primary 
auditory cortex, the first cortical stage of auditory processing, is located on Heschl’s gyrus 
(HG) and in some cases, it extends to the adjacent Heschl’s sulcus (HS) (Formisano et al., 
2003; Hackett et al., 1998). 
 Even though acoustic input has already passed several neural processing stages before 
reaching the cortex (Anderson et al., 2009), it is assumed that it is cortical processing that is 
most relevant for the extraction of higher-order sound attributes and the representation of 
sound percepts (Bizley et al., 2009; Formisano et al., 2008a; Griffiths, 2003; Kaas and Hack-
ett, 1999; Lewis et al., 2005; Rauschecker and Tian, 2000; Riecke et al., 2007; Staeren et al., 
2009). Beyond the primary auditory cortex, it has been suggested that sound processing re-
lated to the recognition of sounds proceeds along the anterior/ventral “what” stream, 
whereas processing of spatial information for sound localization proceeds along the posteri-
or/dorsal “where” stream (Alain et al., 2001; Romanski et al., 1999). 
 One of the goals of this thesis is to understand the cortical representation and pro-
cessing of natural sounds and scenes within these processing streams.  

Measuring brain activation 

The experimental studies presented in this thesis use fMRI and MEG to measure brain acti-
vation during the perception of natural sounds and scenes. FMRI is a measurement tech-
nique based on magnetic resonance (MR) that relies on the detection of stimulus-evoked 
changes of blood-oxygenation-level-dependent (BOLD) contrast in the vascular (hemody-
namic) system that supplies blood to the neuronal tissue. The BOLD response is an endoge-
nous MR contrast that is measured because of the different magnetic properties of the 
blood in its oxygenated and deoxygenated states (Ogawa et al., 1993). Changes of BOLD con-
trast have been shown to be closely related to neuronal activity (Logothetis et al., 2001) and 
fMRI has been used in many studies of brain function. Even though the spatial resolution of 
fMRI can be relatively high (e.g. 1 mm3 is feasible in most high field scanners), its temporal 
resolution is rather poor (> hundreds of milliseconds). This sluggishness occurs because the 
BOLD response takes more time to evolve compared to the neuronal activity. 
 MEG detects small magnetic fields that are generated by the net activity of neuronal 
populations. If neural currents synchronize, for example when listening to a sound, a small 
but detectable magnetic field is generated. The MEG scanner uses arrays of superconducting 
quantum interference devices (SQUIDs) which are able to detect these very small magnetic 
fields from the scalp of the subject (Cohen, 1972). Because the MEG signal provides a rela-
tively direct measure of the electromagnetic properties of neural activity, it can resolve the 
timing of this neural activity with higher precision than methods based on neurovascular 
coupling, such as fMRI. However because MEG is recorded on the scalp, the neural sources 
underlying the recorded signals cannot be easily localized and need to be estimated based 
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on sophisticated models (Hari et al., 2010), which significantly decreases the spatial resolu-
tion of the measurements. 

Analysis methods 

FMRI studies conventionally use experimental setups where specific events, such as stimuli 
or behavior (e.g., button responses) occur sequentially and fMRI measurements are done 
simultaneously. The events and measurements are repeated several times to increase the 
number of samples obtained per experimental condition, which increases the power of sta-
tistical tests applied to the obtained data. FMRI data analysis typically begins by modeling 
the expected BOLD responses to the experimental events using a general linear model 
(GLM). To that end, the time courses of the different events are convolved with a function 
that describes the expected shape of the hemodynamic response (HRF) (Friston et al., 1995). 
The modeled BOLD responses are then fitted to the obtained BOLD responses using least 
squares regression. The resulting regression weights are taken as an estimate of the brain’s 
response to the different events. These analyses are done separately for each voxel. Each 
voxel represents a local fMRI measurement from a different small subvolume of the imaged 
tissue. Statistical tests are then applied to the regression weights in order to assess whether 
brain responses to events resembling different experimental conditions differ significantly.  
 MEG data analysis involves similar procedures. However, additional assumptions need to 
be made in order to estimate the location of the neural sources that produce the activity 
measured at the scalp. One way to do this is using equivalent current dipoles (ECDs) (Hämä-
läinen et al., 1993). An ECD represents the hypothesized location, orientation, and strength 
of a net current in an activated brain region. Typical source analyses focus on only a subset 
of ECDs – those that can explain more than some fixed percentage (e.g. 85%, see chapter 3) 
of the variance in the local magnetic field that is obtained at the scalp during the response 
peak. The head of the subject is usually modeled as a homogeneous sphere or using more 
complex shapes derived from anatomical images of the head obtained with MR imaging (see 
chapter 3). 
 As described above, most standard fMRI data analyses are conducted separately for 
each voxel. A limitation of such univariate analyses is that they do not take into account cor-
relations between different voxels. Each voxel is therefore characterized separately from the 
others. In contrast, multivariate analyses exploit the correlations between different voxels so 
as to characterize differences in neural processing based on distributed (rather than local-
ized) activation patterns. This allows the detection of smaller effects, e.g. produced by per-
ceptual differences between stimulus categories (Rasmussen and Williams, 2006; Tipping, 
2001). The analyses involve a training stage in which the multivariate model is estimated 
based on a subset of the obtained data (training dataset) and a testing stage where the reli-
ability of the model is assessed based on another subset of the obtained data (test dataset). 
The training stage is accomplished by a machine learning algorithm that aims at disclosing a 



12 

relationship between brain activation and experimental conditions. The testing phase is fun-
damental in assessing the validity of the model. Probabilistic models (such as Relevance Vec-
tor Machines (Formisano et al., 2008b)) and Gaussian Processes (Valente et al., 2011), are 
particularly suited for these applications, as they are designed to prevent over-fitting of the 
training data and have already proven considerably accurate in decoding brain states from 
fMRI measurements. 

Specific Aims and outline of this thesis 

Sound categories can be characterized by a unique mix of basic physical sound properties 
and higher-order harmonic information, or timbre. Interestingly, the auditory system is ca-
pable to categorize sounds that produce different timbres even when the lower level prop-
erties of these sounds are relatively similar (e.g. similar notes played on different instru-
ments). Previous research supports a hierarchical model in which the processing of sound 
features relevant for sound recognition proceeds through a number of functionally special-
ized brain areas before culminating in category-selective processing modules that operate in 
the ‘what’ auditory cortical pathway.  
 The first two studies presented in this thesis challenge this hierarchical model and un-
derline an alternative model that postulates rather parallel and distributed processing 
mechanisms in the human auditory system. The first experiment (Chapter 2) investigates 
whether neural representations of highly controlled natural sounds belonging to different 
categories can be differentiated by comparing BOLD responses to the different sounds using 
univariate, as well as multivariate methods.  
The experiment described in Chapter 3 aims at investigating the temporal aspects of brain 
activation during natural sound perception. To that end MEG is used in combination with the 
stimuli from experiment 1. Compared to experiment 1, the physical differences between 
these stimuli are further minimized so as to create ambiguous stimuli that still evoke cate-
gorically different percepts. 
 As mentioned before, most natural auditory scenes contain many different, overlapping 
sounds that typically belong to different categories, e.g. male and female voices at a cocktail 
party. Fortunately, the auditory system may allow listeners to attend selectively to a single 
sound source and thereby enhance that sound’s audibility. However, it is still unclear how to 
the auditory system achieves this feat. Besides timbre, another important cue for segregat-
ing a sound source from simultaneous sources is the spatial location of the source. The fMRI 
study in Chapter 4 investigates neural mechanisms for auditory stream segregation based on 
spatial cues, using binaural in-ear recordings of natural mixtures of voices and environmental 
sounds. In the fMRI study presented in Chapter 5, even more complex sound mixtures are 
employed to study the brain mechanisms underlying auditory scene analysis. Studio record-
ings from a band playing two pieces of music are used as stimuli during fMRI recordings. 
Specifically, the recordings are presented either separately (as individual instruments) or 
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together (i.e. as a composite mix) to investigate auditory stream segregation, during music 
perception. Using advanced data analysis methods (massively multivariate regression) we 
estimate the auditory cortical representations of a sound source (i.e. a musical instrument or 
a voice) that are robust to changes of the acoustic environment. 
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CHAPTER 2 

Sound categories are represented as 
distributed patterns in the human auditory 
cortex 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: 
Staeren, N., Renvall, H., De Martino, F., Goebel, R., Formisano, E. Sound categories are rep-
resented as distributed patterns in the human auditory cortex. Current Biology (Volume 19, 
Issue 6, 498-502, 05 March 2009). 
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Summary 

How does the brain recognize the sounds that populate our daily life? Previous research 
supports a hierarchical model of ‘what’ auditory cortical processing with category-selective 
modules. Processing of sound features relevant for sound recognition is assumed to proceed 
through a number of functionally-specialized areas, culminating in cortical modules where 
category-specific processing is carried out. Here we challenge this model by combining func-
tional MRI and a novel machine learning algorithm, which is able to reveal both local as well 
as distributed neural representations. Sounds from four categories (cats, female singers, 
acoustic guitars, and tones) were controlled for their time-varying spectral characteristics 
and presented to subjects at three different pitch levels. Sound category information - not 
detectable using voxel-by-voxel analysis - could be detected and mapped with multivoxel 
pattern analyses. Processing of sound ‘category’ was spatially distributed over a large ex-
panse of the supratemporal cortices, whereas a more localized pattern was observed for 
processing of ‘pitch’ laterally to primary auditory areas. Our findings indicate that distributed 
neuronal populations within the human auditory areas entail categorical representations of 
sounds, beyond their physical properties. A ‘categorical’ representation of a sound emerges 
from the joint encoding of information occurring not only in this small set of higher-level 
selective areas but also in the auditory areas conventionally associated with lower-level au-
ditory processing. 
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Introduction 

The ability to recognize sounds allows humans and animals to efficiently detect behaviorally 
relevant events, even in the absence of visual information. Anatomical and invasive electro-
physiological studies in the macaque monkey (Kaas and Hackett, 1999; Rauschecker and 
Tian, 2000; Romanski et al., 1999) have suggested that auditory information relevant for 
sound recognition (“what”) and localization (“where”) is processed in two specialized and 
anatomically segregated streams of cortical areas. These processing streams originate in the 
anterior and posterior parts of the auditory cortex, respectively, and project to non-spatial 
and spatial domains of the frontal cortex. In humans, lesion (Adriani et al., 2003), electro-
physiological (De Santis et al., 2007) and functional imaging studies (Alain et al., 2001; Arnott 
et al., 2004; Scott, 2005) have proposed the existence of similar streams for ‘what’ and 
‘where’ auditory processing. Furthermore, specialized sub-systems for processing of other 
dimensions of auditory information, e.g. “how” (Belin and Zatorre, 2000) and “do” (Warren 
et al., 2005b), have been suggested. 
 The human auditory ‘what’ processing stream seems to include regions in the superior 
temporal cortex, located laterally to the primary auditory fields in the Heschl’s gyrus (HG) 
(Formisano et al., 2003) and extending along the posterior-anterior direction of the superior 
temporal gyrus (STG) and sulcus (STS) (Alain et al., 2001; Warren and Griffiths, 2003). Pro-
cessing of sound features relevant for sound recognition is assumed to proceed hierarchical-
ly through a number of functionally-specialized areas in this stream, culminating in cortical 
modules where category-specific processing is carried out. So far, strongest evidence for this 
modular model of functional architecture comes from fMRI studies that employed human 
and animal vocalizations as stimuli. Regions in the bilateral upper bank of the STS and adja-
cent STG exhibit a larger blood oxygenation level dependent (BOLD) response to vocal 
sounds than to non-vocal human-generated sounds (Belin et al., 2004; Belin et al., 2000; 
Warren et al., 2006). Similarly, the middle portions of the left and right STG (mSTG) are acti-
vated more during the categorization of animal vocalizations than tool sounds (Lewis et al., 
2005). Recently, localized voice-selective BOLD responses have also been reported in the 
monkey cortex (Petkov et al., 2008). However, detailed functional architecture underlying 
the early stages of cortical processing of auditory ‘what’ information remains open. For ex-
ample, it is not established whether these auditory regions are specialized for processing of 
human (and animal) vocalizations, or whether they account for a more general representa-
tion of sound categories, with voices being, for reasons both of acoustical complexity and 
behavioral relevance, the most prominent case. Results from studies using sounds other 
than voices have been less conclusive with respect to the early processing stages of the pu-
tative ‘what’ auditory stream. Indeed, previous studies that employed categorical compari-
sons between non-vocal sounds reported increased activation for these sounds in regions 
outside the areas that are typically defined as ‘auditory’. For example, environmental sounds 
activated preferentially the bilateral posterior middle temporal gyrus (pMTG) (Lewis et al., 
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2004) and hand-manipulated tool sounds a widespread, predominantly left-hemispheric 
network including frontal and parietal areas of the ‘mirror-neuron system’ (Lewis et al., 
2005). These regions can be considered multimodal in terms of both anatomical and func-
tional properties, and they probably represent a later processing stage than the supratem-
poral regions surrounding HG. 
 In the present high-resolution (2 x 2 x 2mm3) fMRI study, we investigated the represen-
tation and processing of auditory categories within the human supratemporal cortex. In par-
ticular, we asked whether the areas around the primary auditory cortex would code for 
sound categories irrespective of their physical attributes, and if so, whether these represen-
tations would be localized in specialized areas or rather distributed across the auditory cor-
tex. 
 Our investigation differs from previous studies of the ‘what’ auditory processing stream 
in terms of both stimulus design and data analysis strategy. First, sounds from different cat-
egories tend to differ also acoustically: Thus changes in the cortical responses between cate-
gories may also reflect merely their acoustic properties. Use of synthetic sounds would allow 
a more precise control over the acoustic properties of the stimuli (Patterson et al., 2002; 
Warren et al., 2005a). However, natural and synthetic sounds unavoidably differ in terms of 
ecological validity and familiarity, properties that are relevant for auditory neurons (Nelken, 
2004; Wang et al., 2005). Ideally, one would like to compare cortical responses to sounds 
from different natural categories that are acoustically as similar as possible. Along these 
lines, we selected sounds from three ‘real life’ categories (female voices, cats, guitars) that 
were originally acoustically similar: All sounds were tonal with same fundamental frequency 
and similar harmonic structure (see Figure 1 and Methods). Besides being matched in terms 
of various physical properties like duration, root mean-square (RMS) power and temporal 
envelope, our stimuli were further manipulated by matching the temporal profile of their 
fundamental frequencies. This novel stimulus manipulation is particularly relevant as it en-
sured that the perceptual “pitch” dimension, mainly dependent on the sound fundamental 
frequency, was matched across categories. 
 Second, we employed an advanced analysis strategy based on an iterative machine 
learning algorithm (De Martino et al., 2008) that allows modeling of spatially distributed as 
well as localized response patterns. All previous studies on the ‘what’ auditory processing 
stream have utilized statistical univariate contrast-based analyses which are inherently 
bound to produce results in terms of ‘specialization’ or ‘selectivity’ for a certain stimulus 
attribute or category. Contrast-based methods can detect only localized surplus of hemody-
namic activity for one condition compared with another, therefore ignoring the potential 
information of non-maximal responses. In an fMRI study of the object-vision pathway, Haxby 
and colleagues (Haxby et al., 2001) demonstrated that information on visual categories is not 
only encoded in the maximally responsive regions, but also in a spatially wide and distribut-
ed pattern of responses in the ventrotemporal cortex (the visual ‘what’ stream). Whether a 
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similar situation holds for the ‘what’ auditory processing stream is not known. For example, 
tool sounds that evoke smaller responses than voices in the superior temporal areas, may 
still exhibit response patterns that “code” for the category as informatively as the larger re-
sponses evoked by human or animal voices. Utilizing our recursive method for multivoxel 
pattern analysis we can directly address the issue of localized vs. distributed coding of audi-
tory categories in STS/STG. 
 

 

Figure 1. Spectrograms of exemplary stimuli. The four stimulus categories at High (920 Hz; top) and Medium (480 
Hz; bottom) fundamental frequency levels. The time-varying fundamental frequency of the cat sound (purple 
rectangle) was imposed onto the other stimuli. The harmonic structure of the sounds was modified according-
ly. 

Results 

During the fMRI measurements, subjects (n = 8) listened to sounds from three ‘real life’ cat-
egories (Singers, Cats, Guitars) and synthetic control sounds (Tones). All sounds were deliv-
ered binaurally via headphones in blocks of four at a comfortable listening level, using a clus-
tered-volume acquisition technique that allowed for presentation of auditory stimuli in si-
lence between subsequent volume acquisitions (see Experimental Procedures). Sounds with-
in a block were from the same category and had the same of three possible fundamental 
frequencies (250 Hz = Low, 480 Hz = Middle and 920 Hz = High), resulting in altogether 
twelve experimental conditions. Examples of the stimuli can be found as Supplementary 
Audio files online. 

Univariate statistical analysis 
Figure 2 shows the responses to Singers, Guitars, Cats, and Tone stimuli compared with the 
baseline for a representative subject S2. All stimuli evoked significant BOLD responses in a 
large expanse of the auditory cortex, including bilateral HG, STG, and the upper bank of STS. 
With conventional univariate statistical contrasts, consistent differences were detected in 
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the superior temporal regions only for the Cats vs. Tones comparison (see Figure 3). At a 
rather lenient voxel-wise threshold of P = 0.01 (uncorrected), this contrast revealed signifi-
cant differences in six out of the eight subjects. Any other univariate contrasts did not lead 
to statistically significant effects. Our control on the acoustic sound properties presumably 
reduced the voxel-by-voxel differences of BOLD responses evoked by the different sound 
categories. 

Multivariate pattern recognition - Learning of sound ‘category’ 
After this initial analysis, we used a statistical pattern recognition approach and tested the 
hypothesis that the overall spatial patterns of observed responses would convey information 
on the sound being presented. In each subject, we conducted six pair-wise classification ex-
periments in which sound-evoked response patterns were labeled according to their catego-
ry (Singers, Cats, Guitars, Tones), irrespective of their fundamental frequency. We examined 
whether our learning algorithm, after being trained with a subset of labeled brain responses 
(20 trials), would accurately classify the remaining unlabeled responses (10 trials, see Meth-
ods). 
 For all classifications, the recursive algorithm was able to learn the functional relation 
between the sounds and corresponding evoked spatial patterns and classify the unlabeled 
sound-evoked patterns significantly above chance level (0.5), with a mean classification cor-
rectness across subjects of 0.69 for Singers vs. Guitars (P = 2.8401 · 10-4, two-sided t test, n = 
8), 0.69 for Singers vs. Cats (P = 2.5552 · 10-5), and 0.70 for Guitars vs. Cats (P = 2.6351 · 10-4) 
(Figure 4, left). The mean classification for Singers vs. Tones, correctness was 0.73 (P = 
4.7427 · 10-7), 0.69 for Guitars vs. Tones (P = 1.3517 · 10-4), and 0.85 for Cats vs. Tones (P = 
3.53 · 10-6) (Figure 5, left). These results suggest that spatially distributed patterns encoded 
information on sound category in the superior temporal regions. 
 Our method for the multivariate analysis of response patterns allows generating discrim-
inative maps, i.e. maps of the locations that contribute most to the discrimination of condi-
tions (see Methods). Figures 4 and Figure 5 depict the discriminative group maps of the clas-
sification between categories and between each category and control tones, respectively. It 
is important to note that for Cats vs. Tones the discriminative regions overlapped with the 
regions identified by the univariate contrast (see Figure 3). 
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Figure 2. Auditory cortical responses to natural sounds (using univariate statistics). Activation maps for the con-
trasts between BOLD responses to Singer, Guitar, Cat, and Tone stimuli and the baseline in subject S5. All 
stimuli evoked significant BOLD responses (q(FDR) < 0.05) in a large expanse of the auditory temporal cortex, 
including the bilateral Heschl’s gyrus (HG), the superior temporal gyrus (STG) and the superior temporal sulcus 
(STS). 
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Figure 3. Univariate contrast Cats vs. Tones. Contrast map and the event-related averages illustrating the uni-
variate statistical comparison of Cats vs. Tones. At a voxel-wise threshold of P = 0.01 (uncorrected), this con-
trast revealed significant differences in six out of the eight subjects (data in the Figure refer to subject S7). At 
the same threshold, all other univariate contrasts did not lead to statistically significant effects. 

In order to quantify the consistency of the discriminative maps across subjects, group-level 
maps were generated (Figures 4, 5 and 6) by cortical realignment (Goebel et al., 2006) of 
individual discriminative maps. Single-subject maps included only voxels that “survived” the 
recursive elimination of irrelevant features in the algorithm (see Methods), and thus the 
group maps can be interpreted as a representation of spatial patterns that were consistently 
informative across subjects. A colored vertex indicates that the colored location was present 
in at least 60% (5/8) of the individual discriminative maps. At the group level, the distributed 
activation patterns that differentiated Singers from Guitars were located at the anterolateral 
HG, the planum temporale (PT), and the posterior STG and/or STS in the left hemisphere and 
at the lateral HG and the middle-posterior STG and/or STS in the right hemisphere. Singers 
were differentiated from Cats at the HS, the PT, and the posterior STG in the left hemisphere 
and at the middleposterior STG and the PT in the right hemisphere. Guitars were differenti-
ated from Cats at the left anterolateral HG, the HS, and the posterior STG and at the right 
anterolateral HG, the PT, and the middle-posterior STG and/or STS. These results suggest 
that spatially distributed patterns encoded information on sound category in the superior 
temporal regions. The multivariate distributed activation patterns that discriminated be-
tween sound categories and tones are shown in Figure 5. Singers were differentiated from 
Tones in the left anterolateral HG, HS and posterior STG and in the right middle STG. Guitars 
were differentiated from Tones in the left middle-posterior STG, the right middle STG, and 
the right posterior STG/STS. Cats were differentiated from Tones in the left anterolateral HG, 
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HS, posterior STG/STS, and in the right-hemispheric anterolateral HG and medial posterior 
STG/STS. It is important to note that the regions for the Cats vs. Tones discrimination that 
achieved the highest classification correctness, overlapped with the regions identified by the 
univariate contrast (see Figure 3). 
 

 

Figure 4. Multivariate pattern recognition - Learning of sound ‘category’. Group averaged classification accura-
cies (left) and group discriminative maps (right) for between-category comparisons. For all binary discrimina-
tions, the black dots indicate the classification accuracy of test trials for each individual category, and the col-
ored dots the classification accuracy averaged over the two categories. Error bars indicate the standard errors. 
For all classifications, the recursive algorithm was able to learn the functional relation between the sounds and 
corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above 
chance level (0.5). Discriminative patterns are visualized on the inflated representation of the auditory cortex 
resulting from the realignment of the cortices of the eight participants. A location was color-coded if it was 
present on the individual maps of at least five of the eight subjects. 

Multivariate pattern recognition - Learning of sound ‘fundamental frequency’ 
Because the stimuli were presented at three different fundamental frequency levels, we 
conducted a second analysis to investigate the regions that were most discriminative with 
respect to this second stimulus dimension. In this case, the same sound-evoked response 
patterns as used in the first analysis were labeled according to their fundamental frequency 
(High, Medium, Low), irrespective of their category. The recursive algorithm was then 
trained to discriminate the fundamental frequencies.  
 Figure 5 shows the resulting group discriminative maps and the corresponding correct-
ness of 0.66 for Low vs. Medium (P = 1.8187 · 10-4, two-sided t test, n = 8), 0.68 for Low vs. 
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High (P = 2.3 · 10-3) and 0.68 for Medium vs. High (P = 1.224 · 10-4). As shown by the group 
discriminative maps, patterns related to fundamental frequencies were more clustered than 
the category discrimination maps, and they were circumscribed to the most lateral portion 
of HG. The group discriminative maps related to fundamental frequencies were more clus-
tered than the category discriminative maps, and they were circumscribed to the most lat-
eral portion of HG and/or HS bilaterally and to the posterior STG. This finding is in accord-
ance with previous studies indicating this location as relevant for pitch processing using 
regular interval sounds (Griffiths, 2003; Patterson et al., 2002). Figure 7 summarizes the 
group discriminative maps obtained for the discrimination of categories (blue) and funda-
mental frequencies (red). 
 

 

Figure 5. Multivariate pattern recognition – Classification of ‘categories vs. tones’. Group averaged classification 
accuracies (left) and group discriminative maps (right) for the discrimination between categories (Singers, Gui-
tars, Cats) and control Tones. For all binary discriminations, the black dots indicate the classification accuracy of 
test trials for each individual category, and the colored dots the classification accuracy averaged over the two 
categories. Error bars indicate the standard errors. For all classifications, the recursive algorithm was able to 
learn the functional relation between the sounds and corresponding evoked spatial patterns and classify the 
unlabeled sound-evoked patterns significantly above chance level (0.5). Discriminative patterns are visualized 
on the inflated representation of the auditory cortex resulting from the realignment of the cortices of the eight 
participants. A location was color-coded if it was present on the individual maps of at least five of the eight 
subjects. 
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Figure 6. Multivariate pattern recognition - Learning of sound ‘fundamental frequency’. Group averaged classifi-
cation accuracies (left) and group discriminative maps (right) for between-frequency comparisons. For all bina-
ry discriminations, the black dots indicate the classification accuracy of test trials for each individual frequency, 
and the colored dots the classification accuracy averaged over the two frequencies. Error bars indicate the 
standard errors. For all classifications, the recursive algorithm was able to learn the functional relation between 
the sounds and corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns signif-
icantly above chance level (0.5). Discriminative patterns are visualized on the inflated representation of the 
auditory cortex resulting from the realignment of the cortices of the eight participants. A location was color-
coded if it was present on the individual maps of at least five of the eight subjects. 
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Figure 7. Comparison of discriminative maps. The cortex-based aligned group discriminative maps for category 
(blue) and fundamental frequency (red) discrimination. Category and fundamental frequency discriminative 
maps were obtained by the combination of the discriminative maps (logic OR) corresponding to the three bina-
ry classifications (Figures 4 and 6, respectively). A vertex was color-coded if it was present on the individual 
maps of at least five of the eight subjects. This corresponds to a false discovery rate-corrected threshold of q = 
7.9·10-3 for the category map and q = 2.6·10-3 for the fundamental frequency map (see Methods). Note that the 
discrimination map for fundamental frequency was more clustered than that for category. 

Discussion 

Localized vs. distributed representation of sound categories 
Our results indicate, similarly to the representation of visual object categories in the ventral 
temporal cortex (Haxby et al., 2001), that representations of sound categories in the superi-
or temporal cortex are widely distributed and overlapping. The discriminative activation pat-
terns extended bilaterally over a large expanse of the auditory cortex and included the ante-
rior lateral portion of HG bilaterally, the posterior STG including the PT (mostly in the left 
hemisphere), the middle and anterior STG (mostly in the right hemisphere) and regions 
along the right STS. These locations overlap with – but are not limited to – locations that 
have been indicated in the previous investigations as functionally specialized areas for hu-
man (Belin et al., 2000) and animal (Lewis et al., 2005) vocalizations. In these studies, human 
voices were compared with other sound categories and phase scrambled sounds with similar 
global spectral aspects of the stimuli (Belin et al., 2000), and animal vocalizations were com-
pared to tool sounds (Lewis et al., 2005). Thus the reported differences might reflect not 
only the real preference for a specific category but also unavoidable acoustic differences 
between test and control groups of stimuli. 
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 In the present study, we have minimized the potential acoustical confounds. Our exper-
imental sounds were controlled with respect to many acoustic dimensions, including their 
duration, average RMS level, amplitude envelope, harmonic-to-noise ratio (Boersma, 2001; 
Lewis et al., 2005) and the temporal profile of the sound spectrum. Removing most of the 
physical differences between categories diminished the differences between localized 
evoked BOLD responses, as reflected by the absence of between-category effects in our uni-
variate analysis. Nevertheless, our iterative multivariate classification analysis showed that 
the activation patterns could be decoded into categories. Information in the spatially dis-
tributed patterns of activity may thus reflect a more abstract perceptual level of representa-
tion of sounds. 
 These findings put forward a revision of previous models of neuronal representation of 
complex sounds in the auditory cortex, which have implied a hierarchical functional architec-
ture of auditory processing. In these models the superior temporal cortex is organized in 
specialized areas among which the neural processing of a sound hierarchically proceeds from 
the analysis of its low level physical constituents to higher perceptual dimensions. Within 
these models, auditory areas with a clear selectivity for a given category (e.g., voice) are 
seen as the functional units in which a more abstract representation of a sound is formed, 
independent of its specific acoustic features. However, it is a common observation in fMRI 
experiments that these ‘higher level’ areas show a vigorous BOLD response also to relatively 
simple stimuli (see the response to tones in Figure 2), implying sensitivity to low level prop-
erties of a sound as well. Based on our findings, we suggest that a ‘categorical’ representa-
tion of a sound emerges from the joint encoding of information occurring not only in this 
small set of higher-level selective areas but also in the auditory areas conventionally associ-
ated with “lower-level” auditory processing. This suggestion is not without prerequisites: 
The temporal auditory areas are anatomically heavily interconnected (Tardif and Clarke, 
2001), and, even in the “early” auditory areas, neurons exhibit complex dependencies on the 
auditory input (Nelken, 2004; Wang et al., 2005). Furthermore, a distributed cortical coding 
of sound properties may explain why in human brain imaging several auditory regions have 
been implicated in the processing of many different auditory attributes (Griffiths and War-
ren, 2002). For example, PT has been attributed to motor transformation of auditory stimuli 
(Warren et al., 2005b), initial analysis of pitch (Patterson et al., 2002) and of auditory attrib-
utes relevant for sound localization and recognition (Griffiths and Warren, 2002). 

Univariate vs. multivariate modeling of responses 
Machine learning methods allow modeling of distributed patterns of cortical activations. 
These methods provide increased sensitivity compared with the conventional univariate sta-
tistical analysis by exploiting and integrating information from many spatial locations, thus 
allowing the detection of smaller effects, e.g. produced by perceptual differences between 
stimulus categories (Haynes and Rees, 2005; Kamitani and Tong, 2005). 
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 We want to mention two aspects of our multivariate analysis. The first concerns the in-
terpretation of accuracy levels, discriminative maps and their relation to univariate results. 
In cases in which significant differences between conditions could be detected already at 
single-voxel level, high classification accuracies were obtained. As expected, in these cases 
the multivariate discriminative maps and the univariate contrast maps overlapped (see, e.g., 
the Cats vs. Tones univariate contrast map in Figure 3, and the corresponding discrimination 
map in Figure 4). Discriminative maps, however, included additional sets of locations, whose 
joint activity and correlations were equally informative with respect to the classification of 
conditions. In the between-category discriminations, accuracy levels – albeit lower – were 
above chance in all our subjects and were obtained in the absence of significant univariate 
effects. Importantly, corresponding discriminative patterns were highly consistent across 
subjects. Taken together, these results suggest a genuine multivariate effect in which the 
accurate discrimination of categories was driven by information in spatially distributed pat-
terns. Besides other methodological aspects (see below), the minimization of acoustical dif-
ferences between categories and the absence of univariate effects may also explain why 
accuracy levels reached in our analyses are lower than those obtained in analogous analyses 
in the visual domain (Cox and Savoy, 2003; Haxby et al., 2001) in which physical differences 
between stimuli of visual categories were not accounted for. 
 Second, with our method, a multivariate analysis does not invariably lead to distributed 
results. For instance, in our analyses, re-labeling of the stimuli based on their fundamental 
frequency led the same learning algorithm used in the analysis of categories to find substan-
tially different discriminative maps, with informative voxels clearly clustered in the lateral 
HG. In accordance with previous results (Griffiths, 2003), these findings support the notion 
that the processing of the fundamental frequency of a complex sound (and thus of percep-
tual ‘pitch’) is more localized. The discriminative maps of ‘category’ and ‘fundamental fre-
quency’ overlapped substantially, thus suggesting that regions encoding relatively basic at-
tributes of sounds, such as pitch, or higher level properties, such as category, are not mutu-
ally exclusive. 

Limitations of present stimuli and extension to auditory scenes 
The present stimuli were relatively simple and tonal by nature: For example, even though 
our Singers stimuli were real voices, their complexity was minimal compared with e.g. spo-
ken language. Although this resulted in greater stimulus control, it also restricted the spec-
tral richness and ecological validity of our stimuli. It remains to be proved that our findings 
are also valid for more complex natural sounds. It should be noted, however, that it will be 
challenging to carry out such an investigation while controlling for the acoustical differences 
of the sounds. To ensure enough acoustical variability to our stimuli, we presented all exem-
plars at three different fundamental frequencies. An accurate classification of novel sounds 
indicates that the machine-learning algorithm was able to extract a relation among stimuli 
(and corresponding activation patterns), which we assume to be at the level of ‘category’. It 
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should be noted, however, that despite our efforts in equalizing low-level acoustic proper-
ties, the degree of acoustical similarities between sounds of the same category is higher than 
for sounds of different categories. It is thus possible that the level of representation driving 
the learning process may reflect the decoding of complex combination of spectral and tem-
poral features that characterize what we have defined as ‘sound category’. The question of 
high order representation of a natural sound may be addressed by testing the ability of a 
brain-based classifier to generalize its performance in realistic situations that require ab-
straction from low-level features, e.g. in recognizing a voice in a noisy scene after training 
the classifier with voices presented in silence. 

Experimental Procedures 

Subjects 
We studied, with informed consent, one Belgian and eight Dutch subjects (mean age ± SD 24 
± 5 yrs; 8 females and one male; all right-handed). The subjects were undergraduate univer-
sity students who were paid for their participation. Subjects had no history of hearing or 
neurological impairments, and were naïve to the experimental setup. The study received a 
prior approval by the Ethical Committee of the Faculty of Psychology and Neuroscience, Uni-
versity of Maastricht. 

Auditory stimuli 
The stimuli were 800-ms sounds (sampled at 44.1 kHz) from four sound categories: cats, 
singers (singing female voices), acoustic guitars and tones. Each category except the tones 
consisted of three different representatives (e.g. three different singers). All sounds were 
transposed to three different fundamental frequencies (250, 480 and 920 Hz), thus resulting 
in altogether twelve conditions. The values of fundamental frequencies were chosen so as to 
ensure that stimuli were clearly recognizable and to avoid pure octave pitch differences (e.g. 
250, 500 and 1000 Hz). 
 To equalize the spectrotemporal profiles and the perceptual pitch of the stimuli, the 
time-varying fundamental frequency of the cat sounds was extracted on 25 time points with-
in each stimuli with Praat software (Boersma, 2001) and applied continuously to all other 
sounds with Adobe Audition™. Note that not only the fundamental frequency of manipulat-
ed sounds was adjusted, but all related harmonics (see Figure 1 and online Supplementary 
Audio Files). Cat sounds were chosen as reference stimuli because of relatively small tem-
poral variations in their fundamental frequency. The acoustic guitar and female singers were 
chosen as the other categories because for these sounds continuous pitch changes are natu-
ral (e.g., sliding in between two tones when singing, or bending a guitar string) and thus they 
were still clearly recognizable after the pitch matching procedure. Tones were used as con-
trol sounds. The sounds were low-pass filtered at 14 kHz for five subjects, and to further 
minimize the acoustical differences between sound categories, at 7 kHz for three subjects. 
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No significant differences between the results of these groups were found in the univariate 
and multivariate statistical analysis, and thus subjects were grouped together in reported 
results. The sound amplitude envelopes and average root-meansquare levels were matched 
using MATLAB 7.0.1 (The MathWorks, Inc., Natick, MA, USA). The harmonic-to-noise ratio 
(Boersma, 2001; Lewis et al., 2005) was significantly different only between tones and sound 
categories (P < 0.001), not between categories (P > 0.05). 
 Before the fMRI measurements, all subjects underwent a training session. Subjects were 
asked to listen to the stimuli until they subjectively felt they were able to clearly categorize 
the stimuli. Typically the subjects listened to all the sounds 2~3 times. Data from one subject 
were discarded from further analysis on the basis of incorrect interpretation of the task in-
structions. Hearing thresholds for different categories and pitch levels were tested individu-
ally for each subject, and stimuli were adjusted accordingly. Following the fMRI sessions (see 
below), subjects were enquired on the difficulty of attributing the stimuli to a given category 
during the scanning. All subjects indicated that categorization was easy for all stimuli. 

fMRI measurements 
Brain imaging was performed with a 3 Tesla Siemens Allegra (head setup) at the Maastricht 
Brain Imaging Center. In each subject, two runs of 488 volumes were acquired with a T2-
weighted gradient-echo planar imaging (EPI) sequence (TR = 3610 ms, voxel size = 2 x 2 x 2 
mm3, TE = 30 ms, FOV 256 x 256; matrix size 128 x 128, 23 slices covering the perisylvian 
cortex). Each run consisted of 15 blocks per sound category and lasted approximately 30 
min. Anatomical images were obtained using a 1 x 1 x 1 mm3 resolution T1-weighted se-
quence between the functional runs. 
 During the measurements, the stimuli were delivered binaurally via MR compatible 
headphones (Commander XG, Resonance Technology, Northridge, CA) in blocks of four at a 
comfortable listening level. To minimize the effect of scanner noise, the sounds were pre-
sented during 1600-ms silent periods between 2000-ms scans; the 800-ms sounds were pre-
ceded and followed by a 400-ms silence, using a clustered volume EPI technique that al-
lowed for presentation of auditory stimuli in silence between subsequent volume acquisi-
tions (Jancke et al., 2002; Riecke et al., 2007; van Atteveldt et al., 2004). The stimuli within a 
block were from the same category and frequency level, resulting in altogether twelve ex-
perimental conditions. The experimental blocks had duration of 14.4 s. The conditions were 
repeated in a pseudo-random order, and were followed by rest period of identical length, at 
the beginning of which the subjects were asked to respond with a button press whether the 
last two sounds in the block were the same (50% of the catch trials). The response hand was 
alternated across subjects. 

fMRI Data Analysis: pre-processing and univariate statistics 
Functional and anatomical images were first analyzed with BrainVoyager QX (Brain Innova-
tion, Maastricht, The Netherlands). Preprocessing consisted of slice scan-time correction 
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(using sinc interpolation), linear trend removal, temporal high-pass filtering to remove non-
linear drifts of seven or less cycles per time course, and 3-dimensional motion correction. 
Temporal low pass filtering was performed using a Gaussian kernel with FWHM of two data 
points. Moderate spatial smoothing with a Gaussian kernel of FWHM of three millimeters 
was performed on the volume time series. Functional slices were co-registered to the ana-
tomical data, and both data were normalized to Talairach space (Talairach and Tournoux, 
1988). 
 Conventional univariate statistical analysis of the fMRI data was based on the general 
linear modeling (GLM) of the time series. For each subject, a design matrix was formed using 
a predictor for each stimulus category. The predicted time courses were adjusted for the 
hemodynamic response delay by convolution with a canonical double gamma) hemodynam-
ic response function. Contrast maps were thresholded on the basis of False Discovery Rate (q 
= 0.05) when comparing sound categories with the baseline (Figure 2), or at an exploratory 
threshold of P = 0.01 (uncorrected for multiple comparison) in the case of direct comparison 
between sound categories (Figure 3). 

fMRI Data Analysis: multivariate pattern recognition 
Multivoxel patterns of sound-evoked BOLD responses were analyzed using a method that 
combines machine learning with an iterative, multivariate voxel selection algorithm, Recur-
sive Feature Elimination (RFE) (De Martino et al., 2008). This method allows estimating max-
imally discriminative response patterns without a priori definition of regions of interest. In 
brief, starting from the entire set of measured voxels our method uses a training algorithm 
(least square support vector machine, ls-SVM) iteratively to eliminate irrelevant voxels and 
to estimate the informative spatial patterns. Correct classification of the test data increases, 
while features/voxels are pruned on the basis of their discrimination ability. We have recent-
ly validated and compared this method to other approaches of multivoxel pattern analysis 
and demonstrated its greater sensitivity by means of simulations. A short description of the 
method is given below, together with steps and parameters specific to the analysis of pre-
sent data. A more complete account of the implementation and validation of the method 
can be found in (De Martino et al., 2008). Pre-processed functional time series were first 
divided into “trials” (one trial per block) and labeled either according to the category (learn-
ing of ‘category’) or the fundamental frequency (learning of ‘fundamental frequency’) of the 
sounds presented in the block. This gave rise, in each subject, to a total of 30 trials per condi-
tion for category discrimination, and 40 trials per condition for fundamental frequency dis-
crimination. For each trial, a multivoxel pattern response was generated. An estimate of the 
response at every voxel was obtained by fitting a general linear model with one predictor 
coding for the trial response and one linear predictor accounting for a within-trial linear 
trend. The trial response predictor was obtained by convolution of a boxcar with a double 
gamma hemodynamic response function. The corresponding regressor coefficient (beta) was 
taken to represent the voxel trial response and responses from all voxels were combined to 
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form multivoxel patterns. Multivoxel pattern responses were analyzed using the iterative ls-
SVM-based classification algorithm. For each pair of categories (or fundamental frequen-
cies), trials were divided into a training set (20 trials per condition for the category discrimi-
nation and 30 trials per condition for the fundamental frequency discrimination) and a test 
set (10 trials per condition). The training set was used for estimating the maximally discrimi-
native patterns with the iterative algorithm; the test set was only used to assess the correct-
ness of classification of unseen trials (i.e. not used in the training). 
 Starting from all the cortical voxels included in a subject-by-subject defined anatomical 
mask (including temporal pole, STG, STS, MTG), the most active voxels per condition (as de-
fined on the training set alone) were initially selected. The threshold for this initial activa-
tion-based voxel selection was optimized for each subject by using a cross validation within 
the training data, and the threshold ranged between 1000 and 1500 voxels per condition.  
 Voxels were further reduced using the iterative RFE algorithm. At each iteration, RFE 
included two steps. First, a subset of the training data (10 trials per condition for the catego-
ry discrimination and 20 trials per condition for the fundamental frequency discrimination) 
was used to train an ls-SVM classifier. As a result of this training, a map coding for the rela-
tive contribution of each voxel to the discrimination of conditions (discriminative maps) was 
obtained as in (Mourao-Miranda et al., 2005). Second, these discrimination weights were 
ranked and voxels corresponding to the smallest ranking were discarded. Voxels with the 
highest discriminative values were used for training in the next iteration. These two steps 
were repeated ten times (Nit = 10, on different subsets of the training data), each time with 
a 30% reduction in the number of voxels. The correctness of the classification corresponding 
to the current set of voxels and the discriminative weights were assessed using the external 
test trials. The entire iterative procedure was repeated with cross validation ten times 
(Nsplits = 10), each time leaving out a different subset of trials per condition. The reported 
correctness for each single class and each binary comparison was computed as an average 
across the ten splits (Figure 4, 5 and 6). Single-subject discriminative maps corresponded to 
the voxel-selection level that gave the highest average correctness. These maps were then 
sampled on the reconstructed cortex of each individual subject and binarized in order to 
visualize only the best 20% of the vertices. 
 To examine the spatial consistency of the discriminative patterns across subjects, group-
level discriminative maps were generated after cortex-based alignment (Goebel et al., 2006) 
of single-subject discriminative (binarized) maps (Formisano et al., 2008). In these group-
level discriminative maps, a cortical location (vertex) was color-coded if it was present in the 
corresponding individual discriminative map of at least five of the eight subjects. Assuming 
that the discriminative maps for category and fundamental frequency follow a binomial dis-
tribution, the likelihood of finding the same locations by chance in five subjects corresponds 
to an “uncorrected” p = 8.4·10-4 for the category map and an “uncorrected” p = 1.3·10-4 for 
the fundamental frequency map. To account for the multiple tests performed to create 
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these maps, we calculated the proportion of expected false positive in each of the maps 
(False Discovery Rate, q) that correspond to these p values. This resulted in q = 7.9·10-3 for 
category and q = 2.6·10-3 for fundamental frequency. These q-values were computed using a 
statistical method that ensures robust estimates also in the case of discrete distribution of p-
values and onesided tests (Pounds and Cheng, 2006). 
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Summary 

Understanding the temporal dynamics underlying cortical processing of auditory categories 
is complicated by difficulties in equating temporal and spectral features across stimulus clas-
ses. In the present magnetoencephalography (MEG) study, female voices and cat sounds 
were filtered so as to match in most of their acoustic properties, and the respective auditory 
evoked responses were investigated with a paradigm that allowed us to examine auditory 
cortical processing of two natural sound categories beyond the physical make-up of the 
stimuli. Three cat or human voice sounds were first presented to establish a categorical con-
text. Subsequently, a probe sound that was congruent, incongruent, or ambiguous to this 
context, was presented. As an index of a categorical mismatch, MEG responses to incongru-
ent sounds were stronger than the responses to congruent sounds at ~250 ms in the right 
temporoparietal cortex, regardless of the sound category. Furthermore, probe sounds that 
could not be unambiguously attributed to any of the two categories (“cat” or “voice”) 
evoked stronger responses after the voice than cat context at 200−250 ms, sugges ng a 
stronger contextual effect for human voices. 
 Our results suggest that categorical templates for human and animal vocalizations are 
established at ~250 ms in the right temporoparietal cortex, likely reflecting continuous on-
line analysis of spectral stimulus features during auditory categorizing task. 
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Introduction 

The ability to rapidly recognize and categorize sounds is essential, not only for understanding 
and reacting to our surroundings, but for daily communication and social interaction. Studies 
in macaque monkeys have suggested that auditory information relevant for sound recogni-
tion in general is processed in a specialized and anatomically segregated stream of cortical 
areas (Kaas and Hackett, 1999; Rauschecker and Tian, 2000; Romanski et al., 1999). Corre-
spondingly in humans, sound recognition activates regions located laterally to the Heschl’s 
gyrus and extending along the posterior–anterior direction of the superior temporal gyrus 
(STG) and sulcus (STS) (Alain et al., 2001; Warren and Griffiths, 2003). Within these areas, 
sound categories are encoded in a spatially distributed manner (Formisano et al., 2008; 
Staeren et al., 2009). 
 In humans, both animal and human vocalizations constitute rapidly and effortlessly rec-
ognizable auditory categories that are learned early in childhood and share many spec-
torotemporal features. Vocalizations activate specific auditory networks: Regions in the bi-
lateral STS and STG exhibit a larger blood-oxygenation-level-dependent response to vocal 
than to non-vocal human sounds (Belin et al., 2004; Belin et al., 2000; Warren et al., 2006), 
and the middle portions of the STG are bilaterally more activated during the categorization 
of animal vocalizations than tool sounds (Lewis et al., 2005). Furthermore, sub-regions at 
these areas show species-specific reactivity to vocalizations (Fecteau et al., 2004). 
 In functional magnetic resonance imaging (fMRI) studies, minimizing the low-level 
acoustic differences between stimuli abolishes conventional univariate differences between 
responses to different sound categories (Staeren et al., 2009). Exemplars of separate catego-
ries differ from each other temporospectrally, and time-sensitive electroencephalographic 
(EEG) and magnetoencephalographic (MEG) responses are especially sensitive to such devia-
tions. In a recent EEG study, responses to human voices differed from those to bird songs 
and environmental sounds at ~200 ms bilaterally at the fronto-temporal electrodes, but the 
results were speculated to be at least partly due to differences between the experimental 
stimuli (Charest et al., 2009). Another EEG study, in which the sound spectrograms and pow-
er spectra did not statistically significantly differ between sound categories, demonstrated 
stronger activity to human than animal vocalizations at 169–219 ms over the right temporal 
areas (De Lucia et al., 2010). However, the same ~200-ms time window has been related to 
general processing of spectral fine structure of any complex sound (Altmann et al., 2008), 
and the nature of auditory categorical processing has remained unclear. 
 Here we used MEG in combination with acoustically well-controlled human and cat vo-
calizations to study cortical processing of auditory categories beyond the processing of low-
level features. As an important addition to previous studies, the temporal profiles of our 
stimuli were equated for their harmonic structures. This manipulation ensures that the 
sounds have a similar “perceptual pitch” profile over time, behaviourally relevant for sound 
categorization (Staeren et al., 2009). Furthermore, we used an adaptation paradigm in which 
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exact same stimuli could be presented in different contexts. Based on a predictive coding 
account of auditory adaptation (Friston, 2005; Garrido et al., 2008; Jaaskelainen et al., 2004; 
Wacongne et al., 2011), we hypothesized that sounds incongruent to the preceding context, 
would produce - in the superior temporal cortex - stronger responses than congruent sounds 
as a marker of a categorical mismatch. Finally, we probe and compare these categorical ad-
aptation effects for the two different contexts (“voice” and “cat”) with acoustically identical 
target sounds that could not be unambiguously attributed to any of the two categories. 

Materials and methods 

Subjects 
We studied, with informed consent, 8 adults (mean ± SEM age 28 ± 1 yrs; 3 females, 5 males; 
7 right-handed and one ambidextrous). None of the subjects had a history of hearing or neu-
rological impairments, and the study received a prior approval by the Ethical Committee of 
the Faculty of Psychology and Neuroscience, Maastricht University. 

Auditory Stimuli and Experimental Design 
One cat (meowing) and one voice sound (singing female) were selected from the stimulus 
set used in Staeren et al. (2009), on the basis of their close resemblance in harmonics-to-
noise ratios (Boersma, 1993; Lewis et al., 2005; Murray et al., 2006) and power spectra. To 
further minimize the spectrotemporal differences between the stimuli, the time-varying 
fundamental pitch of the cat sound was extracted at 25 time points (in ~30 ms steps) within 
the stimulus with Praat software (Boersma, 2001) and applied to the voice sound using Ado-
be Audition™. Sounds were then low-pass (LP) filtered at 13 cutoff frequencies; the LP fre-
quencies varied in steps of 100 Hz between 500 and 900 Hz, and in steps of 200 Hz between 
900 and 2500 Hz. To add more variation to the stimuli, they were transposed to five differ-
ent fundamental frequencies between 230−260 Hz. These procedures resulted in 65 stimuli 
for each of the two categories (5 pitch levels × 13 frequency ranges). The stimuli lasted for 
780 ms, and they were equalized for their mean intensities with MATLAB 7.0.1 ™ (The 
MathWorks, Inc., Natick, MA, USA). Differences in stimulus amplitude envelopes between 
cat and voice stimuli were minimized by using 10-ms moving-average windows, to an extent 
not to disturb original sound quality. The remaining amplitude differences were tested by 
analyzing the sound intensities in 20-ms steps at 0−220 ms from the beginning of the s muli: 
the stimulus intensities did not differ statistically significantly between the cat and voice 
stimuli (P > 0.09). 
 The stimuli were tested behaviourally in 14 subjects who did not participate in the final 
experiment. In these behavioural tests, subjects were first familiarized with six easily recog-
nizable representatives from both categories together with visual information about the 
sound category (Presentation 9.3™, Neurobehavioral Systems, Inc., Albany, CA, USA). Then, 
they were instructed to carefully listen to the sounds presented at 2 s interstimulus intervals 
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(ISI), and to decide whether the sound was a voice or a cat stimulus. Subjects were asked to 
be as accurate and fast as possible, and their ratings were reported through button presses. 
After a few practise trials, each stimulus (65 per category) was presented nine times. 
 At the largest bandwidths, the stimuli sounded very natural and, correspondingly, they 
were easily recognized as representatives of their category, while narrowing the bandwidth 
gradually affected the behavioral response. On the basis of the results, nine cat/voice stimu-
lus pairs with similar recognition accuracies and reaction times between categories were 
selected as “easy”. These sounds consisted of LP levels 1500 Hz (at two different pitch lev-
els), 1900 Hz (three pitch levels), and 2300 Hz (four pitch levels). In addition, the voice 
sounds that were LP-filtered at 500 Hz (four pitch levels) resulted in behavioural responses 
at chance level, and they were selected as “ambiguous”. Examples of the stimuli and their 
spectrograms are presented in Figure 1. Despite the efforts to minimize the spectrotemporal 
differences between stimulus categories, the easily recognizable female voice stimuli con-
tained more energy at ~1000−1500 Hz than the cat vocaliza ons throughout the s mulus 
duration (see Fig. 1a and 1b). Although the ambiguous stimuli were modified from the voice 
stimuli by LP filtering at 500 Hz and thus their resembled more closely the voice stimuli in 
their amplitude behavior, their spectrotemporal structure was rather flat at 0−500 Hz and 
did not contain the upper harmonics that were characteristics for both the easy voice and 
cat stimuli. 
 

 

Figure 1. Spectrograms of exemplary cat and voice stimuli (both low-pass filtered at 1900 Hz), and of ambiguous 
stimuli (voice sound, low-pass filtered at 500 Hz). The time-varying fundamental frequency of the cat sound 
was extracted and imposed onto the voice stimuli; All the harmonics of the voice sounds were modified accord-
ingly. 
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During the MEG session, the behavioural responses were too scarce for statistical inference. 
Therefore, in a separate behavioural session prior to the MEG experiment, all subjects un-
derwent a short behavioural session (Presentation 9.3™). First the subject listened twice to 
all nine “easy” cat and voice stimuli presented with an ISI of 2 s, together with visual infor-
mation on the stimulus category. Subsequently, the same stimuli were presented randomly 
three times without visual aid and interspersed with the ambiguous stimuli, and the subject 
was asked to respond with a button press whether the stimulus was a cat or a female voice. 
Finally, the subjects listened to the sounds as they would be presented in the MEG experi-
ment, i.e. four sounds in a row, and they were asked to respond after each trial whether the 
all four sounds belonged to the same category (yes/no). 
 The percentage of correct cat and voice sound recognition was ≥ 97 ± 2 % (mean ± SEM). 
Subjects’ responses to the ambiguous sounds were at the chance level: The percent correct 
(the subject responded ‘voice’) was 39 ± 12% when the sounds were presented after cat 
sounds, and 63 ± 14% after voice sounds (p > 0.35 compared with 50%), and the responses 
did not differ statistically significantly from each other (p = 0.15). 

MEG experiment 
In the MEG experiment, the sounds were delivered to the subjects binaurally at a comforta-
ble listening level through plastic tubes and ear pieces. They were presented in trains of 
four, and the subject’s task was to attend to all sounds carefully, and decide whether the 
sounds belonged to the same category (cat or voice). The experiment is described schemati-
cally in Figure 2. The stimuli within a train were presented with ISIs of 600 ms (from offset to 
onset), resulting in a trial duration of 4920 ms, and they were followed by an inter-trial in-
terval of 2700 ms. 
 The experiment consisted of six conditions utilizing the stimuli described above (nine 
voice sounds, nine cat vocalizations and four ambiguous sounds). In the congruent condi-
tions, four cat (or voice) sounds were presented in a row. In the incongruent conditions, 
three voice (cat) sounds were followed by a cat (voice) sound. In the ambiguous conditions, 
three voice (or cat) stimuli were followed by an ambiguous stimulus. To minimize build-up of 
purely acoustic memory traces during the trials and to avoid mismatch responses elicited by 
infrequent sounds among otherwise monotonous stimulation (Näätänen, 1992), the three 
first stimuli in a train were selected each from a different filtering level. The last sound in a 
row could be either from the same or different filtering level as the preceding third sound; 
MEG responses were pooled across the different filtering and pitch levels. The different 
stimulus trains were presented in a random order, and the same condition was not allowed 
to occur more than twice in succession. 
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Figure 2. Schematic presentation of the incongruent and ambiguous experimental trials. Note that the stimuli 
within a trial varied both in their LP filtering and pitch levels (see text). 

In 7% of the trials, a question mark appeared 1 s after the last stimulus, and the subject was 
required to respond by lifting her/his index or middle finger whether the sounds belonged to 
a same category (yes/no). The subsequent trials were discarded from the analysis. The re-
sponse hand was alternated across subjects, and to minimize possible motor contamination 
on the data, subjects were instructed to keep their hand relaxed during the experiment. To 
prevent subjects’ deciding on the last stimulus only, 7% of the trials were “catch trials” in 
which the incongruent stimulus occurred at the first, second or third stimulus position. 
These responses were also removed from the data analysis. 
 Auditory evoked fields were recorded in a magnetically shielded room using a whole-
head MEG system (VSM/CTF Systems Inc., Port Coquitlam, Canada) with 275 axial gradiome-
ters. Three head-position-indicator coils were attached at anatomical landmarks (the left and 
right ear canals and the nasion). The head position with respect to the sensor array was de-
termined by feeding current to the marker coils and measuring their positions with respect 
to the sensory array before and after the measurements. 
 The MEG signals were low-pass filtered at 300 Hz and digitized at 1200 Hz, and averaged 
offline with two time scales: i) from 200 ms before the onset of the whole stimulus block to 
1000 ms after the onset of the last (4th) stimulus, and ii) from 200 ms before the onset of 
each stimulus to 1000 ms after it. The averaged signals were digitally low-pass filtered at 40 
Hz, and a prestimulus baseline of 200 ms was applied. 
 The experiment was conducted in 5 blocks, each lasting ~10 min. During the experiment 
each of the six conditions (two congruent, two incongruent and two ambiguous conditions) 
was repeated 70 times. Horizontal and vertical electro-oculograms were recorded to discard 
data contaminated by eye blinks and movements; ~60−70 ar fact-free responses were aver-
aged per condition. 

MEG sensor-level signals 
For an initial estimate of the experimental effects, the responses to whole stimulus blocks 
were first analysed at the sensor level. To simplify the analysis, a planar gradient was esti-
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mated for each channel from the neighbouring channels (Medendorp et al., 2007); Planar 
gradients give the maximum signal just above the source area (Hämäläinen et al., 1993). 
Root mean square of the horizontal and vertical planar gradient fields was then calculated 
(combined planar gradient). Subsequently areal mean averages were calculated over the 
central, left and right temporal, left and right frontal, and left and right occipito-parietal re-
gions. 

Source analysis: equivalent current dipole modeling 
For source analysis, the head was modelled as a homogeneous spherical volume conductor. 
The model parameters were optimised for the intracranial space obtained from MR images 
that were available for all subjects. The neurophysiological responses were analyzed by first 
segregating the recorded sensor-level signals into spatiotemporal components, by means of 
manually-guided multi-dipole current modelling (equivalent current dipole, ECD; (Hämä-
läinen et al., 1993). The analysis was conducted separately for each subject using Elekta Neu-
romag (Elekta Oy) software package, following standard procedures (Hansen et al., 2010; 
Salmelin et al., 1994). The parameters of an ECD represent the location, orientation, and 
strength of the current in the activated brain area. The ECDs were identified by searching for 
systematic local changes, persisting tens of milliseconds, in the measured magnetic field pat-
tern. ECD model parameters were then determined at those time points at which the mag-
netic field pattern was clearly dipolar. The software identifies the sensor measuring the 
strongest signal at the channels covering the field pattern, and uses a location below this 
sensor as a seed point for the following ECD model parameter estimation. The parameter fit 
does not depend on the exact selection of the seed point in the local neighbourhood of the 
maximum signal. Only ECDs explaining more than 85% of the local field variance during each 
dipolar response peak were accepted in the multidipole model. Based on this criterion, 3–4 
spatiotemporal components were selected into the individual subjects’ models. The analysis 
was then extended to the entire time period, and all MEG channels were taken into account: 
The previously found ECDs were kept fixed in orientation and location while their strengths 
were allowed to change. 
 For optimizing the accuracy of the spatial fits, the orientation and location of the ECDs 
were estimated in each individual in the condition with the strongest signals in the time 
windows of the main experimental effects suggested by the sensor level data. However, the 
variability in the signal-to-noise ratios between conditions was very small, and, on the basis 
of visual inspection and on the calculated goodness-of-fit values obtained by comparing the 
original data and the data predicted by the fitted sources, the same sources explained well 
the responses in the other conditions. 
 Due to the variability of the response shape across individuals, the 250-ms response am-
plitudes were estimated as an average over a 50-ms (for ambiguous sounds) or 100-ms win-
dow (separately for congruent and incongruent conditions) around the individual response 
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peaks. For consistency, 100-ms response amplitudes were estimated from 50-ms time win-
dows around the individual response peaks. 
 The ECD source waveforms (average strengths and peak latencies of the responses) 
were statistically tested using ANOVA and paired t tests (two-sided, Bonferroni corrected). 
Effect sizes μ were estimated as the difference between two condition means divided by a 
standard deviation of the data across both conditions. 

Source analysis: Minimum Norm Estimates 
In the auditory modality, ECD models have been shown to coincide well with distributed 
modelling approaches (Vartiainen et al., 2009). For verifying the spatial distribution of activi-
ty obtained with ECD modeling, the cortical generators were additionally visualized with a 
distributed source model, using MNE Suite software package (M. Hämäläinen, Martinos Cen-
ter for Biomedical Imaging, Massachusetts General Hospital). MNE implements the L2 mini-
mum norm estimate of the source distribution, which seeks for current distribution that ex-
plains the measurements and has the smallest L2-norm. MNE analysis results in distributed 
models of the cortical activation, but provides little information of the shape or extent of the 
activated area. 
 For MNE analysis, the cortical surface of each subject was reconstructed from the corre-
sponding MR images with the Freesurfer software (Dale and Sereno, 1993; Fischl et al., 
1999). Each hemisphere was covered with ~5000 potential source locations. Currents orient-
ed normal to the cortical surface were favoured by weighting the transverse currents by a 
factor of 0.3 (Lin et al., 2006), and depth-weighting was used to reduce the bias towards su-
perficial sources. Noise-normalized MNEs (dynamical Statistical Parametric Maps, dSPMs) 
were calculated over the whole cortical area to estimate the signal-to-noise ratios in each 
potential source location (Dale et al., 2000). Noise covariance matrix was estimated from the 
200-ms prestimulus baseline periods in the raw data. 
 For group-level visualization, the MNEs of individual subjects were first normalized to 
the maximum value of that subject and subsequently morphed, with spatial smoothing, to 
one subject’s brain. The statistical analysis of MNEs was performed, by means of paired two- 
sided t tests, on each subject’s normalized values within a region of interest (ROI) centered 
around the Heschl’s gyrus that contained both the MNE maxima and the ECD models of all 
subjects. 

Results 

Congruent vs. Incongruent Sounds: Sensor-level results 
The initial sensor-level analysis revealed that all four stimuli within the stimulus blocks 
evoked strong responses bilaterally over the temporal areas, peaking at about 100 ms and at 
250–700 ms after the onset of each sound. Figure 3 depicts the areal averages of the sensor-
level signals (for the whole-head sensor-level data, see Figure 4). The 100-ms (N100m) re-
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sponses were attenuated for the stimuli at positions 2nd−4th compared with the first s mu-
lus, similarly in all conditions. An additional response at around 250 ms was observed in both 
incongruent conditions. 

Congruent vs. Incongruent Sounds: Source-level results 
Despite the careful acoustic matching of stimuli, the N100m responses to the first stimuli in 
a block were statistically significantly smaller for the cat than voice sounds in the left hemi-
sphere (LH) as modelled by the ECDs (t test p < 0.02, effect size μ = 0.7), whereas the N100m 
responses to other stimulus positions did not differ significantly between cat and voice stim-
uli in either hemisphere. 
 For the last stimulus, the incongruent sounds evoked prominent responses at ~250 ms 
after the stimulus onset in the right hemisphere (RH), without statistically significant differ-
ences between the cat and voice contexts (ECD analysis, Congruency x Category type inter-
action, F1,7 = 0.64; p = 0.43), suggesting that the effect was not specific to female voices nor 
cat vocalizations. Thus for the subsequent analysis of the congruent/incongruent sounds, the 
responses to cat and voice sounds were averaged together. 
 

 

Figure 3. MEG signals. Areal responses over all subjects to congruent and incongruent trials. Incongruent (voice) 
refers to an experimental condition in which the three first sounds were voice sounds, and the last sound was a 
cat sound. The insert shows enlarged responses to the last sounds, recorded over the right temporal cortex. 
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Figure 4. Responses at the 275 MEG channels averaged over all subjects for the incongruent (black) and congru-
ent (red) conditions. The inserts depict the maximum channels over the left and right hemispheres. 

 

Figure 5. MEG source analysis in one subject. The locations (dots) and orientations (tails) of the ECDs used to 
model the N100m responses (A, white dots), and of the right-hemispheric 250-ms responses in incongruent 
and congruent conditions (B, blue dots) in one subject, superimposed on the subject's MNE dSPM distributions. 
The inserts (right) depict the corresponding ECD time courses in a time window of -100 ms to 450 ms with re-
spect to the stimulus onset. 
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Figure 5 depicts the ECDs, the corresponding source waveforms, and the MNE dSPMs of one 
subject to the last sounds in the incongruent and congruent conditions, superimposed on 
her reconstructed cortical surface. In agreement with previous studies (for a review, see 
(Hari, 1990), the N100m responses were adequately explained by two ECDs, one in the left 
and one in the right supratemporal auditory cortex (indicated by white dipoles). The same 
sources explained also the sustained activity peaking > 300 ms. In the RH, another source 
with more supero-posterior location was needed to explain the responses around ~250 ms 
(indicated by a blue dipole). The ECD and MNE analyses suggested rather similar sequence of 
cortical activation: Both methods indicated right-hemispheric temporo-parietal activation 
~230−250 ms that was stronger in the incongruent than congruent stimulus condition. 
 
 

 
 

Figure 6. MEG group-level data. The locations of the ECDs used to model the N100m responses (white dots, A), 
and the 250-ms responses (blue dots) in congruent and incongruent conditions (B) in all subjects, morphed and 
superimposed on the average MNE dSPM distributions. Note that in three subjects, the same ECD was used to 
model both the N100m and the 250-ms response in the right hemisphere (white dots in B). C. ECD time courses 
from -200 ms to 1000 ms with respect to the stimulus onset. D MNE ROI analysis on the mean activation over 
the marked cortical area in the time window of 195−245 ms. 

Figure 6 illustrates the ECDs, the corresponding source waveforms, and the MNE dSPMs over 
all subjects to the last sounds in the incongruent and congruent conditions, morphed and 
superimposed on one subject’s reconstructed cortical surface. 
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The ECD models for the different subjects consisted typically of two ECDs in the RH, and one 
ECD in the LH (Fig. 6A). In three subjects, ECDs explaining the field patterns around 100 ms 
and 250 ms in the RH were located close to each other and had very similar orientations, and 
to prevent interactions between these ECDs, the same ECD was used to model both re-
sponses. In one subject, a 4th ECD was needed in the LH to explain the magnetic field varia-
tions at ~250 ms (Fig. 6B). While the N100m responses were consistently located in the vicin-
ity of planum temporale in both hemispheres in all subjects, the location of the 250-ms re-
sponses showed more interindividual variability. 
 The N100m responses peaked in the LH at 108 ± 8 ms and at 113 ± 7 ms (mean ± SEM), 
respectively, in the incongruent and congruent conditions, and in the RH at 113 ± 5 ms in 
both conditions, without significant differences in the ECD peak latencies or mean response 
amplitudes between conditions. At the LH, the responses at ~200 ms explained by the same 
ECDs tended to be stronger for incongruent than congruent sounds, but this difference did 
not reach statistical significance (estimated individually from a 50-ms time window around 
the maximum difference between conditions, t test p = 0.15). 
 The RH 250-ms responses peaked at 230 ± 10 ms in the incongruent condition, and at 
231 ± 12 ms in the congruent condition. The responses were statistically significantly strong-
er for the incongruent than congruent sounds as modelled by the ECDs (estimated from a 
100-ms time window around the individual peak responses, t test p < 0.01, effect size μ = 
0.9; For individual source waveforms, see Figure 7). ROI analysis of the maximum MNE maps 
over the right temporo-parietal region gave consistent results (average over the time win-
dow of 195−245 ms in the incongruent vs. congruent conditions, t test p < 0.03, effect size μ 
= 0.7; Fig. 5D). 
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Figure 7. The individual source waveforms of ECDs used to model the 250-ms responses in the right hemisphere 
(subjects S1-S8). 

“Ambiguous” Sounds 
For testing the categorical adaptation effects in two different contexts (“voice” and “cat”), 
we used acoustically identical target sounds that were derived from the voice sounds (see 
Methods). Whereas the N100m responses to these ambiguous sounds presented after cat 
and voice stimuli did not differ from each other, the right-hemispheric responses peaking at 
265 ± 28 ms were statistically significantly stronger to the target sounds presented after the 
voice than cat stimuli as modelled by the ECDs (estimated from a 50-ms time window 
around the individual peak responses, t test p < 0.02, effect size μ = 1.1; see Fig. 8). 
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Figure 8. The mean time courses of the right-hemispheric 250-ms responses for ambiguous sounds in cat and 
voice contexts, averaged over all subjects. 

Discussion 

In the present study, we investigated the temporal processing of auditory categories by uti-
lizing carefully-matched human and cat vocalizations. In particular, we used a paradigm that 
enabled us to compare responses to physically identical stimuli presented in different cate-
gorical contexts. Our results demonstrate that, when the low-level auditory stimulus differ-
ences are minimized, responses specifically at the right temporoparietal cortex react vigor-
ously to auditory categorical violation regardless of the stimulus category at ~200−250 ms 
after the stimulus onset. 
 Although our experimental stimuli were matched for several temporospectral acoustic 
characteristics, for the easily-recognizable stimuli, the overall harmonic structures still 
differed enough to provide cues needed for successful online categorization of the sounds. 
The conspicuous auditory N100m responses can be evoked by any sound onset or change in 
the auditory environment, but they also indicate stimulus-specific neural activity (Hari, 
1990). Indeed, in the left hemisphere the first N100m responses for a stimulus block were 
stronger for voice than cat sounds, probably reflecting the remaining acoustic differences 
between the sounds. This effect may be partly explained by the female voice stimuli 
containing more energy at the frequency level of 1000−1500 Hz than the cat vocalizations, 
although effect of stimulus bandwidth on cortical responses has been shown to be highly 
stimulus specific (Seither-Preisler et al., 2003; Shahin et al., 2005; Soeta et al., 2005). Thus, 
the use of a paradigm that allowed us to present the exact same stimuli in different 
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categorical contexts can be considered crucial for the interpretation of the results. The dif-
differences between the congruent and incongruent sounds at ~200−250 ms a er sound 
onset in the right hemisphere, present regardless of the sound category, suggest that at this 
time window, auditory processing has proceeded to a stage at which categorical templates 
have been established. Previously, right-lateralized auditory cortical fMRI activation in 
response to species-specific vocalizations has been reported in humans and monkeys, mainly 
in the STG/STS region (Belin et al., 2002; Belin and Zatorre, 2003; Formisano et al., 2008; 
Petkov et al., 2008), and right-hemispheric STG/STS has recently been related to speaker-
related changes in pitch that are needed for recognizing speech among changing speakers 
(von Kriegstein et al., 2010). Several earlier neuroimaging studies have pointed to functional 
asymmetries in the auditory areas, with the left and right auditory cortices being 
predominantly sensitive to temporal and spectral changes, respectively (e.g., (Obleser et al., 
2008; Zatorre and Belin, 2001). Our MEG results for categorizing vocalizations—for which 
rapid analysis of spectral information is crucial—are in agreement with these results, and 
further suggest the observed activity to support categorical processing at ~200−250 ms a er 
sound onset. 
 Recently, human vocalizations were demonstrated to evoke stronger responses than 
animal vocalizations at 169−219 ms a er sound onset within the anterior right STG and STS, 
without topographical differences between stimuli (De Lucia et al., 2010). The current data 
suggest that, after rather strict stimulus control for both acoustical features and attentional 
demands, auditory MEG responses to human voices and cat sounds did not statistically 
significantly differ from each other at around 200−250 ms. Rather, our results suggest the 
right posterior temporoparietal cortex to be especially activated in response to auditory 
categorical violation, regardless of the actual auditory stimulus. In 5 out of 8 subjects, the 
source for this response was separable from the source of the N100m response that has 
repeatedly been localized to the posterior part of the planum temporale (Hari, 1990). 
However, taken the relatively large interindividual variability in the 250-ms response source 
locations, they are likely to reflect anatomically more widespread synchronous activity, 
possibly including also the planum temporale that has earlier been suggested to be engaged 
in segregating and matching spectrotemporal patterns crucial for auditory object recognition 
(Griffiths and Warren, 2002). Combining electrophysiological measures e.g., with functional 
MRI could in the future provide more detailed spatial information on these responses. 
 The 250-ms responses in the present study had a fairly similar polarity to the N100m 
responses, and their cortical sources were located at the near vicinity of those of N100m 
with right-hemisphere dominance. These sources are unlikely to reflect the well-established, 
broad positive component at ~300 ms (P300) evoked by infrequent task-relevant stimuli in 
EEG recordings, likely reflecting widespread activity with bilateral sources at occipito-
temporal, centro-temporal, parietal and precuneal areas (Anurova et al., 2005). Rather, our 
250-ms responses seem to overlap temporally and spatially with activity that has been 
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observed, although bilaterally, in earlier auditory MEG studies on processing syllables, spo-
spoken words, and environmental sounds (Bonte et al., 2006; Renvall et al., 2012; Uusvuori 
et al., 2008). These responses do not seem to react to, e.g., phonetic or semantic task 
manipulations (Bonte et al., 2006; Uusvuori et al., 2008). Future studies are needed to 
explore whether these responses are related e.g., to accessing templates for different 
auditory categories regardless of stimulus type, possibly with different hemispheric 
emphasis for speech-like sounds. 
 The careful stimulus control can also be considered the main limitation of our present 
study: The stimuli were simple and they were constructed as continua from two exemplars. 
Even though their variability was increased by filtering and transposing them to different 
pitches, their ecological validity remains limited, compared with e.g., spoken words or 
environmental sounds. In future studies, the representation of auditory categories should be 
addressed also using more realistic auditory scenes, for example by modifying stimulus 
recognizability with varying level of superimposed noise (Renvall et al., 2012) and using a 
wider range of stimulus categories. 
 Although at the behavioral level the categorical context did not statistically significantly 
affect the categorization of ambiguous sound stimuli, the cortical responses to these sounds 
differed greatly depending whether they were presented after cat or voice sounds. 
Specifically, the right-hemispheric 250-ms responses were statistically significantly greater to 
sounds presented in the voice than cat context although the ambiguous sounds were 
acoustically closer to the voice stimuli. This finding could suggest that human voices as 
potentially more meaningful stimuli for the listener generated a stronger contextual effect, 
and thus resulted in a greater categorical mismatch for sounds that could not be un-
ambiguously attributed to one of the two categories. This suggests a more established status 
for processing of human voices in the human auditory cortex than e.g. animal vocalizations 
(Fecteau et al., 2004). However, further studies are evidently needed for establishing the 
complex interactions between context and target sounds. Specifically if the target sounds 
such as the ambiguous sounds here do not belong to any natural category, different cortical 
mechanisms may also apply. 
 In conclusion, our present results suggest that, after careful matching of acoustic 
stimulus features and behavioral demands, auditory categories for vocalizations are 
accessed by ~250 ms, preferably in the right posterotemporal cortex. This activity may 
reflect the detailed spectral analysis needed in the auditory categorical distinction of 
vocalizations. 

Acknowledgements 

We thank Niclas Kilian-Hütten and Jasper van den Bosch for help with the behavioral 
measurements, Mia Illman for the surface reconstructions, and Jan Kujala, Miiamaaria 
Kujala, Lauri Parkkonen and Tiina Parviainen for comments on the manuscript. This work was 



54 

supported by the Academy of Finland (National Centers of Excellence Programme 2006-
2011, and grant numbers #213828 and 127401 to HR), Netherlands Organisation for 
Scientific Research, Helsingin Sanomat Centennial Foundation, Emil Aaltonen Foundation 
and The Ella and Georg Ehrnrooth Foundation. 
  



55 

References 

Alain, C., Arnott, S., Hevenor, S., Graham, S., and Grady, C. (2001). "What" and "where" in the human auditory 
system. Proc Natl Acad Sci USA 98, 12301−12306. 

Altmann, C., Nakata, H., Noguchi, Y., Inui, K., Hoshiyama, M., Kaneoke, Y., and Kakigi, R. (2008). Temporal 
dynamics of adaptation to natural sounds in the human auditory cortex. Cereb Cortex 18, 1350−1360. 

Anurova, I., Artchakov, D., Korvenoja, A., Ilmoniemi, R. J., Aronen, H. J., and Carlson, S. (2005). Cortical 
generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks. 
Clin Neurophysiol 116, 1644−1654. 

Belin, P., Fecteau, S., and Bédard, C. (2004). Thinking the voice: neural correlates of voice perception. Trends 
Cogn Sci 8, 129−135. 

Belin, P., Zatorre, R., and Ahad, P. (2002). Human temporal-lobe response to vocal sounds. Cognitive Brain 
Research 13, 17–26. 

Belin, P., Zatorre, R., Lafaille, P., Ahad, P., and Pike, B. (2000). Voice-selective areas in human auditory cortex. 
Nature 403, 309−312. 

Belin, P., and Zatorre, R. J. (2003). Adaptation to speaker’s voice in right anterior temporal lobe. Neuroreport 
14, 2105– 2109. 

Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonic-to-noise 
ratio of a sampled sound. Proceedings of the Institute of Phonetic Sciences 17, 97-110. 

Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International 5, 341−345. 
Bonte, M., Parviainen, T., Hytönen, K., and Salmelin, R. (2006). Time course of top-down and bottom-up 

influences on syllable processing in the auditory cortex. Cereb Cortex 16, 115–123. 
Charest, I., Pernet, C., Rousselet, G., Quiñones, I., Latinus, M., Fillion-Bilodeau, S., Chartrand, J., and P., B. 

(2009). Electrophysiological evidence for an early processing of human voices. BMC Neurosci 10, 127. 
Dale, A., and Sereno, I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI 

cortical surface reconstruction: A linear approach. J Cogn Neurosci 5, 162-176. 
Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., and Halgren, E. (2000). Dynamic 

statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. 
Neuron 26, 55-67. 

De Lucia, M., Clarke, S., and Murray, M. (2010). A temporal hierarchy for conspecific vocalization discrimination 
in humans. J Neurosci 30, 11210-11221. 

Fecteau, S., Armony, J., Joanette, Y., and Belin, P. (2004). Is voice processing species-specific in human auditory 
cortex? An fMRI study Neuroimage 23, 840-848. 

Fischl, B., Sereno, M., Tootell, R., and Dale, A. (1999). High-resolution intersubject averaging and a coordinate 
system for the cortical surface. Hum Brain Mapp 8, 272-284. 

Formisano, E., De Martino, F., Bonte, M., and Goebel, R. (2008). "Who" is saying "what"? Brainbased decoding 
of human voice and speech. Science 322, 970-973. 

Friston, K. (2005). A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360, 815-836. 
Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., and Kilner, J. M. (2008). The functional 

anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage 42, 936-944. 
Griffiths, T., and Warren, J. (2002). The planum temporale as a computational hub. Trends in Neurosciences 25, 

348−353. 
Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V. (1993). Magnetoencephalography 

– theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod 
Phys 65, 413–497. 

Hansen, P. C., Kringelbach, M. L., and Salmelin, R., eds. (2010). MEG - An introduction to methods (New York, 
Oxford UP). 

Hari, R. (1990). The neuromagnetic method in the study of the human auditory cortex. In Auditory Evoked 
Magnetic Fields and Electric Potentials, F. Grandori, M. Hoke, and R. G.L., eds. (Basel, Karger), pp. 222–
282. 

Jaaskelainen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levanen, S., Lin, F. H., May, P., 
Melcher, J., Stufflebeam, S., et al. (2004). Human posterior auditory cortex gates novel sounds to 
consciousness. Proc Natl Acad Sci U S A 101, 6809-6814. 

Kaas, J., and Hackett, T. (1999). 'What' and 'where' processing in auditory cortex. Nature Neuroscience 2, 
1045−1047. 



56 

Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J., and DeYoe, E. A. (2005). Distinct cortical pathways for 
processing tool versus animal sounds. J Neurosci 25, 5148–5158. 

Lin, F., Witzel, T., Ahlfors, S., Stufflebeam, S., Belliveau, J., and Hämäläinen, M. (2006). Assessing and improving 
the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. 
Neuroimage 31, 160-171. 

Medendorp, W., Kramer, G., Jensen, O., Oostenveld, R., Schoffelen, J., and Fries, P. (2007). Oscillatory activity in 
human parietal and occipital cortex shows hemispheric lateralization and memory effects in a delayed 
double-step saccade task. Cereb Cortex 17, 2364-2374. 

Murray, M., Camen, C., Gonzalez Andino, S., Bovet, P., and Clarke, S. (2006). Rapid brain discrimination of 
sounds of objects. J Neurosci 26, 1293−1302. 

Näätänen, R. (1992). Attention and brain function (Hillsdale, NJ, Lawrence Erlbaum Associates). 
Obleser, J., Eisner, F., and Kotz, S. (2008). Bilateral speech comprehension reflects differential sensitivity to 

spectral and temporal features. J Neurosci 28, 8116–8124. 
Petkov, C., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., and Logothetis, N. (2008). A voice region in the 

monkey brain. Nature Neuroscience 11, 367-374. 
Rauschecker, J., and Tian, B. (2000). Mechanisms and streams for processing of "what" and "where" in auditory 

cortex. Proc Natl Acad Sci USA 97, 118001−111806. 
Renvall, H., Formisano, E., Parviainen, T., Bonte, M., Vihla, M., and Salmelin, R. (2012). Parametric merging of 

MEG and fMRI reveals spatiotemporal differences in cortical processing of spoken words and 
environmental sounds in background noise. Cereb Cortex 22, 132-143. 

Romanski, L., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P., and Rauschecker, J. (1999). Dual streams of 
auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience 2, 
1131−1136. 

Salmelin, R., Hari, R., Lounasmaa, O. V., and Sams, M. (1994). Dynamics of brain activation during picture 
naming. Nature 368, 463−465. 

Seither-Preisler, A., Krumbholz, K., and Lutkenhoner, B. (2003). Sensitivity of the neuromagnetic N100m 
deflection to spectral bandwidth: a function of the auditory periphery? Audiol Neurootol 8, 322-337. 

Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., and Ross, B. (2005). Modulation of P2 auditory-evoked 
responses by the spectral complexity of musical sounds. Neuroreport 16, 1781-1785. 

Soeta, Y., Nakagawa, S., and Tonoike, M. (2005). Auditory evoked magnetic fields in relation to bandwidth 
variations of bandpass noise. Hear Res 202, 47-54. 

Staeren, N., Renvall, H., De Martino, F., Goebel, R., and Formisano, E. (2009). Sound categories are represented 
as distributed patterns in the human auditory cortex. Curr Biol 19, 498−502. 

Uusvuori, J., Parviainen, T., Inkinen, M., and Salmelin, R. (2008). Spatiotemporal interaction between sound 
form and meaning during spoken word perception. Cereb Cortex 18, 456–466. 

Vartiainen, J., Parviainen, T., and Salmelin, R. (2009). Spatiotemporal convergence of semantic processing in 
reading and speech perception. J Neurosci 29, 9271-9280. 

von Kriegstein, K., Smith, D., Patterson, R., Kiebel, S., and Griffiths, T. (2010). How the human brain recognizes 
speech in the context of 

changing speakers. Journal of Neuroscience 30, 629−638. 
Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., and Dehaene, S. (2011). Evidence 

for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci U S A 108, 20754-
20759. 

Warren, J., and Griffiths, T. (2003). Distinct mechanisms for processing spatial sequences and pitch sequences 
in the human auditory brain. J Neurosci 23, 5799−5804. 

Warren, J., Scott, S., Price, C., and Griffiths, T. (2006). Human brain mechanisms for the early analysis of voices. 
Neuroimage 31, 1389−1397. 

Zatorre, R. J., and Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cereb Cortex 11, 
946–953. 

 
 
 
  



57 

 

CHAPTER 4 

Cortical processing of spatial cues in natural 
auditory scenes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corresponding publication: Staeren, N., Renvall, H., Schreiner, C., Walter, A., Goebel, R., 
Formisano, E. (in preparation). Cortical processing of spatial cues in natural auditory scenes. 



58 

Summary 

The segregation of an auditory object from a sound mixture (or auditory scene) requires the 
interplay between bottom-up processing of the acoustic scene elements and top-down 
processes of attentive selection and binding. Spatial hearing contributes to this analysis by 
providing cues on location and motion of the sound sources. This study investigates the 
cortical processing of spatial cues during listening of natural auditory scenes. Using the 
technique of binaural recording and in-ear microphones, we recorded realistic auditory 
scenes containing two concurrent sound sources, a voice centrally located in front of the 
listener (foreground), and an environmental sound located at different locations at the 
background. During fMRI measurements subjects were instructed to attend one of the 
sound sources (“Voice” vs “Environment”), under two distinct playback conditions: 1) Stereo 
playback which preserves the spatial acoustic information of the original recordings 
(“Spatial”) or 2) Mono playback, which removes spatial information (“Non-spatial”). Our 
analyses show that processing of the spatial cues - independently of the attention condition 
- corresponded with significantly increased brain activation at the bilateral posterior superior 
temporal areas. These regions are known for processing spatial and motion information 
(“where” stream). However, we also observed significant activation differences in the Spatial 
vs Non-spatial comparison that depended on the attention target. When listeners attended 
to environmental background sounds, we found significant differences in left planum 
temporale and left inferior frontal gyrus. Conversely, when listeners attended to vocal 
sounds, we found significant activation differences in bilateral clusters of middle superior 
temporal gyrus and sulcus, which overlap with voice sensitive regions. These attention-
dependent effects suggest that – in order to segregate an auditory source from a sound 
mixture - spatial cues are integrated with other relevant spectral and temporal cues in 
cortical locations specifically involved in the recognition of sounds.  
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Introduction 

A natural environment rarely contains one sound. Overlapping voices, mechanical 
background noise, a phone ringing; in most cases the acoustic signal at our ears comprises 
sounds from several sources. Automatic and effortless for most of us, segregation of the 
sources from a complex sound mixture (or auditory scene), is a formidable example of the 
computational capabilities of our auditory system. Processing of a scene into perceptual 
auditory objects is determined by the interplay between bottom-up processing of the 
spectral and temporal relations of the acoustic scene elements and top-down processes of 
attentive selection and enhancement of the relevant sounds (Bregman, 1990). 
 Spatial hearing also contributes to the processing of auditory scenes by providing 
information on location and motion of the sound sources. As there is no explicit 
representation of auditory space on the receptor surface, the auditory system derives the 
information on the location and motion of the sources from various acoustic cues. Locations 
in the vertical plane and in the front-back direction are resolved from the direction-
dependent modifications of spectral profile generated by the outer ear and the head 
(spectral cues). Horizontal localization of the sound sources relies on timing and level 
differences at the two ears (interaural timing [ITD] and level [ILD] difference). Perception of 
sound motion relies on the analysis of dynamic changes of these cues. 
 The neural analysis of spatial acoustic cues starts in the brain stem at level of the 
superior olivary complex (SOC). At the level of the inferior colliculus (IC), all the individual 
spatial acoustic cues have been processed and filtered (Groh et al., 2003). These separate 
cues are then integrated in the next synaptic levels of the thalamo-cortical system. In the 
cortex, the location of a sound source is represented by populations of distributed and 
broadly tuned neurons (Recanzone et al., 2000). When comparing the spatial selectivity of 
neurons in different fields of the auditory cortex in the macaque, a sharper spatial tuning is 
found in caudal fields (CM (Tian et al., 2001), (Recanzone et al., 2000) and CL (Recanzone et 
al., 2000), (Miller and Recanzone, 2009)) compared to A1 or to antero-lateral fields. 
Furthermore, deactivation of the posterior auditory field, in the cat, causes behavioral 
dysfunctions in sound localization (Lomber and Malhotra, 2008). These results provide 
strong support to the proposal of a dorsal (‘where’) stream of auditory areas specialized for 
the processing of spatial information. Anatomical studies indicate that extensive connections 
exist between these caudal auditory fields and spatial domains of the prefrontal cortex 
(Romanski et al., 1999). 
 Results from neuroimaging studies in humans are generally supportive of this 
hypothesis. Several studies investigating the cortical basis of sound localization (Alain et al., 
2001; Altmann et al., 2007; Barrett and Hall, 2006; Warren and Griffiths, 2003) and motion 
(Baumgart et al., 1999; Hart et al., 2004; Krumbholz et al., 2005a; Krumbholz et al., 2005b; 
Pavani et al., 2002; Warren et al., 2002; Warren et al., 2005) have reported a selective 
activation of posterior temporal regions (planum temporale, [PT] and posterior superior 
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temporal gyrus [pSTG]), and of regions at the temporal – parietal boundaries (Lewis et al., 
2000). Activation of these regions appears to be prominent when subjects are actively 
involved in a task of sound localization (Zatorre et al., 2002) and in the presence of sound 
motion (Getzmann and Lewald, 2010; Warren et al., 2002). 
 However, this interpretation of posterior temporal activation in terms of functional 
specialization for spatial audition is not univocal. For example, it has been suggested that the 
activation of the PT does not reflect spatial processing per se but rather the integration of 
spatial information with auditory object information (Zatorre et al., 2002). This alternative 
interpretation is supported by the findings that manipulation of the number of auditory 
objects in a scene produces effects in PT similar to spatial manipulations (Smith et al., 2010). 
 In the present study we examined the cortical processing of spatial cues embedded in 
realistic auditory scenes. Using ear-insert microphones, we recorded a set of naturalistic 
scenes that contained a vocal sound centrally located in front of the listener and an 
environmental sound located at the peripheral background (e.g. a voice with a car passing). 
During functional MRI (fMRI) measurements, subjects attentively listened to the auditory 
scenes, under two distinct playback conditions: 1) Stereo playback (“Spatial”) which 
preserves the spatial acoustic information of the original recordings (e.g. motion of the 
sound on the background) or 2) Mono playback, which removes spatial information (“Non-
spatial”). Furthermore, we manipulated the top-down context for processing the auditory 
scenes by directing the subjects’ attention either to the voice in the foreground or to the 
background sounds (“Voice” vs “Environment”). This design allowed us to examine the 
relation between mechanisms for the analysis of spatial cues and attention mechanisms 
responsible for selecting and segregating sound objects from a scene. In particular, we 
aimed at distinguishing cortical regions involved in the automatic (i.e. attention-
independent) analysis of spatial cues from regions involved in integrating spatial and sound 
object information during auditory scene analysis. 

Experimental Procedures 

Subjects 
We studied, with informed consent, 10 adults (mean age ± SD: 28 ± 4 yrs; 4 females, 6 males, 
one left-handed). All subjects were graduate university students and were paid for their 
participation. Subjects had no history of hearing or neurological impairments, and were naive 
to the experimental setup. The study received a prior approval by the Ethical Committee of the 
Faculty of Psychology, Maastricht University. 

Stimuli 
Eighty auditory scenes were created by using excerpts from audio recordings from 12 vocal 
actors and 30 environments. Sounds were recorded binaurally using two in-ear microphones 
(FG-23652-P16, Knowles Electronics, Itasca, Illinois, U.S.A.) and a portable digital recorder 
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(96 Khz, 24bit, M-Audio MicroTrack 24/96 Pocket Digital Recorder). After recording, sounds 
were down-sampled to 44.1 KHz/16 bit using Adobe Audition (Adobe Systems, Inc., CA, 
USA). The duration of the sounds was between 450 and 2635 ms (mean length ± SD: 1306 ± 
565 ms); amplitude envelopes and average root-mean-square levels of the sounds were 
matched using MATLAB 7.0.1 (The MathWorks, Inc., Natick, MA, USA). 
 Auditory scenes for the “Spatial” condition were created by mixing separately the two 
audio channels; a monaural version of the same scenes was created by merging the two 
audio channels. All stimuli in this study were recorded inserting the microphones in the ear 
canal of two listeners that did not take part in the fMRI measurements, and were played to 
the subjects via the MR-compatible headphones (see below). It is known that - because of 
inter-individual differences in head and external ear shape – non-individualized recordings as 
used in this study do not produce the same perceptual quality as individualized recordings. 
However, we choose not to record the stimuli individually because of the difficulty of 
recreating natural complex scenes for each subject. We assessed the quality of spatial 
perception in behavioral pre-tests. All listeners that participated in the fMRI measurements 
reported a clear spatial perception of our auditory stimuli outside and inside the MR 
scanner. 

fMRI experimental design 
A 2 x 2 block design with space (“Spatial” vs “Non-Spatial”) and attention (“Voice” vs 
“Environment”) as factors was used. The experiment consisted of 2 functional runs during 
which auditory scenes in the four different conditions were presented according to a block 
design. Each of the two runs (22 min/run) included 9 blocks per condition and four target 
blocks (see below); the sequence of conditions was randomized and blocks were separated 
by a fixation period of three TRs. Each block consisted of four TRs (TR= 4640 ms, total = 18.5 
s) and an auditory scene was presented for each trial. Every block was preceded by a cue 
presented at the fixation point indicating the attention condition (“E” or “V”). Subjects were 
instructed to respond with a button press in case the attended sound in two consecutive 
auditory scenes was the same. This occurred in 10% of the cases (“target blocks”); there 
were 2 target blocks per conditions (4 blocks/run). The response hand was alternated across 
subjects.  

fMRI measurements 
Brain imaging was performed with a 3 Tesla Siemens Allegra (head setup) at the Maastricht 
Brain Imaging Center. In each subject, two runs of 282 volumes were acquired with a T2*-
weighted gradient-echo planar imaging (EPI) sequence (TR = 4640 ms, voxel size = 2,5 × 2,5 × 
2,5 mm3, TE = 30 ms, FOV 256 × 256; matrix size 96 × 96, 32 slices covering the cortex). 
Anatomical images (1 × 1 × 1 mm3) were collected between the two functional runs using a 
3D-MPRAGE T1-weighted sequence. During the measurements, the stimuli were delivered 
binaurally via MR compatible headphones (Commander XG, Resonance Technology, 
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Northridge, CA) at a comfortable listening level. To minimize the effect of scanner noise, the 
sounds were presented during silent periods using a clustered volume EPI technique that 
allowed for presentation of auditory stimuli in silence between subsequent volume 
acquisitions (Riecke et al., 2007; van Atteveldt et al., 2004). 

fMRI Data Analysis: pre-processing and univariate statistics 
Functional and anatomical images were analyzed with BrainVoyager QX (Brain Innovation, 
Maastricht, The Netherlands). Preprocessing consisted of slice scan-time correction (using 
sinc interpolation), linear trend removal, temporal high-pass filtering to remove nonlinear 
drifts of seven or less cycles per time course, and 3-dimensional motion correction. 
Temporal low pass filtering was performed using a Gaussian kernel with FWHM of two data 
points. Functional slices were co-registered to the anatomical data, and both data were 
normalized to Talairach space (Talairach and Tournoux, 1988). 
 Statistical analysis of the fMRI data was based on voxel-by-voxel general linear modeling 
(GLM) of the time series. For each subject, a design matrix was formed using a predictor for 
each experimental condition (“Spatial-Voice”, “Spatial-Environment”, “Non Spatial-Voice”, 
“Non Spatial-Environment”) and for the target blocks. The predicted time courses were 
adjusted for the hemodynamic response delay by convolution with a canonical 
hemodynamic response function (sum of two gamma functions). 
 Cortex-based realignment was performed for aligning the functional time series of 
individual subjects and to perform random effect group-based statistics (Goebel et al., 
2006). Statistical maps were thresholded and corrected for multiple comparisons (alpha = 
0.05) on the basis of cluster-level statistical threshold estimation performed on the cortical 
surface data (Forman et al., 1995; Goebel et al., 2006). 

Results 

Listening to auditory scenes induced extensive activations of the superior temporal cortex 
bilaterally, including the Heschl’s gyrus and surrounding regions on the superior temporal 
gyrus and sulcus (see Figure 1a). Additional activation was found in the left middle temporal 
gyrus (MTG), left inferior frontal gyrus (IFG) and bilateral inferior parietal lobule (IPL). This 
overall activation pattern was largely common to both the “Spatial” and “Non spatial” 
conditions.  

“Spatial” vs “Non Spatial” scenes 
To examine the brain regions involved in the processing of spatial cues we first compared 
the activation to “Spatial” vs “Non Spatial” scenes grouped across attention conditions. We 
observed significantly higher BOLD responses for the “Spatial” condition (see Figure 1b) 
bilaterally in the posterior STG regions. In the left hemisphere, this region was located at the 
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adjacency with the temporal-parietal border. In the right hemisphere, an additional cluster 
was present along the STS. 
 We further dissected the “Spatial” vs “Non Spatial” contrast by analyzing the two 
attention conditions separately, i.e. we performed the two orthogonal contrasts “Spatial-
Environment” vs “NonSpatial-Environment” (see blue map in Figure 1c) and “Spatial-Voices” 
vs “NonSpatial-Voices” (see red map in Figure 1c). 
 

 

Figure 1: Results from Cortex-based Aligned Random Effect analysis using the General linear model. a) Overall 
activation map (SpVo + SpEn + NsVo + NsEn > baseline, F-map), b) Spatial versus Non-Spatial stimuli (SpVo + 
SpEn > NsVo + NsEn, c) Spatial versus Non-Spatial stimuli for either the Voice condition (Red, SpVo > NsVo) or 
the Environment condition (Blue, SpEn > NsEn). Voxels where both contrasts are significant (conjunction) are 
highlighted in yellow, d) Interaction maps: Green: SpEn – MoEn > SpVo – MoVo; Orange: SpVo – MoVo > SpEn - 
MoEn. 
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In the right posterior STG, we found a cluster of activation where these two contrasts were 
independently significant (see yellow map in Figure 1c and averaged time courses in Figure 
2a). A similar cluster was also present in the left hemisphere, although it did not survive the 
corrected threshold (see also time courses in Figure 2b). 
 Besides these common clusters, activation clusters were detected specific to the 
different attention targets. When listeners attended to environmental background sounds, 
significant activation differences were found in the left planum temporale and in left inferior 
frontal gyrus (see blue color in Figure 1c). In these regions there was no activation difference 
for the orthogonal contrast (“Spatial-Voice” vs “NonSpatial-Voice”; see time courses in 
Figure 2c and 2d). 
 Conversely, when listeners attended to vocal sounds, we found significant activation 
differences in bilateral clusters of middle STG (left hemisphere) and STS (posterior and 
middle, right hemisphere). In these clusters - that resembled regions reported to be 
selectively activated for voices in previous studies (Belin et al., 2000) – there was no 
activation difference for the orthogonal contrast (“Spatial-Environment” vs “NonSpatial-
Environment”; see time course in Figure 2e and 2f). 
 To test these observations statistically we calculated interaction maps, which are shown 
in Figure 1d. In these maps, of all the regions for which an individual contrast was significant 
(e.g. blue or red regions in Figure 1b) only the regions in the left PT and in the left middle 
STG survived a rigorous threshold (p < 0.05, corrected). 

Attention to “Environment” vs attention to “Voice” 
To examine the brain regions affected by the attention manipulation we compared the 
activation to the scenes grouped across spatial conditions (i.e.”Environment” vs “Voice”). 
We observed significantly higher BOLD responses for the “Environment” condition (see 
Figure 3a) in a largely left-lateralized network of regions including posterior STG, posterior 
STS/MTG and, in the frontal lobe, and the dorsolateral prefrontal cortex (DLPFC). Bilateral 
activation of the posterior parietal cortex (PPC) and the left precentral gyrus (PrG) were also 
observed. No region showed increased activation for “Voice” compared to “Environment”. 
When analyzing the two spatial conditions separately, (“Spatial-Environment” vs “Spatial-
Voice” (see purple map in Figure 3b) and “Non Spatial-Environment” vs “Non Spatial-Voices” 
(see green map in Figure 3b), we observed a similar pattern of overall activation. 
Interestingly, however, there was little overlap between the two maps in frontal and parietal 
regions and only a common cluster of activation in left STS/MTG (see yellow map in Figure 
3b and time course in Figure 3c). 
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Figure 2: Average time courses for relevant clusters of the maps in Figure 1b-1d. The averaged brain activation 
during the “Spatial” conditions (dark blue and red lines) are compared to the brain activation in the “Non-
Spatial” conditions (lighter blue and pink lines) separately for the attention to “Environment” (left column, 
blue) or to “Voice” (right column, red) condition. a) Right Posterior STG: this region was commonly activated for 
“Spatial” vs “Non-spatial” scenes, independent of attention (yellow cluster in Figure 1c), b) Left Posterior STG: a 
similar pattern as in a), however, significance in this cluster was above the corrected threshold, c) Left PT and 
d) Left IFG: in these clusters the “Spatial” vs “Non-Spatial” was significant only during the attention to 
“Environment” condition (blue map in Figure 1c), e) Left middle STG, and f) Right middle STG: in these clusters 
the “Spatial” vs “Non-Spatial” was significant only during the attention to “Voice” condition (red map in Figure 
1c). 
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Figure 3: Results from Cortex-based Aligned Random Effect analysis using the General linear model. a) 
“Environment” versus “Voice” attention condition (merged spatial conditions), b) “Environment” versus 
“Voice” for either the “Spatial” scene condition (Purple) or the “Non-Spatial” condition (Green), c) Time courses 
related to fig. 3b (left posterior STS/MTG, yellow) where “Environment” (Blue and Turquoise lines) vs “Voice” 
(Red and Pink lines) scenes are compared during the “Spatial” (left column) or “Non-Spatial” (right column) 
attention condition: this area was commonly activated for “Environmental” vs “Voice” scenes, independent of 
spatial cues. 
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Discussion 

In this study we investigated the cortical processes related to stream segregation of complex 
natural auditory scenes, with or without spatial acoustic information.  
 Comparing “Spatial” to “Non-Spatial” scenes resulted in a robust increase of regional 
activation in clusters of the right and - to a lesser extent - left posterior auditory cortex. This 
increased activation was present during both attention conditions (voice and environment). 
The anatomical location of these attention-independent activations corresponds to the 
posterior portion of the planum temporale, at a site which is compatible with area Tpt of the 
anatomical classification by (Galaburda and Sanides, 1980) (see also (Sweet et al., 2005)), 
area STA of the classification by (Rivier and Clarke, 1997) (see also (Wallace et al., 2002)) or 
area Te3 in the classification by (Morosan et al., 2005). These locations are also in agreement 
with previous functional neuroimaging studies that investigated sound localization and 
motion using simple sounds presented in isolation (Hart et al., 2004; Krumbholz et al., 
2005a). Thus, in line with the general functional dichotomy between ‘what’ and ‘where’ 
auditory processing streams, our results confirm the indication that posterior auditory 
regions carry out the analysis of spatial cues in complex auditory scenes. Spatial processing 
in these areas seems to be automatic and scarcely influenced by attention, which may be 
particularly relevant for efficient localization of relevant and sudden sounds. It is worth 
noting that our experimental task did not explicitly require listeners to localize the sounds, 
which further highlights the obligatory nature of the observed effects. 
 Besides “automatic” sound localization, spatial acoustic cues from complex auditory 
scenes may also contribute to the processes of sound stream segregation and formation. 
Thus, the observed attention-dependent effects may reflect a second cortical processing 
mechanism, which may be devoted to integration of spatial cues with other spectral and 
temporal cues, with the goal of segregating and forming auditory streams. Such processing is 
expected in cortical locations specifically involved in the recognition of sounds. Also, 
attention is expected to have a relevant role in selecting and grouping the relevant sound 
object in the scene. Our results are highly consistent with this view. In regions of the middle 
portion of left (and right) STG and STS, we observed an effect of the spatial manipulation 
only when “voices” were attended to. These locations clearly resemble the so-called “voice 
sensitive” regions, as reported in previous studies (Belin et al., 2000). On the other end, we 
observed an effect of the spatial acoustic cues in regions of the left posterior Planum 
Temporale, only when attention was directed to background sounds. These regions have 
been associated in a previous study (Lewis et al., 2005) to processing of tool sounds, which in 
fact constitute a large subset of our background sounds. 
 Although consistent with previous studies, our interpretation is not univocal. In fact, in 
our scenes, voices were always located centrally in front of the listener, while the 
environmental sounds were peripheral and more variable. New studies should verify 
whether the observed attention-dependent effects reflect the different sensitivity of 
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auditory regions to distinct locations rather than the sensitivity to distinct sound categories, 
or relate them to each other. 
 Comparing the “Environment” vs “Voice” attention conditions resulted in a robust 
increase of activation mainly in the left temporal, frontal and bilateral parietal areas. On the 
contrary, the reverse contrast revealed no significant effect. These differences might be 
interpreted in the light of task difficulty. Attending to sounds on the periphery may require 
additional top-down signaling from frontal and parietal areas for overriding or counteracting 
the automatic allocation of attention to centrally-located or vocalized sounds.  
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Summary 

Apart from being a common and engaging experience in our everyday life, listening to music 
well exemplifies the remarkable capabilities of the human auditory system to analyse sound 
mixtures. While listening to a song, one can distinctively perceive the singing voice and the 
various instruments despite the large spectral-temporal overlap between their sounds, a 
process known as stream segregation. In this study, we use music to reveal the mechanisms 
the human brain uses for processing multiple simultaneous auditory streams. During fMRI 
measurements, subjects were presented with two rock songs, which were played by the 
same group (voice [male singer], guitar, bass, and drum) but differed widely in terms of 
acoustic properties, melody, rhythm, spectro-temporal overlap of the streams. We show 
that a machine learning algorithm – trained with auditory cortical activation patterns elicited 
by one of the songs – can successfully decode the variations of acoustic energy in the singing 
voice and the other instruments from activation patterns elicited by the other song. For each 
of the sound sources (i.e. the voice and the instruments), informative patterns comprised 
distinct – yet overlapping - networks of superior temporal regions.  
 These findings indicate that the brain processing of a complex sound mixture (such as a 
song) involves the formation of neural representations of each contributing source. The 
successful decoding of sound sources across mixtures that differed along multiple acoustic 
dimensions suggest that these auditory cortical representations are perceptual rather 
acoustic. 
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Introduction 

Listening to music is an everyday experience that well exemplifies the level of computational 
complexity our auditory system continuously faces. When listening to a song, we can 
distinctively perceive the singing voice and various instruments, despite the large spectral 
and temporal overlap of their sounds. Under this perspective, music can be regarded as a 
rich and natural stimulus for studying auditory scene analysis (ASA). ASA refers to the 
processes required of the auditory system to recover descriptions of individual sound 
sources (‘auditory objects’ or ‘auditory streams’) from mixtures of simultaneous sounds 
(Bregman, 1990). Although studied extensively in psychophysics (Bregman, 1990; Ciocca, 
2008), little is known about the neural mechanisms underlying ASA. Several neuroimaging 
investigations in humans or invasive recordings in animals have examined the neural 
correlates of ASA using very elementary auditory scenes (e.g. tones in noise or alternating 
tone streams). Results from these studies suggest a relevant role of the primary auditory 
areas in the formation of simple auditory objects; furthermore they have put forward a 
number of coding mechanisms that the brain may use for solving these elementary ASA 
problems (Eggermont, 2001; Elhilali et al., 2009). The simplicity of the scenes examined, 
however, does not allow generalizing the obtained results to more complex and realistic 
scenes. Processing and segregating realistic auditory scenes certainly involve additional 
cortical representations and computations which have not been identified so far. 
 In the present study we combine music, functional magnetic resonance imaging (fMRI) 
and advanced computational methods to address the neural foundations of ASA. Numerous 
neuroimaging studies have already examined the neuronal basis of different aspects of 
music perception (see (Levitin and Tirovolas, 2009; Peretz and Zatorre, 2005) for reviews). 
Most of these studies, however, report the neural correlates of music listening at the level of 
activated brain regions (Levitin and Tirovolas, 2009; Peretz et al., 2009; Zatorre et al., 2007) 
or have focused on specific aspects of music processing, such as expectation violation (e.g. 
(McDermott and Oxenham, 2008)). Our goal, however, largely differs from these studies as it 
considers music as a means to unravel the neural make up of auditory objects or auditory 
streams. We define an auditory object or auditory stream as the perceptual – rather than 
physical – description of a sound, which is invariant to acoustic variations and to the 
background noise (Griffiths and Warren, 2004). Formation of these invariant representations 
is a crucial computational step in the analysis of any auditory scene. Here we exploit recent 
advances in fMRI data analysis (Formisano et al., 2008a; Formisano et al., 2008b; Valente et 
al., 2011) to investigate – during music listening - the formation of cortical representations of 
individual instruments and voice which are invariant to the melody and to the specific 
combination of the instruments being played. During fMRI measurements subjects listened 
to two rock songs played by different combinations of three instruments (guitar, bass and 
drums) and a singing voice, which have been recorded separately and mixed together in a 
professional setting (see Recording of stimuli). Using multivariate regression (Gaussian 
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processes), we first estimate a “brain signature” of each stream (i.e. the three instruments 
and the voice) by using fMRI data relative to one of the songs. This brain signature is 
obtained as the distributed brain representations (‘predictive maps’) associated with the set 
of continuous predictors corresponding to the root mean square (RMS) power of each 
instrument/voice. Then the robustness of this distributed representation is tested by looking 
at the capability of the brain-based machine learning algorithm to predict – in the second 
song - the individual streams. In this phase, information on the song is not given to the 
algorithm, but the individual tracks of the instruments/voice (RMS) are blindly predicted 
based on the fMRI data and on the predictive maps obtained in the learning phase. 
Successful learning is assessed by comparing the generated predictions with the original 
RMS profiles of the instruments and voice (correlation). Based on recent results with non-
musical sounds presented in isolation (Formisano et al., 2008a; Staeren et al., 2009), we 
expected the invariant representations of the instruments’ energy measures (RMS) to be 
comprised within the auditory regions of the superior temporal cortex. This would indicate 
that beyond the physical representation of sounds, these auditory regions entail an abstract 
level of stream representation. 

Methods 

Experimental setup 
A scheme of the experimental protocol is illustrated in Figure 1. Subjects listened to two 
songs of 5 minutes, which were presented nine times each, with different combinations of 
instruments and voice: the three instruments and voice in solo, four mixtures of three 
instruments and/or voice, and the complete song. Each song presentation was interleaved 
with a short period of silence (30 sec) before the next song was presented. The order of the 
runs was balanced across the subjects. Songs were presented binaurally using mono 
playback. Subjects were instructed to attentively listen to the music as if it would be played 
on the radio. Subjects were unfamiliar with the music. 

Recording of stimuli 
The songs were two new rock compositions. This type of music was chosen because it is 
relatively ‘simple’ to record and is easily accessible by people with different musical 
backgrounds. Instrument tracks were recorded (48 KHz/32 bit) with aid of a professional 
sound engineer. One of the authors (NS) co-created the music, edited and mastered each 
instrument (guitar, bass, drum) and voice separately using a Protools LE setup (Digidesign, 
Daly City, CA, USA) (see Appendix 1 for detailed information on the recording and sound 
editing procedures). By using own recordings, we were able to quantify the contribution of 
each instrument to the overall physical sound signal, as well as to create songs consisting of 
the different combination of instruments and voice. No master recording (with separate 
track per instrument) is usually available for commercial and copyrighted music. During the 
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measurements, the stimuli were delivered binaurally via MR compatible headphones (Com-
(Commander XG, Resonance Technology, Northridge, CA) at a comfortable listening level. 
 

  

Figure 1: Experimental design of a run. Each song was presented nine times, with different combinations of 
instruments. The two songs are interleaved, with a 30 second rest period in between. 

Subjects 
Four subjects that gave their informed consent, (mean ± SEM age 27 ± 4 yrs; 2 females; 2 
right-handed) participated in the study. The subjects were graduate university students who 
were paid for their participation. Subjects had no history of hearing or neurological 
impairments, and were naïve to the experimental setup and music. The study received a 
prior approval by the Ethical Committee of the Faculty of Psychology and Neuroscience, 
University of Maastricht. 

fMRI measurements 
Brain imaging was performed with a 3 Tesla Siemens Allegra (head setup) at the Maastricht 
Brain Imaging Center. In each subject, two runs of 850, and two runs of 682 volumes were 
acquired with a T2-weighted gradient-echo planar imaging (EPI) sequence (TR = 2000 ms, 
voxel size = 2,5 × 2,5 × 3 mm3, TE = 30 ms, FOV 256 × 256; matrix size 96 × 96, 31 slices 
covering the cortex). Four runs consisted of four or five songs (different instrument 
combinations) and lasted approximately 22 or 28 min. Anatomical images were obtained 
using a 1 × 1 × 1 mm3 resolution T1-weighted MPRAGE sequence between the second and 
third functional run. 

Song 1

Song 2 

Song 1 

Song 2

5 minutes

5 minutes

5 minutes 

REST: 30 seconds

REST: 30 seconds

REST: 30 seconds 

TIME 

5 minutes 
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fMRI Data Analysis: pre-processing, univariate and multivariate statistics 
Functional and anatomical images were first analyzed with BrainVoyager QX (Brain 
Innovation, Maastricht, The Netherlands). Preprocessing consisted of slice scan-time 
correction (using sinc interpolation), linear trend removal, temporal high-pass filtering to 
remove nonlinear drifts of seven or less cycles per time course, and 3-dimensional motion 
correction. Temporal low pass filtering was performed using a Gaussian kernel with FWHM 
of two data points. Functional slices were co-registered to the anatomical data, and both 
data were normalized to Talairach space (Talairach and Tournoux, 1988). 
 FMRI time series were modeled using multivariate regression (Gaussian Process 
Regression (GPR)) with a linear covariance function having one hyperparameter. (See 
(Rasmussen and Williams, 2006)) for more details on GPR). In order to relate the tracks to 
fMRI activity we constructed a predictor for each instrument and voice by computing - 
separately for each individual track - the average Root Mean Square (RMS) power within a 
volume acquisition. This RMS time course was then convolved with an estimate of the 
hemodynamic response function (HRF), (See Figure 2). These predictors were used to train 
four GPR models (one for each instrument and voice). Because a linear covariance function 
was used, this training also resulted in four distinct predictive maps, i.e. maps coding the 
relative importance of voxels in predicting new data. The generalization performance of 
these models/maps was then tested through the prediction of the corresponding RMS 
profile/predictors in the song not used during the training. Successful learning was assessed 
by comparing the generated predictions with the original RMS profiles of the instruments 
and voice (correlation: value and significance). Significance (in the form of a p-value) was 
assessed at the group level (random effects, 4 subjects). Correlation values were 
transformed with Fisher transform, and a t-test was used to compare the obtained 
correlations with the theoretical chance level of r= 0.  

Results 

The multivariate algorithm was able to learn the relationship between the instruments' RMS 
profile and corresponding brain activation patterns. This was assessed by training the 
algorithm in one song and testing the accuracy of decoding the same instruments from brain 
activation in the other different song.  
 Figure 3a and 3b illustrates the original (black line) and predicted RMS profile (blue line) 
for voice, guitar, bass, and drums, trained on the first song and tested on the second song 
(Figure 3a) and vice versa (Figure 3b). In the left column, the RMS profile refers to listening 
to an individual instrument (“Instrument alone”). In the right column, the RMS profile of an 
instrument was predicted using brain data during natural music listening (“Full song mix”). 
The RMS profile predictions have been averaged across the four subjects, with the gray area 
containing values within one standard error.  
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Figure 2: Construction of predictors for guitar and voice. For each individual track, we computed the average 
Root Mean Square (RMS) power within a volume acquisition. This RMS time course was then convolved with an 
estimate of the hemodynamic response function (HRF), 
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Figure 4: For each instrument and scene complexity (one, three (average) or four instruments), the average 
correlation values are displayed between predicted and original RMS profile when training on song 2 and 
testing on song 1 (upper plot), and vice versa (lower plot). 

Figure 4 shows the box plots of the correlations between predicted and original RMS profiles 
(between songs) relative to different mixtures levels of the test song (solo (Alone), 3 
instruments (average extraction result of all 3 instrument combinations (All-1)), and the full 
song (4 instruments (All)). As there were more combinations of 3 instruments, the 
correlations for the three combinations were first transformed with Fisher transformation 
and then averaged and transformed back with inverse Fisher transformation. The Median 
values of correlations (over subjects) when training on song 1 and testing on song 2 (Figure 
4, upper plot) and vice versa (Figure 4, lower plot), within different mixture levels 
(instrument alone, 3 instruments, complete arrangement) are reported in Table 1 together 
with their significance value.  
 In all cases, the correlation values were above chance, which indicates that the 
prediction of the instruments’ RMS values from brain activation of a different song was 
robust to substantial overlap and variations of the acoustic sources.  
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Table 1: The Median values of correlations (over 4 subjects) when training on song 1 and testing on song 2 
(Upper table) and vice versa (lower table), within different mixture levels (instrument alone (Alone), 3 
instruments (All-1), complete arrangement (All)) 

 Alone  All -1  All  

 correlation p-value  correlation p-value  correlation p-value 

Trained on song 1 and tested on song 2 

Voice 0.7829  0.0002 0.5821  0.0047 0.5244  0.0249 

Guitar 0.3016  0.0108 0.5039  0.0102 0.4675  0.0097 

Bass 0.3557  0.0099 0.4232  0.0117 0.4157  0.0043 

Drums 0.5680  0.0222 0.4062  0.0136 0.4041  0.0165 

Training on song 2 and tested on song 1 

Voice 0.4982  0.0287 0.4942  0.0096 0.7717  0.0118 

Guitar 0.5647  0.0004 0.4952  0.0069 0.5161  0.0033 

Bass 0.3894  0.0196 0.4225  0.0040 0.3959  0.0014 

Drums 0.5576  0.0019 0.4636  0.0043 0.4337  0.0812 

 
To identify informative brain sites for the RMS-based stream segregation, we estimated a 
predictive map for each instrument (Figure 5). These maps represent the voxels which 
contributed most to the extraction of an individual instrument tracks (RMS profile) from 
unknown song data, averaged for the different levels of mixture extraction. The areas of the 
different streams were mostly localized in superior temporal cortex bilaterally and were 
partly overlapping. Figure 5a illustrates these maps for ‘voice’ (blue) and for ‘guitar’ (red). At 
the group level, the richest sources of information for predicting the ‘voice’ stream were 
located at the left posterior/middle planum polare (PP), anterior Heschl’s gyrus (HG), planum 
temporale (PT) and middle superior temporal gurys/superior temporal sulcus (STG/STS) in 
the left hemisphere, and at the middle PP, anterolateral HG, Heschl’s sulcus (HS) and middle 
STG/STS in the right hemisphere. This predictive map for ‘voice’ included regions located in 
middle and anterior STG/STS and is in spatial agreement with studies investigating the 
processing of voices (Belin et al., 2000; Formisano et al., 2008a). The guitar was best 
predicted using voxels from the anterior/middle PP, anterior HG in the left hemisphere, and 
at the middle PP, lateral HG, HS and middle STG in the right hemisphere. Figure 5b illustrates 
the predictive maps for ‘bass’ (green) and ‘drums’ (pink). The ‘bass’ was best predicted using 
voxels located at the middle PP, anterior HG, HS and anterior PT in the left hemisphere, and 
middle PP, HG, HS and anterior PT in the right hemisphere. ‘Drums’ were best predicted 
using voxels located at the middle PP, HG, HS and anterior PT in the left hemisphere, and 
middle PP, HG, HS, middle STG and PT in the right hemisphere.  
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Figure 5: Predictive maps for ‘voice’ (blue), ‘guitar’ (red), ‘bass’ (green) and ‘drums’ (pink). 

Discussion 

The results of this study demonstrated that it is possible to un-mix the fMRI responses 
measured while subjects listen to complex mixtures of sound streams (i.e. rock songs) into 
separated response patterns, each one encoding for an individual stream (i.e. voice and 
instruments). With multivariate regression, we examined the relation between a continuous 
descriptor (RMS energy) of each stream and whole-brain fMRI responses patterns. We 
revealed that the simultaneous representation of multiple sources during auditory stream 
segregation is encoded in distributed and partially overlapping cortical networks in the 
superior temporal cortex. Our results suggest that these source representations are 
perceptual rather than acoustic. In fact, the successful prediction of instrumental 
track/voices across songs implies that the estimated patterns convey information on the 
sources which is robust to large acoustic variations of the sources and to the 
presence/variation of all other intervening sources. In other words, it implies that the 
multivariate modeling has “filtered” out the effects on the brain responses of the 
background and that the resulting representations contain information on more abstract 
dimensions of the source beyond simple acoustics. 
 Our approach - which does not require a strict control of the acoustic properties of the 
streams - enabled us studying ASA with a naturalistic and complex stimulus such as music 
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and under very realistic listening conditions. Such an experimental design differs largely from 
previous studies on the neural basis of ASA. In most cases, previous ASA studies considered 
elementary auditory scenes and gestalt-based streaming paradigms, e.g. with alternating 
tones to create auditory streams (e.g. (Fishman et al., 2001; Micheyl et al., 2007; Petkov et 
al., 2007)). Besides frequency and time separation, however, natural auditory scenes include 
many additional cues (such as timbre) that the auditory system can exploit for segregating 
the mixture and creating a perceptual stream. It is thus with these complex scenes that the 
cortical areas and mechanisms relevant for ASA may be optimally engaged and studied 
(Snyder and Alain, 2007).  
 Despite the substantially different methods employed, it is useful to compare our 
predictive maps with conventional statistical maps obtained in previous functional 
neuroimaging studies. In particular, our predictive map for ‘voice’ presented peaks localized 
bilaterally in “early” auditory regions (HG) as well as in “voice sensitive” regions of the 
middle and anterior STG/STS (Belin et al., 2000). These results are in agreement with our 
previous studies suggesting that response patterns in a set of early as well as higher level 
auditory areas encode voice and speaker identity, independently of content (Formisano et 
al., 2008a). The interpretation of the predictive maps for the other instruments remains 
more difficult as previous studies useful for the comparison are scarce. Informative locations 
for “bass” and “drum” maps appear to occupy mostly regions extending in the posterior HG 
and PT, which is consistent with a recent study suggesting the involvement of the (left) 
planum temporale in the processing of rhythmic structure (Herdener et al., 2012). 
Conversely, informative locations for ‘guitar’ (red) are more medial and anterior, which is 
consistent with the reported involvement of these auditory regions for the processing of FM 
sweeps. Furthermore, this dissociation is consistent with a recent model (Santoro et al., 
submitted) suggesting that regions posterior and anterior to the HG differ in terms of their 
high temporal resolution (posterior) and spectral resolution (anterior), which may be related 
respectively to the representation of rhythm and melody. 
 Finally, it is worth noting that in the present study we used RMS, an estimate of energy, 
as a continuous descriptor of each instrument within a mix. However, to study other aspects 
of acoustic, perceptual or emotional processing of music, similar analyses can be performed 
with different descriptors of the individual streams or of the musical piece as a whole.  
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Appendix 1 

The songs were recorded in a sound isolated studio room. The following standard recording 
process was followed: All musicians simultaneously played the complete song, which was 
recorded as the reference track. Then individual musicians played their individual instrument 
track, recorded on separate channels, while listening to the reference track through their 
headphones. All microphones were connected to a Soundtracs Solo Midi Production Console 
(DiGiCo UK Ltd, Surrey, UK) which was also used for preamplification. From here 16 channels 
were connected to a Protools LE setup (Digidesign, Daly City, CA, USA) which recorded the 
sound at 48Khz/32bit on a personal computer. Recordings were performed and monitored 
by a professional sound engineer (Dries D'Hondt, 3S, Leuven, Belgium). An Epiphone 
Sheraton electric guitar (Gibson Guitar Corp, Nashville, TN, USA) amplified with a Mesa 
Boogie Combo (Mesa Boogie Ltd, Petaluma, CA, USA) was recorded on three tracks: 1) 
Analog Amplifier line out, 2) One Shure SM57 (Shure Electronics, Niles, IL, USA) microphone 
placed against the combo speaker 3) One Sennheiser MD 421 (Sennheiser Electronic GmbH 
& Co. KG, Wedemark, Germany) placed against the combo speaker. The bass guitar was 
recorded using a Fender Jazz Bass USA electric bass guitar (Fender, Scottsdale, AZ, USA), 
amplified with a SWR Basic Black edition (SWR Sound Corporation, Scottsdale, AZ, USA). A 
Sennheiser MD 421 microphone was positioned against the amplifier’s speaker for recording 
the first bass track. The second bass track was recorded using a BSS AR116 direct inject box 
(BSS Audio, Sandy, UT, USA) which was connected to the D.I. output of the amplifier. Vocals 
were recorded using a Røde NT2 microphone (Røde Microphones, Silverwater, Australia). A 
Yamaha Stage Custom drumkit (Yamaha Corporation, Hamamatsu, Japan) and Sabian 
cymbals (Sabian Inc, Marshfield, MA, USA) XS Medium tin crash, XS crash ride, Pro Sonix 
China, AA rock ride, AA splash and AA rock hi-hat were recorded using the following setup: 
Bass drum (Audix D6 microphone (Audix Microphones, Wilsonville, OR, USA), snare drum 
(Shure SM57), toms 1,2 and 3 (floortom) (3 Audiotechnica Pro 35 microphones (Audio-
Technica, Tokyo, Japan)). Cymbals were recorded using two Oktava MK 012 (OAO Oktava, 
Tula, Russia) microphones. One Røde NT2 was used for the room recording of the drumkit. 
Minimal mastering was performed in Pro Tools using a Pro Tools Mbox system (Digidesign, 
Daly City, CA, USA) to preserve the recording’s original spectral-temporal pattern and to 
avoid unpredictable spectral-temporal modification of the mastering process which could 
hinder computational stream segregation. Individual tracks were then imported in Adobe 
Audition (Adobe Systems Inc., Mountain View, CA, USA) at 48000Hz/32bit, which was used 
to combine the tracks into the required instrument combinations. These were exported as 
44000Hz/16bit mono mixes for use in Presentation 9.3™ (Neurobehavioral Systems, Inc., 
Albany, CA, USA). 
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Summary 

This thesis describes functional neuroimaging (fMRI and MEG) research designed to study 
the relationship between human brain activity and the perception of natural sounds. Many 
studies in the field of auditory neuroscience use synthetic sounds to investigate auditory 
perception. Synthetic sounds allow researchers a great level of control over the physical 
parameters of the stimulus, making them more suitable for understanding the neural 
processing of basic acoustic features. The four studies presented here take the 
complementary perspective of using natural sounds to explore the brain mechanisms for 
sound categorization and auditory stream segregation under realistic and ecologically valid 
conditions. Also in terms of analysis methods employed, the described studies present 
relevant differences with previous research. So far, the vast majority of functional 
neuroimaging studies investigated sound categorization using subtraction-based 
experimental paradigms and conventional univariate (voxel-by-voxel) statistics. These 
paradigms and statistical methods are inherently bound to produce results in terms of 
‘specialization’ or ‘selectivity’ for a certain stimulus attribute or category, as they can only 
detect localized surplus of hemodynamic activity for one condition compared to another, 
possibly ignoring potential information which could be represented in non-maximal 
responses. For this reason, two of the presented studies (chapters 2 and 5) make use of 
multivariate analysis methods. These methods allow modeling the functional relation 
between spatial patterns of brain activity and stimulus categories (chapter 2, multivariate 
classification) or continuous variations in the stimulus (chapter 5, multivariate regression). 
Beyond looking at subtractive contrasts that differentiate conditions, with these methods 
the similarity among response patterns under changing stimulus conditions can be tested. 
Such possibility is pivotal to address relevant questions on the neural underpinnings of 
auditory perception, such as the invariance of categorical neural representations to changes 
of low level acoustic properties (chapter 2) or to changes of the acoustic background 
(chapter 5). 
 The first part of the thesis (chapter 2 and 3) investigates the neural mechanisms of 
sound recognition using natural sounds presented in isolation and functional neuroimaging 
at high spatial resolution (fMRI, chapter 2) and high temporal resolution (MEG, chapter 3). In 
Chapter 2, sounds from four categories (cats, female singers, acoustic guitars, and tones) 
were recorded, carefully matched for their time-varying spectral characteristics and 
presented to subjects at three different pitch levels. Univariate contrasts between categories 
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did not lead to statistically significant effects, suggesting that the control on the acoustic 
sound properties largely reduces the differences of regional BOLD responses, which are 
often observed when comparing different sound categories. Sound category information - 
not detectable using voxel-by-voxel analysis - could be instead detected and mapped with 
multivoxel pattern analyses. Encoding of sound ‘category’ independent of pitch was spatially 
distributed over a large expanse of the bilateral supratemporal cortices, whereas a more 
localized pattern was observed for encoding of ‘pitch’ laterally to primary auditory areas. 
These results suggest that the conventional regional effects (found e.g. in “voice mapping” 
measurements) mostly reflect the processing of multiple acoustic features. Conversely, more 
abstract ‘categorical’ representations of natural sounds may emerge from the joint encoding 
of information occurring not only in this small set of higher-level selective areas but also in 
auditory areas conventionally associated with lower-level auditory processing. 
 The study in Chapter 3 exploits the high temporal resolution of MEG measurements to 
investigate the time-course of sound categorization in the presence of minimal or no 
acoustic differences among the incoming stimuli. Female voices and cat sounds from chapter 
2 were further manipulated and filtered so they matched in most of their acoustic 
properties. A “category priming” paradigm was used that allowed to examine auditory 
cortical processing of two categories beyond the physical make-up of the stimuli, using MEG. 
During the measurements, a category context was established, followed by a probe sound 
that was congruent, incongruent, or ambiguous to this context. The results show that MEG 
responses to incongruent sounds were stronger than responses to congruent sounds at ~250 
ms in the right temporoparietal cortex, regardless of the sound category. Furthermore, 
probe sounds that could not be unambiguously attributed to any of the two categories 
(“cat” or “voice”) evoked stronger responses after the voice than cat context at 200−250 ms, 
suggesting a stronger contextual effect for human voices.  
 Taken together, the findings of these two studies indicate that distributed neuronal 
populations within the human auditory areas entail categorical representations of sounds, 
beyond their physical properties. Categorical templates for human and animal vocalizations 
seem to be established at ~250 ms from stimulus onset.  
 Chapters 4 and 5 form the second part of the thesis, which studies the neural basis of 
‘auditory scene analysis’ with fMRI. Auditory scene analysis refers to the processes required 
for deriving descriptions of individual sound sources (‘auditory objects’ or ‘auditory streams’) 
from mixtures of simultaneous sounds. Because natural environments typically involve 
multiple sound sources, auditory scene analysis represents a crucial aspect of hearing, which 
lies at the heart of the ability to select and respond to relevant acoustic stimuli even when 
these are masked by competing sound sources or background noise.  
 Chapter 4 focuses on the cortical processing of spatial cues during listening to natural 
auditory scenes. Using the technique of binaural recording and in-ear microphones, realistic 
auditory scenes were recorded that contained two concurrent sounds, a human voice 
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centrally located in front of the listener (foreground), and an environmental sound located 
at different locations at the background. During fMRI measurements subjects were 
instructed to attend one of the sound sources (“Voice” vs “Environment”), under two distinct 
playback conditions: 1) Stereo playback which preserves the spatial acoustic information of 
the original recordings (“Spatial”) or 2) Mono playback, which removes spatial information 
(“Non-spatial”). The statistical analyses showed that processing of the spatial cues - 
independently of the attention condition - corresponded with significantly increased brain 
activation at the bilateral posterior superior temporal areas. These regions are known for 
processing spatial and sound motion information (auditory “where” stream). However, 
significant activation differences in the Spatial vs Non-spatial comparison were observed 
that depended on the attention target. When listeners attended to environmental 
background sounds, we found significant differences in left planum temporale and left 
inferior frontal gyrus. Conversely, when listeners attended to vocal sounds, significant 
activation differences were found in bilateral clusters of middle superior temporal gyrus and 
sulcus, which overlap with the so called “voice sensitive regions”. These attention-
dependent effects suggest that – in order to segregate an auditory source from a sound 
mixture - spatial cues are integrated with other relevant spectral and temporal cues in the 
same cortical locations involved in the recognition of sounds presented in silence.  
 In the study described in Chapter 5, music is used to reveal the mechanisms the human 
brain uses for processing multiple simultaneous auditory streams. In contrast to chapter 4, 
where scenes included combinations of short auditory events, the auditory scenes in this 
chapter are mixtures of sound streams that are prolonged over time. During fMRI 
measurements, subjects were presented with two rock songs, which were played by the 
same group (voice [male singer], guitar, bass, and drum) but differed widely in terms of 
acoustic properties, melody, rhythm, spectro-temporal overlap of the streams. Results 
showed that a machine learning algorithm of multivariate regression – trained with auditory 
cortical activation patterns elicited by one of the songs – could successfully decode the 
variations of acoustic energy in the singing voice and the other instruments from activation 
patterns elicited by the other song. For each of the sound sources (i.e. the voice and the 
instruments), informative patterns comprised distinct – yet overlapping - networks of 
superior temporal regions. These findings indicate that the brain processing of a complex 
sound mixture (such as a song) involves the formation of neural representations of each 
contributing source. The successful decoding of each sound source across mixtures that 
differed along multiple acoustic dimensions suggest that these auditory cortical 
representations are perceptual rather acoustic. The highest decoding accuracy obtained for 
the vocal stream, which is most likely the “default” target of attention during music listening, 
suggests that the attended stream (foreground) is enhanced with respect to the other 
streams (background).  
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 In sum, the results of chapter 4 and 5 indicate that neural sound representations in audi-
tory networks in the superior temporal cortex are crucial for both bottom-up processing of 
spectral and temporal relations of the acoustic scene elements and top-down processes of 
attentive selection and enhancement of the relevant sounds. The range of methods and ex-
perimental paradigms introduced in this thesis pave the way for further studying the nature 
and computational properties of these representations, while probing the brain under the 
ecologically and behaviorally valid conditions of “real life” listening. 
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