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On the discrete lot-sizing and scheduling problem with

Wagner-Whitin costs

C.A. van Eijl� and C.P.M. van Hoesely

Abstract

We consider the single-item discrete lot-sizing and scheduling problem. We present a

partial linear description of the convex hull of feasible solutions that solves this problem

in the presence of Wagner-Whitin costs.

1 Introduction

In recent years a great number of lot-sizing problems have been studied from a polyhedral

point of view (cf. Pochet and Wolsey [5]). Most of the results concern the polyhedral structure

of single-item models. Valid inequalities derived for these models have been successfully used

in cutting plane algorithms for multi-item problems. Hence, (partial) linear descriptions of the

convex hull of feasible solutions of single-item models are a valuable aid in solving lot-sizing

problems by methods based on polyhedral combinatorics.

In [4] Pochet and Wolsey study four single-item lot-sizing problems in the presence of

Wagner-Whitin costs, i.e., when the unit inventory cost ht and the unit production cost

pt satisfy ht + pt � pt+1 for every period t of the planning interval. For each of these

problems, they give a partial linear description of the convex hull of feasible solutions that

solves the problem when the costs satisfy the Wagner-Whitin property. These polyhedra

involve considerably fewer constraints than in the general cost case.

In this paper we derive a similar result for the single-item discrete lot-sizing and scheduling

problem (DLSP). In the following section we formulate the problem and discuss a partial linear

description of the convex hull of feasible solutions that solves the problem in the presence of

Wagner-Whitin costs. This result is proven in Section 3.
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2 The DLSP with Wagner-Whitin costs

We consider a single-item single-machine production planning problem with a planning hori-

zon of T periods in each of which the production is either zero or at full capacity, say, one

unit. This is often a reasonable assumption in short-term production planning, when the

time periods are small. The demand in period t, denoted by dt, is either zero or one, and has

to be satis�ed in time, i.e., backlogging is not allowed. Furthermore, if production occurs in

period t, but not in period t � 1, then a startup has to take place in period t, which incurs

a cost ft. In multi-item problems startup costs also arise when the machine switches from

the production of one item to the production of an other item. Apart from startup costs,

a production cost pt and a unit inventory cost ht are given for each period t. Now DLSP

is the problem of determining a production schedule that satis�es the above restrictions at

minimum costs.

The problem can be mathematically formulated using two types of binary variables: xt,

which indicates whether production occurs in period t or not, and yt, which equals one if

a startup occurs in period t and zero otherwise. For notational convenience we write xt1;t2

instead of
Pt2

t=t1
xt, dt1;t2 instead of

Pt2
t=t1

dt, etc. Furthermore, we denote by si the ith

demand period in f1; : : : ; Tg, thus, dsi = 1 and d1;si = i. Now DLSP is modelled as follows:

(DLSP) min
TX

t=1

(ftyt + ctxt) (1)

s.t. x1;t � d1;t (1 � t < T ) (2)

x1;T = d1;T (3)

yt � xt � xt�1 + yt (1 � t � T; x0 = 0) (4)

xt; yt 2 f0; 1g (1 � t � T ) (5)

In (1) we have ct = pt + ht;T . The latter term is obtained by expressing the inventory costs

as
PT

t=1 ht � (x1;t� d1;t) =
PT

t=1 ht;Txt minus a constant, which is omitted from the objective

function. Inequalities (2) yield that the total production up to period t equals at least the to-

tal demand up to this period. Furthermore, overproduction is prohibited by (3). Constraints

(4) force that a startup takes place in period t if production occurs in this period but not

in the preceding one. Moreover, these constraints prevent that a startup occurs in a period

without production.

Although the single-item DLSP is polynomially solvable, the convex hull of the set of feasible

solutions of (2){(5) is not known explicitly. Van Hoesel [2] discusses several classes of facet-

de�ning inequalities. Magnanti and Vachani [3] and Sastry [6] derive inequalities for a slightly

more general problem in which also setup costs are involved.
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The following inequalities are adapted from the interval left supermodular inequalities

derived by Constantino ([1], Section 2.2) for the capacitated lot-sizing problem with startup

costs. This problem is a generalization of DLSP in which the production in period t can

attain any value between zero and the available capacity in this period.

Lemma 1 Let t 2 f1; : : : ; Tg and j 2 f0; : : : ; dt+1;Tg. Then all feasible solutions of DLSP

satisfy

x1;t +

jX

i=1

(xt+i + yt+i+1;sd1;t+i
) � d1;t + j: (6)

Note that there exist only O(Td1;T) constraints of this form. Before proving the validity of (6),

let us brie
y explain the idea behind these inequalities. Observe that xt+i+yt+i+1;sd1;t+i
is non-

negative and integral for any feasible solution (y; x) of DLSP. Moreover, xt+i+yt+i+1;sd1;t+i
= 0

if and only if no production occurs in the interval ft + i; : : : ; sd1;t+ig. In this case the

stock at the end of period t must be at least dt+1;sd1;t+i
� i + 1 = 1. Rewrite (6) as

x1;t�d1;t �
Pj

i=1(1�xt+i� yt+i+1;sd1;t+i
) and observe that the new lefthand side denotes the

stock at the end of period t. Now one immediately sees that this constraint forces the stock

at the end of period t to be at least one if no production occurs in the interval ft+i; : : : ; sd1;t+ig.

Proof of Lemma 1. First, note that inequalities (2) are a special case of (6) (take j = 0).

Hence, for every t and j = 0, (6) is valid. Suppose that (6) is not valid for some t and j > 0,

where j is minimal. Let (y; x) be a solution of DLSP violating this constraint. Since the

constraint obtained by replacing j by j � 1 is valid, we have

d1;t + j > x1;t +

jX

i=1

(xt+i + yt+i+1;sd1;t+i
)

= x1;t +

j�1X

i=1

(xt+i + yt+i+1;sd1;t+i
) + xt+j + yt+j+1;sd1;t+j

� d1;t + j � 1 + xt+j + yt+j+1;sd1;t+j
:

Thus, since (y; x) is integral, xt+j + yt+j+1;sd1;t+j
= 0, which implies that there is no pro-

duction in ft+ j; : : : ; sd1;t+jg. Therefore, to satisfy the production requirements (2) we must

have x1;t+j�1 � d1;t+j, which contradicts the fact that (y; x) violates (6) for the given choices

of t and j. 2

Recall that the costs are said to satisfy the Wagner-Whitin property if ht + pt � pt+1, or,

equivalently, ct � ct+1 for all t. With Wagner-Whitin costs there always exists an optimal

solution satisfying the zero-inventory property, i.e., when a new production batch is started

in period t, the stock at the end of period t � 1 is zero.

Denote by RDLSP the LP-relaxation of DLSP where inequalities (6) replace (2). We

claim that the following holds:
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Theorem 2 For cost functions that satisfy the Wagner-Whitin property, the objective value

of RDLSP equals the objective value of DLSP.

When ct strictly decreases in t, an even stronger result can be proven, namely, that RDLSP

solves DLSP.

Theorem 3 If (1) satis�es ct > ct+1 for every period t, then any optimal solution of RDLSP

is a convex combination of feasible solutions of DLSP, i.e., the set of optimal solutions of

RDLSP has integral extreme points.

The proof of the above theorems is postponed until the following section.

Our purpose is to develop a branch-and-cut algorithm for solving multi-item problems. Due

to the above result, the O(Td1;T) constraints of type (6) are expected to yield strong cutting

planes. Furthermore, we will study the e�ectiveness of these inequalities for problems with

more complicating features such as startup times.

3 Proof of the theorems

The major part of this section deals with the proof of Theorem 3. Therefore, assume that

ct > ct+1 for every t. The proof uses a partitioning of a solution (y; x) of RDLSP into a set

of batches B, where a batch B = fpB; : : : ; qBg is identi�ed with the partial solution (yB; xB)

de�ned by

yB = (0 : : :0 1 0 : : :0 0 : : :0)

xB = (0 : : :0 1 1 : : :1 0 : : :0)

1 pB qB T

Furthermore, a value bB; 0 < bB � 1, is attached to every batch B such that (y; x) =
P

B2B b
B(yB; xB). We say that B satis�es the partitioning condition if

8i2f1;:::;d1;T g
X

B2B:si2IB

bB = 1; (7)

where IB consists of the �rst jBj demand periods in fpB; : : : ; Tg.

The proof of Theorem 3 consists of the following two steps. First, we prove that the

partitioning condition is a su�cient condition for (y; x) to be a convex combination of solutions

of DLSP (Lemma 4). Second, we present a greedy algorithm that partitions any optimal

solution (y�; x�) of RDLSP into a set of batches B with values bB, B 2 B, such that (y�; x�) =
P

B2B b
B(yB; xB) and the partitioning condition is satis�ed. Combining these results yields

that all extreme points of the set of optimal solutions of RDLSP are integral.

Lemma 4 Given a set of batches B with values bB, 0 < bB � 1, B 2 B, such that (7) is

satis�ed. Then (y; x) :=
P

B2B b
B(yB; xB) is a convex combination of solutions of DLSP.
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Proof. The lemma is proved by induction on the number of batch-pairs (B;D) in B with

intersecting demand sets IB and ID, i.e., IB \ ID 6= ;.

If no two batches have intersecting demand set, then each batch B in B has value bB = 1

by (7), and the lemma follows immediately.

If there are batches with intersecting demand set, then, by (7), there is a batch B with

value bB < 1. We construct a subset D of B such that the demand sets of the batches in

D form a partition of the demand periods. First, we take a batch the demand set of which

contains the �rst demand period s1. Suppose that we have found a set of batches D such that

the corresponding demand sets form a partition of the �rst j < d1;T demand periods. Then

there exists a batch D 2 BnD such that the demand set ID contains sj+1 but not sj . This

follows from

X

B2BnD:sj+12IB

bB =
X

B2B:sj+12IB

bB = 1 =
X

B2B:sj2IB

bB >
X

B2BnD:sj2IB

bB:

The demand set of D is fsj+1; : : : ; sj0g for some j0 2 fj + 1; : : : ; d1;Tg. Addition of D to D

gives a partition of the demand periods fs1; : : : ; sj0g. We proceed in this way until D is a

partition of fs1; : : : ; sd1;T g. By construction, the integral vector (y0; x0) :=
P

B2D(y
B; xB) is

a feasible solution of DLSP.

Set �b = minfbB j B 2 Dg and de�ne B = BnfB 2 D j bB = �bg. Note that �b < 1.

Furthermore, set �bB = (bB � �b)=(1� �b) for B 2 B \D and �bB = bB=(1� �b) for B 2 BnD. Let

i 2 f1; : : : ; d1;Tg. Since there is exactly one batch B 2 D such that si 2 IB, we have

X

B2B:si2IB

�bB =
X

B2D:si2IB

bB � �b

1� �b
+

X

B2BnD:si2IB

bB

1� �b
=

P
B2B:si2IB

bB � �b

1� �b
= 1:

Hence, B satis�es the partitioning condition. Since jBj < jBj, the number of pairwise inter-

secting demand sets in B is less than the number of pairwise intersecting demand sets in B.

Now the induction hypothesis yields that (y00; x00) :=
P

B2B
�bB(yB; xB) is a convex combina-

tion of integral solutions. Thus, so is (y; x) = �b(y0; x0) + (1� �b)(y00; x00). 2

From the above lemma it follows that, in order to prove Theorem 3, it su�ces to show that

any optimal solution (y�; x�) of RDLSP can be partitioned into a set of batches B with values

bB, B 2 B, such that (y�; x�) =
P

B2B b
B(yB; xB) and the partitioning condition is satis�ed.

In the sequel, let (y�; x�) denote an optimal solution of RDLSP. We claim that the following

algorithm provides a set of batches B with the desired properties.
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begin Construct Batches

for t = 1 to T do begin �xt := x�t ; �yt := y�t ;
�dt := dt end;

f�xt is called the residual production, etc.g

D := ;;

while �x1;T > 0 do

begin

qD := last period with positive residual production;

pD := last period in f1; : : : ; qDg with positive residual startup;

D := fpD; : : : ; qDg;

JD := set of demand periods with positive residual demand in fpD; : : : ; Tg;

bD := minf�ypD ;mint2D �xt;mint2JD
�dtg;

�ypD := �ypD � bD;

for t 2 D do �xt := �xt � bD;

for t 2 JD do �dt := �dt � bD;

D := D [ fDg

end;

end.

Observe that �xt, �yt, and �dt are non-increasing and nonnegative during the execution of the

algorithm. Moreover, the residual demands �dsi are non-increasing in i. It is also easily seen

that �xt � �yt + �xt�1 and �yt � �xt hold for all t. Therefore, �xqD = mint2D �xt, and if JD 6= ;,

then �d�s = mint2JD
�dt, where �s denotes the last period with positive residual demand. We will

prove that during the execution of the algorithm the following invariant holds:

(I1) 8t2f1;:::;Tg x
�
t = �xt +

X

B2D:t2B

bB

(I2) 8t2f1;:::;Tg y
�
t = �yt +

X

B2D:t=pB

bB

(I3) 8i2f1;:::;d1;T g 1 =
�dsi +

X

B2D:si2JB

bB

(I4) 8B2D jJB j = jBj

(I5) 8t2f1;:::;T�1g �x1;t � �d1;t and �x1;T = �d1;T :

Note that for t < pB , the residual values are equal to the original values, i.e., �xt = x�t , �yt = y�t ,

and �dt = dt.

Suppose that (I1){(I5) hold during the execution of the algorithm. At termination of the

algorithm we have �xt = �yt = 0 and, by (I5), �dt = 0 for all t. Hence, by (I1) and (I2), the

set of batches D provided by Construct Batches satis�es (y�; x�) =
P

B2D bB(yB; xB).

Moreover, from (I4) it follows that JB , B 2 B, can be identi�ed with IB, i.e., the set of
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the �rst jBj demand periods in fpB; : : : ; Tg. Together with (I3), this implies that the set D

satis�es the partitioning condition. Now Lemma 4 yields that (y�; x�) is a convex combination

of feasible solutions of DLSP. Thus, the validity of the invariant during the execution of the

algorithm implies the validity of Theorem 3.

The invariant is easily checked to hold initially. We will prove that if the invariant holds at

the beginning of an iteration, then it also holds at the end of that iteration. In the sequel the

current iteration is the one for which validity of the invariant is proven. We denote the batch

de�ned in the current iteration by D. The set of batches that are constructed in previous

iterations is denoted by D. Now (I1){(I3) are easily checked to hold at the end of the current

iteration, and (I5) follows from (I4). The latter holds at the end of the current iteration if

jJD j = jDj. Hence, we are left with the proof of jJD j = jDj.

Proof of jJD j = jDj.

We �rst show that jJD j > jDj implies that (y�; x�) is not optimal. Next, we show that if

jJD j < jDj, then (y�; x�) violates a constraint of type (6). Both results contradict the as-

sumption that (y�; x�) is an optimal solution of RDLSP, which leads to the conclusion that

jJD j = jDj.

Part 1: jJD j � jDj.

Assume that jJDj > jDj. We claim that in this case we can move an amount � > 0 from the

production in period qD to period qD + 1 while maintaining feasibility. Since cqD > cqD+1,

this yields a cheaper solution than (y�; x�), which contradicts the optimality of (y�; x�). In

order to prove our claim, it su�ces to show that the following constraints have positive slack,

i.e., they are not satis�ed at equality:

(i) x�
qD

� 0

(ii) x�
qD+1

� 1

(iii) x�
qD+1

� y�
qD+1

+ x�
qD

(iv) 8t;j:t+j=qD x�1;t +

jX

i=1

(x�t+i + y�t+i+1;sd1;t+i
) � d1;t + j:

By de�nition of qD, we have x�
qD

� �xqD > 0. For the proof of x�
qD+1

< 1, we use the following

important observation: if period s has positive residual demand in the current iteration, then

s 2 JB for every batch B 2 D with pB � s. Now let s0 be the �rst demand period after qD.

Then �ds0 > 0, since jJDj > jDj. Hence, if B 2 D satis�es qD +1 2 B, then s0 2 JB . Together

with �xqD+1 = 0, this yields

x�qD+1 = x�qD+1 � �xqD+1

(I1)
=

X

B:qD+12B

bB �
X

B:s02JD

bB = 1� �ds0 < 1:
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In order to show that (iii) is not satis�ed at equality, notice that whenever �xqD+1 decreases

in an iteration, one of the variables �xqD or �yqD+1 decreases by the same amount. At the

beginning of the current iteration, strict inequality holds since 0 = �xqD+1 < �xqD .

Finally, consider a constraint (6) such that t+ j = qD. Now

x�1;t +

jX

i=1

(x�t+i + y�t+i+1;sd1;t+i
)

(I1);(I2)
= x�1;t +

jX

i=1

(�xt+i + �yt+i+1;sd1;t+i
) +

jX

i=1

X

B2D:qB�t+i;pB�sd1;t+i

bB

� x�1;t + �xt+1;t+j + �yt+2;pD +

jX

i=1

X

B2D:qB�t+i;pB�sd1;t+i

bB

(�)

� x�1;t + �xt+1;t+j + �yt+2;pD +

jX

i=1

X

B2D:s
d1;t+i2J

B

bB

(I3)
= x�1;t + �xt+1;qD + �yt+2;pD +

jX

i=1

(1� �dsd1;t+i);

where (�) holds because sd1;t+i 2 JB implies pB � sd1;t+i, and t+i � t+j = qD � qB. In order

to show that strict inequality holds for the constraint under consideration, we distinguish two

cases. First, suppose that pD > t+ 1. Then, since �ypD > 0 and �x1;qD = �x1;T , we have

x�1;t + �xt+1;qD + �yt+2;pD +

jX

i=1

(1� �dsd1;t+i)

> �x1;T +

jX

i=1

(1� �dsd1;t+i)
(I5)

� �d1;sd1;t+j +

jX

i=1

(1� �dsd1;t+i) = �d1;t + j = d1;t + j:

If pD � t+1, then the last period with positive residual demand �s > sd1;t+j , hence, (I5) yields

that �x1;qD = �x1;T = �d1;�s > �d1;sd1;t+j . We have

x�1;t + �xt+1;qD + �yt+2;pD +

jX

i=1

(1� �dsd1;t+i)
(�)

� �x1;qD +

d1;t+jX

i=d
1;pD�1

+1

(1� �dsi)

> �d1;sd1;t+j +

d1;t+jX

i=d
1;pD�1

+1

(1� �dsi) = d1;pD�1 + d1;t + j � d1;pD�1 = d1;t + j;

where (�) follows from the validity of (I1) for every period in fpD; : : : ; tg, the validity of

(I3) for i 2 fd1;pD�1 + 1; : : : ; d1;tg, and the trivial observations that for any B 2 D we have

qB � qD > t and the number of periods with positive residual demand in fpB; : : : ; tg is at

most t� pB + 1.

We conclude that none of the constraints (i){(iv) is satis�ed at equality, which establishes

the validity of jJD j � jDj.
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Part 2: jJD j � jDj.

Suppose that jJDj < jDj. We claim that in this case the constraint of type (6) with t = pD�1

and j = jJDj is violated by (y�; x�). Note that this is trivial when jJD j = 0, so we will assume

that jJDj > 0. In the proof we use the following observation:

8t2fpD+1;:::;Tg �yt = 0: (8)

Note that for t 2 fpD + 1; : : : ; qDg this is by choice of pD. For t 2 fqD + 1; : : : ; Tg this follows

from �yt � �xt.

Also note that sd
1;pD�1

+jJDj the last period with positive residual demand, hence, the

righthand side of the constraint under consideration equals d1;t + jJD j = d1;�s. We have

x�1;pD�1 +

jJDjX

i=1

(x�pD�1+i + y�pD�1+i+1;sd
1;pD�1

+i
)

(I1);(I2)
= �x1;pD�1+jJDj +

jJDjX

i=1

�ypD�1+i+1;sd
1;pD�1

+i
+

jJDjX

i=1

X

B2D:qB�pD�1+i;pB�sd
1;pD�1

+i

bB

(8)
= �x1;pD�1+jJDj +

jJDjX

i=1

X

B2D:qB�pD�1+i;pB�sd
1;pD�1

+i

bB

(�)

� �x1;pD�1+jJDj +

jJDjX

i=1

X

B2D:sd
1;pD�1

+i2J
B

bB

(I3)
= �x1;pD�1+jJDj +

jJDjX

i=1

(1� �dsd
1;pD�1

+i
)

(y)
< d1;�s:

Note that in the current iteration all demand periods in fpD; : : : ; �sg have positive residual de-

mand. Thus, for each B 2 B with pB � sd
1;pD�1

+i, i � jJDj, we have sd
1;pD�1

+i 2 JB .

This shows the validity of (�). Moreover, the assumption that jJDj < jDj yields that

pD � 1 + jJDj < qD, hence, by de�nition of qD and (I5), we have �x1;pD�1+jJD j < �x1;qD = �d1;�s.

From this the validity of (y) immediately follows.

This concludes the proof of jJDj = jDj and, hence, the proof of Theorem 3. 2

As a corollary we can prove Theorem 2 as follows. For arbitrary � > 0 the cost function

c0t := ct + (T � t)� satis�es the requirements of Theorem 3. Therefore, for every � > 0 there

exists an optimal solution of RDLSP that is an integral extreme point. Since the objective

function is continuous in �, there must be an integer optimal solution of RDLSP for � = 0.

However, we do not necessarily �nd that for � = 0 all extreme points of the set of optimal

solutions of RDLSP are integral.
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