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Abstract

The role of detrending in bootstrap unit root tests is investigated. When bootstrap-

ping, detrending must not only be done for the construction of the test statistic, but also

in the first step of the bootstrap algorithm. It is argued that the two points should be

treated separately. Asymptotic validity of sieve bootstrap ADF unit root tests is shown

for test statistics based on full sample and recursive OLS and GLS detrending. It is also

shown that the detrending method in the first step of the bootstrap may differ from the

one used in the construction of the test statistic. A simulation study is conducted to

analyze the effects of detrending on finite sample performance of the bootstrap test. It

is found that full sample detrending should be preferred in the first step of the bootstrap

algorithm and that the decision about the detrending method used to obtain the test

statistic should be based on the power properties of the corresponding asymptotic tests.

JEL Classification: C15, C22.

Keywords: unit root test, deterministic trends, sieve bootstrap.

1 Introduction

In recent years we have seen a large number of papers on the application of the bootstrap to

nonstationary time series. The good performance of bootstrap methods in stationary time

series has led people to adapt the methods to a nonstationary setting. Especially in the

field of unit root testing, where finite sample size distortions are known to occur frequently,

a large literature has arisen. The literature has focused mainly on how to deal with serial

∗Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The
Netherlands. E-mail: S.Smeekes@maastrichtuniversity.nl. This research was financially supported by the
Netherlands Organisation for Scientific Research (NWO). I would like to thank Christoph Hanck, Franz Palm,
Anders Swensen, Robert Taylor and Jean-Pierre Urbain for helpful comments and suggestions. The usual
disclaimer applies.
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correlation, but it stays relatively silent on an important aspect of unit root testing, that is

how to deal with deterministic trends. Our aim in this paper is to investigate how the method

of detrending impacts the performance of bootstrap unit root tests in univariate time series.

It is very important in practical applications to allow for deterministic trends. Many

economic series such as real GDP can be thought of as containing a linear trend, while the

inclusion of an intercept is relevant for virtually every economic time series. It is therefore

crucial to have tests that can take such trends into account. One way to take a trend into

account is to include it in the unit root equation and make it part of the testable hypothesis,

such as the Φ-tests of Dickey and Fuller (1981). The alternative way, which has become

the most popular in recent years, is to perform an initial step of detrending, with the goal

of eliminating the deterministic components, and then performing the unit root test on the

detrended series.

It is well known in the unit root literature that the method of detrending can have a

major impact on the power of the tests. In their seminal work Elliott, Rothenberg, and

Stock (1996) showed that GLS (or quasi-difference) detrending is optimal in terms of local

asymptotic power if the initial condition is equal to zero. Simulations also show that the

finite sample power of GLS detrended tests, in particular the DF-GLS test, is higher than

that of their OLS detrended counterparts for a zero initial condition. Another method that

has been proposed is recursive (OLS) detrending, originally proposed by Shin and So (2001)

and Taylor (2002).1 Shin and So (2001) show that with recursive demeaning the bias of the

estimate of the autoregressive parameter decreases and correspondingly the power of the test

increases.

While one might expect the power properties of the asymptotic tests to carry over to

the bootstrap setting, it might be that the method of detrending in the actual bootstrap

procedure has an effect on the size of the bootstrap tests as well. The argument of Shin

and So (2001) that the autoregressive parameter is estimated more precisely with recursive

detrending, could for example lead one to expect an improvement in size properties of the

bootstrap tests.

The work on bootstrap unit root testing has become quite extensive. The foundations

were laid by Basawa, Mallik, McCormick, Reeves, and Taylor (1991a,b) and Ferretti and

Romo (1996), who considered settings with simple correlation structures. Their work was

later extended to fairly general settings by Park (2002), Chang and Park (2003), Paparodi-

tis and Politis (2003), Swensen (2003a) and Parker, Paparoditis, and Politis (2006) among

others. The tests that have been proposed in these papers differ in three respects. First, the

bootstrap method. Some tests use the sieve bootstrap, others the moving-blocks or station-

ary bootstrap. Second, the test statistic. All these tests are based on Dickey-Fuller (DF)

1The method proposed by Shin and So (2001) can only be used for recursive demeaning; when applied to
linear trends their method is not invariant to the trend parameter (Rodrigues, 2006). An extension of their
method that is invariant to the trend parameter was proposed by Sul (2009).

2



type of test statistics, some methods use the augmented DF (ADF) test while others use the

non-augmented test. Finally, the methods differ in whether estimation is done under the null

or under the alternative.

Given the large array of options, the question becomes how to deal with them in this

paper. We choose to focus on one single bootstrap test, based on the following. In Palm,

Smeekes, and Urbain (2008) these tests are compared and it is found that the ADF test is

clearly preferable to the DF test.2 Furthermore, the sieve bootstrap usually outperforms the

block bootstrap, especially for linear models. Regarding the use of differences and residuals,

it is strongly argued in Paparoditis and Politis (2005) to use residuals as using differences

leads to a misspecified model if the alternative is true. For these reasons, we focus here on

the residual-based ADF sieve bootstrap t-test, a test that performed well in the simulation

study of Palm et al. (2008) and was advocated by Paparoditis and Politis (2005).

The framework covered by Palm et al. (2008) is obviously not complete by any means.

Cavaliere and Taylor (2009) propose bootstrap versions of the M unit root tests of Ng and

Perron (2001) based on GLS detrending. Richard (2007) proposes an ARMA sieve bootstrap

unit root test, instead of the regular AR sieve method. Simulations indicate that the method

has quite some potential. Another interesting extension is to allow for nonstationary volatility,

and apply the tests of Cavaliere and Taylor (2008). However, we restrict ourselves to one

specific bootstrap unit root test, in order to analyze the effects of detrending only without

having to consider differences in bootstrap tests.

In this paper we extend the proof of asymptotic validity given in Palm et al. (2008) to

a setting with deterministic components in the DGP, and allowing for a range of detrending

methods that includes full sample and recursive OLS and GLS detrending. Most of the

bootstrap unit root tests considered in the literature that take deterministic trends into

account are based on full sample OLS detrending or including the deterministic components

in the test regression (which closely resembles OLS detrending). The exceptions are Swensen

(2003b) who also considers a DF test based on GLS detrending, although in a setting without

serial correlation, and Cavaliere and Taylor (2009). To our knowledge no bootstrap version

of a test based on recursive detrending has yet been proposed. As a side-product we obtain

a single framework that nests full sample and recursive OLS and GLS detrending, and a

rigorous derivation of the asymptotic distribution of the ADF t-statistics for these detrending

methods. While the limiting distributions are well known and accepted, to our knowledge no

such rigorous derivations as in Chang and Park (2002) can be found in the literature for ADF

t-tests with deterministic components.

A simulation study investigates the impact of the method of detrending on the performance

of the bootstrap unit root test. By allowing for a different method of detrending in the first

step of the bootstrap procedure than in the calculation of the test statistic, we can analyze

2This conclusion is not surprising given that ADF tests are asymptotically pivotal and therefore may
provide asymptotic refinements (Park, 2003) whereas DF tests are not.
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the two points separately.

An interesting question is when to apply the tests with just an intercept, and when to

include both an intercept and a trend. As analyzed by, among others, Harvey, Leybourne,

and Taylor (2009), estimating the model with trend in the absence of a trend in the DGP

leads to a significant loss of power compared to the model with just an intercept. On the other

hand the tests with intercept only are not invariant to the presence of a trend in the DGP

and should therefore not be applied in this setting. This is therefore a very interesting and

empirically relevant issue. However, we will not analyze this issue explicitly in combination

with the bootstrap; for the tests considered in this paper the problem is essentially the same

whether one uses the bootstrap or not. As such, the conclusions of Harvey et al. (2009)

remain relevant with the application of the bootstrap as well.

The outline of the paper is as follows. Section 2 will describe the model used for the

theoretical analysis. The tests will be explained and their limit distributions derived in

Section 3. The bootstrap tests are the topic of Section 4. In Section 5 a simulation study will

be undertaken. Section 6 concludes. All proofs are contained in the appendix.

A word on notation. ⌊x⌋ is the largest integer smaller than or equal to x. We define

∆[atbt] such that ∆[atbt] = atbt − at−1bt−1 for any sequences at and bt. Convergence in

distribution (probability) is denoted by
d
−→ (

p
−→). Bootstrap quantities (conditional on the

original sample) are indicated by appending a superscript ∗ to the standard notation. W (r)

denotes a univariate standard Brownian motion.

2 The model with deterministic trends

We consider the following Data Generating Process (DGP), where yt is a scalar variable.

yt = xt + β′zt

xt = ρxt−1 + ut

ut =
∞∑

j=0

ψjεt−j = ψ(L)εt.

(1)

The process zt is a deterministic process. In particular, we consider zt = 1 and zt = (1, t)′.

In the remainder of the paper we will focus on the case with linear trend, but it is clear that

all results will also hold for the intercept only case.

We need the following assumption on the linear process ψ(z).

Assumption 1.

(i) Let εt be i.i.d. with E εt = 0, E ε2t = σ2 and E ε4t <∞.

(ii) ψ(z) 6= 0 for all |z| ≤ 1, and
∑∞

j=0 j|ψj | <∞.
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These assumptions, which are comparable to those found in the literature (cf. Phillips and

Solo, 1992; Chang and Park, 2002, 2003), are sufficient for the derivation of the asymptotic

distribution of the test statistic and its bootstrap counterpart.

The null hypothesis H0 : ρ = 1 corresponds to a unit root, possibly in the presence of

a deterministic trend. Under the alternative H1 : |ρ| < 1, with the conditions on ψ(z), the

process is integrated of order zero.

The treatment of the deterministic components is comparable to Elliott et al. (1996).

Moreover, as in Elliott et al. (1996), we assume that the initial condition is zero, i.e. x0 = 0.

While this is an innocuous assumption under the null hypothesis as x0 cannot be identified if

a constant is included in the model, this is a crucial assumption under the alternative for the

optimality of the approach of Elliott et al. (1996), as discussed by Elliott (1999), Müller and

Elliott (2003), Elliott and Müller (2006) and Harvey et al. (2009) among others. A theoretical

discussion on the role of the initial condition for the optimality of the tests is beyond the scope

of this paper, but we will return to the point in the simulation study in Section 5.

3 Detrended ADF statistics and their asymptotic properties

We consider ADF statistics with different methods of detrending. We can describe the method

in a general framework, of which OLS, GLS and recursive detrending are special cases.3

In the following we will focus on the Dickey-Fuller t-statistic, as this is the most popular

in practice. We do not explicitly consider the ADF coefficient test, which has been discussed

by Xiao and Phillips (1998) with GLS detrending. However, all results derived here also apply

to the ADF coefficient test, although a slightly stronger assumption on the lag length in the

ADF regression is needed (cf. Chang and Park, 2002).

3.1 Detrended ADF test statistics

We define the detrended series as yd
t,γ,λ as

yd
t,γ,λ = yt − β̂′t,γ,λzt. (2)

We suggest to detrend the data using β̂t,γ,λ which can be described as

β̂t,γ,λ =

(
λ∗∑

t=1

zcT,γ ,tz
′
cT,γ ,t

)−1( λ∗∑

t=1

zcT,γ ,tycT,γ ,t

)
. (3)

Several parameters need to be explained here. The first, λ∗ = max(t, ⌊Tλ⌋), has the same

meaning as in Taylor (2002). It indicates if and how recursive detrending is used, as only

3A general framework that nests all these options was presented by Broda, Carstensen, and Paolella (2009).
Ours slightly deviates from theirs as our objectives are different.
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observations up to λ∗ are used. If λ = 0, λ∗ = t and “full” recursive detrending is used. If

λ = 1, λ∗ = T and the full sample is always used to detrend. If λ is between 0 and 1, recursive

detrending is used but a minimum proportion of the sample is always used in estimating β.

As mentioned above, we consider the variant of recursive detrending of Taylor (2002). It

is easier to apply and does not require the adjustment of Sul (2009), which is necessary as

the Shin and So (2001) method is not invariant to the trend parameter. Moreover it directly

lends itself to be put into the framework described above.

The main argument for recursive detrending is to avoid using an explanatory variable

(the first lag) that is correlated with the error term. This is for example the case for full

sample OLS demeaning through the subtraction of the overall mean estimate. Shin and So

(2001) showed using simulations that the first order autoregressive estimator under recursive

demeaning is less biased than under full sample demeaning, and as a consequence, unit root

tests based on recursive demeaning are more powerful.

Next, zcT,γ ,t = zt−(1−cT,γ)zt−1 for t ≥ 2 and zcT,γ ,1 = z1. We specify cT,γ as cT,γ = c̄γT−γ .

If γ = 0, this is OLS detrending as cT,0 = 1 and hence zcT,0,t = zt. If γ = 1, this is the GLS

detrending of Elliott et al. (1996) as cT,1 = c̄T−1 and hence zcT,1,1 = zt − (1 − c̄T−1)zt−1.

ycT,γ
is defined accordingly. Elliott et al. (1996) consider the construction of unit root tests

that are point optimal against a local alternative ρ = 1 − c̄T−1. Local alternatives are the

relevant framework if one is interested in alternatives that are close to the null hypothesis.

The parameter c̄ has to be selected by the user. Elliott et al. (1996) recommend using c̄ = 7

for the intercept only case and c̄ = 13.5 for the linear trend case, as the power functions of

the DF-GLS test are very close to the power envelope for these values. As these values are

commonly accepted we will use them as well later in our simulation study.

To lighten the notational load, we will not explicitly mention the dependence on γ and λ

when no confusion can arise. Hence, we usually write yd
t and β̂t when the context is clear.

Also we will usually just write zc,t and yc,t instead of zcT,γ
and ycT,γ

.

Let δ = ρ− 1. The estimate for δ is then obtained from the OLS regression

∆yd
t = δyd

t−1 +

p∑

j=1

φj∆y
d
t−j + εdp,t. (4)

Letting wd
p,t = (∆yd

t−1, . . . ,∆y
d
t−p)

′, we can define

δ̂ = ATB
−1
T , (5)
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where

AT =
T∑

t=1

yd
t−1∆y

d
t −

(
T∑

t=1

yd
t−1w

d′
p,t

)(
T∑

t=1

wd
p,tw

d′
p,t

)−1( T∑

t=1

wd
p,t∆y

d
t

)

BT =

T∑

t=1

yd2
t−1 −

(
T∑

t=1

yd
t−1w

d′
p,t

)(
T∑

t=1

wd
p,tw

d′
p,t

)−1( T∑

t=1

wd
p,ty

d
t−1

)
.

(6)

We can then define the ADF t-statistic as

ADFγ,λ = δ̂
[
σ̂2V̂ar(δ̂)

]−1/2
= σ̂−1ATB

−1/2
T , (7)

where σ̂2 is the OLS residual variance estimator in (4) (defined explicitly in Lemma 2).

3.2 Asymptotic properties

In this section we derive the limiting distributions of the test statistics under the null hypoth-

esis. Our first goal is to obtain an autoregressive approximation for the detrended series, on

which the ADF test is based.

As Assumption 1 implies that ψ(z) is invertible, we can define φ(z) as φ(z) = ψ(z)−1 =

1 −
∑∞

j=1 φjz
j and write

ut =

∞∑

j=1

φjut−j + εt. (8)

Now define εp,t such that

ut =

p∑

j=1

φjut−j + εp,t. (9)

Combining (8) and (9) we obtain

εp,t = εt +
∞∑

j=p+1

φjut−j. (10)

As yd
t = yt − β̂′tzt and yt = xt + β′zt, we have that

yd
t = xt + β′zt − β̂′tzt = xt − (β̂t − β)′zt. (11)

7



Then ut = ∆xt = ∆yd
t + ∆[(β̂t − β)′zt]. Now we can write

εp,t = ut −

p∑

j=1

φjut−j = (∆yd
t + ∆[(β̂t − β)′zt]) −

p∑

j=1

φj(∆y
d
t−j + ∆[(β̂t−j − β)′zt−j ])

= ∆yd
t −

p∑

j=1

φj∆y
d
t−j + ∆[(β̂t − β)′zt] −

p∑

j=1

φj∆[(β̂t−j − β)′zt−j ].

Then, letting φp(z) = 1−
∑p

j=1 φjz
j , we can write εdp,t = εp,t − φp(L)∆[(β̂t − β)′zt] such that

∆yd
t =

p∑

j=1

φj∆y
d
t−j + εdp,t. (12)

Similarly we can define εdt such that

εdt = ∆yd
t −

∞∑

j=1

φj∆y
d
t−j = εt − φ(L)∆[(β̂t − β)′zt].

Let ∆Y d = (∆yd
1 , . . . ,∆y

d
T )′, Y d

−1 = (yd
0 , . . . , y

d
T−1)

′,Md
p = (wd

p,1, . . . , w
d
p,T )′, Φp = (φ1, . . . , φp)

′

and εdp = (εdp,1, . . . , ε
d
p,T )′, we have

∆Y d = Md
p Φp + εdp

and

AT = Y d′
−1∆Y

d − Y d′
−1M

d
p

(
Md′

p M
d
p

)−1
Md′

p ∆Y d = Y d′
−1ε

d
p − Y d′

−1M
d
p

(
Md′

p M
d
p

)−1
Md′

p ε
d
p

BT = Y d′
−1Y

d
−1 − Y d′

−1M
d
p

(
Md′

p M
d
p

)−1
Md′

p Y
d
−1,

(13)

or equivalently

AT =
T∑

t=1

yd
t−1ε

d
p,t −

(
T∑

t=1

yd
t−1w

d′
p,t

)(
T∑

t=1

wd
p,tw

d′
p,t

)−1( T∑

t=1

wd
p,tε

d
p,t

)

BT =
T∑

t=1

yd2
t−1 −

(
T∑

t=1

yd
t−1w

d′
p,t

)(
T∑

t=1

wd
p,tw

d′
p,t

)−1( T∑

t=1

wd
p,ty

d
t−1

)
.

(14)

We need the following assumption on the lag length p.

Assumption 2. Let p→ ∞ and p = o(T 1/2) as T → ∞.

Using the expressions developed above, one can derive the asymptotic distribution of the

test statistics.

The first step in deriving the limiting distribution is to consider the limiting behavior of
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the elements of AT and BT , as in the following lemma.

Lemma 1. Let Assumptions 1 and 2 hold. Let yd
t = yd

t,γ,λ be defined as in equation (2) with

γ = 0, 1 and λ ∈ [0, 1]. Then

(a) T−2
∑T

t=1 y
d2
t−1

d
−→ ψ(1)2σ2

∫ 1
0 Wγ(r, λ)2dr,

(b) T−1
∑T

t=1 y
d
t−1ε

d
p,t

d
−→ 1

2ψ(1)σ2(Wγ(1, λ)2 −Wγ(0, λ)2 − 1),

(c)

∣∣∣∣
∣∣∣∣
(
T−1

∑T
t=1 w

d
p,tw

d′
p,t

)−1
∣∣∣∣
∣∣∣∣ = Op(1),

(d)
∣∣∣T−1

∑T
t=1 y

d
t−1w

d′
p,t

∣∣∣ = Op(p
1/2),

(e)
∣∣∣T−1

∑T
t=1 w

d
p,tε

d
p,t

∣∣∣ = op(p
−1/2),

where

W0(r, λ) = W (r)− 2r̄−2(2 − 3r)

∫ r̄

0
W (s)ds− 6r̄−3(2r − 1)

∫ r̄

0
sW (s)ds,

W1(r, λ) = W (r)− rr̄−1(1 + c̄r̄ +
1

3
c̄2r̄2)−1

[
(1 + c̄r̄)W (r̄) + c̄2

∫ r̄

0
sW (s)ds

]
,

and r̄ = max(r, λ).

The next step is to show the consistency of the residual variance estimator, as done in the

following lemma.

Lemma 2. Let Assumptions 1 and 2 hold. Let σ̂2 be defined as

σ̂2 = T−1(∆Y d − Y d
−1δ̂)

′(I −Md
p (Md′

p M
d
p )−1Md′

p )(∆Y d − Y d
−1δ̂).

Then σ̂2 p
−→ σ2.

We can then straightforwardly derive the limiting distribution of the ADF t-statistic as

given below.

Theorem 1. Let Assumptions 1 and 2 hold. Let ADFγ,λ be defined as in (7) with γ = 0, 1

and λ ∈ [0, 1]. Then, as T → ∞, we have that

ADFγ,λ
d
−→

Wγ(1, λ)2 −Wγ(0, λ)2 − 1

2
(∫ 1

0 Wγ(r, λ)2dr
)1/2

.
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Remark 1. Under the local alternative ρ = 1 − cT−1 the limit distribution will remain the

same as in Theorem 1, but with Wγ(r, λ) replaced by Wc,γ(r, λ), where

Wc,0(r, λ) = Wc(r) − 2r̄−2(2 − 3r)

∫ r̄

0
Wc(s)ds− 6r̄−3(2r − 1)

∫ r̄

0
sWc(s)ds,

Wc,1(r, λ) = Wc(r) − rr̄−1(1 + c̄r̄ +
1

3
c̄2r̄2)−1

[
(1 + c̄r̄)Wc(r̄) + c̄2

∫ r̄

0
sWc(s)ds

]
,

and Wc(r) =
∫ r
0 e

−(r−s)cdW (s).

This can be shown straightforwardly, though tediously, using standard results for the

invariance principle (cf. Phillips and Perron, 1988) and our proofs in the Appendix. Note

that under local alternatives ut = ∆xt + cT−1xt−1 and, analogously to the derivation of (12),

we can then derive that ∆yd
t =

∑p
j=1 φj∆y

d
t−j + εc,dp,t where εc,dp,t = εdp,t − cT−1φp(L)xt−1. As

we can further derive that εc,dt = εdt − cT−1φ(L)xt−1, we can then plug these quantities into

the proofs to obtain the results given above.

4 Bootstrap ADF statistics and their asymptotic properties

4.1 Bootstrap algorithm

The bootstrap algorithm we consider is an extension of Bootstrap Test 4 given in Palm et al.

(2008). The extension is Step 1, on the treatment of deterministic components.

Bootstrap Algorithm 1.

1. Calculate

ỹd
t = yt − β̃′tzt, (15)

where β̃t = β̂t,γ̃,λ̃ is defined in (3) but it is not necessary that γ̃ = γ and λ̃ = λ.

2. Estimate an ADF regression of order q for ỹd
t by OLS and calculate the residuals

ε̂dq,t = ∆ỹd
t − δ̂ỹd

t−1 −

q∑

j=1

φ̂j∆ỹ
d
t−j. (16)

3. Resample with replacement from the recentered residuals
(
ε̂dq,t −

¯̂εdq,t

)
to obtain boot-

strap errors ε∗t .

4. Build u∗t recursively as

u∗t =

q∑

j=1

φ̂ju
∗
t−j + ε∗t , (17)
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using the estimated parameters φ̂j from Step 2, and build x∗t as

x∗t = x∗t−1 + u∗t . (18)

Finally let

y∗t = x∗t + β∗′zt. (19)

See Remark 2 for the choice of β∗.

5. Using the bootstrap sample y∗t , apply the same method of detrending as applied to the

original sample to obtain the detrended bootstrap series y∗dt = y∗dt,γ,λ, where

y∗dt,γ,λ = y∗t − β̂∗′t,γ,λzt, (20a)

β̂∗t,γ,λ =

(
λ∗∑

t=1

zcT,γ ,tz
′
cT,γ ,t

)−1( λ∗∑

t=1

zcT,γ ,ty
∗
cT,γ ,t

)
. (20b)

Estimate by OLS the ADF regression of order p∗,

∆y∗dt = δ∗y∗dt−1 +

p∗∑

j=1

φ∗j∆y
∗d
t−j + ε∗dp∗,t, (21)

and calculate the ADF test statistic as

ADF ∗
γ,λ = δ̂∗

[
σ̂∗2V̂ar(δ̂∗)

]−1/2
= σ̂∗−1A∗

TB
∗−1/2
T , (22)

where

A∗
T =

T∑

t=1

y∗d
t−1∆y

∗d
t −

(
T∑

t=1

y∗d
t−1w

∗d′
p∗,t

)(
T∑

t=1

w∗d
p∗,tw

∗d′
p∗,t

)−1( T∑

t=1

w∗d
p∗,t∆y

∗d
t

)

B∗
T =

T∑

t=1

y∗d2
t−1 −

(
T∑

t=1

y∗d
t−1w

∗d′
p∗,t

)(
T∑

t=1

w∗d
p∗,tw

∗d′
p∗,t

)−1( T∑

t=1

w∗d
p∗,ty

∗d
t−1

)
.

(23)

where w∗d
p∗,t = (∆y∗dt−1, . . . ,∆y

∗d
t−p∗)

′.

6. Repeat Steps 3 to 5 B times, obtaining bootstrap test statistics ADF ∗b
γ,λ for b = 1, . . . , B,

and select the bootstrap critical value c∗α as c∗α = max{c :
∑B

b=1 I(ADF
∗b
γ,λ < c) ≤ α},

or equivalently as the α-quantile of the ordered ADF ∗b
γ,λ statistics. Reject the null of a

unit root if ADFγ,λ is smaller than c∗α, where α is the nominal level of the test.

As can be seen from the algorithm above, we allow for a different lag length in the sieve

bootstrap (q) than in the calculation of the test statistic (p). Moreover, we allow for a different

lag length in the calculation of the bootstrap test statistic (p∗). In general it will be a logical

11



choice to set q = p, as both are based on an ADF regression. However we do not wish to

impose this a priori in order to be as general as possible. For example, if the methods of

detrending differ, in finite samples one might obtain a different p and q if the choice is based

on an information criterion.

What is more important however is to allow for lag length selection of p∗ within the

bootstrap, as this will improve the finite sample properties of the test. In the following we

will simply denote p∗ by p to lighten the notational load. This is a harmless simplification

as we require p∗ to satisfy Assumption 2 as well, and moreover p and p∗ will never be in the

same part of the proof anyway. The finite sample performance of the tests might improve by

imposing certain restrictions on the relation between p and p∗; see Richard (2009) for more

details. We will not explore this here any further.

We need the following assumption on the lag length q.

Assumption 3. Let q → ∞ and q = o((n/ ln n)1/3) as n→ ∞.

We also need the following assumption to relate q to p (p∗).

Assumption 4. Let p/q → κ > 1 as T → ∞, where κ may be infinite.

This assumption essentially states that, for large T , p should be at least as large as q.

Remark 2. It is unnecessary to include deterministic components in Step 4 of the bootstrap

algorithm, as the tests we consider are invariant with respect to the true deterministic com-

ponents in the (bootstrap) DGP. Therefore we recommend setting β∗ = 0 for simplicity. Note

that the arguments still hold for different values of β∗. It would however not be valid to set

y∗t = x∗t + β∗′t zt, with β∗t varying over t (for example β∗t = β̂t), as this would mean that the

parameters of the deterministic trends are time-varying, which is not the case in the original

sample.

4.2 Detrending within the bootstrap

It is important to note that the detrending method in the first step of the bootstrap test using

β̂t,γ̃,λ̃ does not have to be the same as the one performed in the test using β̂t,γ,λ. Specifically,

we do not require that γ̃ = γ and λ̃ = λ; the properties of the estimated coefficients and

residuals are identical asymptotically for any γ̃ and λ̃. This is formalized in the following

lemma.

Lemma 3. Define φ̃j , j = 1, . . . , q as the OLS estimators in a regression of ut on ut−1, . . . , ut−q

and ε̃q,t as the corresponding residuals. Let φ̂j and ε̂dq,t be defined as in (16). Let β̃t = β̂t,γ̃,λ̃

be defined as in (3) with γ̃ = 0, 1 and λ̃ ∈ [0, 1] and let Assumptions 1 and 3 hold. Then

φ̂j = φ̃j +Op(T
−1q1/2),

12



uniformly in j = 1, . . . , q. Moreover,

max
1≤t≤T

|ε̂dq,t − ε̃q,t| = Op(T
−1/2).

Using the above lemma we can use the results on autoregressive approximation and the

sieve bootstrap as established by Hannan and Kavalieris (1986) and Bühlmann (1995, 1997),

used in a unit root setting by Park (2002) and Chang and Park (2003) (also see Remark 4).

Given Lemma 3 and the results mentioned above, we can establish the limit distribution of

the detrended ADF bootstrap tests.

Remark 3. If we restrict ourselves to full sample detrending then one can show that all that

is required of β̃ is that it satisfies the conditions

β̃1 − β1 = Op(T
1/2) and β̃2 − β2 = Op(T

−1/2), (24)

thus allowing for trend estimators beyond the OLS and GLS framework (see Smeekes, 2009,

Chapter 3). We conjecture that a similar result holds for recursive detrending.

Remark 4. One might consider using Yule-Walker instead of OLS in the sieve bootstrap

to ensure that the estimated autoregression is invertible.4 In fact, the results of Hannan

and Kavalieris (1986) and Bühlmann (1995, 1997) are derived for Yule-Walker estimators.

However, Theorem 1 of Poskitt (1994) implies that these results are valid for OLS estimation

as well.

4.3 Asymptotic bootstrap validity

In this section we show that the bootstrap tests are asymptotically valid. In order to establish

asymptotic validity we need to show that the bootstrap t-statistic converges to the same

distribution as its asymptotic counterpart if the null hypothesis is true.

The first step in the derivation of the bootstrap limit distribution is the construction of

an invariance principle for y∗dt . The several steps that are needed for the construction are

detailed in the Appendix. Here we give the final invariance principle.

Lemma 4. Let Assumptions 1 and 3 hold. Let y∗dt,γ,λ be defined as in (20) with γ = 0, 1 and

λ ∈ [0, 1]. Then

T−1/2y∗d⌊Tr⌋,γ,λ
d∗
−→ σψ(1)Wγ (r, λ) in probability.

Next we must derive the autoregressive approximation on which the ADF regression is

4The disadvantage of Yule-Walker is that it may have substantial finite sample bias (Poskitt, 1994). An-
other option if one is worried about the noninvertibility of the OLS estimates is to impose a root bound as in
Burridge and Taylor (2004).
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based, as for the asymptotic test. For the bootstrap error process u∗t , we can write

u∗t =

q∑

j=1

φ̂ju
∗
t−j + ε∗t . (25)

In analogy with the original sample, define ε∗p,t such that

u∗t =

p∑

j=1

φ̂ju
∗
t−j + ε∗p,t. (26)

Combining (25) and (26) we obtain

ε∗p,t = ε∗t +

q∑

j=p+1

φ̂ju
∗
t−j . (27)

However, it is clear from our Assumption 4 that for large T one obtains ε∗p,t = ε∗t . Therefore

our proofs can proceed as if we set p = q.

In analogy with the original sample we can derive that

∆y∗dt =

p∑

j=1

φ̂j∆y
∗d
t−j + ε∗dp,t

where, letting φ̂p(z) = 1 −
∑p

j=1 φ̂jz
j ,

ε∗dp,t = ε∗p,t − φ̂p(L)∆[(β̂∗t − β∗)′zt].

Similarly we can define

ε∗dt = ε∗t − φ̂q(L)∆[(β̂∗t − β∗)′zt] = ε∗t − φ̂(L)∆[(β̂∗t − β∗)′zt].

It will then also be clear that for large T we have ε∗dp,t = ε∗dt .

Now let ∆Y ∗d, Y ∗d
−1, M

∗d
p , ε∗dp and Φ̂p be defined analogously as their original sample

counterparts. Then

∆Y ∗d = M∗d
p Φ̂p + ε∗dp

and

A∗
T = Y ∗d′

−1 ε
∗d
p − Y ∗d′

−1 M
∗d
p

(
M∗d′

p M∗d
p

)−1
M∗d′

p ε∗dp

B∗
T = Y ∗d′

−1 Y
∗d
−1 − Y ∗d′

−1 M
∗d
p

(
M∗d′

p M∗d
p

)−1
M∗d′

p Y ∗d
−1

σ̂∗2 = T−1(∆Y ∗d − Y ∗d
−1α̂

∗)′(I −M∗d
p (M∗d′

p M∗d
p )−1M∗d′

p )(∆Y ∗d − Y ∗d
−1α̂

∗).

(28)
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Next we can establish the bootstrap counterparts of Lemma 1 and 2.

Lemma 5. Let Assumptions 1, 2, 3 and 4 hold. Let y∗dt = y∗dt,γ,λ be defined as in (20) with

γ = 0, 1 and λ ∈ [0, 1]. Then

(a) T−2
∑T

t=1 y
∗d2
t−1

d∗
−→ ψ(1)2σ2

∫ 1
0 Wγ(r, λ)2dr in probability.

(b) T−1
∑T

t=1 y
∗d
t−1ε

∗d
p,t

d∗
−→ 1

2ψ(1)σ2(Wγ(1, λ)2 −Wγ(0, λ)2 − 1) in probability.

(c)

∣∣∣∣
∣∣∣∣
(
T−1

∑T
t=1 w

∗d
p,tw

∗d′
p,t

)−1
∣∣∣∣
∣∣∣∣ = O∗

p(1),

(d)
∣∣∣T−1

∑T
t=1 y

∗d
t−1w

∗d′
p,t

∣∣∣ = O∗
p(p

1/2),

(e)
∣∣∣T−1

∑T
t=1 w

∗d
p,tε

∗d
p,t

∣∣∣ = O∗
p(T

−1/2p1/2).

Lemma 6. Let Assumptions 1, 2, 3 and 4 hold. Let σ̂∗2 be defined as in (28). Then σ̂∗2
p∗
−→

σ2.

This leads to the following theorem on the asymptotic distribution of the bootstrap ADF

t-statistics. Note that, as the limit distribution of the bootstrap statistic is the same as that of

its asymptotic counterpart, this theorem establishes the asymptotic validity of the bootstrap

ADF test.

Theorem 2. Let ADF ∗
γ,λ be defined as in (22) with γ = 0, 1 and λ ∈ [0, 1]. Let Assumptions

1, 2, 3 and 4 hold. Then, as T → ∞, we have that

ADF ∗
γ,λ

d∗
−→

Wγ(1, λ)2 −Wγ(0, λ)2 − 1

2
(∫ 1

0 Wγ(r, λ)2dr
)1/2

in probability.

4.4 Bootstrap tests under the alternative hypothesis

The asymptotic validity of the bootstrap tests that we established in the previous section

is purely a property of the bootstrap tests under the null hypothesis. In this section we

investigate how the bootstrap performs under the alternative hypothesis. This is what we

investigate in this section. We discern two different alternative hypotheses, local and fixed

alternatives.

Under local alternatives the bootstrap tests should have the same asymptotic distribution

as under the null hypothesis. It is only then that the bootstrap tests will have the same

asymptotic local power function as the asymptotic tests. Swensen (2003b) shows that this is

the case for full sample OLS and GLS tests when there is no correlation in the residuals and

the i.i.d. bootstrap can be used.
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Under fixed alternatives the bootstrap test should converge to some limiting distribution

(i.e. it should not diverge) in order to achieve consistency. However, to have the highest power

possible one wants again that the limit distribution is the same as under the null.

We will not go into the technical details in this paper but we try to show intuitively why

the bootstrap tests considered here satisfy these requirements. It is not difficult to see that

under local alternatives the bootstrap tests will have the same asymptotic distribution as

under the null hypothesis. Under local alternatives all rates of convergence remain the same

as under the null hypothesis, including those of the trend estimators, which will ensure that

all results, including Lemma 3, remain valid.5 It then follows from this Lemma that the

bootstrap tests will have the same distributions as under the null.

For fixed alternatives we may write

xt = (1 − ρL)−1ψ(L)εt = ψ+(L)εt,

where ψ+(L) is an invertible polynomial. Therefore one may approximate xt with a finite

order autoregressive model, or in other words, directly apply the sieve bootstrap of Bühlmann

(1997) to it. Our ADF regression is equivalent to the direct autoregressive approximation

and therefore valid as well. As such, the estimates φ̂j will converge to their population

counterparts with rates as in Hannan and Kavalieris (1986). The only complication arising

is the detrending, as the trend estimators have different properties in the stationary setting.

However, the trend estimators will converge at higher rates,6 which means that this will not

cause any problems. For these reasons the bootstrap tests will have the same distributions

under fixed alternatives as under the null hypothesis.

5 Finite-sample performance

5.1 Simulation setup

In this section a Monte Carlo study is performed to investigate the performance of the methods

in finite samples. Our goal is twofold. First, we wish to investigate whether the power

properties of the asymptotic tests carry over to the bootstrap setting. For example, it is well

known that the GLS detrended test is more powerful than the OLS detrended test if the

initial condition, the deviation of the initial observation from the deterministic components,

is small, while it is the other way around if the initial condition is large (cf. Müller and

Elliott, 2003). Therefore we will perform two sets of simulations, the first with a small (zero)

initial condition, the second with a large initial condition. Our goal is certainly not to give a

complete analysis of the power properties of the tests, but simply to get an idea of whether

5In fact, one just needs to modify the proof of 3 using the expressions for ε
c,d
q,t and ε

c,d
t obtained in Remark

1.
6See for example Hamilton (1994, Chapter 16) for the OLS estimator in a model with intercept and trend.
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power properties carry over to the bootstrap.

The second goal is to investigate whether the method of detrending in the first step of the

bootstrap procedure has an impact on the performance of the test (both size and power). As

discussed in the previous section, the method of detrending in the bootstrap does not have

to be the same as the method performed for the construction of the test statistic.

In order to investigate this we will consider all combinations of OLS (γ = 0), GLS (γ = 1),

full sample (λ = 1) and full recursive (λ = 0) detrending for use in the bootstrap and the

construction of the test statistic, including their asymptotic variants. The asymptotic tests

in the tables are denoted by ADFγ,λ where γ and λ indicate the method of detrending for

the calculation of the test statistic as before. The bootstrap tests are denoted by ADF ∗,γ̃,λ̃
γ,λ ,

where γ̃, λ̃ indicate the method of detrending used in the first step of the bootstrap. For GLS

detrending we use c̄ = 13.5 as Elliott et al. (1996) suggest.7

The DGP we use in our simulations is almost identical to the one given in (1), except that

we restrict ut to be a (stationary and invertible) ARMA(1,1) process and we generalize the

initial condition. The DGP is given below.

yt = xt + β′zt

xt = ρxt−1 + ut

ut = φut−1 + εt + θεt−1

where εt ∼ N(0, 1) and ρ = 1 − cT−1. We set the true deterministic components equal to

zero (take β = (0, 0)′); as we perform all tests under the assumption that zt = (1, t), all tests

are invariant to the true value of β.

For the first set of simulations we set the initial condition equal to zero, i.e. x0 = 0. For

the second set of simulations, we follow Harvey et al. (2009) and set

x0 = a
√
ωu/(1 − ρ2),

where ωu = limT→∞ T−1 E(
∑T

t=1 ut)
2. We set a = 2.5, a value that gives a clear power

advantage to the OLS test in Harvey et al. (2009).

Lag lengths p, q and p∗ are selected separately using the MAIC proposed by Ng and

Perron (2001). All results are obtained using 5000 simulations and the Warp-speed bootstrap

method of Giacomini, Politis, and White (2007).

7There is no reason why this value should be optimal for recursive GLS detrending. However, we will use
it as it is a well accepted value in the literature. Moreover, a study into the optimal value for c̄ is outside the
scope of this paper. Broda et al. (2009) go into more detail.
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5.2 Simulation results

Tables 1 and 2 present results for size (c = 0). It can be seen that all bootstrap tests perform

better than the asymptotic tests. The size of the asymptotic tests is quite sensitive to the

values in the simulation DGP of both the AR and MA parameter. There is undersize for

most parameter combinations, although generally not too severe, while there is the familiar

oversize for negative MA parameters. Among the asymptotic tests the OLS tests seem to be

more sensitive to the parameters of the dynamics than the GLS tests.

Insert Table 1 about here

Insert Table 2 about here

The bootstrap tests are far less sensitive than the asymptotic tests to the values of the

AR and MA parameters, and have size close to the nominal level in general. The exception

is the DGP with the large negative MA parameter, where there is still oversize, although

considerably less than for the asymptotic tests. What is also noticeable is that the bootstrap

not only corrects oversize of the asymptotic tests, but also undersize.

If we consider the method of detrending in the first step of the bootstrap, we see that the

recursively detrended tests have a tendency to reject less often than the full sample detrended

tests. This is positive for the DGPs with negative MA parameters, but leads to undersize

elsewhere, which could affect power negatively. The effects of the detrending method used

for the calculation of the test statistic follows that of the corresponding asymyptotic tests

(although less pronounced), with the largest size distortions for the OLS full sample detrended

test.

Tables 3 and 4 give size-adjusted powers for c = 10 for a model with zero initial condition.

Regarding the asymptotic tests, we see that the size-adjusted power of the full sample OLS

detrended test is clearly lower than that of the other tests (which are fairly comparable). This

is in line with results from the literature on unit root testing (Elliott et al., 1996; Shin and

So, 2001).

Insert Table 3 about here

Insert Table 4 about here

It can also be seen that the size-adjusted powers of the bootstrap tests are somewhat

lower than but still quite close to those of the asymptotic tests. Considering the method of

detrending used in the first step of the bootstrap, there is again a slight tendency for the

recursive detrending methods to have lower power. For the detrending method used for the

test statistic, it is very clear that the bootstrap tests follow their asymptotic counterparts as

the full sample OLS tests have lowest power.
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Based on these results, it seems that the power properties of the bootstrap tests are

determined by the power properties of their asymptotic counterparts. We will try to confirm

this conclusion by next looking at models with large initial conditions.

Tables 5 and 6 give the size-adjusted powers for c = 10 for the model with a large initial

condition. The initial condition used is based on Harvey et al. (2009), where this value led to

a clear power advantage of OLS over GLS detrending. It is not clear yet from the literature

how the recursive methods perform for such a large initial condition.

Insert Table 5 about here

Insert Table 6 about here

Considering the asymptotic tests first, we see that the test based on full sample OLS

detrending is clearly the most powerful now. The power advantage of OLS detrending over

GLS detrending is in line with the results in Harvey et al. (2009). The power advantage of OLS

over GLS is also noticeable for recursive detrending, although the power of the recursively

detrended tests is smaller than that of their full sample counterparts.

Next we turn to the bootstrap tests, and in particular the detrending method used for

the calculation of the test statistic. It can again be seen that the bootstrap tests follow their

asymptotic counterparts closely. Bootstrap tests based on OLS detrending are more powerful

than bootstrap tests based on GLS detrending and full sample detrending is more powerful

than recursive detrending. The impact of the method of detrending in the first step of the

bootstrap algorithm is similar as before: recursive detrending leads to somewhat lower power.

These results confirm our conclusion that power properties of the bootstrap tests are mainly

determined by the power properties of their asymptotic counterparts.

6 Conclusion

We have investigated the role of detrending in bootstrap unit root tests. We have shown that

the method of detrending used for the construction of the test statistic does not have to be

the same as the method of detrending performed in the first step of the bootstrap algorithm.

The bootstrap has been shown to be valid for a wide range of possible detrending methods,

irrespective of the method used in the construction of the test statistic.

A simulation study has been conducted to investigate the impact of detrending on the

size and power properties of the bootstrap unit root tests. The first important conclusion

is that the method of detrending in the first step of the bootstrap algorithm does not have

a huge impact on the size and the power of the test, although there are differences between

full sample and recursive detrending. The second important conclusion is that the method

of detrending used for the construction of the test statistic has a major impact on the power
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of the test, while having a minor impact on the size. Moreover, the power properties of the

bootstrap tests are determined by the power properties of their asymptotic counterparts.

These two conclusions have the following implications. First, the choice of detrending used

in the first step of the bootstrap algorithm should be seen separately from the choice of the

detrending method for the test statistic. In our analysis we found that full sample detrending

outperformed recursive detrending both in terms of size and power. The difference between

OLS and GLS detrending was fairly minor. Second, the choice of the detrending used in

the construction of the test statistic should be based on power considerations. As the power

properties of the asymptotic tests carry over to the bootstrap setting, the choice of the

detrending method for the bootstrap tests should be based on the same considerations as for

the asymptotic tests. For example, one could simply adapt the arguments used in Harvey

et al. (2009) when there is uncertainty over the initial condition to the bootstrap setting.

There are several extensions possible to this paper. First, one could consider alternative

methods of detrending. We have limited our analysis to OLS and GLS detrending, but one

can easily imagine other methods. Second, one could extend the analysis to other types of unit

root tests. Third, we could explicitly use the bootstrap to tackle the problem of uncertainty

about deterministic trends and/or the initial condition. Instead of simply adapting the ideas

of Harvey et al. (2009) to the bootstrap test, one could explicitly use the bootstrap to control

size exactly when the rejection strategy is based on the union of rejections of individual tests

as in Harvey et al. (2009). To do so however would not be trivial. Finally, one could view

detrending in a broader perspective and analyze more general trends, such as polynomial

trends of higher order or broken trends.

References

Basawa, I. V., A. K. Mallik, W. P. McCormick, J. H. Reeves, and R. L. Taylor (1991a).

Bootstrap test of significance and sequential bootstrap estimation for unstable first order

autoregressive processes. Communications in Statistics - Theory and Methods 20, 1015–

1026.

Basawa, I. V., A. K. Mallik, W. P. McCormick, J. H. Reeves, and R. L. Taylor (1991b).

Bootstrapping unstable first-order autoregressive processes. Annals of Statistics 19, 1098–

1101.

Berk, K. N. (1974). Consistent autoregressive spectral estimates. Annals of Statistics 2,

489–502.

Broda, S., K. Carstensen, and M. S. Paolella (2009). Assessing and improving the performance

of nearly efficient unit root tests in small samples. Econometric Reviews 28, 468–494.

20
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A Appendix: Proofs

A.1 Proofs for Section 3

For completeness, we start with two results that are well known in the literature (Phillips and Solo,

1992). We let W (r) denote a standard Brownian motion.

Lemma A.1. Let Assumption 1 hold. Then

T−1/2

⌊Tr⌋∑

t=1

εt
d
−→ σW (r).

Lemma A.2. Let Assumption 1 hold. Then

T−1/2

⌊Tr⌋∑

t=1

ut
d
−→ σψ(1)W (r).

The first step is to derive the distribution of the estimator of β. This is done in Lemma A.3. The

results in Lemma A.3 hold for OLS and GLS (possibly recursive) detrending. Note that these are

fairly standard results (cf. Stock, 1994; Elliott et al., 1996; Taylor, 2002).
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Lemma A.3. Let (β̂1,t, β̂2,t)
′ = β̂t = β̂t,γ,λ be defined as in (3), with γ = 0, 1 and λ ∈ [0, 1]. Let

Assumption 1 hold. Then

(
T−1/2(β̂1,⌊Tr⌋ − β1)

T 1/2(β̂2,⌊Tr⌋ − β2)

)
d
−→

(
ψ(1)σV1,γ(r, λ)

ψ(1)σV2,γ(r, λ)

)
,

where r̄ = max(r, λ) and

V1,0(r, λ) = 4r̄−1

∫ r̄

0

W (s)ds− 6r̄−2

∫ r̄

0

sW (s)ds,

V2,0(r, λ) = −6r̄−2

∫ r̄

0

W (s)ds+ 12r̄−3

∫ r̄

0

sW (s)ds,

V1,1(r, λ) = 0,

V2,1(r, λ) = r̄−1(1 + c̄r̄ +
1

3
c̄2r̄2)−1

[
(1 + c̄r̄)W (r̄) + c̄2

∫ r̄

0

sW (s)ds

]
.

(A.1)

Proof of Lemma A.3. We have that

β̂⌊Tr⌋ − β =

(
λ∗∑

s=1

zcT ,sz
′
cT ,s

)−1(
λ∗∑

s=1

zcT ,sxcT ,s

)
, (A.2)

where λ∗ = max(⌊Tr⌋, ⌊Tλ⌋), xcT ,1 = x1 and xcT ,t = ∆xt + cTxt−1 for t = 2, . . . , T . Then,

(
T−1/2(β̂1,⌊Tr⌋ − β1)

T 1/2(β̂2,⌊Tr⌋ − β2)

)
=

(
T γ−1

∑λ∗

s=1 z
2
cT ,1s T 3γ/2−2

∑λ∗

s=1 zcT ,1szcT ,2s

T 3γ/2−2
∑λ∗

s=1 zcT ,2szcT ,1s T 2γ−3
∑λ∗

s=1 z
2
cT ,2s.

)−1

×

(
T γ−3/2

∑λ∗

s=1 zcT ,1sxcT ,s

T 2γ−5/2
∑λ∗

s=1 zcT ,2sxcT ,s

)

= M−1
λ∗ Nλ∗ .

(A.3)

We start with the denominator. Note that zcT ,1 = (1, 1)′. Also we have that zcT ,1s = ∆z1s +

cT z1,s−1 = cT and zcT ,2s = ∆z2s + cT z2,s−1 = 1 + cT (s− 1). Then

λ∗∑

s=1

z2
cT ,1s = 1 +

λ∗∑

s=2

c2T = 1 + c2T (λ∗ − 1).

Furthermore

λ∗∑

s=1

zcT ,1szcT ,2s = 1 + cT

λ∗∑

s=2

(1 + cT (s− 1)) = 1 + cT (λ∗ − 1) +
1

2
c2Tλ

∗(λ∗ − 1).

Finally,

λ∗∑

s=1

z2
cT ,2s = 1 +

λ∗∑

s=2

(
1 + 2cT (s− 1) + c2T (s− 1)2

)

= λ∗ + cTλ
∗(λ∗ − 1) +

1

6
c2Tλ

∗(λ∗ − 1)(2λ∗ − 1).
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Therefore we have that, using that cT = c̄γT−γ

Mλ∗ =

(
T γ−1 + c̄2γT−γ−1(λ∗ − 1)

T 3γ/2−2 + c̄γT γ/2−2(λ∗ − 1) + 1
2 c̄

2γT−γ/2−2λ∗(λ∗ − 1)

T 3γ/2−2 + c̄γT γ/2−2(λ∗ − 1) + 1
2 c̄

2γT−γ/2−2λ∗(λ∗ − 1)

T 2γ−3λ∗ + c̄γT γ−3λ∗(λ∗ − 1) + 1
6 c̄

2γT−3λ∗(λ∗ − 1)(2λ∗ − 1)

)
.

If γ = 0, then

Mλ∗ →

(
r̄ 1

2 r̄
2

1
2 r̄

2 1
3 r̄

3

)
. (A.4)

If γ = 1, then

Mλ∗ →

(
1 0

0 r̄(1 + c̄r̄ + 1
3 c̄

2r̄2)

)
. (A.5)

Next we consider Nλ∗ . Note that

λ∗∑

s=1

zcT ,1sxcT ,s = x1 + cT

λ∗∑

s=2

(∆xs + cTxs−1) = x1 + cT (xλ∗ − x1) + c2T

λ∗∑

s=2

xs−1

and

λ∗∑

s=1

zcT ,2sxcT ,s = x1 +

λ∗∑

s=2

(∆xs + cTxs−1) + cT

λ∗∑

s=2

(s− 1)(∆xs + cTxs−1)

= xλ∗ + cT

λ∗∑

s=2

(xs−1 + (s− 1)∆xs) + c2T

λ∗∑

s=2

(s− 1)xs−1

= xλ∗ + cT (λ∗ − 1)xλ∗ + c2T

λ∗∑

s=2

(s− 1)xs−1,

as

λ∗∑

s=2

(xs−1 + (s− 1)∆xs) =

λ∗∑

s=2

((s− 1)xs − (s− 2)xs−1)

=

λ∗∑

s=2

(s− 1)xs −

λ∗−1∑

s=2

(s− 1)xs = (λ∗ − 1)xλ∗ .

Hence, using that cT = c̄γT−γ

Nλ∗ =

(
T γ−3/2x1 + c̄γT−3/2(xλ∗ − x1) + c̄2γT−γ−3/2

∑λ∗

s=2 xs−1

T 2γ−5/2xλ∗ + c̄γT γ−5/2(λ∗ − 1)xλ∗ + c̄2γT−5/2
∑λ∗

s=2(s− 1)xs−1

)
.
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Then, if γ = 0,

Nλ∗

d
−→

(
ψ(1)σ

∫ r̄

0 W (s)ds

ψ(1)σ
∫ r̄

0 sW (s)ds

)
. (A.6)

If γ = 1,

Nλ∗

d
−→

(
0

ψ(1)σ(1 + c̄r̄)W (r̄) + ψ(1)σc̄2
∫ r̄

0 sW (s)ds

)
. (A.7)

Putting everything together we get for γ = 0

(
T 1/2(β̂1,⌊Tr⌋ − β1)

T−1/2(β̂2,⌊Tr⌋ − β2)

)
d
−→


 ψ(1)σ

(
4r̄−1

∫ r̄

0 W (s)ds− 6r̄−2
∫ r̄

0 sW (s)ds
)

ψ(1)σ
(
−6r̄−2

∫ r̄

0
W (s)ds+ 12r̄−3

∫ r̄

0
sW (s)ds

)

 , (A.8)

and for γ = 1

(
T 1/2(β̂1,⌊Tr⌋ − β1)

T−1/2(β̂2,⌊Tr⌋ − β2)

)
d
−→

(
0

ψ(1)σr̄−1(1 + c̄r̄ + 1
3 c̄

2r̄2)−1
[
(1 + c̄r̄)W (r̄) + c̄2

∫ r̄

0
sW (s)ds

]
)
. (A.9)

This completes the proof.

Lemma A.4 provides the invariance principle for yd
t , which follows straightforwardly from the

previous lemma.

Lemma A.4. Let Assumption 1 hold and let yd
t,γ,λ be defined as in (2) with γ = 0, 1 and λ ∈ [0, 1].

We have that

T−1/2yd
⌊Tr⌋

d
−→ ψ(1)σWγ(r, λ),

where

W0(r, λ) = W (r) − 2r̄−2(2 − 3r)

∫ r̄

0

W (s)ds− 6r̄−3(2r − 1)

∫ r̄

0

sW (s)ds,

W1(r, λ) = W (r) − rr̄−1(1 + c̄r̄ +
1

3
c̄2r̄2)−1

[
(1 + c̄r̄)W (r̄) + c̄2

∫ r̄

0

sW (s)ds

]
.

Proof of Lemma A.4. We have that

T−1/2yd
⌊Tr⌋ = T−1/2y⌊Tr⌋ − T−1/2β̂′

⌊Tr⌋z⌊Tr⌋

= T−1/2x⌊Tr⌋ − T−1/2(β̂1,⌊Tr⌋ − β1) −
⌊Tr⌋

T
T 1/2(β̂2,⌊Tr⌋ − β2)

By Lemma A.2 we have that

T−1/2x⌊Tr⌋
d
−→ ψ(1)σW (r).

The result then follows straightforwardly from Lemma A.3.
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Proof of Lemma 1. Part (a) follows directly from Lemma A.4 using the continuous mapping theorem.

For part (b), we write

T−1
T∑

t=1

yd
t−1ε

d
p,t = T−1

T∑

t=1

yd
t−1ε

d
t + T−1

T∑

t=1

yd
t−1(ε

d
p,t − εd

t ).

We want to show that T−1
∑T

t=1 y
d
t−1(ε

d
p,t − εd

t ) = op(1). Note that

εd
p,t − εd

t =

∞∑

j=p+1

φjut−j +

∞∑

j=p+1

φj∆[(β̂t−j − β)′zt−j ].

As yd
t = xt − (β̂t − β)′zt, we have

T−1
T∑

t=1

yd
t−1(ε

d
p,t − εd

t ) = T−1
T∑

t=1


xt−1

∞∑

j=p+1

φjut−j + xt−1

∞∑

j=p+1

φj∆[(β̂t−j − β)′zt−j ]

− (β̂t−1 − β)′zt−1

∞∑

j=p+1

φjut−j

− (β̂t−1 − β)′zt−1

∞∑

j=p+1

φj∆[(β̂t−j − β)′zt−j ]




= Ab
T +Bb

T − Cb
T −Db

T .

It follows from Chang and Park (2002, Proof of Lemma 3.1a) that Ab
T = op(1). Then,

|Bb
T | =

∣∣∣∣∣∣
T−1

T∑

t=1

xt−1

∞∑

j=p+1

φj∆[(β̂t−j − β)′zt−j ]

∣∣∣∣∣∣

≤

(
T−1

T∑

t=1

x2
t−1

)1/2

T−1

T∑

t=1




∞∑

j=p+1

φj∆[(β̂t−j − β)′zt−j ]




2



1/2

≤

(
T−1

T∑

t=1

x2
t−1

)1/2



∞∑

j=p+1

|φj |

[
T−1

T∑

t=1

{
∆[(β̂t−j − β)′zt−j]

}2
]1/2




=

(
T−1

T∑

t=1

x2
t−1

)1/2



∞∑

j=p+1

|φj |
[
Bb′

T

]1/2




= Op(T
1/2)o(p−1)Op(T

−1/2) = op(p
−1),

where we use Cauchy’s inequality followed by Minkowski’s inequality. The result follows from the fact

that Bb′

T = Op(T
−1). To see this note that

Bb′

T = T−1
T∑

t=1

{∆(β̂1,t−j − β1) + ∆[(β̂2,t−j − β2)(t− j)]}2

For ease of exposition suppose that λ = 0 and so λ∗ = t. The general case follows by splitting the
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sample according to where t ≤ λ∗ and t > λ∗ and combining the proof for λ = 0 with the (trivial)

proof for λ = 1. Let M i,j
t denote the (i, j)-th element of M−1

t and let N i
t−j be the i-th element of Nt,

where Mt and Nt are defined in equation (A.3). Then

∆(β̂1,t−j − β1) = T 1/2M1,1
t−jN

1
t−j + T 1/2M1,2

t−jN
2
t−j − T 1/2M1,1

t−j−1N
1
t−j−1 − T 1/2M1,2

t−j−1N
2
t−j−1

= T 1/2(M1,1
t−jN

1
t−j −M1,1

t−j−1N
1
t−j−1) + T 1/2(M1,2

t−jN
2
t−j −M1,2

t−j−1N
2
t−j−1)

= T 1/2MN1,1
t−j + T 1/2MN1,2

t−j ,

and

∆[(β̂2,t−j − β2)(t− j)] = T−1/2M2,1
t−jN

1
t−j(t− j) + T−1/2M2,2

t−jN
2
t−j(t− j)

− T−1/2M2,1
t−j−1N

1
t−j−1(t− j − 1) − T−1/2M2,2

t−j−1N
2
t−j−1(t− j − 1)

= T−1/2(M2,1
t−jN

1
t−j(t− j) −M2,1

t−j−1N
1
t−j−1(t− j − 1))

+ T−1/2(M2,2
t−jN

2
t−j(t− j) −M1,2

t−j−1N
2
t−j−1(t− j − 1))

= T−1/2MN2,1
t−j(t− j − 1) + T−1/2M2,1

t−jN
1
t−j

+ T−1/2MN2,2
t−j(t− j + 1) + T−1/2M2,2

t−jN
2
t−j

= T−1/2MN22,1
t−j + T−1/2MN22,2

t−j.

Then

Bb′

T = T−1
T∑

t=1

{T 1/2MN1,1
t−j + T 1/2MN1,2

t−j + T−1/2MN22,1
t−j + T−1/2MN22,2

t−j}
2

≤ 4T−1
T∑

t=1

{T (MN1,1
t−j)

2 + T (MN1,2
t−j)

2 + T−1(MN22,1
t−j)

2 + T−1(MN22,2
t−j)

2}.

Now

MN i,1
t−j = M i,1

t−j

[
T γ−3/2x1 + c̄γT−3/2(xt−j − x1) + c̄2γT−γ−3/2

t−j∑

s=2

xs−1

]

−M i,1
t−j−1

[
T γ−3/2x1 + c̄γT−3/2(xt−j−1 − x1) + c̄2γT−γ−3/2

t−j−1∑

s=2

xs−1

]

=
(
M i,1

t−j −M i,1
t−j−1

)[
T γ−3/2x1 + c̄γT−3/2(xt−j−1 − x1) + c̄2γT−γ−3/2

t−j−1∑

s=2

xs−1

]

+M i,1
t−j

[
c̄γT−3/2ut−j + c̄2γT−γ−3/2xt−j−1

]
,
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and

MN i,2
t−j = M i,2

t−j

[
T 2γ−5/2xt−j + c̄γT γ−5/2(t− j − 1)xt−j + c̄2γT−5/2

t−j∑

s=2

(s− 1)xs−1

]

−M i,2
t−j−1

[
T 2γ−5/2xt−j−1 + c̄γT γ−5/2(t− j − 2)xt−j−1 + c̄2γT−5/2

t−j−1∑

s=2

(s− 1)xs−1

]

=
(
M i,1

t−j −M i,2
t−j−1

)[
T 2γ−5/2xt−j−1 + c̄γT γ−5/2(t− j − 2)xt−j−1 + c̄2γT−5/2

t−j−1∑

s=2

(s− 1)xs−1

]

+M i,2
t−j

[
T 2γ−5/2ut−j + c̄γT γ−5/2(xt−j−1 + (t− j − 1)ut−j) + c̄2γT−5/2(t− j − 1)xt−j−1

]
.

It follows from the proof of Lemma A.3 that

Mt−j =

[
4(t/T )−1 −6(t/T )−2

−6(t/T )−2 12(t/T )−3

]
+O(T−1)

for γ = 0 and

Mt−j =

[
1 0

0 (t/T )−1[1 + c̄(t/T ) + 1
3 c̄

2(t/T )2]−1

]
+O(T−1)

for γ = 1. Then for γ = 0,

∣∣∣M1,1
t−j −M1,1

t−j−1

∣∣∣ = 4

∣∣∣∣
T−1

T−2t(t− 1)

∣∣∣∣+O(T−1) = O(T−1)

∣∣∣M1,2
t−j −M1,2

t−j−1

∣∣∣ = 6

∣∣∣∣
T−2(2t− 1)

T−4t2(t− 1)2

∣∣∣∣+O(T−1) = O(T−1)

∣∣∣M2,2
t−j −M1,2

t−j−1

∣∣∣ = 12

∣∣∣∣
T−3(3t2 + 3t− 1)

T−6t3(t− 1)3

∣∣∣∣+O(T−1) = O(T−1),

while for γ = 1,

|M1,1
t−j −M1,1

t−j−1| = |1 − 1| +O(T−1) = O(T−1)

|M1,2
t−j −M1,2

t−j−1| = 0 +O(T−1)

|M2,2
t−j −M1,2

t−j−1| =

∣∣∣∣
T−1(1 + c̄(2t− 1)/T + c̄2(3t2 + 3t− 1)/T 2)

[1 + c̄(t/T ) + 1
3 c̄

2(t/T )2][1 + c̄((t− 1)/T ) + 1
3 c̄

2((t− 1)/T )2]t(t− 1)/T 2

∣∣∣∣+O(T−1)

= O(T−1).

Then

∣∣∣MN i,1
t−j

∣∣∣ ≤
∣∣∣M i,1

t−j −M i,1
t−j−1

∣∣∣
∣∣∣∣∣T

γ−3/2x1 + c̄γT−3/2(xt−j−1 − x1) + c̄2γT−γ−3/2

t−j−1∑

s=2

xs−1

∣∣∣∣∣

+
∣∣∣M i,1

t−j

∣∣∣
∣∣∣c̄γT−3/2ut−j + c̄2γT−γ−3/2xt−j−1

∣∣∣

= O(T−1)Op(1) +O(1)Op(T
−1) = Op(T

−1),
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and

∣∣∣MN i,2
t−j

∣∣∣ ≤
∣∣∣M i,1

t−j −M i,2
t−j−1

∣∣∣
∣∣∣∣∣T

2γ−5/2xt−j−1 + c̄γT γ−5/2(t− j − 2)xt−j−1 + c̄2γT−5/2

t−j−1∑

s=2

(s− 1)xs−1

∣∣∣∣∣

+
∣∣∣M i,2

t−j

∣∣∣
∣∣∣T 2γ−5/2ut−j + c̄γT γ−5/2(xt−j−1 + (t− j + 1)ut−j) + c̄2γT−5/2(t− j − 1)xt−j−1

∣∣∣

= O(T−1)Op(1) +O(1)Op(T
−1) = Op(T

−1).

It then follows that

MN22,i
t−j = MN2,i

t−j(t− j − 1) +M2,i
t−jN

i
t−j = Op(1),

and consequently that

Bb′

T ≤ 4T−1
T∑

t=1

{T (MN1,1
t−j)

2 + T (MN1,2
t−j)

2 + T−1(MN22,1
t−j)

2 + T−1(MN22,2
t−j)

2} = Op(T
−1).

We can now continue with Cb
T . We have

Cb
T = T−1

T∑

t=1

(β̂1,t−1 − β1)




∞∑

j=p+1

φjut−j


+ T−1

T∑

t=1

(β̂2,t−1 − β2)(t− 1)




∞∑

j=p+1

φjut−j




= Cb
1T + Cb

2T .

Define ψp,j such that

∞∑

j=p+1

φjut−j =

∞∑

j=p+1

ψp,jεt−j

and note that
∑∞

j=p+1 |ψp,j | = o(p−1) (Chang and Park, 2002, Proof of Lemma 3.1a). Then

Cb
1T =

∞∑

j=p+1

ψp,jT
−1

T∑

t=1

(β̂1,t−1 − β1)εt−j

and

Cb
2T =

∞∑

j=p+1

ψp,jT
−1

T∑

t=1

(t− 1)(β̂2,t−1 − β2)εt−j

Let M i,j
t−j be defined as before. Again we prove the result for λ = 0, as the general case follows
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straightforwardly. Then

T∑

t=1

(β̂i,t−1 − βi)εt = T 3/2−i
T∑

t=1

T i−3/2(β̂i,t−1 − βi)εt

= T 3/2−i
T∑

t=1

[
M i,1

t−1

(
T γ−3/2x1 + c̄γT−3/2(xt−1 − x1) + c̄2γT−γ−3/2

t−1∑

s=2

xs−1

)
εt

+ M i,2
t−1

(
T 2γ−5/2xt−1 + c̄γT γ−5/2(t− 2)xt−1 + c̄2γT−5/2

t−1∑

s=2

(s− 1)xs−1

)
εt

]

= Op(T
2−i),

as
∑T

t=1M
i,j
t−1

∑t−1
s=2 xs−1εt =

∑T
t=2 xt−1

∑T
s=t+1M

i,j
s−1εs = Op(T

2). It then follows that Cb
1T , C

b
2T =

op(p
−1).

Finally,

Db
T = T−1

T∑

t=1

(β̂1,t−1 − β1)

∞∑

j=p+1

φj∆[(β̂t−j − β)′zt−j ]

+ T−1
T∑

t=1

(β̂2,t−1 − β2)(t− 1)

∞∑

j=p+1

φj∆[(β̂t−j − β)′zt−j ]

= Db
1T +Db

2T .

Then

|Db
1T | ≤

(
T−1

T∑

t=1

(β̂1,t−1 − β1)
2

)1/2



∞∑

j=p+1

|φj |

[
T−1

T∑

t=1

(∆[(β̂t−j − β)′zt−j])
2

]1/2



= Op(T
1/2)o(p−1)Op(T

−1/2) = op(p
−1),

|Db
2T | ≤

(
T−1

T∑

t=1

(t− 1)2(β̂2,t−1 − β2)
2

)1/2



∞∑

j=p+1

|φj |
[
(∆[(β̂t−j − β)′zt−j ])

2
]1/2




= Op(T
1/2)o(p−1)Op(T

−1/2) = op(p
−1).

Hence,

T−1
T∑

t=1

yd
t−1ε

d
p,t = T−1

T∑

t=1

yd
t−1ε

d
t + op(1).

Now define

ηd
t =

t∑

s=1

εd
s =

t∑

s=1

εt −

t∑

s=1

φ(L)∆[(β̂t − β)′zt] = ηt − φ(L)(β̂t − β)′zt,

where ηt =
∑t

s=1 εt. We can then straightforwardly show that

T−1/2ηd
⌊Tr⌋ = T−1/2η⌊Tr⌋ − φ(1)T−1/2(β̂t − β)′zt + op(1)

d
−→ σWγ(r, λ).
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By the Beveridge-Nelson decomposition we can write

∆yd
t = ψ(1)εd

t + (ũt−1 − ũt),

with ũt =
∑∞

j=0 ψ̃jε
d
t−j and ψ̃j =

∑∞
k=j+1 ψk. Then

yd
t = ψ(1)ηd

t + ũ0 − ũt.

Then we may write

T−1
T∑

t=1

yd
t−1ε

d
t = ψ(1)T−1

T∑

t=1

ηd
t−1ε

d
t + ũ0T

−1
T∑

t=1

εd
t − T−1

T∑

t=1

ũt−1ε
d
t .

Now

ũ0T
−1

T∑

t=1

εd
t = T−1ũ0η

d
T − T−1ũ0(β̂T − β)′zT = Op(T

−1/2)

and

T−1
T∑

t=1

ũt−1ε
d
t = T−1

T∑

t=1

∞∑

j=0

ψ̃jε
d
t−j−1ε

d
t

= T−1
T∑

t=1

∞∑

j=0

ψ̃jεt−j−1εt − T−1
T∑

t=1

∞∑

j=0

ψ̃jεt−j−1φ(L)∆[(β̂t − β)′zt]

− T−1
T∑

t=1

∞∑

j=0

ψ̃jφ(L)∆[(β̂t−j−1 − β)′zt−j−1]εt

+ T−1
T∑

t=1

∞∑

j=0

ψ̃jφ(L)∆[(β̂t−j−1 − β)′zt−j−1]φ(L)∆[(β̂t − β)′zt]

= Op(T
−1/2),

by the results for Bb
T , Cb

T and Assumption 1 (ii). Hence,

T−1
T∑

t=1

yd
t−1ε

d
t = ψ(1)T−1

T∑

t=1

ηd
t−1ε

d
t + op(1).

As

T−1
T∑

t=1

ηd
t−1ε

d
t =

1

2

(
ηd2

T − ηd2
0 − T−1

T∑

t=1

εd2
t

)
d
−→

σ

2

(
Wγ(1)2 −Wγ(0, λ)2 − 1

)
,

the result follows.

We continue with (c). Let Ωpp be defined as in Chang and Park (2002, Proof of Lemma 3.2),

i.e. Ωpp = (Γi−j)
p
i,j=1 where Γk = E(utut−k).
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Let zp,t = (z′t−1, . . . , z
′
t−p)

′ and Bp,t an p× 2p-matrix with

Bp,t =




(β̂1,t−1 − β) (β̂2,t−1 − β) 0 . . . 0
. . .

0 . . . 0 (β̂1,t−p − β) (β̂1,t−p − β)


 ,

such that wd
p,t = wp,t − ∆[Bp,tzp,t]. Then

∥∥∥∥∥T
−1

T∑

t=1

wd
p,tw

d′
p,t − Ωpp

∥∥∥∥∥ ≤

∥∥∥∥∥T
−1

T∑

t=1

wp,tw
′
p,t − Ωpp

∥∥∥∥∥+ 2

∥∥∥∥∥T
−1

T∑

t=1

wp,t∆[z′p,tB
′
p,t]

∥∥∥∥∥

+

∥∥∥∥∥T
−1

T∑

t=1

∆[Bp,tzp,t]∆[z′p,tB
′
p,t]

∥∥∥∥∥

= Ac
T + 2Bc

T + Cc
T .

By Berk (1974, Proof of Lemma 3) and Chang and Park (2002, Proof of Lemma 3.2a) Ac
T =

Op(T
−1/2p). Next consider

T−1
T∑

t=1

ut−i∆[(β̂t−j − β)′zt−j] = Op(T
−1),

which follows from combining the arguments used for Bb′

T and Cb
T .

It also follows from Bb′

T that

∣∣∣∣∣T
−1

T∑

t=1

∆[(β̂t−i − β)′zt−i]∆[(β̂t−j − β)′zt−j ]

∣∣∣∣∣

≤

(
T−1

T∑

t=1

∆[(β̂t−i − β)′zt−i]

)1/2(
T−1

T∑

t=1

[
∆[(β̂t−j − β)′zt−j ]

]2
)1/2

= Op(T
−1/2)Op(T

−1/2).

As this holds uniformly in i, j = 1, . . . , p, we can conclude that Bc
T , C

c
T = Op(T

−1p).

The proof now follows as in Chang and Park (2002, Proof of Lemma 3.2a).

Next we look at (d). We have that

∣∣∣∣∣T
−1

T∑

t=1

yd
t−1w

d
p,t

∣∣∣∣∣ ≤
∣∣∣∣∣T

−1
T∑

t=1

xt−1wp,t

∣∣∣∣∣+
∣∣∣∣∣T

−1
T∑

t=1

xt−1∆[Bp,tzp,t]

∣∣∣∣∣

+

∣∣∣∣∣T
−1

T∑

t=1

(β̂t−1 − β)′zt−1wp,t

∣∣∣∣∣+
∣∣∣∣∣T

−1
T∑

t=1

(β̂t−1 − β)′zt−1∆[Bp,tzp,t]

∣∣∣∣∣

= Ad
T +Bd

T + Cd
T +Dd

T .
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Now Ad
T = Op(p

1/2) by Chang and Park (2002, Proof of Lemma 3.2b). Furthermore

∣∣∣∣∣T
−1

T∑

t=1

xt−1∆(β̂t−j − β)′zt−j

∣∣∣∣∣ ≤
(
T−1

T∑

t=1

x2
t−1

)1/2(
T−1

T∑

t=1

[
∆(β̂t−j − β)′zt−j

]2
)1/2

= Op(T
1/2)Op(T

−1/2),

from which we can conclude that Bd
T = Op(p

1/2). It also follows from the arguments used for Cb
T that

T−1
T∑

t=1

(β̂t−1 − β)′zt−1ut−j = T−1
T∑

t=1

(β̂1,t−1 − β1)ut−j + T−1
T∑

t=1

(β̂2,t−1 − β2)(t− 1)ut−j

= Op(1) +Op(1),

by which Cd
T = Op(p

1/2). Finally, it follows again from Bb′

T that

∣∣∣∣∣T
−1

T∑

t=1

(β̂t−1 − β)′zt−1∆[(β̂t−j − β)′zt−j ]

∣∣∣∣∣

=

∣∣∣∣∣T
−1

T∑

t=1

(β̂1,t−1 − β1)∆[(β̂t−j − β)′zt−j] + T−1
T∑

t=1

(β̂2,t−1 − β2)(t− 1)∆[(β̂t−j − β)′zt−j ]

∣∣∣∣∣

≤

(
T−1

T∑

t=1

(β̂1,t−1 − β1)
2

)1/2(
T−1

T∑

t=1

[
∆[(β̂t−j − β)′zt−j ]

]2
)1/2

+

(
T−1

T∑

t=1

(t− 1)2(β̂2,t−1 − β2)
2

)1/2(
T−1

T∑

t=1

(t− 1)2
[
∆[(β̂t−j − β)′zt−j]

]2
)1/2

= Op(T
1/2)Op(T

−1/2) +Op(T
1/2)Op(T

−1/2),

by which Dd
T = Op(p

1/2). This concludes the proof for part (d).

For part (e) we can write

∣∣∣∣∣T
−1

T∑

t=1

wd
p,tε

d
p,t

∣∣∣∣∣ ≤
∣∣∣∣∣T

−1
T∑

t=1

wp,tεp,t

∣∣∣∣∣+
∣∣∣∣∣T

−1
T∑

t=1

∆[Bp,tzp,t]εp,t

∣∣∣∣∣

+

∣∣∣∣∣T
−1

T∑

t=1

wp,tφp(L)∆[(β̂t − β)′zt]

∣∣∣∣∣

+

∣∣∣∣∣T
−1

T∑

t=1

∆[Bp,tzp,t]φp(L)∆[(β̂t − β)′zt]

∣∣∣∣∣

= Ae
T +Be

T + Ce
T +De

T .

By Chang and Park (2002, Proof of Lemma 3.2c) we have that Ae
T = op(p

−1/2). Appealing again to

Bb′

T and Cb
T , we have that

T−1
T∑

t=1

∆[(β̂t−j − β)′zt−j ]εp,t =

∞∑

j=p+1

ψp,jT
−1

T∑

t=1

∆[(β̂t−j − β)′zt−j ]εt−j + T−1
T∑

t=1

∆[(β̂t−j − β)′zt−j]εt

= Op(T
−1)op(p

−1) +Op(T
−1).
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From the same reasoning it follows that

T−1
T∑

t=1

ut−jφp(L)∆[(β̂t − β)′zt] = Op(T
−1),

and

∣∣∣∣∣T
−1

T∑

t=1

∆[(β̂t−i − β)′zt−i]φp(L)∆[(β̂t − β)′zt]

∣∣∣∣∣

≤

(
T−1

T∑

t=1

[
∆[(β̂t−i − β)′zt−i]

]2
)1/2




p∑

j=0

|φj |

[
T−1

T∑

t=1

[
∆[(β̂t−j − β)′zt−j]

]2
]1/2




= Op(T
−1/2)Op(T

−1/2).

Therefore Be
T , C

e
T , D

e
T = Op(T

−1p1/2), which concludes the proof.

Corollary A.1. Let Assumptions 1 and 2 hold. Let AT and BT be defined as in (14). Let γ = 0, 1

and λ ∈ [0, 1]. Then

1. T−1AT
d
−→ 1

2ψ(1)σ2[Wγ(1, λ)2 −Wγ(0, λ)2 − 1],

2. T−2BT
d
−→ ψ(1)2σ2

∫ 1

0
Wγ(r, λ)2dr.

Proof of Corollary A.1. Given the expressions for AT and BT in (14), it follows immediately from

Lemma 1 that

T−1AT = T−1Y d′
−1ε

d
p − T−1Y d′

−1M
d
p

(
T−1Md′

p M
d
p

)−1
T−1Md′

p ε
d
p

= T−1Y d′
−1ε

d
p +Op(p

1/2)Op(1)op(p
−1/2) = T−1Y d′

−1ε
d
p + op(1)

d
−→

1

2
ψ(1)σ2[Wγ(1, λ)2 −Wγ(0, λ)2 − 1],

and

T−2BT = T−2Y d′
−1Y

d
−1 − T−1(T−1Y d′

−1M
d
p )
(
T−1Md′

p M
d
p

)−1
T−1Md′

p Y
d
−1

= T−2Y d′
−1Y

d
−1 + T−1Op(p

1/2)Op(1)Op(p
1/2) = T−1Y d′

−1Y
d
−1 + op(1)

d
−→ ψ(1)2σ2

∫ 1

0

Wγ(r, λ)2dr.

This completes the proof.

Proof of Lemma 2. Note that

T σ̂2 = (∆Y d − Y d
−1δ̂)

′(I −Md
p (Md′

p M
d
p )−1Md′

p )(∆Y d − Y d
−1δ̂)

= ∆Y d′(I −Md
p (Md′

p M
d
p )−1Md′

p )∆Y d − ∆Y d′(I −Md
p (Md′

p M
d
p )−1Md′

p )Y d
−1δ̂

− δ̂Y d′
−1(I −Md

p (Md′
p M

d
p )−1Md′

p )∆Y d + δ̂Y d′
−1(I −Md

p (Md′
p M

d
p )−1Md′

p )Y d
−1δ̂

= εd′
p (I −Md

p (Md′
p M

d
p )−1Md′

p )εd
p − εd′

p (I −Md
p (Md′

p M
d
p )−1Md′

p )Y d
−1δ̂

− δ̂Y d′
−1(I −Md

p (Md′
p M

d
p )−1Md′

p )εd
p + δ̂Y d′

−1(I −Md
p (Md′

p M
d
p )−1Md′

p )Y d
−1δ̂.
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which we can write as

σ̂2 = CT − 2DT + ET

We first consider CT . Write

CT = T−1εd′
p ε

d
p − T−1εd′

p M
d
p (Md′

p M
d
p )−1Md′

p ε
d
p.

Given the results from Lemma 1, we have that

T−1
∣∣εd′

p M
d
p (Md′

p M
d
p )−1Md′

p ε
d
p

∣∣ ≤
∣∣T−1εd′

p M
d
p

∣∣ ∣∣∣∣(T−1Md′
p M

d
p )−1

∣∣∣∣ ∣∣T−1Md′
p ε

d
p

∣∣

= op(p
−1/2)Op(1)op(p

−1/2) = op(p
−1).

Hence,

CT = T−1εd′
p ε

d
p + op(1).

Next we turn to DT . We can write DT as

DT = T−1εd′
p Y

d
−1δ̂ − T−1εd′

p M
d
p (Md′

p M
d
p )−1Md′

p Y
d
−1δ̂.

Again using Lemma 1 and δ̂ = T−1(T−1AT )(T−2BT )−1 = Op(T
−1), we have

|DT | ≤
∣∣T−1εd′

p Y
d
−1

∣∣ |δ̂| +
∣∣T−1εd′

p M
d
p

∣∣ ∣∣∣∣T−1(Md′
p M

d
p )−1

∣∣∣∣ ∣∣T−1Md′
p Y

d
−1

∣∣ |δ̂|
= Op(1)Op(T

−1) + op(p
−1/2)Op(1)Op(T

−1) = Op(T
−1).

Finally we look at ET :

ET = T−1δ̂Y d′
−1Y

d
−1δ̂ − T−1δ̂Y d′

−1M
d
p (Md′

p M
d
p )−1Md′

p Y
d
−1δ̂.

As before, we use the results from Lemma 1 and δ̂ = Op(T
−1) to obtain

|ET | ≤ T |δ̂|2
∣∣∣∣T−2Y d′

−1Y
d
−1

∣∣∣∣+ |δ̂|2
∣∣T−1Y d′

−1M
d
p

∣∣ ∣∣∣∣(T−1Md′
p M

d
p )−1

∣∣∣∣ ∣∣T−1Md′
p Y

d
−1

∣∣

= TOp(T
−2)Op(1) +Op(T

−2)Op(p
1/2)Op(1)Op(p

1/2)

= Op(T
−1).

Therefore, we have that

σ̂2 =
1

T

T∑

t=1

εd2
p,t + op(1).

Now

∣∣∣∣∣∣

(
1

T

T∑

t=1

εd2
p,t

)1/2

−

(
1

T

T∑

t=1

ε2p,t

)1/2
∣∣∣∣∣∣
≤

[
1

T

T∑

t=1

(εd
p,t − εp,t)

2

]1/2

.
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Then we have that

1

T

T∑

t=1

(εd
p,t − εp,t)

2 =
1

T

T∑

t=1


∆[(β̂t − β)′zt] −

p∑

j=1

φj∆[(β̂ − β)′zt−j ]




2

=
1

T

T∑

t=1


∆[(β̂t − β)′zt] −

p∑

j=1

φj∆[(β̂t−j − β)′zt−j ]




2

≤




p∑

j=0

φ2
j




T−1

p∑

j=0

T∑

t=1

(
∆[(β̂t−j − β)′zt−j]

)2




= Op(T
−1).

Hence,

1

T

T∑

t=1

εd2
p,t =

1

T

T∑

t=1

ε2p,t + op(1).

Then, by Chang and Park (2002, Proof of Lemma 3.1c), we have that

1

T

T∑

t=1

ε2p,t =
1

T

T∑

t=1

ε2t + op(1),

and by the law of large numbers 1
T

∑T
t=1 ε

2
t

p
−→ σ2.

Proof of Theorem 1. We have that

ADFγ,λ =
T−1AT

(T−2BT σ̂2)
1/2

d
−→

1
2ψ(1)σ2(Wγ(1, λ)2 −Wγ(0, λ)2 − 1)
(
ψ(1)2σ4

∫ 1

0
Wγ(r, λ)2dr

)1/2
=
Wγ(1, λ)2 −Wγ(0, λ)2 − 1

2
(∫ 1

0
Wγ(r, λ)2dr

)1/2
,

which follows straightforwardly from Corollary A.1 and Lemma 2.

A.2 Proofs for Section 4

We start with the proof of the lemma that demonstrates the equivalence of the different detrending

techniques in the first step in the bootstrap.

Proof of Lemma 3. For the first part, we first make the step from ADF estimation to estimation under

the null of a unit root (denote the vector of autoregressive estimators as Φ̄q). Then

Φ̂q = Φ̄q + (Md′
q M

d
q )−1Md′

q Y
d
−1δ̂ = Φ̄q +Op(T

−1q1/2).

The next step is to show that Φ̄q = Φ̃q+Op(T
−1q1/2). Let ∆B̃z = (∆[(β̃1−β)′z1], . . . ,∆[(β̃T −β)′zT ])′.
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Then εd
q = εq − φq(L)∆B̃z. Now note that

Φ̄q − Φ̃q = (Md′
q M

d
q )−1Md′

q ∆Y d − (M ′
qMq)

−1M ′
qu

= (Md′
q M

d
q )−1Md′

q ε
d
q − (M ′

qMq)
−1M ′

qεq

= [(Md′
q M

d
q )−1 − (M ′

qMq)
−1]M ′

qεq − (Md′
q M

d
q )−1

[
M ′

qφq(L)∆B̃z

+ ∆B̃z′εq − ∆B̃z′φq(L)∆B̃z
]

= AT +BT + CT +DT .

Then

|φ̄j − φ̃j | = |e′j(Φ̄q − Φ̃q)| ≤ |ej |(‖AT ‖ + ‖BT ‖ + ‖CT ‖ + ‖DT ‖).

First we look at AT . Note that

(T−1Md′
q M

d
q )−1 − (T−1M ′

qMq)
−1 = (T−1Md′

q M
d
q )−1

× (T−1M ′
qMq − T−1Md′

q M
d
q )(T−1M ′

qMq)
−1.

Now define ∆B̃zq as a T × q matrix with element (i, j) as ∆Bz
(i,j)
q = ∆[(β̃i−j − β)′zi−j ]. Then,

T−1M ′
qMq − T−1Md′

q M
d
q = −T−1M ′

q∆B̃zq

− T−1∆B̃z′qMq + ∆B̃z′q∆B̃zq.

Therefore

‖AT ‖ ≤ |T−1M ′
qεq|

∥∥(T−1Md′
q M

d
q )−1

∥∥∥∥(T−1M ′
qMq)

−1
∥∥

× 2
(∥∥∥T−1M ′

q∆B̃zq

∥∥∥+
∥∥∥∆B̃z′q∆Bzq

∥∥∥
)

= op(q
−1/2)Op(1)Op(1)[Op(T

−1q) +Op(T
−1q)] = op(T

−1q1/2)

which follows directly from the proof of Lemma 1(c) and (e). It also follows directly from the proof of

Lemma 1(c) and (e) that

‖BT ‖ ≤
∥∥(T−1Md′

q M
d
q )−1

∥∥ |T−1M ′
qφq(L)∆B̃z| = Op(T

−1q1/2),

‖CT ‖ ≤
∥∥(T−1Md′

q M
d
q )−1

∥∥ |T−1∆B̃z′εq| = Op(T
−1q1/2),

‖DT ‖ ≤
∥∥(T−1Md′

q M
d
q )−1

∥∥ |T−1∆B̃z′φq(L)∆B̃z| = Op(T
−1q1/2).

Therefore we may conclude that φ̄j = φ̃o,j+Op(T
−1q1/2) and consequently that φ̂j = φ̃j +Op(T

−1q1/2)

uniformly in j, 1 ≤ j ≤ q.

For the second part we have that

ε̂d
q,t − ε̃q,t = −α̂yt−1 +

q∑

j=1

(φ̂j − φ̃j)ut−j − φ̂q(L)∆[(β̃t − β)′zt]
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from which we can conclude that

max
1≤t≤T

|ε̂d
q,t − ε̃q,t| ≤ |α̂| max

1≤t≤T
|yt−1| + max

1≤t≤T
|ut|

q∑

j=1

|φ̂j − φ̃j | + max
1≤t≤T

|∆[(β̃t − β)′zt]||φ̂(1)|

= Op(T
−1/2) +Op(T

−1q3/2) +Op(T
−1/2).

This completes the proof.

The first step towards an invariance principle for u∗t is to show that higher than second order

moments exist for ε∗t .

Lemma A.5. Let Assumptions 1 and 3 hold. Then we have for any 2 < a ≤ 4

E∗ |ε∗t |
a = Op(1).

Proof of Lemma A.5. We have that

E∗ |ε∗t |
a = T−1

T∑

t=1

|ε̂d
q,t − T−1

T∑

τ=1

ε̂d
q,τ |

a ≤ 2a−1T−1
T∑

t=1

|ε̂d
q,t − ε̃q,t

− T−1
T∑

τ=1

(ε̂d
q,τ − ε̃q,τ )|a + 2a−1T−1

T∑

t=1

|ε̃q,t − T−1
T∑

τ=1

ε̃q,τ |
a,

where the first part is op(1) by Lemma 3; the second part is Op(1) by Park (2002, Lemma 3.2).

Lemma A.6. Let Assumptions 1 and 3 hold. Then σ∗ p
−→ σ.

Proof of Lemma A.6. Follows directly from Lemma 2.

Lemma A.7. Let Assumptions 1 and 3 hold. Then

T−1/2

⌊Tr⌋∑

t=1

ε∗t
d∗

−→ σW (r) in probability.

Proof of Lemma A.7. Follows directly from Lemma A.5 and A.6 as in Park (2002, Theorem 2.2).

Lemma A.8. Let Assumptions 1 and 3 hold. Then

T−1/2

⌊Tr⌋∑

t=1

u∗t
d∗

−→ σψ(1)W (r) in probability.

Proof of Lemma A.8. As in Park (2002, p. 478) we need to show that

φ̂(1)
p
−→ φ(1), (A.10)

P∗

{
max

1≤t≤T
|T−1/2ū∗t | > ǫ

}
= op(1), (A.11)

where ū∗t = φ̂(1)−1
∑q

i=1(
∑q

j=i φ̂j)u
∗
t−i+1.
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We first show (A.10). Park (2002, Lemma 3.1) shows that
∣∣∣φ̃(1) − φ(1)

∣∣∣ = op(1); therefore we have

that

∣∣∣φ̂(1) − φ(1)
∣∣∣ ≤

∣∣∣φ̂(1) − φ̃(1)
∣∣∣+
∣∣∣φ̃(1) − φ(1)

∣∣∣ = Op(T
−1q3/2) + op(1),

where the first part follows from Lemma 3. Hence φ̂(1) = φ(1) + op(1). This proves (A.10).

To prove (A.11) we have, as in Park (2002, Proof of Theorem 3.3),

P∗

{
max

1≤t≤T
|T−1/2ū∗t | > ǫ

}
≤ T P∗

{
|T−1/2ū∗t | > ǫ

}
≤ (1/ǫa)T 1−a/2 E∗ |ū∗t |

a.

Hence, we have to show that

T 1−a/2 E∗ |ū∗t |
a = op(1). (A.12)

As in Palm, Smeekes, and Urbain (2010, Proof of Theorem 2) this amounts to showing that

q∑

j=1

j1/2|φ̂j | = Op(1).

We can write

q∑

j=1

j1/2|φ̂j | ≤

q∑

j=1

j1/2|φ̂j − φ̃j | +

q∑

j=1

j1/2|φ̃j | = Op(T
−1q2) +Op(1) = Op(1),

where the first part follows from Lemma 3 and the second part follows from Palm et al. (2010, Proof

of Theorem 2). This concludes the proof of this theorem.

Lemma A.9. Let (β̂∗
1,t, β̂

∗
2,t)

′ = β̂∗
t = β̂∗

t,γ,λ be defined as in (20b), with γ = 0, 1 and λ ∈ [0, 1]. Let

Assumptions 1 and 3 hold. Then

(
T−1/2(β̂∗

1,⌊Tr⌋ − β1)

T 1/2(β̂∗
2,⌊Tr⌋ − β2)

)
d∗

−→

(
V1,γ(r, λ)

V2,γ(r, λ)

)
in probability,

where r̄ and Vi,γ(r, λ) for i = 1, 2 are defined in Lemma A.3.

Proof of Lemma A.9. The proof follows trivially from the proof of Lemma A.3 using Lemma A.8.

Proof of Lemma 4. The result follows directly from Lemma A.8 and A.9 along the lines of the proof

of Lemma A.4.

Proof of Lemma 5. Part (a) follows from Lemma 4 using the continuous mapping theorem.

For part (b), we write

T−1
T∑

t=1

y∗d
t−1ε

∗d
p,t = T−1

T∑

t=1

y∗d
t−1ε

∗d
t + T−1

T∑

t=1

y∗d
t−1(ε

∗d
p,t − ε∗d

t ).
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Note that

ε∗d
p,t − ε∗d

t =

q∑

j=p+1

φ̂ju
∗
t−j +

q∑

j=p+1

φ̂j∆[(β̂∗
t−j − β∗)′zt−j ].

By Assumption 4 there is some T̃ such that for all T > T̃ we have that ε∗d
p,t−ε

∗d
t = 0. It then follows as

in the proof of Lemma 1(b) that T−1
∑T

t=1 y
∗d
t−1ε

∗d
t

d∗

−→ σ
2

[
Wγ(1, λ)2 −Wγ(0, λ)2 − 1

]
in probability.

For (c) we define Ω∗
pp and B∗

p,t analogously to Ωpp and Bp,t, and write

∣∣∣∣∣

∣∣∣∣∣T
−1

T∑

t=1

w∗d
p,tw

∗d′
p,t − Ω∗

pp

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣T
−1

T∑

t=1

w∗
p,tw

∗′
p,t − Ω∗

pp

∣∣∣∣∣

∣∣∣∣∣+ 2

∣∣∣∣∣

∣∣∣∣∣T
−1

T∑

t=1

w∗
p,t∆[z′p,tB

∗′
p,t]

∣∣∣∣∣

∣∣∣∣∣

+

∣∣∣∣∣

∣∣∣∣∣T
−1

T∑

t=1

∆[B∗
p,tzp,t]∆[z′p,tB

∗′
p,t]

∣∣∣∣∣

∣∣∣∣∣

= Ac∗
T + 2Bc∗

T + Cc∗
T .

By Chang and Park (2003, Proof of Lemma 3a) and Lemma 3 Ac∗
T = O∗

p(T−1/2p). We can then show

in the same way as in the proof of Lemma 1(c) that Bc∗
T , C

c∗
T = O∗

p(T−1p). Therefore we have that∣∣∣
∣∣∣T−1

∑T
t=1 w

∗(r)d
p,t w

∗(r)d′
p,t − Ω∗

pp

∣∣∣
∣∣∣ = O∗

p(T−1/2p) and we can conclude the proof as in Chang and Park

(2003, Proof of Lemma 3a).

Next we look at (d). As in the proof of lemma 1 we can write

∣∣∣∣∣T
−1

T∑

t=1

y∗d
t−1w

∗d
p,t

∣∣∣∣∣ ≤
∣∣∣∣∣T

−1
T∑

t=1

x∗t−1w
∗
p,t

∣∣∣∣∣+
∣∣∣∣∣T

−1
T∑

t=1

x∗t−1∆[B∗
p,tzp,t]

∣∣∣∣∣

+

∣∣∣∣∣T
−1

T∑

t=1

(β̂∗
t−1 − β∗)′zt−1w

∗
p,t

∣∣∣∣∣+
∣∣∣∣∣T

−1
T∑

t=1

(β̂∗
t−1 − β∗)′zt−1∆[B∗

p,tzp,t]

∣∣∣∣∣

= Ad∗
T +Bd∗

T + Cd∗
T +Dd∗

T .

We can show that Ad∗
T = O∗

p(p1/2) along the same lines as Chang and Park (2003, Proof of Lemma

3b) using Lemma 3. Furthermore we can show in the same way as in Lemma 1 that Bd∗
T , Cd∗

T , Dd∗
T =

O∗
p(p1/2).

For part (e) we can write

∣∣∣∣∣T
−1

T∑

t=1

w∗d
p,tε

∗d
p,t

∣∣∣∣∣ ≤
∣∣∣∣∣T

−1
T∑

t=1

w∗
p,tε

∗
p,t

∣∣∣∣∣+
∣∣∣∣∣T

−1
T∑

t=1

∆[B∗
p,tzp,t]ε

∗
p,t

∣∣∣∣∣

+

∣∣∣∣∣T
−1

T∑

t=1

w∗
p,tφ̂p(L)∆[(β̂∗

t − β∗)′zt]

∣∣∣∣∣

+

∣∣∣∣∣T
−1

T∑

t=1

∆[B∗
p,tzp,t]φ̂p(L)∆[(β̂∗

t − β)′zt]

∣∣∣∣∣

= Ae∗
T +Be∗

T + Ce∗
T +De∗

T .
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Now by Assumption 4 we have that for large T we may write

Ae∗
T =

∣∣∣∣∣T
−1

T∑

t=1

w∗
p,tε

∗
t

∣∣∣∣∣ .

Then for any 1 ≤ j ≤ p

E∗

(
T∑

t=1

u∗t−jε
∗
t

)2

= Tσ∗2Γ∗
0,

by which it follows from Chang and Park (2003, Proof of Lemma 3c) thatAe∗
T = O∗

p(T−1/2p1/2). It then

again follows from the proof of Lemma 1, together with (A.10), that Be∗
T , Ce∗

T , De∗
T = O∗

p(T−1p1/2).

This completes the proof.

Corollary A.2. Let Assumptions 1, 2, 3 and 4 hold. Let A∗
T and B∗

T be defined as in (28) and let

γ = 0, 1 and λ ∈ [0, 1]. Then

1. T−1A∗
T

d∗

−→ 1
2ψ(1)σ2[Wγ(1, λ)2 −Wγ(0, λ)2 − 1] in probability,

2. T−2B∗
T

d∗

−→ ψ(1)2σ2
∫ 1

0
Wγ(r, λ)2dr in probability.

Proof of Corollary A.2. The results follow immediately from Lemma 5, given the expressions for A∗
T

and B∗
T .

Proof of Lemma 6. As in the proof of Lemma 2, we have that

T σ̂∗2 = ε∗d′
p (I −M∗d

p (M∗d′
p M∗d

p )−1M∗d′
p )ε∗d

p − ε∗d′
p (I −M∗d

p (M∗d′
p M∗d

p )−1M∗d′
p )Y ∗d

−1 δ̂
∗

− δ̂∗Y ∗d′
−1 (I −M∗d

p (M∗d′
p M∗d

p )−1M∗d′
p )ε∗d

p + δ̂∗Y ∗d′
−1 (I −M∗d

p (M∗d′
p M∗d

p )−1M∗d′
p )Y ∗d

−1 δ̂
∗,

which we can write as

σ̂∗2 = C∗
T − 2D∗

T + E∗
T .

Using Lemma 5 and Corollary A.2 we can show in the same way as in the proof of Lemma 2 that

C∗
T = T−1ε∗d′

p ε∗d
p + o∗p(1),

D∗
T = o∗p(1),

E∗
T = o∗p(1).

Therefore, we have that

σ̂∗2 =
1

T

T∑

t=1

ε∗d2
p,t + o∗p(1),

which, by Assumption 4, we can write as

σ̂∗2 =
1

T

T∑

t=1

ε∗d2
t + o∗p(1).
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Now

∣∣∣∣∣∣

(
1

T

T∑

t=1

ε∗d2
t

)1/2

−

(
1

T

T∑

t=1

ε∗2t

)1/2
∣∣∣∣∣∣
≤

[
1

T

T∑

t=1

(ε∗d
t − ε∗t )

2

]1/2

.

Then

1

T

T∑

t=1

(ε∗d
t − ε∗t )

2 =
1

T

T∑

t=1


∆[(β̂∗

t − β∗)′zt] −

p∑

j=1

φ̂j∆[(β̂∗
t−j − β∗)′zt−j ]




2

≤




p∑

j=0

φ̂2
j



[
T−1

T∑

t=1

(
∆[(β̂∗

t−j − β∗)′zt−j]
)2
]

= O∗
p(T−1).

Hence,

1

T

T∑

t=1

ε∗d2
t =

1

T

T∑

t=1

ε∗2t + o∗p(1).

Next we show that

∣∣∣∣∣T
−1

T∑

t=1

ε∗2t − σ2

∣∣∣∣∣ ≤
∣∣∣∣∣T

−1
T∑

t=1

ε∗2t − σ∗2

∣∣∣∣∣+
∣∣σ∗2 − σ2

∣∣ = o∗p(1).

To show that
∣∣∣ 1
T

∑T
t=1 ε

∗2
t − σ∗2

∣∣∣ = o∗p(1), note that we have

P∗

(∣∣∣∣∣T
−1

T∑

t=1

ε∗2t − σ∗2

∣∣∣∣∣ > ǫ

)
≤ ǫ−2 E∗

(
T−1

T∑

t=1

ε∗2t − σ∗2

)2

= ǫ−2T−2
T∑

t=1

[
E∗(ε∗4t ) −

(
E∗(ε∗2t )

)2]
= Op(T

−1).

It follows from Lemma A.6 that σ∗2 p
−→ σ2. This completes the proof.

Proof of Theorem 2. The result follows straightforwardly from Corollary A.2 and Lemma 6.
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T φ θ ADF0,1 ADF ∗,0,1
0,1 ADF ∗,1,1

0,1 ADF ∗,1,0
0,1 ADF ∗,0,0

0,1 ADF1,1 ADF ∗,0,1
1,1 ADF ∗,1,1

1,1 ADF ∗,1,0
1,1 ADF ∗,0,0

1,1

50 0 0 0.031 0.046 0.042 0.032 0.027 0.028 0.043 0.045 0.031 0.034
-0.8 0 0.025 0.035 0.033 0.021 0.020 0.020 0.031 0.031 0.022 0.031
-0.4 0 0.042 0.037 0.040 0.026 0.024 0.037 0.034 0.036 0.031 0.032
0.4 0 0.010 0.026 0.025 0.026 0.026 0.005 0.021 0.023 0.021 0.021
0.8 0 0.030 0.055 0.054 0.051 0.052 0.032 0.048 0.046 0.043 0.045

0 -0.8 0.373 0.269 0.269 0.168 0.168 0.259 0.144 0.141 0.096 0.104
0 -0.4 0.092 0.073 0.077 0.037 0.040 0.080 0.061 0.061 0.042 0.042
0 0.4 0.008 0.023 0.027 0.020 0.018 0.003 0.015 0.014 0.012 0.013
0 0.8 0.006 0.029 0.027 0.026 0.026 0.008 0.032 0.024 0.020 0.025

-0.4 -0.4 0.077 0.041 0.044 0.019 0.015 0.066 0.037 0.041 0.032 0.035
0.4 -0.4 0.035 0.045 0.047 0.031 0.032 0.029 0.043 0.045 0.033 0.032
-0.4 0.4 0.034 0.048 0.050 0.029 0.033 0.030 0.053 0.045 0.032 0.037
0.4 0.4 0.022 0.043 0.046 0.045 0.048 0.024 0.045 0.041 0.047 0.046

100 0 0 0.035 0.049 0.050 0.045 0.041 0.038 0.052 0.060 0.054 0.059
-0.8 0 0.030 0.044 0.048 0.038 0.034 0.027 0.041 0.042 0.040 0.042
-0.4 0 0.029 0.040 0.041 0.029 0.029 0.031 0.046 0.039 0.036 0.042
0.4 0 0.022 0.041 0.045 0.043 0.036 0.024 0.045 0.050 0.041 0.044
0.8 0 0.031 0.048 0.049 0.044 0.041 0.037 0.055 0.048 0.045 0.043

0 -0.8 0.195 0.078 0.078 0.050 0.047 0.117 0.057 0.051 0.054 0.053
0 -0.4 0.049 0.054 0.052 0.036 0.036 0.050 0.054 0.054 0.056 0.049
0 0.4 0.019 0.043 0.036 0.032 0.036 0.022 0.037 0.039 0.039 0.035
0 0.8 0.011 0.028 0.029 0.026 0.024 0.013 0.026 0.029 0.026 0.028

-0.4 -0.4 0.045 0.048 0.050 0.035 0.039 0.041 0.043 0.044 0.043 0.053
0.4 -0.4 0.033 0.047 0.043 0.040 0.040 0.029 0.047 0.042 0.040 0.049
-0.4 0.4 0.033 0.052 0.051 0.035 0.038 0.029 0.042 0.044 0.045 0.045
0.4 0.4 0.026 0.039 0.039 0.035 0.032 0.028 0.039 0.041 0.041 0.036

Table 1: Size (c = 0) of full sample detrended tests (λ = 1)
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T φ θ ADF0,0 ADF ∗,0,1
0,0 ADF ∗,1,1

0,0 ADF ∗,1,0
0,0 ADF ∗,0,0

0,0 ADF1,0 ADF ∗,0,1
1,0 ADF ∗,1,1

1,0 ADF ∗,1,0
1,0 ADF ∗,0,0

1,0

50 0 0 0.020 0.047 0.038 0.030 0.031 0.018 0.045 0.048 0.040 0.046
-0.8 0 0.016 0.040 0.036 0.025 0.026 0.013 0.033 0.034 0.030 0.030
-0.4 0 0.027 0.043 0.044 0.031 0.033 0.024 0.039 0.040 0.043 0.039
0.4 0 0.003 0.021 0.024 0.018 0.020 0.006 0.027 0.026 0.028 0.030
0.8 0 0.009 0.048 0.049 0.036 0.046 0.021 0.047 0.053 0.049 0.053

0 -0.8 0.199 0.170 0.163 0.093 0.095 0.128 0.093 0.091 0.058 0.061
0 -0.4 0.051 0.069 0.064 0.037 0.040 0.044 0.050 0.050 0.040 0.045
0 0.4 0.001 0.018 0.017 0.013 0.013 0.008 0.023 0.028 0.021 0.024
0 0.8 0.003 0.024 0.025 0.021 0.023 0.007 0.028 0.030 0.028 0.028

-0.4 -0.4 0.043 0.046 0.045 0.023 0.022 0.033 0.042 0.047 0.044 0.036
0.4 -0.4 0.021 0.045 0.047 0.036 0.031 0.021 0.045 0.044 0.039 0.039
-0.4 0.4 0.021 0.044 0.044 0.034 0.029 0.022 0.041 0.042 0.036 0.042
0.4 0.4 0.010 0.041 0.044 0.039 0.037 0.015 0.044 0.043 0.045 0.039

100 0 0 0.031 0.054 0.060 0.053 0.048 0.021 0.060 0.058 0.051 0.053
-0.8 0 0.019 0.042 0.040 0.031 0.037 0.017 0.044 0.045 0.041 0.039
-0.4 0 0.022 0.047 0.050 0.048 0.043 0.021 0.060 0.050 0.048 0.047
0.4 0 0.013 0.052 0.049 0.048 0.044 0.016 0.049 0.048 0.049 0.052
0.8 0 0.012 0.045 0.051 0.043 0.037 0.028 0.044 0.050 0.046 0.048

0 -0.8 0.119 0.060 0.065 0.041 0.040 0.064 0.067 0.064 0.073 0.069
0 -0.4 0.036 0.054 0.052 0.044 0.046 0.034 0.053 0.054 0.054 0.048
0 0.4 0.013 0.037 0.039 0.034 0.038 0.019 0.045 0.043 0.042 0.042
0 0.8 0.005 0.030 0.028 0.022 0.024 0.008 0.032 0.033 0.037 0.031

-0.4 -0.4 0.027 0.046 0.046 0.039 0.043 0.025 0.052 0.051 0.052 0.043
0.4 -0.4 0.023 0.046 0.047 0.038 0.049 0.022 0.049 0.048 0.051 0.051
-0.4 0.4 0.024 0.045 0.047 0.043 0.044 0.022 0.047 0.044 0.045 0.045
0.4 0.4 0.013 0.043 0.039 0.037 0.042 0.016 0.043 0.047 0.043 0.044

Table 2: Size (c = 0) of recursively detrended tests (λ = 0)
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T φ θ ADF0,1 ADF ∗,0,1
0,1 ADF ∗,1,1

0,1 ADF ∗,1,0
0,1 ADF ∗,0,0

0,1 ADF1,1 ADF ∗,0,1
1,1 ADF ∗,1,1

1,1 ADF ∗,1,0
1,1 ADF ∗,0,0

1,1

50 0 0 0.191 0.157 0.171 0.118 0.143 0.259 0.215 0.219 0.209 0.191
-0.8 0 0.196 0.155 0.170 0.111 0.113 0.160 0.111 0.121 0.094 0.079
-0.4 0 0.167 0.137 0.143 0.126 0.124 0.171 0.152 0.150 0.106 0.104
0.4 0 0.049 0.040 0.035 0.030 0.035 0.109 0.087 0.075 0.070 0.078
0.8 0 0.069 0.076 0.080 0.079 0.069 0.096 0.109 0.113 0.112 0.099

0 -0.8 0.154 0.276 0.206 0.167 0.182 0.135 0.115 0.113 0.090 0.106
0 -0.4 0.177 0.169 0.158 0.152 0.124 0.178 0.135 0.149 0.123 0.114
0 0.4 0.097 0.083 0.064 0.069 0.072 0.188 0.149 0.140 0.129 0.129
0 0.8 0.075 0.060 0.072 0.062 0.050 0.125 0.099 0.119 0.111 0.097

-0.4 -0.4 0.162 0.119 0.114 0.078 0.090 0.129 0.081 0.066 0.047 0.052
0.4 -0.4 0.188 0.150 0.153 0.144 0.145 0.252 0.210 0.232 0.155 0.184
-0.4 0.4 0.166 0.164 0.153 0.128 0.125 0.233 0.159 0.201 0.144 0.167
0.4 0.4 0.068 0.071 0.074 0.066 0.060 0.104 0.104 0.110 0.098 0.090

100 0 0 0.162 0.162 0.143 0.110 0.143 0.231 0.215 0.192 0.174 0.171
-0.8 0 0.166 0.144 0.136 0.125 0.135 0.183 0.145 0.139 0.124 0.129
-0.4 0 0.165 0.146 0.133 0.113 0.126 0.235 0.194 0.223 0.203 0.198
0.4 0 0.112 0.120 0.103 0.093 0.103 0.178 0.194 0.158 0.163 0.151
0.8 0 0.106 0.093 0.094 0.098 0.100 0.150 0.137 0.146 0.154 0.133

0 -0.8 0.161 0.169 0.175 0.146 0.146 0.122 0.077 0.091 0.078 0.086
0 -0.4 0.174 0.148 0.139 0.139 0.135 0.198 0.176 0.155 0.133 0.163
0 0.4 0.106 0.097 0.098 0.096 0.089 0.228 0.222 0.223 0.200 0.199
0 0.8 0.119 0.108 0.118 0.093 0.104 0.193 0.181 0.161 0.149 0.163

-0.4 -0.4 0.162 0.110 0.119 0.107 0.101 0.161 0.139 0.135 0.113 0.100
0.4 -0.4 0.164 0.143 0.137 0.142 0.147 0.267 0.239 0.258 0.192 0.184
-0.4 0.4 0.165 0.128 0.126 0.145 0.158 0.282 0.237 0.253 0.233 0.241
0.4 0.4 0.130 0.127 0.114 0.117 0.120 0.192 0.174 0.185 0.151 0.202

Table 3: Size-adjusted power (c = 10) of full sample detrended tests (λ = 1) with small initial condition.
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T φ θ ADF0,0 ADF ∗,0,1
0,0 ADF ∗,1,1

0,0 ADF ∗,1,0
0,0 ADF ∗,0,0

0,0 ADF1,0 ADF ∗,0,1
1,0 ADF ∗,1,1

1,0 ADF ∗,1,0
1,0 ADF ∗,0,0

1,0

50 0 0 0.235 0.202 0.225 0.197 0.183 0.248 0.209 0.206 0.170 0.172
-0.8 0 0.192 0.152 0.162 0.132 0.130 0.134 0.111 0.112 0.106 0.119
-0.4 0 0.187 0.154 0.154 0.132 0.120 0.182 0.134 0.140 0.114 0.124
0.4 0 0.146 0.088 0.111 0.091 0.091 0.129 0.125 0.122 0.096 0.103
0.8 0 0.114 0.112 0.105 0.104 0.098 0.088 0.111 0.102 0.093 0.094

0 -0.8 0.151 0.190 0.197 0.166 0.176 0.109 0.111 0.106 0.111 0.104
0 -0.4 0.180 0.157 0.150 0.127 0.118 0.143 0.148 0.146 0.122 0.100
0 0.4 0.193 0.167 0.161 0.157 0.153 0.172 0.189 0.149 0.168 0.172
0 0.8 0.154 0.130 0.134 0.127 0.116 0.143 0.128 0.124 0.119 0.123

-0.4 -0.4 0.141 0.117 0.112 0.076 0.091 0.117 0.081 0.072 0.057 0.071
0.4 -0.4 0.230 0.210 0.224 0.165 0.195 0.213 0.242 0.219 0.182 0.206
-0.4 0.4 0.241 0.231 0.220 0.194 0.195 0.225 0.221 0.223 0.183 0.177
0.4 0.4 0.132 0.112 0.114 0.115 0.127 0.122 0.125 0.123 0.107 0.129

100 0 0 0.205 0.189 0.188 0.162 0.166 0.240 0.181 0.198 0.199 0.207
-0.8 0 0.229 0.200 0.196 0.190 0.166 0.162 0.157 0.141 0.168 0.169
-0.4 0 0.205 0.176 0.184 0.147 0.171 0.216 0.158 0.184 0.179 0.176
0.4 0 0.167 0.139 0.142 0.134 0.141 0.214 0.182 0.192 0.181 0.167
0.8 0 0.159 0.134 0.131 0.135 0.144 0.150 0.170 0.137 0.155 0.148

0 -0.8 0.155 0.155 0.155 0.120 0.116 0.121 0.085 0.091 0.068 0.073
0 -0.4 0.194 0.169 0.166 0.156 0.162 0.192 0.163 0.174 0.147 0.171
0 0.4 0.204 0.183 0.175 0.199 0.160 0.203 0.204 0.189 0.194 0.170
0 0.8 0.183 0.153 0.167 0.151 0.150 0.159 0.178 0.175 0.173 0.154

-0.4 -0.4 0.185 0.148 0.155 0.126 0.120 0.148 0.135 0.127 0.139 0.145
0.4 -0.4 0.235 0.219 0.233 0.199 0.185 0.231 0.233 0.238 0.217 0.213
-0.4 0.4 0.244 0.241 0.244 0.193 0.185 0.253 0.242 0.258 0.225 0.240
0.4 0.4 0.172 0.175 0.157 0.172 0.133 0.214 0.181 0.178 0.145 0.178

Table 4: Size-adjusted power (c = 10) of recursively detrended tests (λ = 0) with small initial condition.
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T φ θ ADF0,1 ADF ∗,0,1
0,1 ADF ∗,1,1

0,1 ADF ∗,1,0
0,1 ADF ∗,0,0

0,1 ADF1,1 ADF ∗,0,1
1,1 ADF ∗,1,1

1,1 ADF ∗,1,0
1,1 ADF ∗,0,0

1,1

50 0 0 0.211 0.191 0.190 0.123 0.142 0.130 0.096 0.089 0.084 0.079
-0.8 0 0.185 0.136 0.177 0.105 0.094 0.111 0.078 0.076 0.071 0.059
-0.4 0 0.161 0.144 0.128 0.086 0.099 0.104 0.084 0.073 0.059 0.053
0.4 0 0.143 0.116 0.118 0.105 0.109 0.060 0.049 0.047 0.043 0.043
0.8 0 0.089 0.105 0.104 0.096 0.086 0.032 0.041 0.040 0.043 0.043

0 -0.8 0.144 0.177 0.088 0.110 0.160 0.113 0.072 0.103 0.071 0.058
0 -0.4 0.146 0.144 0.131 0.100 0.090 0.105 0.070 0.075 0.059 0.065
0 0.4 0.168 0.146 0.139 0.132 0.128 0.086 0.069 0.067 0.052 0.057
0 0.8 0.126 0.107 0.117 0.110 0.093 0.054 0.046 0.047 0.052 0.043

-0.4 -0.4 0.139 0.098 0.095 0.061 0.065 0.091 0.059 0.057 0.052 0.041
0.4 -0.4 0.204 0.193 0.180 0.145 0.135 0.129 0.110 0.097 0.071 0.072
-0.4 0.4 0.181 0.192 0.155 0.128 0.124 0.124 0.086 0.097 0.057 0.063
0.4 0.4 0.096 0.104 0.102 0.096 0.090 0.047 0.048 0.058 0.048 0.046

100 0 0 0.186 0.183 0.159 0.125 0.142 0.065 0.068 0.048 0.047 0.049
-0.8 0 0.196 0.165 0.156 0.135 0.141 0.106 0.085 0.094 0.082 0.085
-0.4 0 0.194 0.172 0.169 0.159 0.148 0.083 0.064 0.078 0.070 0.063
0.4 0 0.168 0.155 0.155 0.150 0.168 0.054 0.057 0.049 0.054 0.051
0.8 0 0.114 0.119 0.112 0.108 0.093 0.033 0.026 0.033 0.030 0.033

0 -0.8 0.147 0.157 0.157 0.123 0.124 0.082 0.061 0.064 0.056 0.065
0 -0.4 0.168 0.145 0.139 0.112 0.109 0.075 0.067 0.061 0.051 0.056
0 0.4 0.161 0.141 0.177 0.148 0.143 0.062 0.055 0.056 0.044 0.056
0 0.8 0.166 0.168 0.154 0.137 0.146 0.047 0.039 0.036 0.034 0.035

-0.4 -0.4 0.163 0.133 0.118 0.096 0.098 0.091 0.087 0.088 0.090 0.061
0.4 -0.4 0.216 0.203 0.187 0.159 0.167 0.076 0.058 0.069 0.050 0.044
-0.4 0.4 0.201 0.162 0.187 0.176 0.163 0.091 0.076 0.068 0.059 0.075
0.4 0.4 0.152 0.136 0.158 0.126 0.132 0.049 0.046 0.049 0.036 0.049

Table 5: Size-adjusted power (c = 10) of full sample detrended tests (λ = 1) with large initial condition.
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T φ θ ADF0,0 ADF ∗,0,1
0,0 ADF ∗,1,1

0,0 ADF ∗,1,0
0,0 ADF ∗,0,0

0,0 ADF1,0 ADF ∗,0,1
1,0 ADF ∗,1,1

1,0 ADF ∗,1,0
1,0 ADF ∗,0,0

1,0

50 0 0 0.134 0.109 0.138 0.096 0.078 0.103 0.064 0.060 0.053 0.048
-0.8 0 0.119 0.099 0.108 0.068 0.071 0.088 0.069 0.073 0.071 0.060
-0.4 0 0.115 0.099 0.088 0.075 0.060 0.080 0.066 0.082 0.052 0.051
0.4 0 0.087 0.071 0.050 0.056 0.050 0.042 0.039 0.044 0.031 0.032
0.8 0 0.041 0.036 0.032 0.043 0.033 0.013 0.017 0.013 0.016 0.016

0 -0.8 0.129 0.141 0.174 0.126 0.133 0.087 0.089 0.089 0.095 0.080
0 -0.4 0.109 0.101 0.084 0.070 0.053 0.072 0.068 0.069 0.058 0.067
0 0.4 0.101 0.084 0.083 0.076 0.067 0.053 0.050 0.044 0.058 0.060
0 0.8 0.080 0.073 0.070 0.053 0.057 0.041 0.038 0.035 0.034 0.034

-0.4 -0.4 0.098 0.067 0.068 0.049 0.051 0.077 0.046 0.039 0.034 0.046
0.4 -0.4 0.133 0.130 0.123 0.079 0.095 0.091 0.079 0.076 0.058 0.063
-0.4 0.4 0.144 0.144 0.117 0.096 0.097 0.077 0.085 0.089 0.074 0.059
0.4 0.4 0.067 0.062 0.052 0.058 0.062 0.035 0.035 0.040 0.034 0.038

100 0 0 0.109 0.097 0.101 0.081 0.084 0.065 0.039 0.051 0.047 0.054
-0.8 0 0.142 0.130 0.119 0.117 0.100 0.081 0.069 0.077 0.081 0.092
-0.4 0 0.120 0.116 0.115 0.076 0.097 0.071 0.044 0.052 0.046 0.047
0.4 0 0.095 0.078 0.080 0.089 0.084 0.051 0.042 0.044 0.048 0.042
0.8 0 0.068 0.056 0.057 0.053 0.062 0.023 0.031 0.021 0.026 0.024

0 -0.8 0.117 0.115 0.117 0.083 0.085 0.082 0.064 0.072 0.048 0.055
0 -0.4 0.106 0.102 0.107 0.086 0.080 0.071 0.066 0.066 0.056 0.066
0 0.4 0.105 0.102 0.086 0.094 0.092 0.042 0.046 0.046 0.052 0.044
0 0.8 0.087 0.070 0.083 0.075 0.068 0.034 0.034 0.034 0.032 0.036

-0.4 -0.4 0.112 0.098 0.097 0.078 0.066 0.080 0.056 0.070 0.068 0.077
0.4 -0.4 0.130 0.129 0.124 0.115 0.090 0.053 0.053 0.048 0.046 0.045
-0.4 0.4 0.144 0.150 0.135 0.123 0.107 0.064 0.051 0.056 0.061 0.066
0.4 0.4 0.086 0.085 0.079 0.084 0.066 0.040 0.037 0.036 0.036 0.040

Table 6: Size-adjusted power (c = 10) of recursively detrended tests (λ = 0) with large initial condition.
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