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CONTINUOUS TIME CONTESTS WITH
PRIVATE INFORMATION

Christian Seel∗ and Philipp Strack†

This paper introduces a class of contest models in which each player
decides when to stop a privately observed Brownian motion with drift
and incurs costs depending on his stopping time. The player who stops
his process at the highest value wins a prize.

We prove existence and uniqueness of a Nash equilibrium outcome and
derive the equilibrium distribution in closed form. As the variance tends
to zero, the equilibrium outcome converges to the symmetric equilibrium
of an all-pay auction. For two players and constant costs, each player’s
equilibrium profit decreases if the drift increases, the variance decreases,
or the costs decrease.

Keywords: Contests, all-pay contests, silent timing games.

1. INTRODUCTION

There is a large economic literature on contests. Most of this literature analyzes static

models (e.g., Tullock, 1980, Lazear and Rosen, 1981, Hillman and Samet, 1987, and

Siegel, 2009, 2010). Most real-world contests, however, are conducted over time rather

than being a one-shot interaction; for example, think about procurement contests, job

promotion contests, political campaigns, or sports leagues. Thus, there are a few more

recent papers which include the dynamic aspects of a contest in their model.

A dynamic contest model requires a choice of the informational assumptions. For in-

stance, Harris and Vickers (1987) and Moscarini and Smith (2007) analyze stochastic

and dynamic two-player contests with complete information. They characterize Markov

perfect equilibria and find that the effort of the leader increases in his lead up to some

threshold above which the laggard resigns. More general results on the existence of Markov

perfect ε-equilibria in two-player stopping games with complete information are provided

in Laraki et al. (2005) and Laraki and Solan (2013).

On the other hand, there is a literature which assumes that contestants cannot observe

each other, so-called silent timing games ; see, e.g., Karlin (1953) and Park and Smith

(2008). In this literature, contestants can choose their stopping time, but they do not

receive any new private information about their own process over time.

This paper introduces a new class of contest models without observability in which each

player’s strategies depend on their private information. If there is no uncertainty about

the other players’ progress, i.e., no private information, our model reduces to a silent
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timing game with one prize for the player who stops latest. Thus, this paper introduces

private information into silent timing games.

Formally, we analyze an n-player contest in which each player decides when to stop

a privately observed Brownian motion with drift. A strategy of a player is a bounded

stopping time, i.e., the player has to stop almost surely before some deadline. As long as

a player does not stop the process, he incurs flow costs of continuation. The player who

stops his process at the highest value wins a prize.

The analysis proceeds as follows. Proposition 1 and Proposition 2 establish existence

and uniqueness of the equilibrium distribution of the value of the stopped process. To

do so, we first characterize the candidate equilibrium distribution uniquely up to its

endpoints. In a second step, we use a result on Skorokhod embeddings to show that there

exists a stopping strategy which leads to the candidate distribution.

In the paper, we do not fix the deadline exogenously, but the game ends once all players

have stopped their processes. The equilibrium which we construct, however, remains an

equilibrium if the contest ends at a sufficiently late, but fixed and predetermined deadline.

Thus, we could use the more standard economic interpretation of a fixed deadline at which

the results are evaluated if the deadline is sufficiently long. The bounded time restriction

complicates the proof, since it drastically reduces the set of admissible stopping times.

By Proposition 3, an equilibrium stopping strategy has a simple structure, i.e., it is

the first leaving time of a set. In economic terms, an agent stops whenever he either gets

sufficiently optimistic or sufficiently pessimistic about his prospects in the contest, where

the optimism and pessimism thresholds depend on time.

Having solved the model, we proceed by analyzing the shape of the equilibrium distri-

bution. As uncertainty vanishes, the distribution converges to the symmetric equilibrium

distribution of an all-pay auction by Proposition 4. On the one hand, the model offers

a microfoundation for the use of all-pay auctions to scrutinize environments containing

little uncertainty; on the other hand, it gives an equilibrium selection criterion for the

equilibria of the symmetric all-pay auction analyzed in Baye et al. (1996). Furthermore,

this result serves as a benchmark to discuss how our predictions differ from all-pay models

if volatility is strictly positive.

Most of the related literature focuses exclusively on two players and fixed cost functions.

In the last part of the paper, we also restrict attention to two players and constant costs.

This allows us to derive a tractable closed-form solution for the profits of each player.

More precisely, by Proposition 6, profits increase as costs increase, volatility increases, or

drift decreases. Hence, contestants prefer worse technologies for both players.

This economically novel comparative statics result has an intuitive explanation: an in-

crease in the drift or a decrease in the variance of each player makes patience a more

important factor for contest success compared to chance. Hence, in equilibrium, expected
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stopping times and expected costs increase. Since the equilibrium is symmetric, the win-

ning probability of each player remains constant. Summing up, we obtain lower expected

profits.

Our setting fits applications such as procurement contests or job promotion contests.

In these applications, players choose their effort levels over time. The stopping decision

measures the effort, where a later stopping time should be interpreted as a larger period

of effort or a higher intensity of effort. Hence, in the model, a later stopping time also

induces higher costs. Moreover, we assume that—on average—effort increases output. In

the model, the average productivity is measured by the drift, i.e., the average rate at

which the output increases.

In most procurement contests and some job promotion contests, the research is con-

ducted in secrecy. Thus, contestants can only observe their own progress over time which

is consistent with our model description. On the other hand, a model with complete infor-

mation provides a better fit for applications such as sports leagues or political campaigns

(if polls are available).

Related Literature

Seel and Strack (2013) study the effect of relative performance pay on risk-taking be-

havior in financial markets. More precisely, fund managers decide when to stop investing

in a risky asset. The manager who generates the highest profit gets a bonus. Each man-

ager faces a liquidity constraint (maximal amount which they can loose) which drives

the equilibrium construction. Seel and Strack (2013) construct an equilibrium in which

managers invest in the risky asset although it has a negative expectation.

To focus on risk-taking behavior, Seel and Strack (2013) and the subsequent finance

literature (Feng and Hobson, 2014a,b) abstract from effort costs, which is the main deci-

sion variable in the classical contest literature. In contrast, all results in the present paper

are driven by the trade-off between a higher expected cost and a higher probability of

winning the contest.

Similar technical problems in characterizing the stopping region arise in Hopenhayn

and Squintani (2011) who introduce private information into preemption games. They

characterize the equilibrium as a solution to a free boundary problem. The solution

method we develop is based on the Skorokhod embedding theorem. It provides a new

approach to analyze timing games and, possibly, other stochastic games with private

information. Moreover, as we show in an extension, the construction is not restricted to

Brownian motion with drift, but can also be applied to other stochastic processes.

We proceed as follows. Section 2 sets up the model. In Section 3, we prove that an

equilibrium exists and characterize the form of the equilibrium distribution uniquely.
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Section 4 discusses the relation to all-pay auctions and derives the main comparative

statics results. Section 5 concludes. All proofs are relegated to Appendix B.

2. THE MODEL

There are n ≥ 2 agents indexed by i ∈ {1, 2, . . . , n} = N who face a stopping problem

in continuous time. At each point in time t ∈ R+, agent i privately observes the realization

of a stochastic process (X i
t)t∈R+ with

X i
t = µt+ σBi

t .

The process X i measures the (research) progress of a player who exerts effort. It consists

of a deterministic and a stochastic component: the drift µ ∈ R++ is the common expected

change of each process X i
t per time, i.e., E(X i

t+∆−X i
t) = µ∆. The random terms σBi

t are

independent Brownian motions (Bi
t)i∈N scaled by σ ∈ R++. Note that the starting value

X i
0 is the same for each player and, without loss of generality, normalized to zero.

2.1. Strategies

A pure strategy of player i is a stopping time τ i. As each player only observes his own

process, the decision whether to stop at time t only depends on the past realizations of

his process (X i
s)s≤t. Mathematically, the agents’ stopping decision until time t has to be

F it -measurable, where F it = σ({X i
s : s < t}) is the sigma algebra induced by the possible

observations of the process X i
s before time t.

We require stopping times to be bounded by a real number T < ∞ such that τ i < T

almost surely.1 Note that we do not fix the value of the deadline in the description of the

model, but only require the deadline to be finite.2

Although the unique equilibrium outcome of this model can be obtained in pure strate-

gies, we incorporate mixing to make the results more general. To do so, we allow for

random stopping decisions. More precisely, each agent i can choose an (F it )-adapted

right-continuous increasing process (κit)t∈R+ , κ
i
t ∈ [0, 1] such that, for every t, P(τ i ≤

t | F it ) = κit. A pure strategy is equivalent to a process κit that equals zero for all t < τ

and one otherwise.3

1The equilibrium we derive in the paper remains an equilibrium if we do not restrict agents to bounded
stopping times, but only require stopping times to be finite, i.e., τ <∞.

2In the equilibrium which we construct based on Proposition 3, however, all players stop before a fixed
time T . Since a fixed deadline reduces the strategy space, any equilibrium which we construct remains
an equilibrium for a model with a fixed deadline which is longer than T (for details, see discussion after
Proposition 3).

3Touzi and Vieille (2002) introduce the same definition of strategies for Dynkin games. In that setting,
it is equivalent to (i) mixed strategies in the sense of Aumann (1961) and (ii) behaviorally mixed strategies
as defined for continuous time stopping games in Bismut (1979). Shmaya and Solan (2014) show that
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Figure 1.— An example for the game with two agents i ∈ {1, 2}. Time is depicted on
the x-axis, while the value X i

t (solid line) and total costs (dotted line) are depicted on
the y-axis. The parameters are c(X i

t) = 1
10

∫ t
0

exp( 1
10
X i
s)ds, µ = 3, σ = 1, T = 10.

2.2. Payoffs

The player who stops his process at the highest value wins a prize; ties are broken

randomly.4 Until he stops, each player incurs flow costs c : R → R++ which depend on

the current value of the process X i
t , but not on the time t. We normalize the prize to one,

since agents only care about the trade-off between winning probability and cost-prize

ratio. The payoff Πi is thus

Πi =
1

k
1{Xi

τi
=maxj∈N Xj

τj
} −

∫ τ i

0

c(X i
t)dt ,

where k = |{i ∈ N : X i
τ i = maxj∈N X

j
τ j
}| is the number of agents who stop at the highest

value. All agents maximize their expected profit πi = E (Πi). The cost function satisfies

the following mild assumption:

Assumption 1 The cost function c : R → R++ is continuous, positive, and bounded

away from zero.

Figure 1 illustrates processes, stopping decisions, and corresponding costs in an exam-

ple. Realizations of the processes until the stopping time are depicted in solid lines, while

under weak conditions, all types of random stopping times are equivalent. For an analogous discussion
in discrete time stopping games, see Solan et al. (2012).

4The assumption of a uniform tie-breaking rule is irrelevant, since the equilibrium distributions have
no atoms, i.e., the probability of a tie is zero.
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the corresponding total costs are depicted in dotted lines. In the example, player 1 stops

before player 2 stops. Nonetheless, player 1 receives the prize, since she stops her process

at a higher value than player 2.

2.3. Main Characterization Results

In the next section, we derive several results about the equilibrium set of the game.

They can be summarized as follows:

Theorem 1 The game has a pure strategy Nash equilibrium. There exists a unique

distribution F over stopped values such that in any Nash equilibrium, all players choose

strategies inducing the distribution F . The equilibrium payoffs are uniquely determined.

3. EQUILIBRIUM CONSTRUCTION

In this section, we first establish some necessary conditions on the distribution func-

tions of the stopped processes in equilibrium. In a second step, we prove existence and

uniqueness of the Nash equilibrium outcome and determine the equilibrium distributions

depending on the cost function.

Every strategy of agent i induces a (potentially non-smooth) cumulative distribution

function (cdf) F i : R → [0, 1] of his stopped process F i(x) = P(X i
τ i ≤ x). Intuitively,

F i(x) is the probability that a player stops with an output less or equal to x.

Denote the endpoints of the support of the equilibrium distribution of player i by

xi = inf{x : F i(x) > 0}

xi = sup{x : F i(x) < 1} .
Let x = maxi∈N x

i and x = maxi∈N x
i. In the next step, we establish a series of auxiliary

results that are crucial to prove uniqueness of the equilibrium distribution.

Lemma 1 No player places a mass point in the interior of the state space, i.e., for all

i, for all x > x: P(X i
τ i = x) = 0. At least one player has no mass at the left endpoint,

i.e., F i(x) = 0, for at least one player i.

We omit the proof of Lemma 1, since it is simply a specialization of the standard logic

in static game theory with a continuous state space; see, e.g., Burdett and Judd (1983).

Intuitively, in equilibrium, no player can place a mass point in the interior of the state

space, since no other player would then stop slightly below the mass point.

Since F i(x) = 0 for at least one player i, we have P(maxiX
i
τ i > x) = 1. Moreover, as no

player sets a mass point inside the support, we have P(Xj
τ j

= X i
τ i |X i

τ i > x) = 0. Thus,

the probability of a tie is equal to zero.
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Thus, we can express the winning probability of player i if he stops at X i
τ i = x, given

the distributions of the other players, as

wi(x) = P(max
j 6=i

Xj
τ j
≤ x) =

∏
j 6=i

F j(x) .

Lemma 2 At least two players stop with positive probability on every interval

I = (a, b) ⊂ [x, x] (the identity of the players who stop may depend on the interval).

Lemma 3 All players have the same equilibrium distribution function, F i = F , for all

i ∈ N .

Lemma 2 and 3 are the crucial steps for the uniqueness proof. In particular, Lemma

2 does not hold in static auction theory. Intuitively, the support of an equilibrium bid

distribution in an auction is not necessary connected; see, for instance, Baye et al. (1996),

Theorem 1, who construct an equilibrium in which a player places a mass point at zero

and randomizes his bid on some interval [x, x]. In our case, every bounded time stopping

strategy induces a distribution of the stopped process with a connected support. This

property of bounded stopping strategies greatly facilitates the uniqueness proofs.

The following lemma is an immediate consequence from the symmetry of the equilibrium

distribution (Lemma 3) and the fact that for at least one agent wi(x) = 0 (Lemma 1).

Lemma 4 Each player loses with certainty at x, i.e., wi(x) = 0 for all i ∈ N .

As players have symmetric distributions, we henceforth drop the superscript i. The

next result uses Itô’s lemma to determine the ordinary differential equation (ODE) for

the winning probability w:

Lemma 5 For all x ∈ (x, x), the winning probability is twice differentiable and satisfies

(1) c(x) = µw′(x) +
σ2

2
w′′(x) .

Intuitively, in equilibrium the expected costs from continuation (lhs of Eq. (1)) must

equal the expected gain in winning probability (rhs of Eq. (1)) and the agent is indifferent

between stopping and continuing at every point of the support.

As Eq. (1) is a second order ODE, we use two boundary conditions to determine w

uniquely. One boundary condition is w(x) = 0 from Lemma 4. We determine the other

one in the following lemma:

Lemma 6 In equilibrium, w′(x) = 0.
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Intuitively, Lemma 6 imposes a smooth-pasting condition which ensures that players

have no incentive to continue at the left endpoint of their support.

Define φ(x) = exp(−2µx
σ2 ). To calculate the solution to Eq. (1), note that b1 + b2φ(x) (for

any b1, b2 ∈ R) is the general solution to the homogeneous equation 0 = µw′(x)+ σ2

2
w′′(x).

To solve the inhomogeneous equation, we apply the variation-of-constants formula. We

then use the two boundary conditions to calculate the unique candidate solution. Finally,

we rearrange with Fubini’s Theorem to get

w(x) =


0 for x < x

1
µ

∫ x
x
c(z)(1− φ(x− z))dz for x ∈ [x, x]

1 for x < x .

By symmetry of the equilibrium strategy, the equilibrium distribution satisfies F (x) =
n−1
√
w(x). Consequently, any equilibrium distribution must be of the form

(2) G(x;x) =

0 for all x ≤ x

min
{

1, n−1

√
1
µ

∫ x
x
c(z)(1− φ(x− z))dz

}
for all x > x .

In the next step, we verify that G is an absolutely continuous cumulative distribution

function.

Lemma 7 For every left endpoint x, the function G defined in Eq. (2) is absolutely

continuous, nondecreasing and limx→∞G(x;x) = 1.

Note that Eq. (2) describes the equilibrium distribution only up to the left endpoint of

the support. To determine the left endpoint of the support, we use the following condition

which is necessary for a distribution G to be the outcome of a stopping strategy τ .

Lemma 8 If τ ≤ T <∞ is a bounded stopping time that induces the absolutely contin-

uous distribution H, i.e., H(z) = P(Xτ ≤ z), then 1 =
∫ x
x
φ(x)H ′(x)dx .

Lemma 8 and Eq. (2) imply that the left endpoint x must solve

(3) 1 =

∫
R

φ(x)G′(x;x)dx .

The next result shows that there is unique endpoint x solving Eq. (3). Furthermore,

it establishes that every profile in which all players use a strategy which induces the

distribution G(x;x) from Eq. (2) with the unique x is a Nash equilibrium.

Proposition 1 There exists a unique x such that a strategy profile is a Nash equilibrium

if and only if each player’s strategy induces the distribution F (x) = G(x;x) defined in

Eq. (2).
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To build up more intuition for Proposition 1, recall that ties occur with probability zero

and that equilibrium distributions are symmetric. Moreover, note that an equilibrium

strategy of a player needs to be an optimal stopping time for this problem and not

necessarily the minimal optimal stopping as in many finance problems. Since no new

information about the other players arrives over time and the best-response problem is

Markovian, the optimal stopping decision does not depend on time, but only on the value

Xt.

Our construction of the distribution F ensures that if all agents induce F , the remaining

agent is indifferent between all stopping strategies which stop before the process leaves

the support [x, x] the first time. As every agent wins with probability one at the right

endpoint x, it is strictly optimal to stop there. The smooth pasting condition w′(x) = 0

imposed by Lemma 6 ensures that it is also optimal to stop at the left endpoint. Thus, if

all players induce F , we have a Nash equilibrium, since each agent chooses a best response

when he stops with probability 1 in [x, x].

Furthermore, since the optimal stopping decision does not depend on time, the same

logic holds after every (private) history. Thus, any strategy profile in which all players

induce the distribution F and stop immediately whenever Xt /∈ (x, x) also satisfies Nash

refinements such as sequential rationality, time-consistency, and subgame-perfection.

So far, we have verified that a bounded stopping time τ ≤ T < ∞ is an equilibrium

strategy if and only if it induces the distribution F , i.e., F (z) = P(Xτ ≤ z). To show that

the game has a Nash equilibrium, the existence of a bounded stopping time inducing F

remains to be established. The problem of finding a stopping time τ such that a Brownian

motion stopped at τ has a given centered probability distribution F , i.e., F ∼ Bτ , is

known in the probability literature as the Skorokhod embedding problem (SEP). Since

its initial formulation in Skorokhod (1961, 1965), many solutions have been derived; for a

survey article, see Oblój (2004). The proof of the following proposition verifies a sufficient

condition for a bounded time embedding from a recent mathematical paper.

Proposition 2 The game has a Nash equilibrium. In equilibrium, the strategy of each

player induces the distribution F defined in Eq. (2).

The uniqueness result differs from related models such as symmetric all-pay auctions

or symmetric silent timing games, in which there are usually multiple equilibria with

different equilibrium distributions. In some of these equilibria only a subset of players is

active, i.e., submits a positive bid in the auction or does not stop directly in the silent

timing game. Here, the variance leads all players to be active in the game. Hence, we

obtain a unique equilibrium distribution.

A conceptual improvement on the literature is the bounded time requirement τ < T ,

which makes the equilibrium derivation applicable to contests with a fixed deadline. To
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see that this result is not trivial to obtain, note that for any fixed time horizon T , there

exists a positive probability that Xt does not leave any interval [a, b] with a < X0 < b.

Hence, a simple construction through a mixture over “tunnel” strategies of the form

τa,b = inf{t ∈ R+ : Xt /∈ [a, b]} ,

i.e., first leaving times of an interval, cannot be used to implement F .

In the following, we show that a different simple strategy induces the equilibrium dis-

tribution. For this purpose, we define:

Definition 1 (Barrier Stopping Time) A stopping time τ is a barrier stopping time if

it is of the form

τ = inf{t ∈ R+ : (t,Xt) ∈ C} ,

where C ⊂ R+ × R is a set such that (t, x) ∈ C implies (t′, x) ∈ C if t′ > t.

0.2 0.4 0.6 0.8 1.0 1.2
t

- 0.5

0.0

0.5

1.0

X t

T

C

τ

Figure 2.— An example of a barrier stopping time.

Barrier stopping times are relatively simple, as they only condition on the value of the

process and the time, but not on the history.

Proposition 3 There exists a bounded equilibrium stopping time which is a barrier

stopping time.

An equilibrium in which each player uses a barrier stopping time has a nice economic

intuition: whenever a player gets sufficiently optimistic or sufficiently pessimistic about
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her prospects in the contest, she stops to exert effort. In Figure 2, we draw a sample path

of the process and a barrier stopping time. The agent is sufficiently optimistic if she hits

the upper threshold, while she is sufficiently pessimistic if she hits the lower threshold.

Figure 2 also illustrates our result for contests with a fixed deadline: a barrier stopping

time which induces the distribution defined in Eq. (2) stops almost surely before some

finite point in time. In a contest with a fixed, finite deadline which is greater or equal to

this point in time, each player can thus induce the distribution defined in Eq. (2). Since

the strategy space is restricted by the fixed deadline, the equilibrium derived for the

larger strategy space without a fixed deadline remains an equilibrium in the game with

a fixed, but sufficiently long deadline. For given parameters, it is possible to calculate an

upper bound for the critical contest length using Lemma 12 in Appendix A.

4. EQUILIBRIUM ANALYSIS

4.1. Convergence to the All-pay Auction

This subsection considers the relationship between the literature on all-pay auctions

and our model for vanishing noise. We first establish an auxiliary result about the left

endpoint:

Lemma 9 If the noise vanishes, the left endpoint of the equilibrium distribution defined

in Eq. (2) converges to zero, i.e., lim
σ→0

x = 0.

Taking the limit σ → 0, the equilibrium distribution converges to

lim
σ→0

F (x) = n−1

√
1

µ

∫ x

0

c(z)dz.

In a static n-player all-pay auction, the symmetric equilibrium distribution is

F (x) = n−1

√
x

v
,

where x is the total outlay of a participant and v is her valuation; see, e.g., Hillman and

Samet (1987). In our case, the total outlay depends on the flow costs at each point, the

speed of research µ, and the stopping time τ . More precisely, it is
∫ x

0
c(z)
µ

dz. The valuation

v in the analysis of Hillman and Samet (1987) coincides with the prize p—which we have

normalized to one—in our contest. This yields the following proposition:

Proposition 4 For vanishing noise, the equilibrium distribution converges to the sym-

metric equilibrium distribution of an all-pay auction with homogeneous valuations.
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Thus, our model supports the use of all-pay auctions to analyze contests in which vari-

ance is negligible. Moreover, the symmetric all-pay auction has multiple equilibria—for a

full characterization see Baye et al. (1996), Theorem 1. This paper offers an equilibrium

selection criterion in favor of the symmetric equilibrium. Intuitively, all other equilibria

of the symmetric all-pay auction include mass points at zero for some players, which is

not possible in our model for any positive σ by Lemma 4.

4.2. Comparative Statics and Rent Dispersion

Proposition 4 has linked all-pay auctions with complete information to our model for

the case of vanishing noise. In the following, we scrutinize how predictions differ for

positive noise. In a symmetric all-pay auction with complete information, agents make

zero profits in equilibrium. This does not hold true in our model for any positive level of

variance σ:

Proposition 5 In equilibrium, all agents make strictly positive expected profits.

Intuitively, agents generate informational rents through the private information about

their research progress. A similar result is known in the literature on all-pay auctions

with incomplete information, see, e.g., Hillman and Riley (1989), Amann and Leininger

(1996), Krishna and Morgan (1997), and Moldovanu and Sela (2001). In these models,

each participant takes a draw from a common distribution. The outcome of each draw

is private information and determines the effort cost or valuation. In contrast to this,

private information about one’s progress arrives continuously over time in our model.

4.3. Two Players and Constant Costs

We henceforth restrict attention to the case n = 2 and c(x) = c to get more explicit

results. We require some additional notation. In particular, we denote the principal branch

of the Lambert W -function by W0 : [−1
e
,∞)→ R+. This branch is implicitly defined on

[−1
e
,∞) as the unique solution of x = W (x) exp(W (x)), W ≥ −1. Moreover, define

h : R+ → [0, 1] by

h(y) = exp(−y − 1−W0(− exp(−1− y))) .

The next lemma pins down the left and right endpoints of the support.

12
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Figure 3.— This figure shows the equilibrium profit π of the agents on the y-axis for
n = 2 and constant cost-functions c(x) = c ∈ R++ with y = 2µ2

cσ2 on the x-axis.

Lemma 10 The left and right endpoints are

x =
σ2

2µ

(
2 log(1− h(

2µ2

cσ2
))− log(

4µ2

cσ2
)

)
x =

σ2

2µ

(
2 log(1− h(

2µ2

cσ2
))− log(

4µ2

cσ2
)− log(h(

2µ2

cσ2
))

)
.

The next lemma derives a closed-form solution of the profits π of each player.

Lemma 11 The equilibrium profit of each player depends only on the ratio y = 2µ2

cσ2 . It

is given by

π =
(1− h(y))2

2y2
− 2 log(1− h(y))− log(2y)− 1

y
.

For an illustration of the above formula, see Figure 3. The previous lemma enables us

to establish the main comparative static result of this paper.

Proposition 6 The equilibrium profit of each player increases if costs increase, vari-

ance increases, or drift decreases.

To get an intuition for the result, we decompose the term 2µ2

cσ2 , which determines the

equilibrium profit of the players, into two parts:

2µ2

cσ2
=

µ

c︸︷︷︸
Productivity

× 2µ

σ2︸︷︷︸
Signal to noise ratio

.

The first term µ
c

is a deterministic measure of productivity per unit of time. On the other

hand, the second term 2µ
σ2 measures the impact of randomness σ2 on the final outcome.

As the drift of both competitors increases or the variance decreases, patience becomes

13



more critical to winning than chance. Hence, the expected stopping time in equilibrium

increases and expected total costs increase. As each player’s winning probability remains
1
2

by symmetry, profits decrease. In summary, participants prefer to have worse—more

costly, more random, or less productive—technologies.

4.4. Extension to Other Stochastic Processes

Up to now, we have derived our results for Brownian motion with drift. However, it is

straightforward to extend them to any process Zt such that Zt is the result of a strictly

monotone transformation ρ : R → R of Brownian motion with drift Xt, i.e., Zt = ρ(Xt).

First, observe that the success process Zt is only payoff relevant as an ordinal variable,

as agent i receives a prize if

Zi
τ i > max

j 6=i
Zj
τ j
⇔ ρ−1(Zi

τ i) > max
j 6=i

ρ−1(Zj
τ j

)⇔ X i
τ i > max

j 6=i
Xj
τ j
.

As costs c depend on the value of the process Zt, we define the cost function c̃(x) = c(ρ(x))

for the process Xt. Let F̃ be the equilibrium distribution for the game with a Brownian

motion with drift Xt and cost c̃, i.e., X i
τ i ∼ F̃ . The equilibrium distribution of the original

game is now given by F (x) = F̃ (ρ−1(x)), i.e., Zi
τ i ∼ F . For example, this generalization

includes geometric Brownian motion with drift (Zt = exp(Xt)).

5. CONCLUSION AND DISCUSSION

In this paper, we have introduced a new class of contest models in continuous time with

private information. Under mild assumptions on the cost function, a Nash equilibrium

exists. We have characterized the unique equilibrium distribution of the stopped process.

Moreover, there exists a bounded stopping strategy—the first leaving time of a set—which

leads to this distribution. For two players and constant costs, each player prefers mutually

higher research costs, worse technologies, and higher uncertainty. This economically novel

feature results from chance becoming more important for contest success than patience.

From a technical perspective, we have introduced a method to construct equilibria in

continuous time games. This methodological contribution should enhance future research

on timing games and other stochastic games with private information.

In future research, it would be interesting to include asymmetries in the parameters

(drift, variance, costs, and starting value) into the model. The main problem in this case is

to characterize the appropriate boundary conditions to Eq. (1). Our proofs do not extend

in a straightforward way since Lemma 4 and 6 rely on symmetry arguments. Moreover,

the derivation of the equilibrium relies on the Markovian structure of each player’s opti-

mization problem. It remains an open question how to deal with non-Markovian settings.

14



6. APPENDIX A: PRELIMINARY RESULTS

Before we prove the main results from the text in Appendix B, we introduce a technical

auxiliary result from Ankirchner and Strack (2011) and a remark which turn out to be

useful for the main proofs. In addition to the assumption stated in the next lemma,

Ankirchner and Strack (2011) assume that the condition in Lemma 8 holds. They define

g(x) = F−1(Φ(x)), where Φ(x) = 1√
2π

∫ x
−∞ exp( z

2

2
)dz is the density function of the normal

distribution.

Lemma 12 (Ankirchner and Strack, 2011, Theorem 2) Suppose that g is Lipschitz-

continuous with Lipschitz constant
√
T . Then the distribution F can be embedded in

Xt = µt+Bt, with a stopping time that stops almost surely before T .

Let us denote the first leaving time of the interval [a, b] of agent i after time t by

τ t,i(a,b) = inf{s ≥ t : X i
s /∈ (a, b)} .

Remark 1 The continuation strategy τ t,i(a,b) is strictly better than stopping at x for agent

i iff

E

(
wi(X i

τ t,i
(a,b)

)−
∫ τ t,i

(a,b)

t

c(X i
s)ds |X i

t = x

)
> wi(x) .

If τ t,i(a,b) is a profitable continuation strategy, the continuation strategy τ t,i(a,b) ∧ T is also

profitable for a sufficiently long, but finite time horizon T , since

lim
T→∞

E

(
wi(X i

τ t,i
(a,b)
∧T )−

∫ τ t,i
(a,b)
∧T

t

c(X i
s)ds |X i

t = x

)

= E

(
wi(X i

τ t,i
(a,b)

)−
∫ τ t,i

(a,b)

t

c(X i
s)ds |X i

t = x

)
.

Thus, in the next proofs, it suffices to show that τ t,i(a,b) is a profitable deviation to rule out

equilibrium candidates.

7. APPENDIX B

We are now ready to prove our main results:

Proof of Lemma 2: As players have to use bounded time stopping strategies, F i

is strictly increasing on [xi, xi] by Corollary 1 in Ankirchner and Strack (2011). Put

differently, each player i stops with positive probability on every subinterval of [xi, xi].

Hence, it suffices to show that at least two players have x as their right endpoint. Assume,

by contradiction, only player i has x as his right endpoint. Denote x−i = maxj 6=i x
j.

Then, by continuity of F j, player i strictly prefers to stop at x−i, which yields him the

15



maximal possible winning probability of 1 without any additional costs. This contradicts

the optimality of a strategy, which stops at xi > x−i. Q.E.D.

Proof of Lemma 3: Let us first argue that stopping is always optimal for each agent.

Towards a contradiction, assume that player i strictly prefers to continue at some value

x ∈ [xi, xi] and by continuity in an ε-ball around it. Thus, at any time t, stopping in

(x− ε, x− ε) is worse than the continuation strategy τ t,i(x−ε,x+ε), i.e., the player never stops

in (x−ε, x+ε). However, by Corollary 1 in Ankirchner and Strack (2011), for any bounded

stopping time, each player stops in every interval I ⊂ [xi, xi] with positive probability,

i.e., we have a contradiction. The rest of the proof is split in several steps.

Step 1: F i(x) ≤ F j(x) if and only if wj(x) ≤ wi(x) for all x > x.

By definition, wi(x)F i(x) = wj(x)F j(x). Hence, wi(x)
wj(x)

= F j(x)
F i(x)

.

Step 2: wi(xj) ≥ wj(xj) implies F i(x) ≤ F j(x) for almost all x.

Step 2.1: We first prove wj(x) ≤ wi(x) for all x ∈ (xj, xj)∩ (xi, xi). For all x ∈ (xj, xj)∩
(xi, xi) player i weakly prefers stopping at x to the continuation strategy τ t,i

(xj ,xj)

E

(
wi(X i

τ t,i
(xj,xj)

)−
∫ τ t,i

(xj,xj)

0

c(X i
s)ds |X i

t = x

)
≤ wi(x) .

As xj and xj are in the support of player j the continuation strategy τ t,j
(xj ,xj)

is optimal

for every point x ∈ (xj, xj), which yields

E

(
wj(Xj

τ t,j
(xj,xj)

)−
∫ τ t,j

(xj,xj)

0

c(Xj
s )ds |X

j
t = x

)
≥ wj(x) .

By assumption, wi(xj) ≥ wj(xj). Moreover, F i(x) ≤ 1 = F j(xj) which yields by Step 1

wi(xj) ≥ wj(xj). Hence wj(Xj

τ t,j
(x,x)

) ≤ wi(X i
τ t,i
(xj,xj)

) and as

E

(∫ τ t,i
(xj,xj)

0

c(X i
s)ds |X i

t = x

)
= E

(∫ τ t,j
(xj,xj)

0

c(Xj
s )ds |X

j
t = x

)

the above equations imply wj(x) ≤ wi(x) for all x ∈ (xj, xj) ∩ (xi, xi).

Step 2.2: In this step, we prove wi(x) ≥ wj(x) for all x ≥ xi ∧ xj. By Step 2.1,

F i(x) ≤ F j(x) for all x ∈ (xj, xj) ∩ (xi, xi). As 1 = F i(xi) ≤ F j(xi) it follows that

xj ≤ xi. As F i(x) ≤ 1 = F j(x) it follows by Step 1 that wj(x) ≤ wi(x) for all x ≥ xj.
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Step 2.3: In the final step, we prove wi(xj) ≥ wj(xj) for all x ≤ xi ∨ xj. First let

xi < xj. As no agent places a mass point in the interior it follows that F j(xj) = 0

and thus wi(xj) = 0. Using the result of the first step it follows that for all x ≤ xj

wj(xj) ≤ limx↘xj w
j(x) ≤ limx↘xj w

i(x) = 0 .Hence, wi(x) = wj(x) = 0 for all x ≤ xj.

Let xj ≤ xi. As F i(x) = 0 ≤ F j(x) for all x < xi it follows from Step 1 that wj(x) ≤ wi(x)

for all x < xi.

Hence, wj(x) ≤ wi(x) almost everywhere and by Step 1 F i ≤ F j almost everywhere.

Step 3: F i = F j for all i, j. If xi = xj it follows by Step 2 that either F i ≤ F j or

F i ≥ F j almost everywhere. Otherwise assume, without loss of generality, xj < xi. Thus,

0 = wj(xj) ≤ wi(xj) and hence, by Step 2, F i ≤ F j almost everywhere. Hence, w.l.o.g.,

we assume for the rest of the proof F i ≤ F j almost everywhere. If F i < F j on a set with

positive Lebesgue measure it follows that∫
R+

(1− F j(x))φ′(x)dx <

∫
R+

(1− F i(x))φ′(x)dx .

This violates the feasibility condition (Lemma 8). Thus F i = F j almost everywhere. By

continuity of F i and F j, it follows that F i = F j. Q.E.D.

Proof of Lemma 5: Define the payoff process as Zt = w(Xt) −
∫ t

0
c(Xs)ds and the

process H by Ht = supτ E [Zτ ]. The process H is a supermartingale (see for example

Theorem 2.2 in Peskir and Shiryaev, 2006). By the Doob-Meyer decomposition theorem

(Theorem 3.1 in Peskir and Shiryaev, 2006), there exists a unique martingale (Mt)t∈R+

and a predictable, weakly decreasing process (Qt)t∈R+ , Q0 = 0 such that Ht = Mt +Qt.

Let D′0 be the first time Qt decreases strictly, D′0 = inf{t : Qs < Qt for s > t}. By

Theorem 1.6 in Bismut and Skalli (1977), any stopping time τ which is optimal for the

agent satisfies τ ≤ D′0.

By definition of (x, x) and the symmetry of the distributions F , each agent must con-

tinue at every point x ∈ (x, x) after some history. Due to the Markovian structure, it

must be optimal for the agent not to stop whenever Xt ∈ (x, x). As it is optimal for the

agent to continue at every point x ∈ (x, x) it follows that Qt = 0 for all t < τ(x,x). Hence,

the process (Ht)t∈[0,τ(x,x)) is a martingale.

As stopping is also optimal for all x ∈ (x, x) by the argument at the beginning of the

proof of Lemma 3, it follows that Ht = Zt = w(Xt)−
∫ t

0
c(Xs)ds for all t ≤ τ(x,x).

As (Ht)t∈[0,τ(x,x)) is a martingale, Doob’s optional sampling theorem (see Peskir and
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Shiryaev, 2006, p.60) implies that for all x < a < x = Xt < b < x and t < τ(x,x)

w(x)−
∫ t

0

c(Xs)ds = E

[
w(Xτ(a,b))−

∫ τ(a,b)

0

c(Xs)ds | (Xr)r≤t

]
⇒w(x) = P

[
Xτ(a,b) = b | Xt = x

]
(w(b)− w(a)) + w(a)(4)

− E
[∫ τ(a,b)

t

c(Xs)ds | Xt = x

]
.

Let q : R → R be a solution to the ODE µq′(x) + σ2

2
q′′(x) = c(x) for all x ∈ (x, x). By

definition, q is twice differentiable and applying Itô’s Lemma gives that

q(Xr)− q(Xt) =

∫ r

t

µq′(Xs) +
σ2

2
q′′(Xs)ds+

∫ r

t

σq′(Xs)dBs

=

∫ r

t

c(Xs)ds+

∫ r

t

σq′(Xs)dBs .

Applying Doob’s optional sampling theorem with the stopping time τ(a,b) thus gives

E

[
q(Xτ(a,b))− q(Xt) | Xt = x

]
= E

[∫ τ(a,b)

t

c(Xs)ds | Xt = x

]
.

Replacing the cost term in Eq. (4) yields

w(x) = P

[
Xτ(a,b) = b | Xt = x

]
([w(b)− q(b)]− [w(a)− q(a)]) + w(a) + q(x) .

It is known that that the probability is equal to (see, e.g., Beichelt, 2006, p.373, Example

7.5)

P

[
Xτ(a,b) = b | Xt = x

]
=

exp(−2µa
σ2 )− exp(−2µx

σ2 )

exp(−2µa
σ2 )− exp(−2µb

σ2 )

and is thus twice differentiable for all x ∈ (x, x). Since q is also twice differentiable in

x by definition, we find that w is twice differentiable for all x ∈ (x, x). Applying Itô’s

Lemma to the process (Ht)t∈[0,τ(x,x)) gives that

Ht =

∫ t

0

µw′(Xs) +
σ2

2
w′′(Xs)− c(Xs)ds+

∫ t

0

w′(Xs)σdBs .

The first integral equals the predictable process Q and the second part is the martingale

M . As the process (Ht)t∈[0,τ(x,x)) is a martingale, it follows that Q ≡ 0 and thus for all

x ∈ (x, x)

c(x) = µw′(x) +
σ2

2
w′′(x) . Q.E.D.
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Proof of Lemma 6: By definition, w(x) = 0, for all x ≤ x. Hence, the left derivative

∂−w(x) is zero. It remains to prove that the right derivative ∂+w(x) is also zero. Since

w(x) > 0 for all x ∈ (x, x), we know that ∂+w(x) ≥ 0.

Towards a contradiction, assume ∂+w(x) > 0. For a given w : R → R+, let Ψ : R →
R be the unique function that satisfies the second order ordinary differential equation

c(x) = µΨ′(x) + σ2

2
Ψ′′(x) with boundary conditions Ψ(x) = 0 and Ψ′(x) = ∂+w(x). As

Ψ′(x) > 0, there exists a point x̂ < x such that Ψ(x) < 0 = w(x) for all x ∈ (x̂, x).

Consider the strategy S = min{τx̂,x, 1} that stops when either the point x̂ or x is reached

or at time 1. As w(x) > Ψ(x) for all x ∈ (x̂, x), it follows that E(w(XS)) > E(Ψ(XS)).

Thus,

E(w(XS)−
∫ S

0

c(X i
t)dt) > E(Ψ(XS)−

∫ S

0

c(X i
t)dt) .

Note that, by Itô’s lemma, the process Ψ(X i
t) −

∫ t
0
c(X i

s)ds is a martingale. By Doob’s

optional sampling theorem (see Peskir and Shiryaev, 2006, p.60), agent i is indifferent

between the equilibrium strategy τ and the bounded time strategy S, i.e.,

E(Ψ(XS)−
∫ S

0

c(X i
t)dt) = E(Ψ(Xτ )−

∫ τ

0

c(X i
t)dt) = E(w(Xτ )−

∫ τ

0

c(X i
t)dt) .

The last step follows because w(x) and Ψ(x) coincide for all x ∈ (x, x), since they solve

the same differential equation, Eq. (1), with the same boundary conditions on the support

(the only difference is that Ψ(x) also satisfies Eq. (1) for x /∈ [x, x]). Consequently, the

strategy S is a profitable deviation, which contradicts the equilibrium assumption. Q.E.D.

Proof of Lemma 7: By construction of F , F (x) = 0. Clearly, F is increasing on

(x, x), as the derivative with respect to x,

F ′(x) =
F (x)2−n

(n− 1)

(
2

σ2

∫ x

x

c(z)φ(x− z)dz

)
,

is greater than zero for all x > x. It remains to show that there exists an x > x such that

F (x) = 1. We can bound F from below using a lower bound on the derivative of F n−1:

F (x)n−1 =
1

µ

∫ x

x

c(z)(1− φ(x− z))dz

≥ c

µ

(
x− x− σ2

2µ
(1− φ(x− x))

)
≥ c

µ

(
x− x− σ2

2µ

)

By Assumption 1, c > 0. Continuity of F implies that there exists a unique point x > x

such that F (x) = 1. Q.E.D.
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Proof of Lemma 8: Observe that, by Itô’s lemma, (φ(Xt))t∈R+
is a martingale. Hence,

by Doob’s optional sampling theorem (see Peskir and Shiryaev, 2006, p.60), for any

bounded stopping time τ ,

1 = φ(X0) = E[φ(Xτ )] =

∫ x

x

φ(x)H ′(x)dx . Q.E.D.

Proof of Proposition 1: Uniqueness: As F is absolutely continuous, the right

endpoint x satisfies (a) : 1 =
∫ x
x
F ′(x;x, x)dx. By Lemma 7, there exists a unique x

for every x such that (a) is satisfied. Lemma 8 states that any feasible distribution sat-

isfies (b) : 1 =
∫ x
x
F ′(x;x)φ(x)dx. We show that intersection of the set of solutions to

equation (a) and to equation (b) consists of a single point. Since F ′(x;x, x) is indepen-

dent of x, we henceforth drop the dependency in our notation. By the implicit function

theorem, the set of solutions to (a) satisfies

(5)
∂x

∂x
= −
−

=0︷ ︸︸ ︷
F ′(x;x) +

∫ x
x

∂
∂x
F ′(x;x)dx

F ′(x;x)
= −

∫ x
x

∂
∂x
F ′(x;x)dx

F ′(x;x)
.

Applying the implicit function theorem to (b) gives us

∂x

∂x
= −

−
=0︷ ︸︸ ︷

F ′(x;x) +
∫ x
x

∂
∂x
F ′(x;x)φ(x)dx

F ′(x;x)φ(x)
= −

∫ x
x

∂
∂x
F ′(x;x)

>1︷ ︸︸ ︷
φ(x− x) dx

F ′(x;x)
(6)

< −
∫ x
x

∂
∂x
F ′(x;x)dx

F ′(x;x)
.

The last inequality follows from ∂
∂x
F ′(x;x) ≥ 0. As (5) > (6), the solution sets to equa-

tion (a) and (b) intersect at most once. Thus, in equilibrium, both the left and the right

endpoint are unique.

Existence: We have shown in Lemma 7 that, for every x, there exists a unique x such

that F (·;x, x) is a distribution function. Furthermore, rewriting the last inequality in the

proof of Lemma 7, we get x ≤ x+ µ
c

+ σ2

2µ
and thus x→ −∞⇒ x→ −∞. Consider a left

endpoint x ≥ 0 and a right endpoint x such that (a) is satisfied. Then, φ(x) < 1 for all

x ∈ [x, x] and hence E(φ(x)) < 1 for x ∼ F (·, x, x). Now consider a left endpoint x < 0

and a right endpoint x < 0 such that (a) is satisfied. Then, φ(x) > 1 for all x ∈ [x, x]

and hence E(φ(x)) > 1 for x ∼ F (·, x, x). Equation (b) is equivalent to E(φ(x)) = 1. By

continuity and the Intermediate Value Theorem, there exists an x, x such (a) and (b) are

satisfied. This concludes the first implication of the statement in the proposition.

It remains to show that if all players play according to the distribution F , there is
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no profitable deviation. For this purpose, define Ψ as the unique solution to Eq. (1)

with the boundary conditions Ψ(x) = 0 and Ψ′(x) = 0. By construction, the process

Ψ(X i
t)−

∫ t
0
c(X i

s)ds is a martingale and Ψ(x) = w(x) for all x ∈ [x, x]. As Ψ′(x) < 0 for

x < x and Ψ′(x) > 0 for x > x, Ψ(x) > w(x) for all x /∈ [x, x]. For every stopping time

S, we use Itô’s Lemma to calculate the expected value

E

(
w(XS)−

∫ S

0

c(Xt)dt

)
≤ E

(
Ψ(XS)−

∫ S

0

c(Xt)dt

)
= Ψ(X0) = w(X0) = E(w(Xτ )) .

The last equality results, as each agent is indifferent to stop immediately with the expected

payoff w(X0) or to play the equilibrium strategy with the expected payoff E(w(Xτ )). The

inequality implies that any possible deviation strategy obtains a weakly lower payoff than

the equilibrium candidate. Q.E.D.

Proof of Proposition 2: The function Φ is Lipschitz continuous with constant 1√
2π

.

Consequently, it suffices to prove Lipschitz continuity of F−1 to get the Lipschitz conti-

nuity of F−1 ◦ Φ. The density f is

f(x) =
F (x)−n+2

n− 1

2

σ2

∫ x

x

c(z)φ(x− z)dz =
F (x)−n+2

n− 1

2

σ2

(∫ x

x

c(z)dz − µF (x)n−1

)
.

As f(x) > 0 for all x > x, it suffices to show Lipschitz continuity of F−1 at 0. We

substitute x = F−1(y) to get

(f ◦ F−1)(y) ≥ 1

n− 1

2

σ2

(
y2−n( min

z∈[x,x]
c(z))(F−1(y)− F−1(0))− µy

)
.

We define c = infz∈[x,x] c(z). Rearranging with respect to F−1(y)− F−1(0) gives

F−1(y)−F−1(0) ≤
((n− 1)σ2

2
(f ◦F−1)(y)+µy

)yn−2

c
≤
(

(n− 1)σ2

2
f(x) + µ

)
yn−2

c
.

This proves the Lipschitz continuity of F−1 for n > 2. Note that for two agents n = 2 the

function F−1 is not Lipschitz continuous as f(x) = 0. However, we show in the following

paragraph that F−1 ◦ Φ is Lipschitz continuous for n = 2.

F (x) =

∫ x

x

c(z)

µ
(1− φ(x− z)dz ≤

(
sup
z∈[x,x]

c(z)

µ

)(
x− x− σ2

2µ
(1− φ(x− x))

)
We define c = supz∈[x,x] c(z). A second order Taylor expansion around x yields that, for

an open ball around x and x < x, we have the following upper bound

x− x− σ2

2µ
(1− φ(x− x)) ≤ 2µ

σ2
(1− φ(x− x))2 .
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For an open ball around x, we get an upper bound on F (x) ≤ 2c
σ2 (1 − φ(x − x))2 and

hence the following estimate

1− φ(x− x) ≥
√
σ2

2c
F (x) .

We use this estimate to obtain a lower bound on f depending only on F

f(x) =
2

σ2

(∫ x

x

c(z)φ(x− z)dz

)
≥ 2c

σ2

(
σ2

2µ
(1− φ(x− x))

)
≥ c

µ

√
σ2

2c
F (x) .

Consequently, there exists an ε > x such that, for all x ∈ [x, ε), we have an upper bound

on (φ◦Φ−1◦F )(x)
f(x)

. Taking the limit x→ x yields

lim
x→x

(φ ◦ Φ−1 ◦ F )(x)

f(x)
≤ lim

x→x

(φ ◦ Φ−1 ◦ F )(x)

c
µ

√
σ2

2c
F (x)

≤

√
2cµ2

c2σ2
lim
y→0

(φ ◦ Φ−1)(y)
√
y

= 0 .

Hence, we have shown that F−1 ◦Φ is Lipschitz continuous. Thus, there exists a bounded

time stopping strategy (for an explicit construction, see Ankirchner and Strack, 2011,

Theorem 2) which embeds F . Q.E.D.

Proof of Proposition 3: The stopping strategy constructed in Ankirchner and Strack

(2011) is not a barrier stopping time. However, Rost (1976) shows in his Theorem 1 that

if there exists a stopping time that embeds the distribution F , there also exists a barrier

stopping time which embeds F . Furthermore, by Theorem 2 in Rost (1976), this first

leaving time of a set minimizes

E(τ −min{τ, t}) = P(τ ≥ t)E(τ − t | τ ≥ t)

over the set of all stopping times that embed F for all t ∈ R+. As the stopping time

constructed in Ankirchner and Strack (2011) is bounded by T , the first leaving time of a

set constructed in Rost (1976) is also bounded by T . Q.E.D.

Proof of Lemma 9: For any bounded stopping time, for any σ > 0, feasibility implies

that x ≤ 0. By contradiction, assume there exists a constant ε such that x ≤ ε < 0 for

some sequence (σk)k∈N with limk→∞ σk = 0. Then F ′ is bounded away from zero by

F ′(x) =
F (x)2−n

n− 1

2

σ2

∫ x

x

c(z)φ(x− z)dz ≥ 1

n− 1

2

σ2

∫ x

ε

c(z)φ(x− z)dz

≥ c

µ(n− 1)
(1− φ(x− ε)) .
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For every point x < 0, limσk→0 φ(x) =∞. Thus,

lim
σk→0

∫ 0

x

F ′(x)φ(x)dx > 1 ,

which contradicts feasibility, because∫ 0

x

F ′(x)φ(x)dx ≤
∫ x

x

F ′(x)φ(x)dx = 1 . Q.E.D.

Proof of Proposition 5: In equilibrium, agents are indifferent between stopping

immediately and the equilibrium strategy. Their expected profit is thus w(0), which is

strictly positive as x < 0. Q.E.D.

Proof of Lemma 10 and Lemma 11: Define ∆ = x − x. Rearranging the density

condition 1 = F (x) = c
µ
[∆− σ2

2µ
(1− φ(∆))] yields

exp

(
−2µ∆

σ2

)
= −2µ

σ2

[
∆− (

µ

c
+
σ2

2µ
)

]
.

The solution to the transcendental algebraic equation e−a∆ = b(∆ − d) is ∆ = d +
1
a
W0(ae

−ad

b
), where W0 : [−1

e
,∞) → R+ is the principal branch of the Lambert W -

function. This branch is implicitly defined on [−1
e
,∞) as the unique solution of x =

W (x) exp(W (x)), W ≥ −1. Hence,

∆ =
µ

c
+
σ2

2µ

[
1 +W0

(
− exp(−1− 2µ2

cσ2
)

)]
and

φ(∆) = exp

(
−2µ2

cσ2
− 1−W0(− exp(−1− 2µ2

cσ2
))

)
= exp (−1− y −W0(− exp(−1− y))) = h(y) .

Note that φ(∆) only depends on y = 2µ2

cσ2 . As ∆ ≥ 0 it follows that h(y) = φ(∆) ∈ [0, 1].

Moreover, h : R+ → [0, 1] is strictly decreasing in y, as W0 and exp are strictly increasing

functions. For constant costs, the feasibility condition from Lemma 8 reduces to

1 =

∫ x

x

F ′(x)φ(x)dx =
cσ2

2µ2

[
1

2
φ(x) +

1

2
φ(2x− x)− φ(x)

]
.

Dividing by φ(x) gives

φ(−x) =
cσ2

2µ2

[
1

2
+

1

2
φ(∆)2 − φ(∆)

]
=

1

y

[
1

2
+

1

2
h(y)2 − h(y)

]
=

1

2y
(1− h(y))2 = g(y)
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As x ≤ 0 it follows that g(y) = φ(−x) ∈ [0, 1]. The derivative of g is given by

g′(y) = − 1

2y2
(1− h(y))2 +

2

2y
(1− h(y))h′(y) .

As h is a strictly decreasing function from R+ to [0, 1] it follows that g : R+ → [0, 1] is

strictly decreasing in y. We calculate x as

x = −φ−1(φ(−x)) =
σ2

2µ
log(g(y)) =

σ2

2µ
log

(
1

2y
(1− h(y))2

)
= −σ

2

2µ
[2 log (1− h(y))− log(2y)] .

Simple algebraic transformations yield the expression for x in Lemma 10. We plug in

x = σ2

2µ
log(g(y)) and φ(−x) = g(y) in the distribution for the constant cost case to get:

F (0) = w(0) =
c

µ

[
−x− σ2

2µ
(1− φ(−x))

]
=
c

µ

[
−σ

2

2µ
log(g(y))− σ2

2µ
(1− g(y))

]
=

1

y
[g(y)− log(g(y))− 1] .

Hence, the value of F (0) depends on the value of the fraction y = 2µ2

cσ2 in the above way,

which completes the proof of Lemma 11. Q.E.D.

Proof of Proposition 6: By Lemma 11, it suffices to show that the profit π =

w(X0) = w(0) = F (0) is increasing in y. Consider the following expression from the

previous proof:

F (0) =
1

y
[g(y)− log(g(y))− 1] .

Note 1
y

is positive and g(y)− log(g(y))−1 is positive as F (0) ≥ 0. The function x− log(x)

is increasing in x. Hence, g(y)− log(g(y))−1 is decreasing in y, because g(y) is decreasing

in y. As 1
y

is also decreasing in y, the product 1
y
[g(y) − log(g(y)) − 1] of two decreasing

positive functions is decreasing in y. Q.E.D.
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