
 

 

 

Endogenous economic growth through connectivity

Citation for published version (APA):

van Zon, A. H., & Mupela, E. (2010). Endogenous economic growth through connectivity. (UNU-MERIT
Working Papers; No. 001). Maastricht: UNU-MERIT, Maastricht Economic and Social Research and
Training Centre on Innovation and Technology.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Maastricht University Research Portal

https://core.ac.uk/display/231383251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cris.maastrichtuniversity.nl/portal/en/publications/endogenous-economic-growth-through-connectivity(e6c03dc7-aa32-444f-b545-433e3e9a72a5).html


1 

 

 
 
 
 
 

 
 
 

 
#2010-001 
 

Endogenous Economic Growth through Connectivity 
 

Adriaan van Zon and Evans Mupela 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Working Paper Series 

 

 
United Nations University - Maastricht Economic and social Research and training centre on Innovation and Technology 

Keizer Karelplein 19,  6211 TC Maastricht, The Netherlands 
Tel: (31) (43) 388 4400, Fax: (31) (43) 388 4499, e-mail: info@merit.unu.edu, URL: http://www.merit.unu.edu 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

Endogenous Economic Growth through Connectivity 

 

by Adriaan van Zon and Evans Mupela 

(UNU-MERIT, December 2009) 

 

 

Abstract 

 

In this paper we show the benefits of regional connectivity and specialization to growth. 

Starting with one region we show how welfare measured by utility per head increases as the 

number of connected regions increase. We assume a common connectivity infrastructure 

implemented by satellite, through which the ‘Great Connector’ (GC) is able to add new regions 

to the pool of connected regions by taking a tax form those already connected. We find that 

increasing production costs leads to faster transitions towards the steady state whereas 

increasing transportation and communication costs tends to lengthen the transition. The results 

point to reductions in transportation and communication costs in particular as a suitable vehicle 

to speed up growth. The results also show a strong positive effect of reductions in the cost of 

making new connections. This has a significant impact on both the steady state growth rate and 

on transitional growth, while significantly reducing the transition period.  
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1. Introduction 

 

Since the days of Adam Smith and David Ricardo, it is widely known that the specialization of 

production activities and the subsequent trading of the fruits of such specialization is able to 

generate higher benefits from resource use than would be possible in the case of pure self 

sufficiency. Smith provides the famous example of the pin factory, where the set of all workers 

specialized in different sub-tasks of pin-making taken together are more productive than the 

same set of workers if each individual worker would have to cover all sub-tasks by himself. 

With David Ricardo, the benefits from international specialization arise from the so-called 

comparative advantages of countries in particular parts of the tradable goods-spectrum. The 

sources of welfare increase are indeed concentration of productive activity on comparative 

advantage goods and the subsequent trading/exchanging of the products/services produced 

among countries. This requires a high degree of connectedness between trading partners that is 

assumed a priori but does not have to exist in actual fact.  

 Take rural areas in African developing countries, for example. Communities in such 

areas are often relatively disconnected from other communities, since both means of 

transportation like cars, trains, and complementary infrastructure (roads, bridges, railroads) 

and means of tele-communication are often lacking. This implies that such communities are 

forced to be self-reliant to a large extent, and, if such communities are relatively small, which 

they usually are, then it may be difficult for such communities to attain a level of welfare 

through the specialization of production activities that is attainable for larger communities. 

 In this paper, we want to look into this matter more closely, by formulating a very 

simple or even simplistic model of growth through specialization that relies on the provision of 

communication and transportation infrastructure for welfare growth to take off. The growth in 

welfare is due to communities becoming connected through communication channels and 

through transportation infrastructure, providing the possibility of trade in goods and services. 

Hence, in our model, the provision of information and transportation infrastructure is a 

condition sine qua non for growth to occur. 
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 To find out how large the impact of the provision of such infrastructure is on economic 

growth, we formulate a model that is largely based on a stripped-down version of Krugman 

(1979), except that we use it as a template for the description of how a community works when 

left on its own. Then we add an additional top-layer to the Krugman template in which we 

allow different communities to communicate and trade with each other. Moreover, by allowing 

the ‘local’ community to go ‘global’ in this way, all communities that are connected to each-

other can concentrate on their comparative strengths, and trade. By explicitly introducing costs 

of trading, and costs of being connected, it is not self-evident that being connected pays off.  

Nonetheless, we try to find out how a benevolent central planner would have to play his role as 

the ‘Great Connector’  (further called GC) in such a way as to optimize the development over 

time of utility per head for all people ‘touched’ by the GC. We will show that under particular 

parameter constraints, the GC will want to connect more and more people, because it is in the 

interest of the people already connected to do so. We look into the steady state rate of the 

expansion of such connections, but also at the corresponding transitional dynamics.  

We find that increasing production costs leads to faster transitions towards the steady state 

whereas increasing transportation and communication costs tends to lengthen the transition. 

The results point to reductions in transportation and communication costs in particular as a 

suitable vehicle to speed up growth. 

The results also show a strong effect of reductions in the cost of making new connections. This 

has a significant impact on both the steady state growth rate and on transitional growth, while 

significantly reducing the transition period. 

 The organization of the paper is as follows. In section 2 we describe the model. Section 3 

provides the outcomes of some sensitivity analyses, while section 4 is devoted to the policy 

implications of the model. Section 5 concludes. 

 

2. The Model 

2.1 Krugman Preliminaries 

 In this section we provide the elements that we will be using from the Krugman (1979) 

model. We will leave out the technology features of Krugman (1979), assuming that the set of 



7 

varieties of  goods/services that could be imitated is so large and that people are so good in 

imitating that the rate of imitation is unbounded in principle, but for the existence of fixed costs 

in producing a particular variety. We also leave out the North-South asymmetry present in 

Krugman (1979), and so end up with a South-South type of model instead, where all ‘countries’ 

connected to each other would in principle be able to cover the same spectrum of goods as they 

should when they would be self-reliant.  Finally, we drop the notion that countries are engaging 

in trade with each other, but rather adopt the view that it is organized communities of people 

that do the specialization and trading, and that there could well be many communities inside a 

country. To keep things as simple as possible, we have but one factor of production, i.e. labour, 

and as we want to expand the set-up with potentially infinitely many communities, we make 

use of the assumption that all communities are identical, except for the fact that they may be 

connected or not. 

 

The demand for goods and Community welfare 

 As regards the demand for goods and services, we assume that if there are N different 

goods that could be produced by a community, then the utility that an individual belonging to 

that community could gain from spending a budget B on the consumption of these N varieties 

is given by (1). The utility function is a standard CES function with equal contribution of all 

varieties to utility, which, by a suitable choice of units of measurement then boils down to: 

 

( )
ρ

ρ
/1

1 





= ∑

=

N

i
ixU          (1) 

 

In equation (1), which is the well-known Dixit-Stiglitz-Spence utility function, )1/(1 ρσ −=  is 

the elasticity of substitution between varieties. The inverse demand function for a particular 

variety will be given by: 

 

λλ ρρ /// 11 −− ⋅=∂∂= iii xUxUp  Ni ..1=∀      (2) 
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Multiplying (2) by xi and subsequently summing over i gives the familiar result that BU /=λ , 

i.e. the Lagrange multiplier of the utility maximization problem of which (2) is the first order 

condition (further called FOC) equals utility per dollar spent on consumption in the 

consumption optimum. 

 If prices are identical for all varieties consumed, i.e. ippi ∀= , then the level of 

consumption of each variety would be the same as well, ixxi ∀= , and so the budget would 

have to be distributed evenly over all varieties, implying that: 

 

pNBx /)/(=          (3) 

 

(3), when substituted in (1), implies that: 

 

1/1/ −⋅= ρNpBU          (4) 

 

For 1<ρ , i.e. an elasticity of substitution greater than one, (4) shows the impact of Love of 

Variety on utility: the greater N, the greater total utility, ceteris paribus. Note that in equation (4), 

pB /  actually represents the level of utility for N=1.  

 Let L  be the size of the total community in terms of the number of persons. Then the 

utility for the community, UC  would be given by: 

 

1/1/ −⋅⋅= ρNpBLUC          (5) 

 

2.2 Connecting with another Community 

 Now assume that instead of all goods commanding the same consumer price, there are 

two groups of goods commanding different prices. The first group of goods will be thought to 

be produced within the community, while the second group of goods is obtained from a 

different source external to the community. These then are goods ‘imported’ into the 
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community. The internally produced goods will in part have to be exported to the external 

community to pay for the imports.  

 Let x now stand for domestically produced (and therefore exported) goods, and let m be 

the common level of imported goods. Furthermore let q be the corresponding price of m. In that 

case, the level of individual utility would be given by: 

 

ρρρ /1)( mNxNU mx ⋅+⋅=         (6) 

 

where Nx is the number of varieties that are domestically produced and exported, and Nm is the 

number of varieties of imported goods. The corresponding budget constraint is then given by: 

 

qmNxpNB mx ⋅⋅+⋅⋅=         (7) 

 

Maximizing (6) subject to (7) by choosing the individual1 levels of xi Niix ≤≤∀ 1|  and 

mj Njjm ≤≤∀ 1| , results in: 

 

Upx ⋅⋅= −σλ)(          (8.A) 

Uqm ⋅⋅= −σλ)(          (8.B) 

Furthermore, when substituting (8.A) and (8.B) into (6) we find that: 

 

( ) )1/(111 σσσλ −−−− ⋅+⋅= qNpN mx        (9) 

 

                                                 
1 To obtain the individual levels, the summations over i and j should be substituted back into the utility 

function, and the partial derivatives w.r.t. xi and mj should be evaluated first, and only then the 

symmetry assumptions qqppxxmm jiij ==== ,,,  should be substituted in the FOCS. However, in 

case of equations (6) and (7), both maximization w.r.t. individual x’s and m’s or w.r.t. average x’s and m’s 

would generate the same results, as the FOC’s would be the same due to the cancellation of the Nx’s and 

Nm’s at both sides of the FOC’s. 
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In addition, multiplying (8.A) and (8.B) by pN x ⋅  and qNm ⋅ , respectively, and adding 

up the results would give us: 

 

( ) BUUUqNpNBmqNmxpN mxx /111 =⇒⋅⋅=⋅⋅+⋅⋅==⋅⋅+⋅⋅ −−−−− λλλλ σσσσσ  

           (10) 

where we have used (9) to get rid of the bracketed term in (10). Equation (10) can be used to 

substitute for U in equations (8.A) and (8.B) leaving the levels of consumption of domestic and 

imported goods as a function of the available budget and the corresponding consumer prices 

and the Lagrange multiplier only: 

 

Bpx ⋅⋅= −− σσ λ1          (11.A) 

Bqm ⋅⋅= −− σσ λ1          (11.B) 

 

2.3 Goods and Services Supply with Two Connected Communities 

 The supply of each individual good can be modeled using the standard assumption that 

each individual supplier is of measure zero, i.e. his own actions do not noticeably affect the 

average cost of a ‘util’ (i.e. a unit of utility), hence 1/ λ , hence λ . So, from the perspective of an 

individual supplier, both the budget and the Lagrange multiplier are given in equations (11.A). 

For a profit maximizing supplier of domestic goods, the resulting profit function will therefore 

be given by:2 

 

))(( lzxwzqxp +⋅++⋅⋅−⋅+⋅= βααπ       (12) 

In equation (12),  π  represents the profit flow for the local producer of each variety. This 

producer sells his produce on the domestic market at price p, but also to the external market at 

price q. The corresponding volumes sold are x and z. These price/volume combinations have to 

be consistent with the respective demand equations, such as those given by (11.A). For the 

                                                 
2 From now, we drop the subscripts indicating a particular variety, since we assume that the production 

technologies are symmetric as well. 



11 

export volume z, the corresponding demand for imported goods by the external community 

would function as the relevant demand constraint i.e. equation (11.B) would be relevant, but 

then with the foreign budget, and foreign domestic prices and foreign import prices (i.e. the 

export price r in this case), replacing B, p and q, respectively. 

 As regards the production technology, we have assumed that the production of a variety 

requires the input of labor at a wage rate w to perform three different functions. The production 

of each variety requires l  units of labor as fixed set-up costs. Moreover, the variable cost of 

producing a variety amounts to α  units of labor per unit of output. Finally, if a unit is shipped 

to an external community, then that requires β  additional units of labor per unit of output to 

cover per unit communication and transportation resource requirements. Note that for reasons 

of simplicity we assume that α  and β  are independent of the variety and the community.  

 Maximization of (12) conditional on the demand constraints being met, then results in 

the profit maximizing prices given by: 

 

ρα /wp ⋅=           (13.A) 

ρβα /).( wq +=          (13.B) 

 

 Note that, as usual, we need to assume that 10 << ρ , since otherwise profits would be 

negative. 

 

2.4 Benefits from Additional Connections 

 Under the symmetry assumptions employed so far (i.e. same utility functions, same 

production technologies) and adding a further one by assuming that communities are of the 

same size, it must be the case that if we have W connected communities, then the outside world 

to which each individual communities is connected consists of W-1 communities in turn. In 

addition to this, if the local community exports Nx varieties to the outside world, then, because 

of the symmetry assumptions made before, the outside world must be exporting (W-1).Nx 

varieties to the local community in turn. This begs the question what the value of Nx would be? 
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 We can determine the value of Nx by using the assumption of free entry up to the point 

that profits per variety drop to zero. To this end, we can substitute equations (13) as well as our 

observation that xm NWN ⋅−= )1( into (9) while taking into account that the foreign budget 

equals (W-1)*B, while, moreover, the Lagrange multipliers in all communities must be the same, 

because of the symmetry assumptions made above. In that case, we find after some tedious 

algebra that: 

 

)/()1(0/))1(( lwBNNwNlB xxx ⋅−⋅=⇒=⋅⋅−−⋅= ρρπ    (14) 

 

Note that in equation (14), )/( wlB ⋅  is the absolute maximum of the number of varieties 

that could be produced, because for this value of Nx total expenditures B are just enough to 

cover the total set-up cost, leaving no resources to actually produce a strictly positive level of 

the Nx varieties. Note moreover that if the elasticity of substitution between varieties would 

increase, i.e. if ρ  would go up, then the number of varieties supplied to the market would go 

down. This is because in that case the profit margin would go down, ceteris paribus.3 This would 

make it harder to recover the fixed set-up cost per variety. 

 Using (14), the total number of varieties (V) consumed by W connected communities 

would be given by: 

 

)/( lwBWV ⋅⋅⋅= σ          (15) 

 

It should now be noted that since profits are zero because of the free entry assumption, 

all income generated must be wage-income. Hence, the consumer budget in each community is 

given by LwB .= . Substituting this result into (15) then gives rise to: 

 

σ/)/( lLWV ⋅=          (16) 

                                                 
3 As the reader can easily verify for himself using (13), the profit margin on local and external sales equals 

ρ−1  as a percentage of marginal cost. 
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Again, lL /  is the absolute maximum of the number of varieties that each community would be 

willing to support. Hence, W times that quantity is the absolute maximum number of varieties 

that all communities could produce. Since 1>σ , the actual number of varieties produced by all 

communities taken together is strictly smaller than V. 

 We can now obtain utility per capita (further called UPC) in each of the W connected 

communities by substituting the previous results into (6):  

 

( ) ( )( ) )1/(111)1/()1/(1 )1(1}/{/
−−−−− +⋅−+⋅⋅−⋅==

σσσσσσ βαασσ WlLLUUPC  (17) 

 

Since we must have that 1>σ , it follows directly that 0/ >∂∂ WUPC , 0/ >∂∂ LUPC , 

0/ <∂∂ lUPC , 0/ <∂∂ αUPC , 0/ <∂∂ βUPC , i.e. under these parameter values and 

symmetry assumptions, rational communities would have an interest in extending the number 

of connections with other communities. In addition, utility per capita would rise with the size of 

each individual community, while it would fall with the level of fixed set-up labor cost. Finally, 

a rise in transportation and communication costs would negatively affect utility per capita in all 

connected communities.  

 The analysis above still leaves the following questions unanswered: 

a) Having established that 0/ >∂∂ WUPC , does an optimum W&  exist that maximizes 

utility for all connected communities? 

b) if an optimum W&  exists, how would it depend on the parameters of the model? 

Finding answers to these questions is the subject of the next section.  

 

2.5 Optimum Network Expansion Rates  

  Let us now assume that it takes some labor resources to connect thus far disconnected 

communities, by building ground-stations in the newly connected communities as well as 

transportation infrastructure.4 As before, we make the simplest assumption possible, i.e. that the 

                                                 
4 To keep things as simple as possible, we assume that there are only fixed set-up costs in doing this, so that the 
infrastructure is infinitely lived. 
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resources needed to make new connections are proportional to the number of newly connected 

communities. Thus we get: 

 

WLW ⋅= δ&           (18) 

 

In equation (18), LW are the total labor resources used for expanding the number of connected 

communities. Let each connected community contribute a fraction τ  of its available labor force 

to this activity. Then we must have that WLLW ⋅⋅= τ , and consequently it follows from (18) 

that: 

 

τδ ⋅⋅= LŴ           (19) 

 

In equation (19), Ŵ  is the instantaneous growth rate of the number of communities that is 

connected at any time.  

 If a fraction τ  of total real resources is used for connecting communities, then the new 

real budget available for spending on goods and services within each community must be equal 

to B⋅− )1( τ . This change in the real budget would not change optimum price setting behavior, 

but it would change both the supply of goods and services and the optimum number of 

varieties produced within each community. When we redo the analysis above, but with 

B⋅− )1( τ  replacing B , we find that the new number of varieties by community becomes a 

fraction τ−1  of the old number of varieties: 

 

στ /)1()/( −⋅= lLN x         (20) 

 

 According to (20), the introduction of the costs of connecting communities therefore 

reduces the number of varieties supplied by each community. Utility per capita would fall on 

that account, but for the fact that the number of communities   connected (i.e. W) increases as 

well, and therefore also, potentially at least, the total number of varieties available to all 
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connected communities (cf. (17)). Substituting (20) and (13) into (6), while taking into account 

that xm NWN ⋅−= )1( , we find that the new expression for utility per capita becomes: 

 

( ) ( )( ) )1/(111)1/()1/(1 )1(1)}1(/{
−−−−− +⋅−+⋅⋅−⋅−⋅=

σσσσσσ βαασστ WlLUPC  (21) 

 

It follows from (21) that 0/ <∂∂ τUPC .  

 We can now construct an optimum control problem in which the GC would want to 

maximize the present value of total utility in all connected communities, while using (21) in the 

objective function to be maximized. An alternative objective function would be the 

maximization of the utility per head of community initiating the integration process 

communities. As the communities are assumed to be symmetric, it should be the case that if for 

the initiating community it would be beneficial to expand the network of connected 

communities, then it would have to be beneficial for the newly connected communities as well.  

The corresponding Hamiltonian reads: 

 

WWLUPCtH &⋅+−⋅⋅⋅⋅−= − ψθµ θ )1/(.)exp( 1      (22) 

 

 In equation (22), µ  is the rate of discount, while θ/1  is the intertemporal elasticity of 

substitution and ψ  is the co-state variable associated with the state variable W.5 The control 

variable of the system is τ . The corresponding FOC’s to this problem are implicitly given by the 

requirements 0/ =∂∂ τH , ψ&−=∂∂ WH / , WH &=∂∂ ψ/ and the transversality condition that 

requires 0)()(lim =⋅∞→ tWtt ψ . Doing the algebra, results in a set of non-linear differential 

equations, that, under certain conditions, converges to a steady state when W(t) approaches 

infinity. The system of differential equations is given by: 

 

{ }1))1/(()1( −⋅++−−⋅⋅⋅= ττψψ CBWWA&      (23.A) 

                                                 
5 Note that we disregard the case where  1=θ . 
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{ }µττψψ −+⋅−⋅++−⋅+⋅⋅= ))1()1/(()}1()1/{(ˆ CCBWCWW &&    (23.B) 

τ⋅= AŴ           (23.C) 

 

with δ⋅= LA , ( ) 1/)( −+= σαβαB , )1/()2( θθσ −−+=C . 

 It should be noted that for W approaching infinity, the ratio (W-1)/W will approach 1, in 

which case the system becomes more manageable. Using the requirement that in the steady 

state τ  must be constant (otherwise Ŵ  can’t be constant, cf. equation (19)), it follows that in the 

steady state 0=τ& , implying that the steady state solution is given by:  

 

( ) ( )
( )2()

)1()(1

)2(

))2(()1(

−+⋅−⋅⋅
⋅−−−⋅⋅⋅−=

+⋅⋅
−+⋅⋅+=

θσθσδ
µθθσδσµτ

L

L

CCA

CAC
   (24.A) 

 

( ) ( )
( )2()

)1()(1

)2(

))2(()1(ˆ
−+⋅−

⋅−−−⋅⋅⋅−=
+⋅

−+⋅⋅+=
θσθσ

µθθσδσµ L

CC

CAC
W    (24.B) 

( )
( )2()

)1())1(

)2(

)1()2(
ˆ

22

−+⋅−
−⋅−⋅⋅−⋅−−=

+⋅
⋅+−+⋅=

θσθσ
θθσδµσµψ L

CC

CCA
  (24.C) 

 

where a bar over a variable denotes the steady state value of that variable. 

 

Parameter Constraints 

 The transversality condition requires that 0ˆˆ <+ψW , which gives rise to the following 

parameter constraint:  

 

0
2

)1()( <
−+

⋅−−−⋅⋅
θσ

µσθσδL
       (25.A) 

In order to be able to have positive steady state growth in the number of connected 

communities, we require that 0ˆ >W , which implies that:  
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( ) ( )
( ) 0

2()

)1()(1 >
−+⋅−

⋅−−−⋅⋅⋅−
θσθσ

µθθσδσ L
      (25.B) 

 

In order to get the ‘standard’ results that the growth rate depends negatively on the rate of 

discount µ , we require that: 

 

0
)2()(

)1()1(
0/ˆ >

−+⋅−
−⋅−

⇒<∂∂
θσθσ
θσµW       (25.C) 

 

If, moreover, we want a rise in the productivity of connection resources to have a positive 

impact on the steady state growth rate, we should have: 

 

0
2

)1(
0/ˆ >

−+
−⋅

⇒>∂∂
θσ
σδ L

W        (25.D) 

 

 

Since 1>σ  by assumption and since L  must be strictly positive, it follows from (25.D) that we 

must have 02 >−+θσ . But then it follows from (25.C) that the ratio 0)/()1( >−− θσθ , 

implying that  either σθ << 1  (further called Case I) or 1>> σθ  ( further called Case II) .  

 The parameter constraints for the two cases are summarized in Table 1. It follows from 

the Table that Case II is the least restrictive case of the two in terms of choosing µ . However, 

Case II also implies a lower intertemporal elasticity of substitution than Case I, and hence a 

lower willingness to (temporally) divert resources. 
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Table 1. Parameter Constraints 

   

2.6 Transitional Dynamics 

 The system of differential equations given by (23) is non-linear in the variables W,τ  and 

ψ . By means of substituting out the differential equation for the co-state variable, we can 

reduce (23) to a two-dimensional system that is still non-linear, but that is saddle-path stable 

under certain parameter conditions (see above) and that features steady state growth. When we 

would introduce an auxiliary variable Z defined as )1/( −+= BWWZ  (cf. (23.B)), the quasi-

state variable Z converges to 1, for W goes to infinity. In addition, the growth rate of Z is given 

by )1/()1(ˆˆ −+−⋅= BWBWZ . Substituting these relations into (23) and substituting out the 

growth rate of ψ , then leaves a two-dimensional system, with a constant steady state, given by: 

τ⋅−⋅= )1(ˆ ZAZ          (26.A) 

 

τ
ττµτ

⋅
−⋅−⋅+⋅++⋅+−⋅−=

C

CZCAC )1()))1(1()1()1((
ˆ     (26.B) 

 

The locus of combinations of Z and τ  for which Z and τ  are not growing is obtained by setting 

0ˆ =Z  in (26.A) and setting 0ˆ =τ  in (26.B), giving: 

 

1=Z            (27.A) 

Constraint Case I )01( >>> θσ  Case II )1( >> σθ  

Transversality ( ) 0)1/( >−−⋅⋅> σθσδµ L  ( ) 0)1/( <−−⋅⋅> σθσδµ L  

0ˆ >W  ( ) 0)1/( >−−⋅⋅< θθσδµ L  ( ) 0)1/( >−−⋅⋅< θθσδµ L  

0/ˆ >∂∂ δW  02 >−+θσ  02 >−+θσ  

0/ˆ <∂∂ µW  0)/()1( >−− θσθ  0)/()1( >−− θσθ  

1<τ  ( ) 0)1/( >−−⋅⋅> σθσδµ L  ( ) 0)1/( <−−⋅⋅> σθσδµ L  
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τ
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CCA

C        (27.B) 

 

The 0ˆ =Z -locus is given by (27.A) and the 0ˆ =τ -locus by (27.B). The steady state value of Z is 

obviously equal to 1, as it should be, while the steady state value of τ  is given by (27.B) after 

substituting (27.A), which gives the same results as (24.A), after substituting the definitions of 

A, and C in terms of the structural parameters of the system. Note that under the assumptions 

of Case II, the 0ˆ =τ -locus has a vertical asymptote at 1/)1( <+=′ CCτ  since C must then be 

negative, and 1)11/()1(()2/()1(/)1( <−+−−=−+−=+ θσσθσσCC , as Case II implies 

1>> σθ . Under the Case I assumptions the asymptote lies at a value of 1>τ , and we need a 

further constraint on the parameters to ensure that the steady state value of 1<τ  (see also the 

last line of Table 1). Moreover, system (26.A) can be shown to be saddle-path stable in both 

cases. The difference between the two cases is therefore that Case I is more constrained than 

case II, while in Case II, the intertemporal elasticity of substitution between periods is smaller 

than the elasticity of substitution between goods within periods. Henceforth, we will focus on 

Case II. 

 The saddle-path stability of both cases follows readily from differentiating (26.B) with 

respect to Z, giving: 

 

τ
τττ

⋅
−⋅−⋅+⋅−=

∂
∂

C

CA

Z

)1())1(1(ˆ
       (28) 

 

It follows that CCCCsignZsign /)1(0|0)/)1(()/ˆ( +<<∀<++−=∂∂ ττττ . Hence, if we 

would move vertically from a point on the 0ˆ =τ -locus for a given value of Z, τ̂  would become 

negative, while the opposite would be the case if we would move downward. Note that this 

would hold for any value of Z, since Z∂∂ /τ̂  is independent of Z. Note, moreover, that for 

combinations of Z and τ  above the 0ˆ =Z -locus, the growth rate of Z becomes negative, while 

the opposite holds for points below the 0ˆ =Z -locus. Consequently, the phase-diagram 

associated with (26) and (27) looks like Figure 1. 
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Figure 1. The Phase-Diagram 

 

Point A in Figure 1 represents the steady state. The four areas labeled I-IV in Roman 

numerals show that under the Case II parameter restrictions, the model exhibits saddle-path 

stability. The horizontal solid line at Z=1 is the 0ˆ =Z -locus, while the solid convex curve is the 

0ˆ =τ -locus. The saddle-path is the remaining solid curve. The horizontal dotted line is the 

value of Z at time zero. The 0ˆ =τ -locus has a point of intersection with the vertical in the 

positive quadrant. It depends on the actual parameter values whether it is above or below Z0, 

but where exactly it is relative to Z0 doesn’t make a qualitative difference. To keep the Figure as 

simple as possible, we have drawn it as it is. 

 It follows from the Figure that the optimum path for the allocation of communication 

resources and the corresponding path for the expansion of Z can relatively easily be obtained by 

means of the method of Backward Integration, i.e. obtain the time-path for Z (and τ ) by making 

time run backward, starting at Z=1 and decreasing time up to the moment when Z=Z0.  In that 

τ ′
0τ

 

A/µ -(1+C) 

I 

Z0=1/B 
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Z 

τ
 

II 
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way we can obtain the corresponding initial value of 0τ , and consequently the entire time-path 

for τ  is thus easily obtained since the steady state value of τ  is known (cf. Equation (24.A)). 

  

2.7 Solving for the Transition Path Using Backward Integration 

 Because of the non-linearity of (26), the solutions for the speed of connection and the 

corresponding resource allocation requirements can unfortunately not be obtained by analytical 

means. Therefore, in this section, we will use Mathematica to show how the adjustment path 

itself, but also the overall shape of the transition path changes with the parameters of the 

system. To do this, we use the method of Backward Integration (Brunner and Strulik (2002)). 

The method is suitable, since we know where the transition path ends (i.e. in the steady state), 

while we also ‘know’ where the quasi-state variable Z starts (i.e. at BZ /10 = ). Hence by 

integrating (26) backwards in time, and ‘waiting’ till Z hits the Z0-mark in Figure 1, we also 

obtain the corresponding initial value of τ , i.e. 0τ  in Figure 1. The only problem is that when 

we would start integrating backward while being exactly in the steady state, we wouldn’t be 

able to get away from there, since the speed of adjustment in the steady state is exactly equal to 

zero. Consequently, we need to move slightly outside the steady state, while being on the 

transition path, and then start the integration process. In order to do that we can draw a tiny 

circle around the steady state (with radius ε , thus defining a (circular) ε -region around the 

steady state) and pick the point of intersection of that circle with the transition path as the initial 

values for τ  and Z in the backward integration process. This in turn requires that we linearize 

(26) around the steady state, and obtain the Eigen values of the linearized system, which then 

can be written as:6 
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6 Cf. Barro and Sala-i-Martin (1995),  appendix 1. 
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with corresponding Eigen values 
)2(

))2(()1(
1 CC

CAC

+⋅
−+⋅⋅+−= µζ  (implying that 

)()2(

))()1(()1(
1 σθσθ

θσδµθσζ
−⋅−+

−⋅⋅+⋅−⋅−= L
) and 

C

CCA µζ ⋅+++⋅−= )1()2(
2  (which implies that 

2

)1()(
2 −+

−⋅+−⋅⋅=
σθ

σµσθδζ L
). In order to have saddle-path stability, we need one of the 

Eigen values to be negative, and the other one to be positive. Since it must be the case that 

02 >−+ σθ  (cf. (25.D)), this implies that under Case II, 2ς  must be the positive Eigen value, 

and hence 1ζ  is the negative Eigen value provided that )1/()( θθσδµ −−⋅⋅< L , which is a 

parameter constraint that should hold in both cases anyway (see section 2.5 above, in particular 

the constraint associated with 0ˆ >W ). Under Case I the transversality condition implies that 

)1/()( −−⋅⋅> σθσδµ L , which would make 2ξ  the positive Eigen value again, and in order 

for 1ς  to be negative we would need that )1/()( θθσδµ −−⋅⋅< L , which was the requirement 

associated with having 0ˆ >W  in both cases. We conclude that the parameter restrictions 

outlined in section 2.5 imply the saddle path-stability of the optimization problem and that 1ξ  is 

the negative Eigenvalue, with corresponding Eigenvector v, where v is given by: 

( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( )


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


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−⋅−⋅+−⋅⋅⋅⋅−
−+⋅−⋅−⋅−−⋅−⋅⋅⋅⋅

=

1

11)1(

211
2

2

σσµσθδµθ
θσσθσµσθθδδ

L

LL

v   (30) 

 

 Consequently, the slope of the stable arm in the steady state is given by the top element 

of v, the numerical value of which we will further call s, for reasons of simplicity. 

 Now consider a circle with radius ε  and center coordinates { }τ,Z  in the τ,Z -plane. 

Also consider a straight line through that center with slope s. The points of intersection of this 

line with the circle can be found by solving the simultaneous system { 222 )()( εττ =−+− ZZ , 

)()( ττ −⋅=− sZZ  } giving as the relevant solution for our case with an upward sloping stable 

arm (see Figure 1): 
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21/ ssZZ +⋅−=′ ε         (31.A)  

21/ s+−=′ εττ          (31.B) 

 

The point },{ τ ′′Z  lies below and to the left of the steady state given by the point { }τ,Z , since 

both ε ,s>0  under the parameter constraints outlined above. By choosing increasingly smaller 

values of the radius ε , we could get infinitely close to the steady state. The time spent during 

the transition from that point towards the initial point (or vice versa, which is what we really 

want) would become correspondingly longer. In the next section, we will present the results of 

the sensitivity analysis performed using the Backward Integration Method. 

 

3. Sensitivity Analysis 

 The results obtained using the Backward Integration Method for the transitional 

dynamics are associated with (variations on) the “base-run” parameter vector listed in Table 2 

below. The values used for this vector are all consistent with the case II parameter constraints 

outlined in the previous section. They generate moderate but positive growth rates for the 

number of connected communities and transition paths that take several centuries before hitting 

the ε -region around the steady state. 

 

Parameter Value Parameter Value 

α  0.5 L  1 

β  0.1 θ  2 

σ  1.25 δ  0.1 

l  1 µ  0.05 

Table 2. The Base-Run Parameter vector 

 

 The parameters can be divided into three different groups. The first group consists of the 

production cost parameters α  and β . As is clear from equations (23) and (24), these cost 

parameters do not influence the steady state itself, but affect the transitional dynamics only. The 
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other structural parameters θµδσ ,,,, L   do have an impact on both the steady state and the 

corresponding transitional dynamics, whereas the fixed-cost parameter l  does not influence 

either the steady state or the transitional dynamics. It does have an impact on welfare, though, 

since higher fixed labour costs imply lower numbers of varieties and hence lower welfare, ceteris 

paribus. 

  Using the parameter-vector above, we have performed a sensitivity analysis for all the 

elements in the vector separately. Each element has been varied over the range c*(1-x), c, c*(1+x) 

where c is the central value taken from Table 2, and x = 0.5 for the parameters α  and β , and 

x=0.1 for all the other parameters. These relative shocks are all still compatible with the case II 

parameter constraints. For the parameters α  and β , the shocks are relatively high, because 

otherwise the effects on the transition path would hardly be visible. The corresponding results 

are depicted in the Figures further below. In these Figures, we first see the variables Z,W,τ  

graphed against time, and then the implied graph of Z against τ , as in the phase-diagram in 

Figure 1. A further plot holds the development over time of the present value of utility per 

capita (called PVUPC) along the transition path until the moment it hits the ε -region. The final 

plot shows the growth rate of W (called GW) along the transition path. In all plots, the graph 

associated with the lowest value of the parameter range is dotted. The central value graph is 

solid, and the highest value in the parameter range is associated with the striped graph. It 

should be noted that in the plot of  Z against t (but also against τ ) there is a horizontal at Z=1 

(that corresponds to the steady state value of Z). The other horizontals in the plot of Z against t 

are associated with the initial values of Z as given by BZ /10 = . The horizontals in the plot of 

GW against t are the steady state values of GW corresponding to each individual parameter 

vector concerned. 

In Figure 2, the results for a change in the elasticity of substitution between varieties in 

the utility function have been depicted. Note that σ  also equals the (absolute value of the) 

price-elasticity of demand. A higher value of σ  would therefore lower profit margins, and 

hence would enable a community to sustain a lower number of varieties (see eq. 16), ceteris 

paribus. We see that a relatively low price elasticity of demand raises the transition path for Z. 
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Higher values of σ  lower the transition path relative to the central value path. However, it 

should be noted, that the paths do actually intersect. This is most clearly seen in the plot for τ . 

In addition to this, it can be seen from the position of the end-points of the transition paths in 

the plot for W, that the length of the transition path for a low value of σ  is higher than that of 

the central value for σ . The same holds for the endpoint for the high-value of σ -path, 

suggesting the relevance of intertemporal trade-offs in a setting like this. For, as apparent from 

the plot of GW, the growth rate of W is very close to its steady state value from the beginning in 

the low σ  case, while it is very low to start with in the high σ  case but ends higher than in the 

low σ  case.  From the plot holding the outcomes for PVUPC, it follows immediately that a 

lower value of σ  is relatively good news for the consumers that are all connected. There is 

some bad news as well, since the (steady state) growth rate GW is the lowest of the three. It 

follows from a comparison of the plots for PVUPC and GW, that having a high GW doesn’t have 

to be a good thing per se. While the central value for σ  does generate the highest GW during the 

transition and in the steady state, the present value of utility per head is below that of the low 

σ  case at all times. 

 Figure 3 shows the results for variations in θ , where 1/θ  is the intertemporal elasticity 

of substitution between (the utilities derived from) consumption at different moments in time. 

As with the variations in σ , we find that the central value of θ  run generates the highest 

growth rates, whereas the rest of the results are reversed, that is to say the highest value of θ  

now generates a steady state growth rate that falls below the one for the lowest value of θ . This 

is what one would expect, since a higher value of θ  implies a lower value of the intertemporal 

elasticity of substitution and hence a higher willingness to give up resources now in exchange 

for higher returns in the future. We see therefore that the transition path for τ  for the low θ -

case is indeed above the path for the high θ -case at the end of the transition period and in the 

steady state itself. Also, it should be noted that a lower value of the intertemporal elasticity of 

substitution (hence a higher value of θ ) would tend to cause a more uniform distribution of 

consumption over time, and hence a lower dispersion in transitional growth rates and lower 

steady state growth. This is exactly what can be observed from the plot of GW: the transitional 

growth dispersion falls as θ  increases. However, the steady state value of GW is a hump-
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shaped function of θ  around its central value, as apparent from eq. (24), where the numerator 

of (24.B) is linear in θ , while the denominator is a quadratic function of θ .  

Figure 4 shows the results for variations in α , the marginal production cost of each 

variety . As stated before, variations in α  only affect the transitional dynamics, hence the levels 

of W, but not the steady state growth rate GW. Raising α  from its low value to its high value 

leads to a shortening of the transition period on the one hand and to a rise in the transitional 

growth rate, while leaving the steady state growth rate untouched. Interestingly, higher values 

of α  raise the relative contribution of variety to utility as compared to the contribution of 

quantity to utility. Hence for high values of α , the incentive to increase the number of available 

varieties through raising connectivity increase as well. Consequently, we find higher 

transitional growth rates as α  increases. Higher values of α  also shift down the time path for 

the present value of utility per capita (PVUPC) as one would expect. This is because higher 

marginal production cost, would, for a given level of resources reduce (ex-ante) profits, and 

hence the number of varieties that can be sustained by a community. At the same time, for a 

given number of varieties, the volume of each variety must go down as well, reducing per 

capita utility on both accounts (cf. eq. (17)). Note that, even though the time-paths Z(t) and τ (t) 

are clearly influenced, they are affected to exactly the same extent so that Z(t) plotted against 

τ (t) for all values of t remains exactly where it was. This is easy to understand, since a change 

in α  (or β ) would only affect the value of Z0, i.e. the position of  the horizontal Z=Z0=1/B in 

Figure 1. Hence, when Integrating Backward, we would still follow the same trajectory along 

the stable arm from the steady state and down to the ‘old’ value for Z0, and then we would 

have to extend the stable arm from that point upto the ‘new’ value of Z0 (assuming the latter is 

below the former).  

The results are qualitatively similar for variations in β , i.e. unit transportation cost in 

the sense that only transitional dynamics are affected and not the steady state, see Figure 5. 

However, now we find that an increasing value of β  will lead to lower transitional growth and 

longer transition periods, whereas a rising value in α  would tend to have the opposite effect. 

Still, the effect on utility per head goes in the same direction as for variations in α . The reason 

for the different impacts of variations in α  and β  on utility per capita can be found in equation 
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(17). As β  is associated with transportation costs, its impact on utility per capita becomes 

bigger the larger the number of connected communities is. Hence if β  rises, the direct impact 

on per capita utility will be negative, but that impact can be mitigated to some extent by 

reducing the rate at which W grows. 

Figure 6 shows the results for variations in δ . These are relatively spectacular. Note that 

the (labour-) costs of extending the number of connected communities (by building ground 

stations for communication and transportation infrastructure) depend inversely on δ . Hence 

low values of δ  imply high costs of extending the number of connected communities, and we 

consequently see that the duration of the transition period falls as δ  increases. We also see that 

the growth rate of W, i.e. GW, is positively affected, and quite significantly so, if δ  increases. As 

a rise in δ  implies lower cost for creating new connections and the resources allocated to 

making those new connections actually go up. This follows from the fact that the steady state 

values of τ  increase as δ  rises. But even though τ  increases, a rising value of δ  has a positive 

net effect on the present value of per capita utility. 

Figure 7 shows how the model reacts to variations in the rate of discount µ . Basically, 

the results are opposite to those of variations in δ , as a rise in µ  would disfavor the execution 

of activities which return would be in the future (like indeed extending the number of 

connected communities). Consequently we find lower growth in W and longer transitions as µ  

rises. As a consequence, the time-path for utility per capita also shifts downward as µ  

increases. 

Figure 8 shows what happens for variations in the size of the communities. Increases in size 

would allow more varieties to be produced, before profits are squeezed to zero due to free 

entry. This means that the returns to connecting additional communities go up. Consequently, 

we observe a rise in both transitional and steady state growth as L  increases, while the length 

of the transition period decreases. Because of the increasing returns to making new connections, 

we see that the resources allocated to doing that also increase for rising values of L . 

Finally, Figure 9 shows what happens for variations in the fixed cost per variety: virtually 

nothing. As l  only enters the per capita utility function in a multiplicative fashion, it follows 
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that only the level of utility per capita will be affected, but not the way in which the relative 

contribution of W to per capita utility changes over time. Consequently, there will be no reason 

to change anything in the time-path for W, and so all plots remain the same except for the per 

capita utility plot. Obviously, per capita utility falls if l  increases, as each community can now 

support a lower number of varieties. 
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Figure 2. Sensitivity Results for Variations in σ  
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Figure 3. Sensitivity Results for Variations in θ . 
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Figure 4. Sensitivity Results for Variations in α . 



32 

 

Figure 5. Sensitivity Results for Variations in β . 
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Figure 6. Sensitivity Results for Variations in δ . 
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Figure 7. Sensitivity Results for Variations in µ . 
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Figure 8. Sensitivity Results for Variations in L . 
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Figure 9. Sensitivity Results for Variations in l . 
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4. Concluding Remarks 

 

In the previous section we have shown that reductions in production costs but also in 

transport and communication costs have an immediate effect on the rate at which communities 

would want to become connected and trade with each other. We have shown that increasing 

production costs lead to faster transitions, while increasing transportation costs lengthen the 

transition towards the steady state. Both types of costs do not affect the steady state as such, but 

since the transition period is quite long, their different impact on transitional growth points at 

transportation and communication cost reductions in particular as a suitable vehicle to speed 

up growth. 

 The largest effect in growth-terms, however, can be observed for the case of reductions 

in the cost of making new connections. That has a relatively significant impact on both the 

steady state growth rate AND on transitional growth, while reducing the transitional period 

equally significantly. The same goes, mutatis mutandis, for changes in the rate of discount. 

Communities with lower rates of discount would have a higher incentive to connect/become 

integrated with ‘the rest of the world’. This also goes the other way around; if the rate of 

discount in some community is low, the rest of the world has a relatively strong incentive to 

become connected to that community, since that community would be more willing to share in 

the common burden of maintaining and extending current and future connections. 

 We also showed that the population size of the communities (to be) connected strongly 

determines both the steady state growth rate and the transitional growth rates of all connected 

communities. The larger the communities are, the stronger growth will be, pointing towards a 

positive scale effect that arises out of the nature of the communication and transportation 

network itself, rather than out of a ‘knife-edge’ assumption about the functional form of the 

production function underlying the process of connecting communities. To some extent then, 

this scale-effect can be considered to be more ‘real’ than the one present in Romer (1990) or 

Aghion and Howitt (1992), for example. But even in the presence of a positive scale-effect, 

communities that are lagging behind in educational terms, would probably not be able to 

produce as many varieties as other communities of similar size but with a higher average level 
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of education would be able to do. This would severely limit the benefits for other communities 

from being connected with low level education communities. It follows that to make such 

connections worthwhile for every community concerned, differences in educational levels 

shouldn’t be too large. This again points to education as an important determinant of the 

growth performance of an economy, through its impact not just on the quality of labor per se (as 

in the Lucas (1988) model), but on the size of the sub-spectrum of varieties that could be 

produced depending on average levels of educational attainment. 

 For now, we have to leave an extension of our model in which we formally integrate 

investment in the level of education of a community as an additional determinant of a 

community’s growth potential through its impact on that communities’ attractiveness to other 

communities as a potential trading partner for future research.   
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