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Abstract

This thesis is a collection of essays on the incentive, fairness, and solidarity

properties of recommendations to different economic problems such as queue-

ing, matching, and cost allocation.

In Chapter 1, we consider queueing problems. We prove that no rule is

Pareto-efficient and coalitional strategy-proof. We identify the class of rules

that satisfy Pareto-efficiency, equal treatment of equals, and strategy-proofness.

Among multi-valued rules, there is a unique rule that satisfies Pareto-efficiency,

anonymity, and strategy-proofness.

In Chapter 2, we consider two-sided matching markets with contracts. We

prove that the stable correspondence is the only solution that satisfies una-

nimity, population monotonicity, and Maskin-monotonicity. If a rule satisfies

unanimity, both forms of population monotonicity and a weak notion of con-

sistency, then it is a subsolution of the stable correspondence. We also ana-

lyze immunity of solutions to strategic behavior such as to misreporting the

availability of contracts held by the firms, and misrepresenting preferences by

workers and firms. We introduce destruction-proofness, and study destruction-

proofness and strategy-proofness. We show that if the firms’ preferences satisfy

the substitute condition, then the worker-optimal solution is not destruction-

proof and the firm-optimal solution is destruction-proof. If the firms’ prefer-
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ences satisfy the substitute condition, the law of aggregate demand, and the

top-dominance condition then the worker-optimal solution is the only solution

satisfying stability and strategy-proofness.

In Chapter 3, we consider a class of cost sharing problems with the follow-

ing features: agents are ordered in terms of their needs for a public facility;

satisfying an agent implies satisfying all agents with smaller needs than his at

no extra cost. The “sequential equal contributions” rule assigns each agent

using a given segment to contribute equally to the cost of the segment and

to pay the total of the contributions of each segment that the agent uses.

We show that the sequential equal contributions rule is the only rule satisfy-

ing equal treatment of equals, independence of predecessors, and smallest-cost

consistency and it is the only rule satisfying individual rationality, cost mono-

tonicity, and smallest-cost consistency.
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Foreword

This thesis is a collection of joint and solo essays on the incentive, fairness, and

solidarity properties of recommendations to different economic problems such

as queueing, matching, and cost allocation. Some results are from joint works

with Youngsub Chun, Eve Ramaekers, Chun-Hsien Yeh, and Duygu Yengin.



Chapter 1

Queueing

1.1 Introduction

A set of agents simultaneously arrive at a service facility that can only serve

one agent at a time. Agents require service for the same length of time. The

waiting cost may vary from one agent to the other. Each agent is assigned a

“consumption bundle” consisting of a position in the queue and a positive or

negative transfer. Each agent has quasi-linear preferences over positions and

transfers. For such a queueing problem, a rule assigns each agent a position

in the queue and a positive or negative transfer such that no two agents are

assigned the same position, and the sum of transfers is not positive.

Our objective is to identify rules that are well-behaved from the normative

and strategic viewpoints. In addition to efficiency, we assess the desirability of

2
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a rule from two perspectives: the fairness of the allocations it selects and the

incentive it gives to agents to tell the truth about their cost parameters. The

first requirement is efficiency. It says that if an allocation is selected, there

should be no other feasible allocation that each agent finds at least as desirable

and at least one agent prefers. Since preferences are quasi-linear, Pareto-

efficiency can be decomposed into two axioms: on the one hand, efficiency of

queues, which says that a queue should minimize the total waiting cost, and

on the other hand, balancedness, which says that transfers should sum up to

zero.

Second is a minimal symmetry requirement: agents with equal waiting costs

should be treated equally. As agents cannot be served simultaneously, it is of

course impossible for two agents with equal costs to have equal assignments.

However, using monetary transfers, we can give them assignments between

which they are indifferent. We require equal treatment of equals in welfare:

agents with equal waiting costs should be indifferent their assignments. It is

implied by no-envy, which requires that no agent should prefer another agent’s

assignment to her own.

Third is immunity to strategic behavior. As unit waiting costs may not

be known, the rule should provide agents incentive to reveal these costs truth-

fully. Strategy-proofness requires that each agent should find her assignment

when she truthfully reveals her unit waiting cost at least as desirable as her
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assignment when she misrepresents it. We are also concerned about possible

manipulations by groups, and consider coalitional strategy-proofness : no group

of agents should be able to make each of its members at least as well off, and

at least one of them better off, by jointly misrepresenting their waiting costs.

Finally is non-bossiness : if an agent’s change in her announcement does not

affect her assignment, then it should not affect any other agent’s assignment.

We identify the class of rules that satisfy efficiency of queues and strategy-

proofness. We show that a unique allocation rule satisfies Pareto-efficiency,

equal treatment of equals in welfare, and strategy-proofness. For each problem,

this rule selects a Pareto-efficient queue and it sets transfers as follows: con-

sider each pair of agents in turn, make each agent in the pair pay the waiting

cost incurred by the other agent in the pair, and distributes the sum of these

two payments equally among the others. We refer to this rule as the Equally

Distributed Pairwise Pivotal rule. As the name indicates, it applies the idea of

the well-known Pivotal rule from the class of Groves’ rules in public decision-

making problems in each pair (Clarke 1971, Groves, 1973). The Equally Dis-

tributed Pairwise Pivotal rule also satisfies no-envy. Using this result, we also

show that in combination with Pareto-efficiency and strategy-proofness, equal

treatment of equals in welfare is equivalent to no-envy.

We may also be concerned about possible manipulations by groups. How-

ever, if we impose the stronger incentive property of coalitional strategy-proofness,



5

even with efficiency of queues, we have an impossibility result. This result sug-

gests that the previous result is tight.

We then extend the first result to possibly multi-valued rules. First, we con-

sider fairness properties when it is possible to give two agents with equal unit

waiting costs same assignments at two different allocations. Then, symmetry

requires that agents with equal waiting costs should be treated symmetrically,

that is, if there is another allocation at which two agents exchange their as-

signments and the other agents keep theirs, then this allocation should be

selected. It is implied by anonymity, which requires that agents’ names should

not matter. However, whereas single- and multi-valued rules may satisfy equal

treatment of equals in welfare, only multi-valued rules may satisfy symmetry.

Thus, because agents cannot be served simultaneously, anonymity is possible

if and only if multi-valuedness is allowed. Second, strategy-proofness has to be

redefined for multi-valued rules. To compare the welfare levels derived from

two sets of feasible allocations, we assume that an agent prefers the former to

the latter if and only if for each allocation in the latter, there is an allocation

in the former that she finds at least as desirable; and for each allocation in the

former, there is an allocation in the latter that she does not prefer.

Next, we define the rule that selects all Pareto-efficient queues and for

each queue, sets transfers as in the Equally Distributed Pairwise Pivotal rule.

We refer to it as the Largest Equally Distributed Pairwise Pivotal rule. We
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prove that a unique allocation rule satisfies Pareto-efficiency, symmetry, and

strategy-proofness. Moreover, it is anonymous. Also, as anonymity implies

symmetry, and as the Largest Equally Distributed Pairwise Pivotal rule is the

union of all the rules that satisfy Pareto-efficiency, equal treatment of equals

in welfare, and strategy-proofness, it follows that this rule is the only rule that

satisfies Pareto-efficiency, equal treatment of equals in welfare, symmetry, and

strategy-proofness.

The intuition for the results is simple. Any rule can be described by se-

lecting the queues appropriately and setting each agent’s transfer equal to

the cost she imposes on the others plus an appropriately chosen amount. By

Pareto-efficiency, a desirable rule should select Pareto-efficient queues and as

the costs agents impose on the others are always strictly positive (except for

the last agent in the queue), it should redistribute the sum of these costs. By

equity, it should select all Pareto-efficient queues and it should redistribute

this sum fairly. By strategy-proofness, it should redistribute this sum in such

a way that each agent’s share only depends on the others’ waiting costs. This

is exactly what the Largest Equally Distributed Pairwise Pivotal rule does.

It selects all Pareto-efficient queues (so it is efficient and fair). It sets each

agent’s transfer considering each pair of agents in turn, making each agent in

the pair pay the cost she imposes on the pair. Then, it distributes the sum of

these two payments (so it is efficient) equally (so it is fair) among the others
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(so it is strategy-proof ).

Literature Review: Our results provide another example of a situation in

which Pareto-efficiency, equity axioms such as equal treatment of equals in wel-

fare and symmetry, and strategy-proofness are compatible. For general social

choice problems, each equity axiom is incompatible with strategy-proofness

(Gibbard, 1973 and Satterthwaite, 1975). For the classical problem of dis-

tributing of private goods (and even if preferences are homothetic and smooth),

Pareto-efficiency, equal treatment of equals, and strategy-proofness are incom-

patible (Serizawa, 2002). In economies with indivisible goods when monetary

compensations are possible, no-envy and strategy-proofness are incompatible

(Alkan, Demange, and Gale, 1991, Tadenuma and Thomson, 1995); more-

over, when rules exist that satisfy these axioms on more restricted classes of

problems, they violate Pareto-efficiency.

There are some exceptions. For the problem of choosing a public good

in an interval over which the agents have continuous and single-peaked pref-

erences, Pareto-efficiency, anonymity, and strategy-proofness are compatible

(Moulin, 1980). For the problem of distributing an infinitely divisible private

good over which the agents have continuous and single-peaked preferences,

Pareto-efficiency, equal treatment of equals in welfare, and strategy-proofness

are compatible, and so are Pareto-efficiency, anonymity, and strategy-proofness

(Sprumont, 1991, Ching, 1994). For the problem of distributing infinitely divis-
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ible private goods produced by means of a linear technology, Pareto-efficiency,

equal treatment of equals in welfare, and strategy-proofness are compatible

(Maniquet and Sprumont, 1999).1

The literature on queueing can be organized in two groups of papers. The

first group concerns the identification of rules satisfying equity axioms pertain-

ing to changes in the set of agents or in their waiting costs, in addition to the

efficiency and equity axioms that we impose too (Maniquet, 2003; Chun, 2004a;

Chun, 2004b; Katta and Sethuraman, 2005). Only rules that select Pareto-

efficient queues and set each agent’s transfer in such a way that her welfare is

equal to the Shapley value of some associated coalitional game, satisfy these ax-

ioms (Maniquet, 2003, Chun, 2004a; Katta and Sethuraman, 2005). However,

while there are rules that satisfy Pareto-efficiency and no-envy (Chun, 2004b;

Katta and Sethuraman, 2005), none satisfies the solidarity requirement that if

the waiting costs change, then all agents should gain together or lose together

(Chun, 2004b). The second group concerns the identification of necessary

and sufficient conditions for the existence of rules satisfying Pareto-efficiency

and strategy-proofness. For such problems, like for any public decision-making

problem in which agents have additively separable preferences, there are rules

that satisfy efficiency of queues and strategy-proofness (Groves, 1973). Also,

like for any public decision-making problem in which preference profiles are

1For an extensive survey on strategy-proofness, see Thomson (2006).
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convex, only these rules satisfy these properties (Holmström, 1979).2 However,

these rules are not balanced (Green and Laffont, 1977). Unless we further re-

strict the domain, Pareto-efficiency and strategy-proofness are incompatible.

In queueing problems, if preferences are quasi-linear over positions and trans-

fers, there are rules that satisfy Pareto-efficiency and strategy-proofness (Suijs,

1996, Mitra and Sen, 1998).

In Section 1.2, we formally introduce the model. In Section 1.3, we define

the axioms on rules. In Section 1.4, we give the results. In Section 1.5, we give

concluding comments. In Appendix A, we provide all proofs.

1.2 Model

There is a finite set of agents N indexed by i ∈ N . Each agent i ∈ N has to be

assigned a position σi ∈ N in a queue and may receive a positive or negative

monetary transfer ti ∈ R. Preferences are quasi-linear over X ≡ N × R. Let

ci ∈ R+ be the unit waiting cost of i ∈ N . If i is served σi-th, her total

waiting cost is (σi − 1)ci. Her preferences can be represented by the function

ui defined as follows: for each (σi, ti) ∈ X, ui(σi, ti) = −(σi− 1)ci + ti. We use

the following notational shortcut. If her waiting cost is c′i, then her preferences

2In fact, Holmström (1979) shows it that any public decision-making problem in which
preference profiles are smoothly connected, i.e., for any profile in the domain, if there is
a differentiable deformation of the profile into other then the other profile is also in the
domain; only Groves’ rules satisfy efficiency of assignment and strategy-proofness. This
characterization also holds on the universal domain of preferences (Green and Laffont, 1977).
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are represented by the function u′i, defined by u′i(σi, ti) = −(σi− 1)c′i + ti; if it

is c̃i, then we use ũi(σi, ti) = −(σi − 1)c̃i + ti, and so on. A queueing problem

is defined as a list c ≡ (ci)i∈N ∈ RN
+ . Let C ≡ RN

+ be the set of all problems.

Let n = |N |.

An allocation for c ∈ C is a pair (σ, t) ≡ (σi, ti)i∈N ∈ XN . An allocation

(σ, t) ∈ XN is feasible for c ∈ C if no two agents are assigned the same position

in σ, (i.e., for each {i, j} ⊆ N with i 6= j, we have σi 6= σj), and the sum of

the coordinates of t is non-positive, (i.e.,
∑

i∈N ti ≤ 0). Let Z(N) be the set

of all feasible allocations for c ∈ C. An (allocation) rule ϕ is a correspondence

that associates with each problem c ∈ C a non-empty set of feasible allocations

ϕ(c) ⊆ Z(N).

Given c ∈ C and S ⊆ N , cS ≡ (cl)l∈S is the restriction of c to S. Given

i ∈ N , c−i ≡ (cl)l∈N\{i} is the restriction of c to N\{i}. Let (σ, t) ∈ Z(N).

Given i ∈ N , let Pi(σ) ≡ {j ∈ N |σj < σi} be the set of agents served before

i in σ, (the predecessors), and Fi(σ) ≡ {j ∈ N |σj > σi} the set of agents

served after i in σ, (the followers). Given {i, j} ⊆ N , let Bij(σ) ≡ {l ∈

N |min{σi, σj} < σl < max{σi, σj}} be the set of agents served between i and

j in σ.3 Given S ⊆ N , the total waiting cost of S is
∑

i∈S(σi − 1)ci. Given

i ∈ N , let σ−i be such that for each l ∈ Pi(σ), we have σ−i
l = σl and for each

l ∈ Fi(σ), we have σ−i
l = σl − 1. Given i ∈ N , and S ⊆ N , the cost that agent

3For each c ∈ C, each (σ, t) ∈ Z(N), and each {i, j} ⊆ N , we have Bij(σ) = Bji(σ).
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i imposes on S is
∑

l∈S∩Fi(σ) cl. Thus, the cost an agent imposes on society is

always equal to the sum of the unit waiting costs of her followers in an efficient

queue.

1.3 Properties of rules

In this section, we define properties of rules. Let ϕ be a rule. First, if an

allocation is selected, there should be no other feasible allocation that each

agent finds at least as desirable and at least one agent prefers.

Pareto-efficiency: For each c ∈ C and each (σ, t) ∈ ϕ(c), if there is no

(σ′, t′) ∈ Z(N) such that for each i ∈ N , ui(σ
′
i, t

′
i) ≥ ui(σi, ti) and for at least

one j ∈ N , we have uj(σ
′
j, t

′
j) > uj(σj, tj).

Consider a Pareto-efficient allocation for c, any other allocation at which

the queue is the same is also Pareto-efficient. Therefore, it is meaningful to

define efficiency of queues. It requires to minimize the total waiting cost. Thus,

an allocation (σ, t) is Pareto-efficient for c if and only if for each σ′ ∈ NN , we

have
∑

i∈N(σ′i−1)ci ≥
∑

i∈N(σi−1)ci, i.e., σ is efficient for c and
∑

i∈N ti = 0,

i.e., t is balanced for c. Let Q∗(c) be the set of all efficient queues for c. For

each c ∈ C and each (σ, t) ∈ Z(N), we have σ ∈ Q∗(c) if and only if for each

{i, j} ⊂ N with i 6= j, if σi < σj, then ci ≥ cj. Thus, up to permutation of

agents with equal unit waiting costs, there is only one efficient queue.
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Summarizing the discussion above, Pareto-efficiency can be decomposed

into two axioms:

Efficiency of queues: For each c ∈ C and each (σ, t) ∈ ϕ(c), we have σ ∈

Q∗(c).

Balancedness: For each c ∈ C and each (σ, t) ∈ ϕ(c), we have
∑

i∈N ti = 0.

Equity requires to treat agents with equal unit waiting costs equally. We

require that equal agents should have equal welfare.

Equal treatment of equals in welfare: For each c ∈ C, each (σ, t) ∈ ϕ(c),

and each {i, j} ⊂ N with i 6= j and ci = cj, we have ui(σi, ti) = uj(σj, tj).

This requirement is necessary for no agent to prefer another agent’s assignment

to her own.

No-envy: For each c ∈ C, each (σ, t) ∈ ϕ(c), and each i ∈ N , there is no

j ∈ N\{i} such that ui(σj, tj) > ui(σi, ti).

The last requirements are motivated by strategic considerations. The plan-

ner may not know the agents’ cost parameters. If agents behave strategically

when announcing them, neither efficiency nor equity may be attained. Thus,

we require that each agent should find her assignment when she truthfully

reveals her unit waiting cost at least as desirable as her assignment when she

misrepresents it.
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Strategy-proofness: For each c ∈ C, each i ∈ N , and each c′i ∈ R+, if

(σ, t) = ϕ(c) and (σ′, t′) = ϕ(c′i, c−i), then ui(σi, ti) ≥ ui(σ
′
i, t

′
i).

We also consider the requirement that no group of agents should be able to

make each of its members at least as well off, and at least one of them better

off, by jointly misrepresenting its members waiting costs.

Coalitional strategy-proofness: For each c ∈ C and each S ⊆ N , there is

no c′S ∈ RS
+ such that if (σ, t) = ϕ(c) and (σ′, t′) = ϕ(c′S, cN\S), then for each

i ∈ S, we have ui(σ
′
i, t

′
i) ≥ ui(σi, ti) and for some j ∈ S, we have uj(σ

′
j, t

′
j) >

uj(σj, tj).

The next requirement is that if an agent’s change in her announcement does not

affect her assignment, then it should not affect any other agent’s assignment.

Non-bossiness: For each c ∈ C, each i ∈ N , and each c′i ∈ R+, if ϕi(c) =

ϕi(c
′
i, c−i), then ϕ(c) = ϕ(c′i, c−i).

1.4 Results

In this section, we first characterize the class of single-valued rules that satisfy

Pareto-efficiency, equal treatment of equals in welfare, and strategy-proofness.

We then show that these rules in fact satisfy the stronger fairness property of

no-envy (Theorem 1.2). Then, we extend these results to multi-valued rules
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and we prove that there is a unique rule that satisfies Pareto-efficiency, symme-

try, and strategy-proofness. Also, this rule satisfies anonymity (Theorem 1.4).4

1.4.1 Single-valued rules

We first prove that a single-valued rule satisfies efficiency of queues and strategy-

proofness if and only if for each problem, it selects an efficient queue (of course)

and sets each agent’s transfer as prescribed in Groves (1973), i.e., equal to the

total waiting cost of all other agents plus an amount only depending on these

agents’ unit waiting costs (Theorem 1.1). As the domain of preference profiles

is convex, it is smoothly connected. Thus, this result follows from Holmström’s

(1979). However, we are able to give a simpler proof by exploiting the special

features of our model. Formally, let D ≡ {d| for each c ∈ C, we have d(c) ∈

Q∗(c)}. Let H ≡ {(hi)i∈N | for each i ∈ N , we have hi : RN\{i}
+ → R}. A

single-valued rule ϕ is a Groves’ rule if and only if there are d ∈ D and h ∈ H

such that for each c ∈ C, ϕ(c) = (σ, t) ∈ Z(N) with σ = d(c), and for each

i ∈ N , ti = −∑
l∈N\{i}(σl − 1)cl + hi(c−i).

Theorem 1.1. A single-valued rule is a Groves rule if and only if it satisfies

efficiency of queues and strategy-proofness.

The class of Groves’ rules is large. We distinguish subclasses according to their

4By extending Theorem 1.2 to multi-valued rules, we prove that what holds in the special
case of single-valued rules still holds in the general case of single- and multi-valued rules.
Thus, single-valuedness and Theorem 1.4 imply Theorem 1.2.
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h function. For instance, the Pivotal rules are the Groves’ rules associated with

h ∈ H such that for each c ∈ C, for each i ∈ N , hi(c−i) =
∑

l∈N\{i}(σ
−i
l −1)cl.

5

By Theorem 1.1, a single-valued rule satisfies Pareto-efficiency and strategy-

proofness if and only if it is a Groves rule and it is balanced. However, for

two-agent problems, no Groves rule is balanced (Suijs, 1996). From now on,

we focus on problems with more than two agents.

We now introduce another class of single-valued rules. A rule in this class

selects for each problem a Pareto-efficient queue and sets transfers considering

each pair of agents in turn, making each agent in the pair pay what a Pivotal

rule recommends for the subproblem consisting of these two agents, and dis-

tributing the sum of these two payments equally among the others. Thus, for

each problem and each selected queue, each agent’s transfer is such that she

pays the cost she imposes on the other agent and she receives 1
n−2

-th of the

cost each agent imposes on the other agent in the pair that she is not part of.

Equally Distributed Pairwise Pivotal rule, ϕ∗: For each c ∈ C, if (σ, t) =

ϕ∗(c), then σ ∈ Q∗(c) and for each i ∈ N , we have

ti = −∑
j∈N\{i}

∑
l∈{i,j}∩Fi(σ) cl + 1

(n−2)

∑
j∈N\{i}

∑
k∈N\{i,j}

∑
l∈{j,k}∩Fj(σ) cl.

An example of a problem illustrating the rule:

Let N = {1, 2, 3, 4} and c ∈ RN
+ such that c1 > c2 > c3 > c4. The efficiency

5Pivotal rules are also known as Clarke’s rules (Clarke, 1971).
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of queues implies that agents should be served in decreasing order of their

waiting costs. Thus, the efficient queue is σ = (σ1, σ2, σ3, σ4) = (1, 2, 3, 4).

Then, consider each pair of agents, and make each agent in the pair pay the

cost that the agent imposes on the other agent. Then, distribute the sum of

these two payments equally among the others. The following table shows how

payments are calculated. For example, for the pair {2, 4}, by Pareto-efficiency

agent 2 should be served before agent 4. The cost agent 2 imposes on agent

4 is c4 but agent 4 does not impose any cost on agent 2. So, agent 2 pays c4

and agent 4 pays nothing. The amount collected in total is distributed among

agents 1 and 3 equally: each of them receives c4/2.

1 2 3 4

12 −c2 0 c2/2 c2/2

13 −c3 c3/2 0 c3/2

14 −c4 c4/2 c4/2 0

23 c3/2 −c3 0 c3/2

24 c4/2 −c4 c4/2 0

34 c4/2 c4/2 −c4 0

The final monetary consumption is the sum of all the transfers for each possible

pair. Then, t = (t1, t2, t3, t4) = (−c2 − c3/2,−c3/2, c2/2, c2/2 + c3). The

allocation selected by the Equally Distributed Pairwise Pivotal rule is Pareto-
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efficient. The rule satisfies equal treatment of equals, no-envy, and strategy-

proofness. However, the rule is not coalitionally strategy-proof because agent

2 and agent 3 have incentive to misrepresent their waiting costs jointly.

As there may be several Pareto-efficient queues for a problem, there are several

Equally Distributed Pairwise Pivotal rules. Proposition 1.1 states that for each

problem and each Pareto-efficient queue, the transfers set by any Equally

Distributed Pairwise Pivotal rule can be obtained in three other ways. First,

making each agent pay what the Pivotal rule recommends for the problem,

giving each agent 1
n−2

-th of what the others pay. Second, giving each agent

1
n−2

-th of her predecessors’ total waiting cost and making each agent pay 1
n−2

-

th of her followers’ gain from not being last (Mitra and Sen, 1998, Mitra,

2001). Third, giving each agent one half of her predecessors’ unit waiting cost

and making each agent pay one half of her followers’ unit waiting cost plus

1
2(n−2)

-th of the difference between two unit waiting costs of any other agent

and this agent’s predecessors’s (Suijs, 1996).

Proposition 1.1. Let ϕ be a single-valued rule. Then, the following state-

ments are equivalent.

1. ϕ is an Equally Distributed Pairwise Pivotal rule.

2. ϕ is a Groves rule associated with h ∈ H such that for each c ∈ C,

if (σ, t) = ϕ(c), then for each i ∈ N , hi(c−i) =
∑

l∈N\{i}(σ
−i
l − 1)cl +
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1
(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl.

3. ϕ is such that for each c ∈ C, if (σ, t) = ϕ(c), then σ ∈ Q∗(c) and for

each i ∈ N , ti =
∑

l∈Pi(σ)
(σl−1)
(n−2)

cl −
∑

l∈Fi(σ)
(n−σl)
(n−2)

cl.

4. ϕ is such that for each c ∈ C, if (σ, t) = ϕ(c), then σ ∈ Q∗(c) and for

each i ∈ N , ti =
∑

l∈Pi(σ)
cl

2
−∑

l∈Fi(σ)
cl

2
−∑

l∈N\{i}
∑

k∈Pl(σ)\{i}
ck−cl

2(n−2)
.

Next, we prove that requiring Pareto-efficiency, equal treatment of equals in

welfare, and strategy-proofness implies choosing an Equally Distributed Pair-

wise Pivotal rule.

Theorem 1.2. A single-valued rule satisfies Pareto-efficiency, equal treat-

ment of equals in welfare, and strategy-proofness if and only if it is an Equally

Distributed Pairwise Pivotal rule.

The following paragraphs establish the independence of the axioms in Theo-

rem 1.2.

(i) Let ϕ be a rule such that for each c ∈ C, if (σ, t) = ϕ(c), then σ ∈ Q∗(c).

Let i ∈ N if σi 6= 1 and for each {j, k} ⊂ N are such that σj = σi − 1 and

σk = σi + 1, then αi ∈ [cj, ck] and ti =
∑

l∈Pi(σ)∪{i} αl, and if σi = 1, then

ti = αi where in each case α ∈ RN is chosen so as to achieve
∑

l∈N tl = 0. Any

such rule satisfies all the axioms of Theorem 1.2 but strategy-proofness (Chun,

2004b).
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(ii) Let ϕ be a Groves rule associated with h ∈ H such that for each c ∈ C and

let λ ∈ R be such that λ 6= 0 and h1 =
∑

l∈N\{1}(σ
−1
l −1)cl+

1
n−2

∑
l∈N\{1}(σ

−1
l −

1)cl + λ, and for each i ∈ N\{1}, we have hi =
∑

l∈N\{i}(σ
−i
l − 1)ci +

1
n−2

∑
l∈N\{i}(σ

−i
l − 1)cl − λ

(n−1)
. Any such rule satisfies all the axioms of The-

orem 1.2 but equal treatment of equals in welfare.

(iii) Let ϕ be a Groves rule associated with h ∈ H such that c ∈ C and let λ ∈

R+ be such that for each i ∈ N , hi =
∑

l∈N\{i}(σ
−i
l −1)ci +

1
n−2

∑
l∈N\{i}(σ

−i
l −

1)cl − λ satisfies all axioms but Pareto-efficiency.

Remark 1.1. Equally Distributed Pairwise Pivotal rules satisfy no-envy. Thus,

as no-envy implies equal treatment of equals in welfare, we prove that only

single-valued Equally Distributed Pairwise Pivotal rules satisfy Pareto-efficiency,

equal treatment of equals in welfare, and strategy-proofness.

Next, we show that if we impose the stronger condition of coalitional

strategy-proofness, even with efficiency of queues, then we have a negative

result.

Theorem 1.3. No rule satisfies efficiency of queues and coalitional strategy-

proofness.

The following paragraphs establish examples of rules that satisfy only one

of the axioms in Theorem 1.3.
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(i) Equally Distributed Pairwise Pivotal rule satisfies efficiency of queues but

not coalitional strategy-proofness.

(ii) Any rule that selects the same arbitrary queue and sets the transfer to each

agent equal to zero satisfies coalitional strategy-proofness, but not efficiency of

queues.

Theorem 1.3 implies that no rule satisfies Pareto-efficiency and coalitional

strategy-proofness. It also implies that no rule satisfies Pareto-efficiency, non-

bossiness, and strategy-proofness. Since no-envy implies Pareto-efficiency of

queues6, it follows that no rule satisfies no-envy, non-bossiness, and strategy-

proofness.

1.4.2 Multi-valued rules

Let Φ be a rule. When we allow multi-valuedness of rules, it is possible to give

two agents with equal unit waiting costs equal assignments. We require that

this be the case: If there is another allocation at which two agents exchange

their assignments and the other agents keep theirs, then this allocation should

be selected.

Symmetry: For each c ∈ C, each (σ, t) ∈ Φ(c), and each {i, j} ⊂ N with i 6= j

and ci = cj, if (σ′, t′) ∈ Z(N) such that (σ′i, t
′
i) = (σj, tj), (σ′j, t

′
j) = (σi, ti),

6Assume that ϕ satisfies no-envy. Let c ∈ C, (σ, t) = ϕ(c), {i, j} ⊂ N , with i 6= j be
such that ci > cj but σi > σj . By no-envy, we have ui(σi, ti) ≥ ui(σj , tj) and uj(σj , tj) ≥
uj(σi, ti). Then, (σi − σj)ci + tj ≤ ti ≤ (σi − σj)ci that contradicts ci > cj .



21

and for each l ∈ N\{i, j}, we have (σ′l, t
′
l) = (σl, tl), then (σ′, t′) ∈ Φ(c).

This second requirement is that if we permute agents’ unit waiting costs,

we should permute the selected assignments accordingly. Formally, let Π be

the set of all permutations on N . For each π ∈ Π and each c ∈ RN
+ , let

π(c) ≡ (cπ(i))i∈N and π(σ, t) ≡ (σπ(i), tπ(i))i∈N .

Anonymity: For each c ∈ C, each (σ, t) ∈ Φ(c), and each π ∈ Π, we have

π(σ, t) ∈ Φ(π(c)).

Single- and multi-valued rules may satisfy equal treatment of equals in welfare.

However, only multi-valued rules may satisfy symmetry. Indeed, symmetry

is necessary for agents’ names not to matter. Thus, the presence of indi-

visibilities implies that we may require anonymity of rules only if we allow

multi-valuedness.

For multi-valued rules, strategy-proofness has to be redefined. To com-

pare the welfare levels derived from two sets of feasible allocations, we assume

that an agent prefers the former to the latter if and only if for each allo-

cation in the latter, there is an allocation in the former that she finds at

least as desirable; and for each allocation in the former, there is an alloca-

tion in the latter that she does not prefer.7 Formally, let Xi be the set of

7Determining how agents rank non-empty sets given their preferences over singletons has
been studied in, e.g., Pattanaik (1973), Barberá (1977), Dutta (1977), Kelly (1977), Feldman
(1979, 1980), Gärdenfors (1979), Thomson (1979), Ching and Zhou (2000), Duggan and
Schwartz (2000), and Barberá, Dutta, and Sen (2001).
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positions and transfers in N × R. Given ci ∈ R+, let Ri(ci) be the prefer-

ence relation on subsets Xi defined as follows: for each {Xi, X
′
i} ⊆ Xi, we

have Xi Ri(ci) X ′
i if and only if min(σi,ti)∈Xi

ui(σi, ti) ≥ min(σ′i,t
′
i)∈X′

i
ui(σ

′
i, t

′
i)

and max(σi,ti)∈Xi
ui(σi, ti) ≥ max(σ′i,t

′
i)∈X′

i
ui(σ

′
i, t

′
i). Let Z be the set of all

non-empty subsets of Z(N). For each Z ∈ Z, and each i ∈ N , let Zi ≡
⋃

(σ,t)∈Z(σi, ti).

Strategy-proofness: For each c ∈ C, each i ∈ N , and each c′i ∈ R+, if

Z = Φ(c) and Z ′ = Φ(c′i, c−i), then Zi Ri(ci) Z ′
i.

Thus, as in Pattanaik (1973), Dutta (1977), and Thomson (1979), strategy-

proofness requires each agent to find the worst assignment she may receive

when she reveals her unit waiting cost at least as desirable as the worst as-

signment she may receive when she misrepresents it. Furthermore, it requires

each agent to find the best assignment she may receive when she reveals her

unit waiting cost at least as desirable as the best assignment she may receive

when she misrepresents it. The second requirement is also implied by further

basic incentive compatibility requirements. In particular, it is a necessary con-

dition for implementation in undominated strategies by bounded mechanisms

(Jackson, 1992, Ching and Zhou, 2002).8

8Formally, an agent does not find misrepresenting her unit waiting cost more desirable
as revealing it if there is no c ∈ C, each i ∈ N , and each c′i ∈ R+ such that for (σ′, t′) ∈
Φ(c′i, c−i)\Φ(c), we have ui(σ′i, t

′
i) > min(σ,t)∈Φ(c) ui(σi, ti) or for (σ, t) ∈ Φ(c)\Φ(c′i, c−i), we

have max(σ′,t′)∈Φ(c′i,c−i)ui(σ′i, t
′
i) < ui(σi, ti).
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Next, we show that a unique rule satisfies Pareto-efficiency, symmetry, and

strategy-proofness and identify the rule. Moreover, this rule satisfies no-envy

and anonymity. For each problem, the rule selects all Pareto-efficient queues

and for each queue, it sets transfers as in the Equally Distributed Pairwise

Pivotal rule. Thus, it is the union of the desirable rules introduced in the

previous subsection. Formally,

The Largest Equally Distributed Pairwise Pivotal rule, Φ∗: For each

c ∈ C, we have (σ, t) ∈ Φ∗(c) if and only if σ ∈ Q∗(c) and for each i ∈ N , we

have ti = −∑
j∈N\{i}

∑
l∈{i,j}∩Fi(σ) cl+

1
(n−2)

∑
j∈N\{i}

∑
k∈N\{i,j}

∑
l∈{j,k}∩Fj(σ) cl.

For each problem and each Pareto-efficient queue, the transfers set by the

Largest Equally Distributed Pairwise Pivotal rule can be obtained as the trans-

fers set by any rule described in Proposition 1.1. Thus, for each c ∈ C, each

(σ, t) ∈ Φ∗(c), and each i ∈ N , we have

ti = −∑
l∈N\{i}(σl − 1)cl +

∑
l∈N\{i}(σ

−i
l − 1)cl + 1

(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl

=
∑

l∈Pi(σ)
(σl−1)
(n−2)

cl −
∑

l∈Fi(σ)
(n−σl)
(n−2)

cl

=
∑

l∈Pi(σ)
cl

2
−∑

l∈Fi(σ)
cl

2
−∑

l∈N\{i}
∑

k∈Pl(σ)\{i}
ck−cl

2(n−2)
.

Furthermore, Theorem 1.4 states that only subcorrespondences of the Largest

Equally Distributed Pairwise Pivotal rule can satisfy Pareto-efficiency, equal

treatment of equals in welfare, and strategy-proofness. They also satisfy no-
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envy. Then, we prove that the Largest Equally Distributed Pairwise Pivotal

rule is the only rule that satisfies Pareto-efficiency, symmetry, and strategy-

proofness.

Theorem 1.4.

1. A rule satisfies Pareto-efficiency, equal treatment of equals in welfare,

and strategy-proofness if and only if it is a subcorrespondence of the

Largest Equally Distributed Pairwise Pivotal rule.

2. A rule satisfies Pareto-efficiency, symmetry, and strategy-proofness if

and only if it is the Largest Equally Distributed Pairwise Pivotal rule.

The following paragraphs establish the independence of axioms in the sec-

ond statement in Theorem 1.4.

(i) Consider a rule that selects all Pareto-efficient queues and sets each agent’s

transfer equal to the Shapley value of the associated coalitional game, where

the worth of a coalition is the minimum possible sum of its members waiting

costs (Maniquet, 2003). Such a rule satisfies all the axioms of the second

statement of Theorem 1.4 but strategy-proofness.

(ii) Consider any proper subcorrespondence of a rule that is the union of all

the single-valued rules that are Groves’ rules associated with h ∈ H and satisfy

balancedness. Such a rule satisfies all the axioms of the second statement of

Theorem 1.4 but symmetry.
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(iii) Consider a rule such that for each queueing problem and each λ ∈ R+, it

selects a fixed queue and sets each agent’s transfer equal to −λ. Such a rule

satisfies all the axioms of the second statement of Theorem 1.4 but Pareto-

efficiency.

Remark 1.2. The Largest Equally Distributed Pairwise Pivotal rule also sat-

isfies anonymity. Since anonymity implies symmetry and the Largest Equally

Distributed Pairwise Pivotal rule is the union of all the rules that satisfy

Pareto-efficiency, equal treatment of equals in welfare, and strategy-proofness,

it follows that this rule is the only rule that satisfies Pareto-efficiency, equal

treatment of equals in welfare, symmetry, and strategy-proofness.

1.5 Conclusion

Our objective was to identify allocation rules for queueing problems that satisfy

efficiency, equity, and incentive requirements simultaneously on the domain

of quasi-linear preferences in positions and transfers. We proved that the

Largest Equally Distributed Pairwise Pivotal rule is the only such rule. It

is the only rule, together with any of its subcorrespondences, that satisfies

Pareto-efficiency, equal treatment of equals in welfare, and strategy-proofness.

It is the only rule that satisfies Pareto-efficiency, symmetry, and strategy-

proofness. As any of it subcorrespondences, it satisfies no-envy. Furthermore,
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it satisfies anonymity.

We draw three lessons from these results. First and foremost, queueing

problems are among the few problems in which Pareto-efficiency, a weak eq-

uity axiom such as equal treatment of equals in welfare or symmetry, and

strategy-proofness, are compatible. The natural next step is to determine if this

compatibility extends to other problems, in particular to ones in which agents

have different processing times. However, in queueing problems in which wait-

ing costs vary non-linearly across positions, no rule satisfies Pareto-efficiency

and strategy-proofness (Mitra, 2002).

Second, while efficiency of queues and strategy-proofness leave us with a

large class of single-valued rules, adding as weak equity axiom as equal treat-

ment of equals in welfare imposes a unique way of setting transfers. The open

question is to determine the class of multi-valued rules that satisfy Pareto-

efficiency and strategy-proofness.

Finally, in the queueing problems we studied, simply requiring equal treat-

ment of equals in addition to Pareto-efficiency and strategy-proofness, guaran-

tees further basic fairness requirements. First, it prevents agents from envying

one another. In allocation problems of private goods, equal treatment of equals

in welfare and coalition strategy-proofness together imply no-envy (Moulin,

1993). In general public decision-making problems in which the domain of

preferences is strictly monotonically closed, equal treatment of equals in wel-
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fare, strategy-proofness, and non-bossiness together imply no-envy (Fleurbaey

and Maniquet, 1997). However, these results do not apply to the problems we

studied. Indeed, here no rule satisfies Pareto-efficiency and coalition strategy-

proofness. Also, as preferences are quasi-linear in positions and transfers, they

are not monotonically closed. In fact, no rule satisfies Pareto-efficiency, non-

bossiness, and strategy-proofness. Second, it guarantees that agents’ names do

not matter. Finally, it guarantees each agent a minimal welfare level. Indeed,

in allocation problems of at most one indivisible private good per agent, no-

envy implies the identical-preferences lower bound, i.e., each agent should find

her assignment at least as desirable as any assignment recommended by Pareto-

efficiency and equal treatment of equals in welfare when the other agents have

her preferences (Bevia, 1996).



Chapter 2

Matching

2.1 Introduction

We consider two-sided matching markets with contracts as modeled by Roth

(1984) and studied in Hatfield and Milgrom (2005). The model in which the

contracts are introduce into general matching markets, includes classical mar-

riage markets, entry-level labor markets, school admission markets, and auc-

tion markets. Here, we discuss a medical job market with doctors and hospitals

as a matching market with contracts. One of the concerns in matching theory

is the stability. A matching is stable if there is no individual or a pair of set

of agents who can arrange a new matching preferred to the original matching.

We are interested in the stable solution that assigns to each matching market

with contracts its set of stable matchings. We consider a substitutes condition

28
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which requires when an agent chooses from an expanded set of contracts, the

set of contracts it rejects also expands. If the preferences are substitutable, then

the stable solution is well-defined, (Hatfield and Milgrom, 2005). Therefore,

we impose substitutability on preferences.

We follow the axiomatic approach and analyze solutions under variable

populations and preferences. A test for finding desirable rules involves varia-

tions in the number of agents and we provide two properties. First, we con-

sider population-monotonicity (Thomson, 1983). When there is an exogenous

change in the population, it would be unfair if the agents who were not re-

sponsible for this change were treated unequally. Population monotonicity

represents the idea of solidarity, and requires that if some agents leave, then

as a result either all remaining agents (weakly) gain or they all (weakly) lose.

In particular, we introduce own-side population-monotonicity, which requires

that no agent on one side of the market should benefit from an increase of pop-

ulation in its own side, and other-side population monotonicity, which requires

that no agent on one side of the market should lose from an increase of popu-

lation of the other side. Second, we consider the consistency principle1 which

has been applied to a wide class of economic problems. Suppose an allocation

has been chosen by the solution for the problem we consider, and then a subset

of agents leaves with what they are allocated. Now, consider the remaining

1For an extensive survey on consistency, see Thomson (2005).
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agents and all resources they have collectively received, which form the new

problem. The solution is consistent if it recommends the same bundle to be

allocated to each agent as initially. In other words, consistency is a property

in which some agents are leaving with what they are prescribed by the solution

and if we apply the solution to the reduced economy, then the prescribed allo-

cation does not change for the remaining ones. When applying the consistency

principle, it is necessary to define a new problem with the remaining agents,

which is called a reduced problem. Here, we consider two different ways of

reducing a problem. We introduce strong consistency where we allow any set

of agents to leave unless an agent who has been already matched with some

agents is left alone and weak consistency where we only allow agents to leave

in blocks, i.e., in pair of sets originally matched. Consistency has been studied

in matching markets and Sasaki and Toda (1992) obtain characterizations of

the core of one-to-one matching market. They show that the stable solution

is the only solution which satisfies Pareto-efficiency, anonymity, consistency,

and converse consistency2. Toda (2006) obtains characterization of the core

of many-to-one matching markets.

We also consider Maskin monotonicity studied in Haake and Klaus (2005).

This property requires that if the selected allocation has improved in the new

2A solution is conversely-consistent if for each problem and each allocation for that prob-
lem, if the restriction of the allocation to each subgroup of two matched pairs is among the
recommendations made by the solution for the four-agent reduced problem and the alloca-
tion, then the allocation should be one of the recommendations for the original problem.



31

preference relation, then the rule should select the same allocation when the

new preference relation is announced. Maskin monotonicity is a necessary but

not sufficient condition for Nash implementability. Haake and Klaus (2005)

shows that the stable solution is Maskin monotonic and any solution that

is Pareto-efficient, individual rational, Maskin monotonic contains the stable

solution.

We prove that the stable solution is the only rule that satisfies unanimity,

own-side population-monotonicity, and Maskin-monotonicity. Moreover, if a

rule satisfies unanimity, own-side population-monotonicity, other-side popula-

tion monotonicity, and weak consistency, then it is a subsolution of the stable

solution. In a recent paper, Toda (2006) obtains similar results in two-sided

many-to-one matching markets.

We also analyze immunity of solutions to strategic behavior such as to

misreporting the availability of contracts held by the hospitals, and misrep-

resenting preferences by doctors and hospitals. Postlewaite (1979) introduces

destruction-proofness in the context of exchange economies and shows that

there is no solution which is Pareto-efficient, individually rational, and destruction-

proof. There is no solution which is no-envy in trades and ε-witholding-proof

(Thomson, 1987). It is easy to find examples that the Walrasian rule is not

destruction-proof in classical private goods economies and the Lindahl rule is

not destruction-proof in classical public goods economies. In exchange mar-
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kets with heterogeneous indivisible goods and agents with separable prefer-

ences, Pareto-efficiency and hiding-proofness together imply individual ratio-

nality and there is no rule which is Pareto-efficient, individually rational, and

destruction-proof (Atlamaz and Klaus, 2005). When there are at least two

firms and three workers, there exists no matching rule that is stable and non-

manipulable via capacities in two-sided many to one matchings (Sönmez, 1997).

However, there are some rules that are Pareto-efficient, individually rational,

and non-manipulable via capacities.

We introduce destruction-proofness, and study destruction-proofness and

strategy-proofness in matching markets with contracts. We show that if the

hospitals’ preferences satisfy the substitute condition, then the doctor-optimal

solution is not destruction-proof and the hospital-optimal solution is destruction-

proof.

Alcalde and Barberà (1994) show that there is no matching rule that is

Pareto-efficient, individually rational, and strategy-proof. They consider do-

main of preferences satisfying top dominance condition. Consider a pair of

preference relations and a pair of individually rational alternatives. Assume

that first alternative is preferred to the second under the first preference rela-

tion and the second alternative is preferred to the first under the second pref-

erence relation. The condition requires that there is no other alternative such

that it is preferred to the first alternative under the first preference relation
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and is preferred to the second alternative under the second preference rela-

tion. They also show that if the preference of firms are responsive and satisfy

top-dominance condition, then the worker-optimal solution is Pareto-efficient,

individually rational, and strategy-proof. We also impose another restriction

on preferences of firms, the law of aggregate demand. This law states that as

more contracts are available, the firms should take on (weakly) more contracts.

In other words, if the set of possible contracts expands, then the total number

of contracts chosen by firm either rises or stays the same. This property for

a worker is implied by revealed preference, since each worker chooses at most

one contract. If the firms’ preferences satisfy the law of aggregate demand

and the substitutes condition, then for worker-optimal solution, it is domi-

nant strategy for workers to reveal truthfully their preferences over contracts.

However, it is not a dominant strategy for firms to truthfully reveal, even for

firm-optimal solution (Hatfield and Milgrom (2005)). We also consider top-

dominance condition. We show that if the hospitals’ preferences satisfy the

substitute condition, the law of aggregate demand, and the top-dominance

condition then the doctor-optimal solution is the only solution satisfying sta-

bility and strategy-proofness. 3 In two-sided matching markets with contracts

3Haeringer and Wooders (2004) studies a decentralized job market model where firms
propose sequentially a (unique) position to some workers. Successful candidates then decide
whether to accept the offers, and departments whose positions remain unfilled propose to
other candidates. They provide a complete characterization of the Nash equilibrium out-
comes and the subgame perfect equilibria. While the set of Nash equilibria outcomes contain
all individually rational matchings, it turns out that in most cases considered all subgame
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and more than two agents the stable correspondence is Nash implementable

(Haake and Klaus, 2005). Note that they only impose substitute condition,

whereas in order to have dominant strategy implementation, we need to impose

the substitute condition, the law of aggregate demand, and the top-dominance

condition.

In Section 2.2, we introduce the model where we discuss a medical job

market with doctors and hospitals as a matching market with contracts. Sec-

tions 3.3 and 2.4 introduce the properties of solutions and some well-known

solutions in the literature. Section 2.5 provides the results and all proofs are

provided in the Appendix B. Section 2.6 concludes.

2.2 Model

There are D the infinite set of potential doctors and H the infinite set of

potential hospitals. LetD andH be the sets of all finite subsets of D andH, and

let D and H be generic sets of doctors and hospitals. Let d and h be a generic

doctor and hospital. Also, let i, j be generic agents. A contract is a match

between a doctor and a hospital that specifies the conditions of employment.

Let X be the infinite set of potential contracts and X be the set of all finite

subsets of X. Let X be a generic set of contracts and x a generic contract.

perfect equilibria yield a unique outcome, the worker-optimal solution.



35

Let µ : X → D × H be the function that specifies the bilateral structure of

each contract. That is, µ assigns to each contract x ∈ X the ordered pair

(d, h) ∈ D × H that lists the doctor and the hospital between whom contract

x is established. Clearly, for each pair {x, x′} ⊆ X, if x 6= x′ and µ(x) = µ(x′),

then x and x′ are contracts between the same doctor and hospital but under

different terms. Also, each agent may stay unmatched, i.e., each doctor may

stay unemployed and each hospital may employ no doctor. We refer to this

situation as the null contract. We denote it by ∅ ∈ X. Also, by abuse of

language, we say that the null contract matches the agent to herself. Then, for

each i ∈ D∪H, let Xi be the set of all sets of contracts of X in which i is matched

(including to herself), i.e., Xi ≡ {X ∈ X : for each x ∈ X, there is j ∈

D ∪ H such that µ(x) = (i, j) or µ(x) = (j, i)}. Also, for each i ∈ D ∪ H and

each X ∈ X , let Xi be the set of all contracts of X in which i is matched, i.e.,

Xi ≡ {x ∈ X : there is j ∈ D ∪ H such that µ(x) = (i, j) or µ(x) = (j, i)}.

We assume that each doctor is matched at most one hospital, whereas each

hospital may be matched to several doctors. That is, we assume that, for each

d ∈ D and each X ∈ Xd, we have |X| ≤ 1.

Each doctor d ∈ D has preferences over X∪{∅}, described by a total order

Rd.
4 Let Rd be the set of all preferences of agent d ∈ D. For each d ∈ D

4That is, Rd is a binary relation that satisfies completeness (for each x′, x′′ ∈ X ∪ {∅},
either x′Rdx

′′ or x′′Rdx
′), transitivity (for each x′, x′′, x′′′ ∈ X∪{∅}, if x′Rdx

′′ and x′′Rdx
′′′,

then x′Rdx
′′′), and antisymmetry (for each x′, x′′ ∈ X ∪ {∅} with x′ 6= x′′, either x′Pdx

′′ or
x′′Pdx

′).



36

and each Rd ∈ Rd, C(.,Rd) : X → Xd is the choice function of agent d with

preferences Rd that assigns to each set of contracts X ∈ X the most preferred

contract C(X,Ri) ∈ Xd. Formally, for each X ∈ X , we have C(X,Rd) ≡

maxRd
{x ∈ Xd}. Each hospital h ∈ H has preferences over Xh, described by a

total order Rh.
5 Let Rh be the set of all preferences of agent h ∈ H. For each

h ∈ H and each Rh ∈ Rh, C(.,Rh) : X → Xh is the choice set correspondence

of agent h with preferences Rh that assigns to each set of contracts X ∈ X

the most preferred subset of contracts C(X,Rh) ⊆ Xh (including the null

contract). Formally, for each X ∈ X , we have C(X,Rh) ≡ maxRh
{X ′ ⊆ Xh}.

We impose two conditions on hospitals’ preferences.

• Rh is substitutable if for each X, X ′ ∈ Xh with X ′ ( X, we have X ′ ∩

C(X,Rh) ⊆ C(X ′,Rh).

• Rh satisfy the law of aggregate demand if for all X ′′ ⊆ X ′, we have

|C(X ′′,Rh)| ≤ |C(X ′,Rh)|.

Also, for each i ∈ D∪H and each X ∈ X , let Ri|Xi
be the reduced set of all

preferences of Ri relative to Xi and, each X ∈ X , let R|X =
∏

i∈D∪HRi|Xi
be

the reduced set of all preferences profiles of R relative to X. Next, we consider

a domain restriction.
5That is, Rh is a binary relation that satisfies completeness (for each X ′, X ′′ ∈ Xh, either

X ′RhX ′′ or X ′′RhX ′), transitivity (for each X ′, X ′′, X ′′′ ∈ Xh, if X ′RhX ′′ and X ′′RhX ′′′,
then X ′RhX ′′′), and antisymmetry (for each X ′, X ′′ ∈ Xh with X ′ 6= X ′′, either X ′PhX ′′

or X ′′PhX ′).
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• The domain of preferences satisfies top-dominance condition if for each

pair {Rh, R
′
h} ⊆ R, and each pair {X ′, X ′′} ⊆ X such that X ′ Rh ∅,

X ′′ R′
h ∅, X ′ Rh X ′′ and X ′′ R′

h X ′, then there is no X ′′′ such that

X ′′′ Rh X ′ and X ′′′ R′
h X ′′

A matching market with contracts is a quadruple M ≡ (D, H,X, R) such

that:

(i) D ∈ D\∅,

(ii) H ∈ H\∅,

(iii) X ∈ X such that for each x ∈ X, there are d ∈ Dand h ∈ H such

that µ(x) = (d, h),

(iv) R = (Ri)i∈D∪H such that for each i ∈ D ∪ H, there is Ri ∈ Ri such

that Ri = Ri|Xi
.

Let M be the set of all matching markets with contracts. An allocation A for

M = (D, H, X, R) ∈ M is a list of subsets of contracts ((Ad)d∈D; (Ah)h∈H)) ∈
∏

i∈D∪H 2Xi such that, for each d ∈ D and each h ∈ H, we have |Ad ∩Ah| ≤ 1

and if there is x ∈ Ad∪Ah with µ(x) = (d, h), then {x} = Ad∩Ah. Let A(M)

be the set of all allocations for M ∈M. A solution ϕ is a correspondence that

assigns to each matching market with contracts M ∈ M a non-empty set of

allocations ϕ(M) ⊆ A(M).
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2.3 Properties of solutions

Our objective is to formulate desirable properties and identify appealing so-

lutions that satisfy these properties together in this section. The efficiency

requirement is standard. There should be no feasible allocation other than the

one selected that each agent finds at least as well as and at least one agent

prefers.

An allocation A ∈ A is Pareto-efficient for M ∈ M if there is no A′ ∈ A

with A′ 6= A such that, for each i ∈ D ∪H, C(A∪A′, Ri) = A′
i. Let P (M) be

the set of Pareto-efficient allocations for M . Then,

Pareto-efficiency: For each M = (D, H, X, R) ∈M, ϕ(M) ⊆ P (M).

Next, we require a very mild property which requires that if there is a

feasible allocation which is ranked as the top choice for everyone, then it should

be the only allocation chosen by the rule.

Unanimity: For each M = (D,H, X, R) ∈ M, if there is A ∈ A(M) such

that for each i ∈ D ∪H, C(X,Ri) = Ai, then ϕ(M) = {A}.

One of the concerns in matching theory is the stability and stability of an

allocation requires that there is no individual or a pair of set of agents who

can arrange a new allocation preferred to the original allocation.

An allocation A ∈ A(M) is weakly individually rational for M = (D, H, X,R) ∈
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M if, for each i ∈ D ∪ H such that Ai 6= ∅, we have C(Ai, Ri) 6= ∅. Let

WIR(M) be the set of weakly individually rational allocations for M ∈ M.

Then,

Weak individual rationality: For each M ∈M, we have ϕ(M) ⊆ WIR(M).

An allocation A ∈ A(M) is individually rational for M = (D, H, X,R) ∈

M if, for each i ∈ D ∪H, we have C(Ai, Ri) = Ai. Let IR(M) be the set of

individually rational allocations for M ∈M. Then,

Individual rationality: For each M ∈M, we have ϕ(M) ⊆ IR(M).

Clearly, for each M = (D, H,X,R) ∈M and each A ∈ A(M), if an allocation

A is individually rational for M , then it is weakly individually rational for M .

Besides, under substitutable preferences, for each M = (D, H,X, R) ∈M and

each A ∈ A(M), if A is individually rational for M , then, for each i ∈ D ∪H

and each x ∈ Ai, we have C({x}, Ri) = {x}, i.e., x is acceptable.6

A doctor d ∈ D blocks A ∈ A(M) only if C(Ad, Rd) = ∅. Also, a pair of

subsets (D′, H ′) ⊆ D × H blocks A ∈ A(M) only if, for each h ∈ H ′, there

6Moreover, consider a smaller domain of separable preferences, i.e., Rh is separable if,
for each X ∈ Xh and each {x} ∈ Xh\X, we have X ∪ {x} Rh X if and only if {x} Rh ∅.
Under separable preferences, for each M = (D, H,X, R) ∈M and each A ∈ A(M), we have
that A is individually rational for M if and only if for each i ∈ D ∪H and each x ∈ Ai, we
have C({x}, Ri) = {x}, i.e., x is acceptable. We define individual rationality as in Haake
and Klaus (2005) because this definition does not depend on the assumptions made on
preferences. One may find other definitions that do. In particular, Toda’s (2006) requires
that, for each i ∈ D ∪H and each x ∈ Ai, we have C({x}, Ri) = {x}. Thus, our definition
and his are equivalent only under separable preferences.
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are D′′ ⊆ D′ and X ′ ∈ Xh with |D′′| = |X ′| and X ′ 6⊆ Ah such that, for each

d ∈ D′′, there is x ∈ X ′ with {x} = C(Ad∪{x}, Rd) and X ′ = C(Ah∪X ′, Rh).
7

An allocation A ∈ A(M) is stable for M if and only if

(i) there is no d ∈ D such that C(Ad, Rd) = ∅,

(ii) there is no h ∈ H such that C(Ah, Rh) ( Ah, and

(iii) there is no pair of subsets (D′, {h}) ⊆ D × H such that there is

X ′ ∈ Xh with |D′| = |X ′| and X ′ 6⊆ Ah such that, for each d ∈ D′, there is

x ∈ X ′ with {x} = C(Ad ∪ {x}, Rd) and X ′ = C(Ah ∪X ′, Rh).

Also, if A ∈ A(M) is weakly individually rational for M , then no doctor d ∈ D

blocks A ∈ A(M). Let S(M) be the set of stable allocations for M ∈ M.

Then,

Stability: For each M ∈M, we have ϕ(M) ⊆ S(M).

Next, we turn to the changes in population. The idea of population mono-

tonicity which is introduced in Thomson (1983), requires that when there is

an exogenous change in the population, the agents who were not responsible

for this change should not be treated unequally. Population monotonicity ex-

presses the idea of solidarity, and requires that if some agents leave, then as a

result either all remaining agents gain or they all lose. We apply population

monotonicity when there is only a change in population of one side of the mar-

7Under substitutable preferences, if there is a blocking pair of subsets, then there is
(d, h) ∈ D×H such that there is x ∈ (Xd∩Xh)\(Ad∪Ah) with C(Ad∪{x}, Rd) Pd C(Ad, Rd)
and C(Ah ∪ {x}, Rh) Ph C(Ah, Rh).
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ket. We formulate two properties. The first property requires that no agent on

one side of the market should benefit from an increase of population in its own

side. For M = (D, H, X, R) ∈M, we say that M ′ = (D′, H ′, X ′, R′) ∈M is a

restriction of M if D′ ⊆ D, H ′ ⊆ H, X ′ = X|D′∪H′ ≡ {x ∈ X : there are d ∈

D′ and h ∈ H ′ such that µ(x) = (d, h)}, R′ = (Ri|2X′∩Xi
)i∈D′∪H′ . In particu-

lar, if D′ 6= D and H ′ = H, then M ′ is a D-restriction of M , and if D′ = D

and H ′ 6= H, then M ′ is a H-restriction of M . Then,

Own-side population-monotonicity: For each M = (D, H, X, R) ∈ M,

each M ′ = (D′, H ′, X ′, R′) ∈M, and each A′ ∈ ϕ(M ′), if M ′ is a D-restriction

of M , then there is A ∈ ϕ(M) such that, for each d ∈ D′, A′
d Rd Ad, and if M ′

is a H-restriction of M , then there is A ∈ ϕ(M) such that, for each h ∈ H ′,

A′
h Rh Ah.

The second property requires that no agent on one side of the market should

lose from an increase of population in the other side.

Other-side population-monotonicity: For each M = (D, H,X, R) ∈ M,

each M ′ = (D′, H ′, X ′, R′) ∈M, and each A′ ∈ ϕ(M ′), if M ′ is a D-restriction

of M , then there is A ∈ ϕ(M) such that, for each h ∈ H ′, Ah Rh A′
h, and

if M ′ is a H-restriction of M , then there is A ∈ ϕ(M) such that, for each

d ∈ D′, Ad Rd A′
d.

Next, we consider the consistency principle. Suppose an allocation has
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been chosen by the solution for the problem we consider, and then a subset

of agents leaves with what they are allocated. Now, consider the remaining

agents and all resources they have collectively received, which forms the new

problem. The solution is consistent if it recommends the same bundle to be

allocated to each agent as initially. When applying the consistency principle, it

is necessary to define a new problem with the remaining agents, which is called

a reduced problem. Here, we consider two different ways of reducing a problem.

We introduce two properties. The first property allows agents to leave in

blocks only, in pair of sets originally matched. For M = (D, H, X,R) ∈ M,

M ′ = (D′, H ′, X ′, R′) ∈ M and A ∈ ϕ(M), we say that rA
D′∪H′(M) is the

type-1 reduced economy of M relative to D′ ∪H ′ at A if:

• D′ ⊆ D and H ′ ⊆ H are such that, for each i ∈ D′∪H ′, either Ai = ∅ or

for each x ∈ Ai, there is no j ∈ (D ∪H)\(D′ ∪H ′) with {x} = Ai ∩ Aj,

• X ′ = X|D′∪H′ ≡ {x ∈ X : there are d ∈ D′ and h ∈ H ′ such that µ(x) =

(d, h)}, and

• R′ is such that, for each i ∈ D′ ∪H ′, we have R′
i = Ri|X′

i
.

Then,

Weak consistency: For each M = (D,H, X, R) ∈M, each M ′ = (D′, H ′, X ′, R′) ∈

M, and each A ∈ ϕ(M), we have A|D′∪H′ ∈ ϕ(rA
D′∪H′(M)).
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The second property allows any set of agents to leave unless an agent

who has been already matched with some agents is left alone. For M =

(D, H,X, R) ∈ M, M ′ = (D′, H ′, X ′, R′) ∈ M and A ∈ ϕ(M), we say that

rA
D′∪H′(M) is the type-2 reduced economy of M relative to D′ ∪H ′ at A if:

• D′ ⊆ D and H ′ ⊆ H are such that, for each i ∈ D′ ∪H ′, either Ai = ∅

or for each x ∈ Ai, there is j ∈ D′ ∪H ′ with {x} = Ai ∩ Aj,

• X ′ = X|D′∪H′ ≡ {x ∈ X : there are d ∈ D′ and h ∈ H ′ such that µ(x) =

(d, h)}, and

• R′ is such that, for each i ∈ D′ ∪H ′, we have R′
i = Ri|X′

i
.

Then,

Strong consistency: For each M = (D,H, X, R), each M ′ = (D′, H ′, X ′, R′),

and each A ∈ ϕ(M), we have A|D′∪H′ ∈ ϕ(rA
D′∪H′(M)).

Next, we return to changes in preferences. Let M = (D,H, X, R) ∈ M.

For each i ∈ D ∪ H, each Ri ∈ Ri|Xi
, and each A ∈ A(M), if, for each

X ′ ⊆ X with Ai Pi X ′, we have Ai P ′
i X ′, then R′

i is a Maskin-monotonic

transformation of Ri at Ai. Let MT (Ri, Ai) be the set of all Maskin-monotonic

transformations of Ri at Ai. Also, if for each i ∈ D ∪ H, R′
i ∈ MT (Ri, Ai),

then R′ is a Maskin-monotonic transformation of R at A. Let MT (R,A) be

the set of all Maskin-monotonic transformations of R at A. Now, we introduce
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a property which requires that a preference profile changes in such a way that

the selected allocation has improved in the new preference profile, then the rule

should select the same allocation when the new preference profile is announced.

Maskin-monotonicity: For each M = (D, H, X, R) ∈ M, each M ′ =

(D, H,X, R′), and each A ∈ ϕ(M), if R′ ∈ MT (R, A), then A ∈ ϕ(M ′).

Finally, we focus on the strategic issues. We assume that for each problem

the solution is single-valued. First, we will consider the case where the hospital

will destruct some of the contracts and be matched in the market according

to the subset of contracts it had initially. A solution is non-manipulable via

destructing contracts or destruction-proof if

Destruction-proofness: For each M = (D,H, X, R) ∈M, each h ∈ H, and

each X ′
h ⊆ Xh, we have ϕh(D, H, X,R) Rh ϕh(D, H, X−h, X

′
h, R−h, Rh|X′

h
).

Next, we will consider the case where an agent behave strategically when

announcing the preference. We require that each agent should find her assign-

ment when she truthfully reveals her preference at least as desirable as her

assignment when she misrepresents it. A solution is strategy-proof if

Strategy-proofness: For each M = (D,H, X, R) ∈M, each i ∈ D∪H, and

each R′
i ∈ Ri, we have ϕi(D,H, X, R) Ri ϕi(D, H,X, R−i, R

′
i).
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2.4 Solutions

The solutions identified next have played an important role in the literature.

First, we consider the solution which chooses all stable matchings.

The stable solution: For each M ∈M, we have ϕS(M) = S(M).

Second, we consider the doctor-optimal solution and hospital-optimal solu-

tions. The doctor-optimal solution associates with each profile of preferences

the stable allocation which is preferred by all doctors to all other stable allo-

cations.

The doctor-optimal solution: For each M ∈M, we have ϕD(M) ∈ S(M)

such that for each d ∈ D and A ∈ S(M), we have ϕD(M)d Rd Ad.

The doctors-proposing deferred acceptance algorithm of Gale and Shapley

(1962) can be used to find the doctor-optimal solution. This algorithm can be

outlined as:

Step 1: Each doctor d makes an offer to the firm with her best contract

in X. Each hospital h that receives one or more offers holds the best set

of contracts and rejects the rest. The algorithm terminates if no contract is

rejected. Otherwise, doctors skip to the next step.

...
...

...

Step t: Each doctor d whose contract was rejected at Step t-1 proposes to
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the hospital with the best acceptable contract to which she has not proposed

before. Each hospital d holds the best set of contracts among the ones it

receives at this step and the ones it was holding from the previous step. It

rejects the rest. The algorithm terminates if no offer is rejected by any hospital.

Otherwise, doctors skip to the next step.

When the algorithm terminates, the tentatively held contracts are realized

as assignments.

Symmetrically, we can define the hospital-optimal solution. It associates

with each profile of preferences the stable allocation which is preferred by

all hospitals to all other stable allocations. The hospitals-proposing deferred

acceptance algorithm can be used to find the hospital-optimal solution.

The hospital-optimal solution: For each M ∈M, we have ϕH(M) ∈ S(M)

such that for each h ∈ H and A ∈ S(M), we have ϕH(M)h Rh Ah.

2.5 Results

First, we show that the stable solution satisfies the properties listed above.

Proposition 2.1. The stable solution satisfies unanimity, individual rational-

ity, own-side population-monotonicity, other-side population-monotonicity,

Maskin monotonicity, and weak consistency.
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Next, we show that if any two agents’ best choice is to match together, then

they should match at each problem whenever the solution satisfies unanimity

and own-side population-monotonicity.

Lemma 2.1. Let ϕ be a rule satisfying unanimity and own-side population-

monotonicity. Then, for each M = (D, H,X,R) ∈ M, each A ∈ ϕ(M), and

each h ∈ H such that for each x ∈ C(X,Rh), there is d ∈ D with {x} =

C(X, Rd), we have Ah = C(X,Rh).

The next proposition establishes a relationship between the properties.

When we impose an efficiency property, a solidarity property and an incentive

property, we get a necessary condition for stability.

Proposition 2.2. If a rule ϕ satisfies unanimity, own-side population-monotonicity,

and Maskin-monotonicity, then ϕ satisfies weak individual rationality.

Proposition 2.3. A rule ϕ satisfies weak individual rationality, unanimity,

own-side population-monotonicity, and Maskin-monotonicity if and only if

ϕ = ϕS.

Using Propositions 2.1 and 2.3, we can now state our first result.

Theorem 2.1. A rule ϕ satisfies unanimity, own-side population-monotonicity,

and Maskin-monotonicity if and only if ϕ = ϕS.
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The axioms of Theorem 2.1 are independent of each other. The solution

that chooses all possible matchings satisfies own-side population-monotonicity,

Maskin-monotonicity, but not unanimity. The solution that chooses all Pareto-

efficient matchings satisfies unanimity, Maskin-monotonicity, but not own-side

population-monotonicity. The union of the doctor-optimal solution and the

hospital-optimal solution satisfies unanimity, own-side population-monotonicity

but not Maskin-monotonicity.

Next, we turn to weak consistency and show that a symmetric result

to Proposition 2.2 holds when we impose weak consistency and other-side

population-monotonicity instead of Maskin-monotonicity.

Proposition 2.4. Let ϕ be a rule satisfying weak individual rationality, una-

nimity, own-side population-monotonicity, other-side population-monotonicity,

and weak consistency. Then, ϕ ⊆ ϕS.

The next proposition establishes a relationship between the properties.

When we impose an efficiency property, a solidarity property and an invariance

property, we get a necessary condition for stability.

Proposition 2.5. Let ϕ be a rule satisfying unanimity, own-side population-

monotonicity, and weak consistency. Then, it satisfies weak individual ratio-

nality.

Using Propositions 2.1 and 2.4, we can now state our second result.
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Theorem 2.2. Let ϕ be a rule satisfying unanimity, own-side population-

monotonicity, other-side population-monotonicity, and weak consistency. Then,

ϕ ⊆ ϕS.

Finally, we show that why we impose weak consistency rather than any

other form of consistency. The following example shows that if we allow any

subset of agents to leave, then a stable allocation restricted to the new economy

is not a stable allocation.

Example 2.1. Let M = (D, H, X,R) be such that D = {d1, d2, d3}, H =

{h1, h2}, X = {x1, x2, x3, x4, x5, x6}, where µ(x1) = (d1, h1), µ(x2) = (d1, h2),

µ(x3) = (d2, h1), µ(x4) = (d2, h2), µ(x5) = (d3, h1), µ(x6) = (d3, h2), and R be

as follows:

Rd1 Rd2 Rd3 Rh1 Rh2

x1 x3 x5 {x1, x3} {x2, x6}

x2 x4 x6 {x3, x5} {x6}

∅ ∅ ∅ {x3} ∅

{x5}

{x1}

∅

Let ϕ = ϕS. Consider the stable allocation A = ({x1}, {x3}, {x6}, ; {x1, x3}, {x6}).

Let M ′ = (D′, H ′, X ′, R′) be such that D′ = {d3}, H ′ = {h1, h2}, X ′ =
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{x5, x6}, and R′ = (Ri|X′)i∈D′∪H′. Then, A|D′∪H′ = {{x6}; ∅, {x6}} is not

stable because (d3, h1) is a blocking pair, since d3 prefers x5 to x6 and h1

prefers {x5} to ∅. Let M ′′ = (D′′, H ′′, X ′′, R′′) be such that D′ = {d1, d2, d3},

H ′ = {h2}, X ′ = {x2, x4, x6}, and R′ = (Ri|X′)i∈D′∪H′. Then, A|D′∪H′ =

{∅, ∅, {x6}; {x6}} is not stable because ({d1, d3}, h2) is a blocking pair, since

d1 prefers x2 to ∅ and h2 prefers {x2, x6} to {x6}.

The next example shows that the stable solution is not strongly consistent.

Example 2.2. Let M = (D, H, X,R) be such that D = {d1, d2, d3}, H =

{h1, h2}, X = {x1, x2, x3, x4, x5, x6}, where µ(x1) = (d1, h1), µ(x2) = (d1, h2),

µ(x3) = (d2, h1), µ(x4) = (d2, h2), µ(x5) = (d3, h1), µ(x6) = (d3, h2), and R be

as follows:

Rd1 Rd2 Rd3 Rh1 Rh2

x1 x3 x5 {x1, x3} {x6}

x2 x4 x6 {x3, x5} ∅

∅ ∅ ∅ {x3}

{x1}

{x5}

∅

Let A ≡ ({x1}, {x3}, {x6}; {x1, x3}, {x6}). Clearly, A ∈ ϕS(M). Now, let

M ′ = (D′, H ′, X ′, R′) be such that D′ = {d2, d3}, H ′ = {h1, h2}, X ′ =
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{x3, x4, x5, x6}, and R′ = (Ri|X ′)i∈D′∪H′. Clearly, M ′ is type-2 reduced econ-

omy of M relative to D′∪H ′ at A. Also, A|D′∪H′ = {{x3}, {x6}; {x3}, {x6}} 6∈

S(M ′). Indeed, for the pair of subsets ({d2, d3}, {h1}) ⊂ D × H, there is

{x3, x5} ∈ Xh1 with |{d2, d3}| = |{x3, x5}| and {x3, x5} 6⊆ Ah1 such that

{x3} = C(Ad2∪{x3}, Rd2), {x5} = C(Ad3∪{x3}, Rd3), and {x3, x5} = C(Ah1∪

{x3, x5}, Rh1). Thus, ({d2, d3}, {h1}) blocks A|D′∪H′.

Next, consider the domain of separable preference which is a subdomain of

substitutable preferences. The preference relation Rh is separable if, for each

X ∈ Xh and each {x} ∈ Xh\X, we have X∪{x} Rh X if and only if {x} Rh ∅.

We have the following result:

Proposition 2.6. On the domain of separable preferences, the stable solution

is strongly consistent.

Next, we show that the doctor-optimal solution ϕD(M) is not destruction-

proof.

Proposition 2.7. The doctor-optimal solution ϕD(M) is not destruction-

proof.

Proof. Let M = (D, H,X,R) ∈ M be such that D = {d1, d2}, H = {h1, h2},

Xh1 = {x11, x
′
11, x21}, Xh2 = {x21, x22}, X = Xh1 ∪ Xh2 where µ(x11) =

µ(x′11) = (d1, h1), µ(x12) = (d1, h2), µ(x21) = (d2, h1), µ(x22) = (d2, h2), and R
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be as follows:

Rd1 Rd2 Rh1 Rh2

x11 x21 {x′11, x21} {x12}

x′11 x22 {x11, x21} {x22}

x12 ∅ {x′11} ∅

∅ {x11}

{x21}

∅

Then, ϕD(M) = (x11, x21; {x11, x21}, ∅). Now assume that X ′
h1

= {x′11, x21}

and consider M ′ = (D, H,X ′, R′) ∈ M such that X ′ = X ′
h1
∪ X ′

h2
and

R′
h1

= Rh1|X′
h1

and R′
h2

= Rh2 . Then, ϕD(M ′) = (x′11, x21; {x′11, x21}, ∅) and

ϕD
h1

(M ′) Rh1 ϕD
h1

(M).

Next, we state our results about immunity of solutions to strategic behav-

ior.

Proposition 2.8. The hospital-optimal solution ϕF (M) is destruction-proof.

Now, we state our result on strategy-proofness.

Theorem 2.3. If the hospitals’ preferences satisfy substitutes condition, law

of aggregate demand, and top-dominance condition then a rule ϕ satisfies sta-

bility and strategy-proofness if and only if ϕ = ϕD.
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2.6 Conclusion

We looked for the solutions for matching with contracts that satisfy effi-

ciency, solidarity and incentives requirements simultaneously under variable

populations and preferences. We defined population-monotonicity and consis-

tency axioms, and we also considered Maskin-monotonicity. Although Maskin-

monotonicity is a requirement on variable preferences, whereas weak consis-

tency and other-side population-monotonicity are requirements on variable

populations, Theorems 2.1 and 2.2 show that Maskin-monotonicity plays the

same role as weak consistency and other-side population-monotonicity. Also,

an interesting question concerns the relationship between efficiency and soli-

darity conditions.

We are also interested in immunity of solutions to strategic behavior such as

to misreporting the availability of contracts held by the hospitals, and misrep-

resenting preferences by doctors and hospitals. Although Theorem 2.3 seems

to be a positive result, one should keep in mind that top dominance condition

is a strong condition.



Chapter 3

Cost Allocation

3.1 Introduction

We consider the problem of sharing the cost of a public facility among agents

who have different needs for it. An example is the so-called “irrigation prob-

lem”. Ranchers are distributed along an irrigation ditch which they use jointly.

A rancher only needs the part of the ditch from his field to the headgate. To

accommodate all ranchers, the ditch should reach the furthest field from the

headgate. How should the cost of maintaining the ditch be shared among the

ranchers? A “rule” is a function that associates with each irrigation problem

an allocation of the cost of maintaining the ditch, which we call a “contri-

butions vector”. For a comprehensive survey of this literature, initiated by

Littlechild and Owen (1973), see Thomson (2005).

54
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A well-known rule has been employed by ranchers in south-central Montana

for over 100 years. For an empirical and axiomatic analysis on this subject,

see Aadland and Kolpin (1998). It is the “sequential equal contributions”

(SEC) rule1, which works as follows. Imagine that the ditch is composed of

“segments”: the rancher closest to the headgate only needs the part of the

ditch from the headgate to his field, the first segment; the second closest

rancher needs the first segment and the part of the ditch from first segment

to his field, second segment; and so on. All ranchers using a given segment

contribute equally to the cost of the segment, and thus pay the total of the

contributions of each segment that they use. Littlechild and Owen (1973)

show that the contributions vector recommended by the SEC rule coincides

with that prescribed by the “Shapley value” (Shapley, 1953) applied to the

TU game associated to the problem in a natural way. Given an irrigation

problem, we first transform the problem into a TU game, which we call the

associated irrigation game, by defining the worth of each coalition as the cost

of maintaining the ditch used by a rancher with the furthest field from the

headgate in that coalition. We then apply a TU game solution to solve the

game. This yields a payoff vector. Finally, we take this payoff vector as the

contributions vector for the irrigation problem.

Our purpose here is to base axiomatic characterizations of the SEC rule

1The terminology we adopt is borrowed from Thomson (2005). Aadland and
Kolpin (1998) refer to it as the serial cost-share rule.
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on the following variable-population property, which is an application for ir-

rigation problems of a general principle of “consistency”. For a survey of the

literature on consistency and its converse, see Thomson (2000). A number

of authors have provided several axiomatic characterizations of the SEC rule.

Readers are referred to Dubey (1982), Moulin and Shenker (1992), Aadland

and Kolpin (1998), and Potters and Sudhölter (1999). Suppose that there are

n ranchers indexed by 1, . . . , n and rancher i’s cost parameter ci represents

the cost of maintaining the irrigation ditch that rancher i uses. For simplic-

ity, assume that c1 < · · · < cn. Consider a contributions vector x chosen by

a rule for the problem just defined. Imagine that rancher 1 pays his contri-

bution x1 and “leaves”, and reassess the situation from the viewpoint of the

remaining ranchers. It is of course natural to think of x1 as a contribution

to the part of the ditch that rancher 1 uses. Since contributing to the part

of the ditch that rancher 1 uses implies contributing to the part of the ditch

that all other ranchers use, the cost parameters of the remaining ranchers are

then revised down by the amount x1. Smallest-cost consistency (Potters and

Sudhölter, 1999) of the rule requires that for the reduced problem just defined,

each of the remaining ranchers should contribute the same amount as he did ini-

tially. When other rancher leaves, it is not easy to define the reduced problem.

Thus, the benefit of a characterization is based on smallest-cost consistency.

Potters and Sudhölter (1999) propose two types of consistency requirements
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for irrigation problems, “ν-consistency” and “ψ-consistency”. Depending on

which formation of a reduced problem is adopted, we are led to different con-

sistency properties. However, when we focus on the departure of a rancher

with the smallest cost parameter, ν-consistency and ψ-consistency coincide

with smallest-cost consistency. Compared to ν-consistency and ψ-consistency,

smallest-cost consistency is natural and no controversial at all.

In addition to smallest-cost consistency, we consider the following desirable

properties. The first property is a symmetry property, “equal treatment of

equals”: two ranchers with the same cost parameters should contribute equal

amounts. The second property is an independence property, “independence of

followers”: if the cost parameters of all ranchers other than the ranchers before

a segment increase by the same positive amount, then the ranchers before the

segment should contribute the same amounts as they did initially. The third

one is a lower bound requirement on each rancher’s contribution. Imagine,

for each rancher separately, that his cost parameter is the smallest. We then

divide his cost parameter by the numbers of ranchers. (Note that any segment

the rancher uses is jointly used by all other ranchers. Thus, an equal share of

the cost parameter of the rancher is very natural.) Equal share lower bound

of the rule requires that each rancher should contribute at least as much as

an equal share of his cost parameter. The last one is a monotonicity property,

“cost monotonicity”: if a rancher’s cost parameter increases, all other ranchers
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should contribute at most as much as they did initially.

We establish two characterizations of the SEC rule: (i) it is the only rule

satisfying equal treatment of equals, independence of followers, and smallest-

cost consistency, and (ii) it is the only rule satisfying equal share lower bound,

cost monotonicity, and smallest-cost consistency.

In Section 3.2, we formally introduce the model and the properties of solu-

tions. Section 3.4 provides the results, proofs and the independence of axioms.

3.2 Model

There is a universe of “potential” agents, denoted by I j N where N is the

set of natural numbers. Let N be the class of non-empty and finite subsets

of I. Given N ∈ N and i ∈ N , let ci ∈ R+ be agenti’s cost parameter,

and c ≡ (ci)i∈N the profile of cost parameters. An irrigation problem for N ,

or simply a problem for N , is a list c ∈ RN
+ . Let CN be the class of all

problems for N . A contributions vector for c ∈ CN is a vector x ∈ RN such

that
∑

i∈N xi = maxi∈N ci, a condition we call “efficiency”, and for each i ∈ N ,

0 ≤ xi ≤ ci, a condition we call “reasonableness”. Let X (c) be the set of all

contributions vectors for c ∈ CN . A rule is a function defined on
⋃

N∈N CN that

associates with each N ∈ N and each c ∈ CN a vector in X (c). Let n denote

the number of agents in N and η : {1, . . . , n} → N be a bijection such that
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cη(1) ≤ · · · ≤ cη(n). Thus, the agents in N are ordered in terms of their cost

parameters. Note that if several agents have the same cost parameters, then

the order is not unique. By convention, we assume that N ≡ {1, . . . , n} and

c1 ≤ · · · ≤ cn. Our generic notation for rules is S. For each coalition N ′ ⊂ N ,

we denote (ci)i∈N ′ by cN ′ , (Si (c))i∈N ′ by SN ′ (c), and so on. The terminology

we adopt in this paper is borrowed from Thomson (2005)

3.3 Sequential equal contributions rule and prop-

erties of rules

We now introduce the sequential equal contributions rule.

Sequential equal contributions rule, SEC: For each N ∈ N , each c ∈ CN ,

and each i ∈ N ,

SECi(c) ≡ c1

n
+

c2 − c1

n− 1
+ · · ·+ ci − ci−1

n− i + 1
.

The SEC rule satisfies the following properties informally defined in the

introduction.

Equal treatment of equals: For each N ∈ N , each c ∈ CN , and each pair

{i, j} ⊆ N , if ci = cj, then Si(c) = Sj(c).
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Equal share lower bound: For each N ∈ N , each c ∈ CN , and each i ∈ N ,

Si(c) ≥ ci

n
.

Independence of followers: For each N ∈ N , each c ∈ CN , each c′ ∈ CN ,

each i ∈ N , and each δ ≥ 0, if for each j ∈ {1, . . . , i}, c′j = cj and for each

j ∈ N\{1, . . . , i}, c′j = cj + δ, then for each j ∈ {1, . . . , i}, Sj(c) = Sj(c
′).2

Cost monotonicity: For each N ∈ N , each c ∈ CN , each c′ ∈ CN , and

i ∈ N , if c′i ≥ ci and for each j ∈ N\{i}, c′j = cj, then for each j ∈ N\{i},

Sj(c
′) ≤ Sj(c).

3

Next is the central property to our analysis. Let N ∈ N , c ∈ CN , x ∈ X (c),

and i∗ ∈ {i ∈ N | for each k ∈ N , ci ≤ ck }. The reduced problem of c with

respect to N ′ ≡ N\ {i∗} and x, rx
N ′ (c), is defined by setting for each j ∈ N ′,

(rx
N ′ (c))j ≡ cj − xi∗ .

Smallest-cost consistency: For each N ∈ N , each c ∈ CN , and each N ′ ⊂
2A weaker version of independence of followers can be obtained by restricting attention to

an agent with the largest cost parameter. This new property together with efficiency implies
an additivity property, “last-agent cost additivity”: if the cost parameter of an agent with
the largest cost parameter increases by a positive amount, the agent’s contribution should
increase by an equal amount. A stronger version of independence of followers, “independence
of at-least-as-large costs” (Moulin and Shenker, 1992), can be obtained by only requiring
that the cost parameters of those agents with larger cost parameters than agent i’s increase
by a positive amount rather than an equal amount.

3This property is introduced by Thomson (2005). The property is a complement of
“individual cost monotonicity” (Potters and Sudhölter, 1999), which is defined as follow:
under the same hypotheses, agent i should pay at least as much as he did initially.
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N , if x ≡ S (c), then rx
N ′ (c) ∈ CN ′

and xN ′ = S (rx
N ′ (c)).

Remark 1: Reasonableness and smallest-cost consistency together imply ef-

ficiency.

3.4 Results

Our first result is that the SEC rule is the only rule satisfying equal treatment

of equals, independence of followers, and smallest-cost consistency. To prove

this characterization, we use the fact that the SEC rule satisfies the following

monotonicity property. If the cost parameters of all agents increase by the

same positive amount, each rancher should contribute at least as much as he

did initially.

Uniform-cost-increase monotonicity: For each N ∈ N , each c ∈ CN , each

c′ ∈ CN , and each δ > 0, if for each i ∈ N , c′i = ci + δ, then for each i ∈ N ,

Si(c) ≤ Si(c
′).

Since the fact that the SEC rule satisfies uniform-cost-increase monotonic-

ity is an immediate consequence of the definition of the SEC rule, we omit its

proof. We are now ready to prove the announced assertion.

Theorem 3.1. The SEC rule is the only rule satisfying equal treatment of

equals, independence of followers, and smallest-cost consistency.
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Proof. Clearly, the SEC rule satisfies the three properties above.4 Conversely,

let S be a rule satisfying the properties. Without loss of generality, let N ≡

{1, . . . , n} and suppose that c1 ≤ · · · ≤ cn.5 Let x ≡ S(c) and y ≡ SEC(c).

We show that x = y. The proof is by induction on n.

Case 1: n = 1. By efficiency of the rule, x = y.

Case 2: n > 1. The induction hypothesis is that for each N ′ ∈ N and

c∗ ∈ CN ′
with N ′ ⊂ N and |N ′| ≤ n − 1, we have S(c∗) = SEC(c∗). We first

show that x1 = y1. By smallest-cost consistency and the induction hypothesis,

we then conclude that x = y. Let N ′ ≡ N\{1}. We distinguish two cases.

Subcase 2.1: c1 = c2. Suppose, by contradiction, that x1 6= y1. Thus, either

x1 > y1 or x1 < y1. If x1 > y1, then by equal treatment of equals, x2 > y2.

By smallest-cost consistency, x2 = S2(r
x
N ′ (c)) and y2 = SEC2(r

y
N ′ (c)). Since

x1 > y1, then for each i ∈ N ′, (rx
N ′ (c))i ≤ (ry

N ′ (c))i. Note that |N ′| < n. By

the induction hypothesis, S2(r
x
N ′ (c)) = SEC2(r

x
N ′ (c)). Since for each i ∈ N ′,

(ry
N ′ (c))i − (rx

N ′ (c))i = x1 − y1 > 0, the two reduced problems rx
N ′ (c) and

ry
N ′ (c) satisfy the hypotheses of uniform-cost-increase monotonicity. Since the

SEC rule satisfies uniform-cost-increase monotonicity, it follows that x2 ≤ y2,

4In the proof, we only use a weaker version of independence of followers obtained by
restricting attention to the situation when i = 2, and a weaker version of uniform-cost-
increase monotonicity obtained by restricting attention to an agent with the smallest cost
parameter.

5Note that if several agents have the same cost parameters, then of course the order is
not unique. However, our Theorem 1 and the next characterization of the SEC rule do not
rely on any particular ordering of agents.
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in violation of x2 > y2. If x1 < y1, then by a similar argument, we derive the

desired contradiction.

Subcase 2.2: c1 < c2. Let c′ be such that c′1 = c1 and for each i ∈ N ′,

c′i ≡ ci − (c2 − c1). Let x′ ≡ S(c′) and y′ ≡ SEC(c′). Note that c′1 = c′2. By

Subcase 2.1, x′1 = y′1. By independence of followers, x′1 = x1 and y′1 = y1.

Thus, x1 = y1.

Yeh (2006) shows that the “nucleolus” is the only rule satisfying equal

treatment of equals, independence of followers, and “largest-cost consistency”6.

This result reveals the interest of focusing on an agent with the largest cost

parameter in characterizing the nucleolus. In contrast to Yeh’s result, our

Theorem 1 reveals the interest of focusing on an agent with the smallest cost

parameter in characterizing the SEC rule.

Our second result is another characterization of the SEC rule on the basis

of smallest-cost consistency.

Theorem 3.2. The SEC rule is the only rule satisfying equal share lower

bound, cost monotonicity, and smallest-cost consistency.

6It is a weaker version of ν-consistency (Potters and Sudhölter, 1999) obtained by re-
stricting attention to the departure of an agent with the largest cost parameter.
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Proof. Clearly, the SEC rule satisfies equal share lower bound, cost monotonic-

ity, and smallest-cost consistency. Conversely, let S be a rule satisfying the

three properties. Without loss of generality, let N ≡ {1, . . . , n} and suppose

that c1 ≤ · · · ≤ cn. Let x ≡ S(c) and y ≡ SEC(c). We show that x = y. The

proof is by induction on n.

Case 1: n = 1. By efficiency of the rule, x = y.

Case 2: n > 1. The induction hypothesis is that for each (N ′, c∗) such that

N ′ ⊂ N and |N ′| ≤ n − 1, we have S(c∗) = SEC(c∗). We first show that

x1 = y1. By smallest-cost consistency and the induction hypothesis, we then

conclude that x = y. By equal share lower bound, x1 ≥ c1
n
. Suppose that

x1 > c1
n
. Let c̄ ∈ CN be such that for each i ∈ N\{1}, c̄i = c1. Let x̄ ≡ S(c̄).

By equal share lower bound and efficiency, x̄1 = c1
n
. Now, let c̄n ∈ CN be

such that c̄n
n = cn and for each i ∈ N\{n}, c̄n

i = c̄i. Let x̄n ≡ S(c̄n). By

cost monotonicity, x̄n
1 ≤ x̄1. Let c̄n−1 ∈ CN be such that c̄n−1

n−1 = cn−1 and for

each i ∈ N\{n − 1}, c̄n−1
i = c̄n

i . Let x̄n−1 ≡ S(c̄n−1). By cost monotonicity,

x̄n−1
1 ≤ x̄n

1 . Continuing this process, we have c̄2 ≡ c and x̄2
1 ≤ x̄3

1. Since x = x̄2,

we have x1 = x̄2
1 ≤ x̄3

1 ≤ · · · ≤ x̄n
1 = c1

n
, which contradicts to the assumption

of x1 > c1
n
. Thus, x1 = c1

n
.

The following paragraphs establish the independence of axioms in Theo-
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rem 3.1 and Theorem 3.2. To show this, we consider several rules. The first

rule is the constrained egalitarian rule (Aadland and Kolpin, 1998).7 Start by

requiring equal contributions from all agents in N until there are γ1 ∈ R+ and

k1 ∈ N such that k1γ1 = ck1 (if there are several such k1, select the largest).

Then, each i ∈ {1, ..., k1} pays γ1. Continue by requiring equal contributions

from members of {k1 + 1, ..., n} until there are γ2 ∈ R+ and k2 ∈ N such that

k1γ1 + (k2− k1)γ2 = ck2 (if there are several such k2, select the largest). Then

each i ∈ {k1 + 1, ..., k2} pays γ2. Continue in this way until the total amount

collected is cn. This algorithm can be expressed as follows.

Constrained Egalitarian rule, CE: For each N ∈ N and each c ∈ CN ,

CE1(c) ≡ min
{

c1
1
, · · · , cn

n

}

CEi(c) ≡ min

{
ck−

Pi−1
p=1 CEp(c)

k−i+1
| i ≤ k ≤ n

}
2 ≤ i ≤ n− 1

CEn(c) ≡ cn −
∑n−1

p=1 CEp (c) .

The second rule makes one of the agents with the largest cost param-

eter pay the entire cost (Potters and Sudhölter, 1999). Let Π denote the

class of strict and complete order on N , with generic element ≺. The no-

tation i ≺ j means that agent i has priority over agent j. Given N ∈ N
7Aadland and Kolpin (1998) name this rule as the restricted average cost-share rule.

Aadland and Kolpin show that the contributions vector the rule chooses coincides with that
prescribed by the “egalitarian rule” (Dutta and Ray, 1989) applied to the associated airport
game.
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and c ∈ CN , let m(c) ≡ {j ∈ N | for each k ∈ N\ {j} , cj ≥ ck } and dN(c) ≡

{ k ∈ m(c) | for each j ∈ m(c), k ≺ j }.

Last-agent rule, LA: For each N ∈ N , each c ∈ CN , and each i ∈ N ,

LAi (c) ≡





0 if i 6= dN(c);

ci otherwise.

The next rule is a “modified sequential equal contributions” rule. When

there are three agents and their cost parameters differ, the rule assigns each

agent an equal share of the smallest cost parameter plus the difference between

his cost parameter and the cost parameter of his immediate predecessor; oth-

erwise, the rule assigns agents the contributions made by the sequential equal

contributions rule.

Modified sequential equal contributions rule, SEC∗: For each N ∈ N ,

each c ∈ CN , and each i ∈ N ,

SEC∗
i (c) ≡





Si (c) if |N | = 3 and c1 < c2 < c3;

SECi (c) otherwise,
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where S is defined as follows: Let N ≡ {1, 2, 3}.

S1(c) =
c1

3

S2(c) =
c1

3
+ c2 − c1

S3(c) =
c1

3
+ c3 − c2

The last rule assigns each agent an equal share of his cost parameter, and

then one of the agents with the largest cost parameter pays the remaining

amount to be collected.

S∗: For each N ∈ N , each c ∈ CN , and each i ∈ N ,

S∗i (c) ≡





ci

n
if i ∈ N\{dN(c)};

cdN (c) −
∑

j∈N\{dN (c)}
cj

n
otherwise,

Table 3.1 shows that the properties listed in Theorems 3.1 and 3.2 are inde-

pendent.8 For instance, the last-agent rule satisfies independence of followers

and smallest-cost consistency but violates equal treatment of equals. The con-

strained egalitarian rule satisfies equal treatment of equals and smallest-cost

consistency but violates independence of followers. The modified sequential

8The notation “+” (“−”) means that a certain rule satisfies (violates) a certain property.
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Property/Rule CE LA SEC∗ S∗ SEC
Equal treatment of equals + − + − +1

Independence of followers − + + + +1

Smallest-cost consistency + + − − +1,2

Equal share lower bound + − − + +2

Cost monotonicity − + − + +2

Table 3.1: Independence of the properties in Theorems 3.1 and 3.2.

equal contributions rule satisfies equal treatment of equals and independence

of followers but violates smallest-cost consistency.

3.5 Conclusion

Our objective was to identify allocation rules for irrigation problems that sat-

isfy normative requirements simultaneously. We proved that the sequential

equal contributions rule is the only rule satisfying equal treatment of equals,

independence of predecessors, and smallest-cost consistency, and it is the only

rule satisfying equal share lower bound, cost monotonicity, and smallest-cost

consistency. These results provide justification for the usage of the sequential

equal contributions rule by ranchers in south-central Montana for over 100

years. The open question is to consider strategic issues in irrigation problems.
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[5] Beviá, Carmen. (1996), “Identical preferences lower bound and consis-

tency in economies with indivisible goods,” Social Choice and Welfare

69



70

13, 113–126.

[6] Bird, C.G. (1976), “On Cost Allocation for a Spanning Tree: A Game

Theoretic Approach,” Networks 6, 335–350.

[7] Ching, Stephen. (1994), “An alternative characterization of the uniform

rule,” Social Choice and Welfare 11, 131–135.

[8] Ching, Stephen and Lin Zhou. (2002), “Multi-valued strategy-proof social

choice rules,” Social Choice and Welfare 19, 569–580.

[9] Chun, Youngsub. (2004a), “A note on Maniquet’s characterization of the

Shapley value in queueing problems,” mimeo, University of Rochester,

Rochester, NY, USA.

[10] Chun, Youngsub. (2004b), “No-envy in queueing problems,” mimeo, Uni-

versity of Rochester, Rochester, NY, USA.

[11] Clarke, Edward H. (1971), “Multipart pricing of public goods,” Public

Choice 8, 19–33.

[12] Dubey, Pradeep. (1982), “ The Shapley value as aircraft landing fees-

revisited,” Management Science 28, 869–874.



71

[13] Duggan, John and Tom Schwartz. (2000), “Strategic manipulability with-

out resoluteness of shared beliefs: Gibbard-Satterthwaite generalized,”

Social Choice and Welfare 17, 85–93.

[14] Dutta, Bhaskar. (1977), “Existence of stable situations, restricted prefer-

ences, and strategic manipulation under democratic group decision rules,”

Journal of Economic Theory 15, 99–111.

[15] Dutta Bhaskar and Anirban Kar. (2004), “Cost Monotonicity, Consis-

tency, and Minimum Cost Spanning Tree Games,” Games and Economic

Behavior 48, 223–248.

[16] Dutta Bhaskar and Debraj Ray. (1989) “A concept of egalitarian under

participation constraints,” Econometrica 57, 615–635.

[17] Feltkamp Vincent, Stef Tijs, and Shigeo Muto. (1999), “Bird’s tree allo-

cations revisited,” in Game Practice: Contributions from Applied Game

Theory, (F. Patrone, I. Garcia-Jurado, and S. Tijs eds.), Kluwer Academic

Publishers, Dordrecht, 75–89.

[18] Feltkamp Vincent, Stef Tijs, and Shigeo Muto. (1994), “On the irreducible

core and the equal remaining obligations rule of minimum cost spanning

extension problems,” mimeo.



72

[19] Fleurbaey, Marc and François Maniquet. (1996), “Implementability and

horizontal equity imply no-envy,” Econometrica 65, 1215–1220.

[20] Gale David, and Lloyd Stowell Shapley. (1962), “College admissions and

the stability of marriage,” American Mathematical Monthly 69, 9–15.

[21] Gibbard, Allan. (1973), “Manipulation of voting schemes,” Econometrica

41, 617–631.

[22] Green, Jerry and Jean-Jacques Laffont. (1977), “Characterization of sat-

isfactory mechanisms for the revelation of preferences for public goods,”

Econometrica 45, 727–738.

[23] Groves, Theodore. (1973), “Incentives in teams,” Econometrica 41, 617–

631.

[24] Haake, Claus-Jochen and Bettina Klaus. (2005), “Monotonicity and Nash

implementation in matching markets with contracts,” mimeo, University

of Maastricht, The Netherlands.

[25] Haeringer, Guillaume and Myrna Wooders. (2004), “Decentralized Job

Matching,” Grand Coalition 34, Grand Coalition Web Site.

[26] Hatfield, John William and Paul R. Milgrom. (2005), “Matching with

contracts,” American Economic Review 95, 913–935.



73

[27] Holmström, Bengt. (1979), “Groves’ scheme on restricted domains,”

Econometrica 47, 1137–1144.

[28] Jackson, Matthew O. (1992), “Implementation in undominated strategies:

A look at bounded mechanisms,” Review of Economic Studies 59, 757–

775.

[29] Kar, Anirban. (2002), “Axiomatization of the Shapley Value on Minimum

Cost Spanning Tree Games,” Games and Economic Behavior 38, 265–277.

[30] Katta, Akshay-Kumar and Jay Sethuraman. (2005), “A note on coopera-

tion in queues,” mimeo, Columbia University, New York, NY, USA.

[31] Kelly, Jerry S. (1977), “Strategy-proofness and social choice functions

without single-valuedness,” Econometrica 45, 439–446.

[32] Kruskal, Joseph B. (1956), “On the shortest spanning subtree of a graph

and the travelling salesman problem,” Proceedings of American Mathe-

matical Society 7, 48–50.

[33] Littlechild, Stephen C. and Guillermo Owen. (1973), “A simple expression

for the Shapley value in a special case,” Management Science 3, 370–372.

[34] Maniquet, François. (2003), “A characterization of the Shapley value in

queueing problems,” Journal of Economic Theory 109, 90–103.



74

[35] Maniquet, François and Yves Sprumont. (1999), “Efficient strategy-proof

allocation functions in linear production economies,” Economic Theory

14, 583–595.

[36] Mitra Manipushpak. (2001), “Mechanism design in queueing problems,”

Economic Theory 17, 277–305.

[37] Mitra Manipushpak. (2002), “Achieving the first best in sequencing prob-

lems,” Review of Economic Design 7, 75–91.

[38] Mitra, Manipushpak and Arunava Sen. (1998), “ Dominant strategy im-

plementation of first best public decision,” mimeo, Indian Statistical In-

stitute, New Delhi, India.
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Appendix

Appendix A

Proof of Theorem 1.1.

Let ϕ be a single-valued rule. Then,

If part:

Efficiency of queues: Let ϕ be a Groves rule. Let c ∈ C and (σ, t) = ϕ(c).

Then, by definition of a Groves rule, there is d ∈ D such that σ = d(c) ∈ Q∗(c).

Strategy-proofness: Let ϕ be a Groves rule. Let c ∈ C, i ∈ N , c′i ∈ R+,

(σ, t) = ϕ(c), and (σ′, t′) = ϕ(c′i, c−i). By definition of a Groves rule, there

is d ∈ D such that σ = d(c) ∈ Q∗(c). Also, there is h ∈ H such that

ti = −∑
l∈N\{i}(σl − 1)cl + hi(c−i) and t′i = −∑

l∈N\{i}(σ
′
l − 1)cl + hi(c−i). By

contradiction, suppose ui(σ
′
i, t

′
i) > ui(σi, ti). Then, −(σ′i−1)ci−

∑
l∈N\{i}(σ

′
l−

1)cl + hi(c−i) > −(σi− 1)ci−
∑

l∈N\{i}(σl− 1)cl + hi(c−i). Thus, −∑
l∈N(σ′l −

1)cl > −∑
l∈N(σl − 1)cl, contradicting σ ∈ Q∗(c).
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Only if part: Let ϕ be a rule satisfying efficiency of queues and strategy-

proofness. Then, by efficiency of queues, for each c ∈ C, if (σ, t) = ϕ(c), then

σ ∈ Q∗(c). Thus, there is d ∈ D such that for each c ∈ C, if (σ, t) = ϕ(c), then

σ = d(c). In what follows, we prove that there is h ∈ H such that for each

c ∈ C, if (σ, t) = ϕ(c), then for each i ∈ N , ti = −∑
l∈N\{i}(σl − 1)cl + hi(c−i).

Let c ∈ C, i ∈ N , and gi : RN
+ → R be a real-valued function such that (i) if

(σ, t) = ϕ(c), then ti = −∑
l∈N\{i}(σl− 1)cl + gi(c). By contradiction, suppose

that c′i ∈ R+, we have (ii) gi(c) − gi(c
′
i, c−i) > 0. (The symmetric case is

immediate.) Let (σ, t) = ϕ(c) and (σ′, t′) = ϕ(c′i, c−i). By strategy-proofness,

the following inequalities hold:

• ui(σi, ti)− ui(σ
′
i, t

′
i) ≥ 0.

• u′i(σ
′
i, t

′
i)− u′i(σi, ti) ≥ 0.

By (i),

[−(σi − 1)ci −
∑

l∈N\{i}(σl − 1)cl + gi(c)]− [−(σ′i − 1)ci −
∑

l∈N\{i}(σ
′
l − 1)cl +

gi(c
′
i, c−i)] ≥ 0.

Thus, gi(c)− gi(c
′
i, c−i) ≥ (σi − σ′i)ci +

∑
l∈N\{i}(σl − σ′l)cl.

By (i),

[−(σ′i − 1)c′i −
∑

l∈N\{i}(σ
′
l − 1)cl + gi(c

′
i, c−i)] − [−(σi − 1)c′i −

∑
l∈N\{i}(σl −

1)cl + gi(c)] ≥ 0.

Thus, gi(c
′
i, c−i)− gi(c) ≥ (σ′i − σi)c

′
i +

∑
l∈N\{i}(σ

′
l − σl)cl.
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Altogether,

(iii) (σi − σ′i)c
′
i +

∑
l∈N\{i}(σl − σ′l)cl ≥ gi(c) − gi(c

′
i, c−i) ≥ (σi − σ′i)ci +

∑
l∈N\{i}(σl − σ′l)cl.

Let us rewrite this expression. By efficiency of queues, for each S ⊆ N , if for

each {k, k′} ⊆ S with k 6= k′, we have ck = ck′ and there is no k′′ ∈ N\S such

that k′′ ∈ Bkk′(σ) ∪Bkk′(σ
′), then −∑

l∈S(σl − 1)cl = −∑
l∈S(σ′l − 1)cl. Also,

there is j ∈ N such that σj = σ′i. Thus,
∑

l∈N\{i}(σl − σ′l)cl = −sign(σi −

σ′i)
∑

l∈Bij(σ)∪{j} cl.
9 Thus, we may rewrite (iii) as

(iv) (σi − σ′i)c
′
i − sign(σi − σ′i)

∑
l∈Bij(σ)∪{j} cl ≥ gi(c) − gi(c′i, c−i) ≥ (σi − σ′i)ci −

sign(σi − σ′i)
∑

l∈Bij(σ)∪{j} cl.

Then, we distinguish three cases:

Case 1: (σi − σ′i) = 0. Then, −sign(σi − σ′i)
∑

l∈Bij(σ)∪{j} cl = 0. Thus, by

(iv), gi(c)− gi(c
′
i, c−i) = 0 contradicting (ii).

Case 2: |σi − σ′i| = 1. Suppose c′i > ci. (The symmetric case is immediate.)

Then, (σi − σ′i) = 1 and −sign(σi − σ′i)
∑

l∈Bij(σ)∪{j} cl = −cj. Thus, by (iv),

c′i − cj ≥ gi(c)− gi(c
′
i, c−i) ≥ ci − cj. Thus, as c′i > ci, either c′i − cj > gi(c)−

gi(c
′
i, c−i) or gi(c)−gi(c

′
i, c−i) > ci−cj. Suppose gi(c)−gi(c

′
i, c−i) > ci−cj. (The

other case is also immediate.) Let c′′i ∈ R+ be such that (v)gi(c)−gi(c
′
i, c−i) >

c′′i − cj > 0. Let (σ′′, t′′) = ϕ(c′′i , c−i). By (iv) and (v), c′i > c′′i > cj > ci.

9For each a ∈ R, let sign(a) = −1 if and only if a < 0, sign(a) = 0 if and only if a = 0,
and sign(a) = 1 if and only if a > 0.
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Thus, by efficiency of queues, σ′′i = σ′i. Thus, (σi − σ′′i ) = (σi − σ′i) = 1 and

∑
l∈N\{i}(σl − σ′′l )cl =

∑
l∈N\{i}(σl − σ′l)cl = −cj. Also, by the logic of Case 1,

gi(c
′′
i , c−i) = gi(c

′
i, c−i), implying gi(c) − gi(c

′′
i , c−i) = gi(c) − gi(c

′
i, c−i). Thus,

by (v), gi(c) − gi(c
′′
i , c−i) > (σi − σ′′i )c

′′
i +

∑
l∈N\{i}(σl − σ′′l )cl. Thus, −(σi −

1)c′′i −
∑

l∈N\{i}(σl−1)cl +gi(c) > −(σ′′i −1)c′′i −
∑

l∈N\{i}(σ
′′
l −1)cl +gi(c

′′
i , c−i).

Thus, by (i), u′′i (σi, ti) > u′′i (σ
′′
i , t

′′
i ), contradicting strategy-proofness.

Case 3: |σi − σ′i| > 1. By the logic of Case 2, starting from σ′i, we can find

c̃i such that σ̃i is one position closer to σi. We continue by one position at a

time and at each step we obtain gi(c) = gi(c̃i, c−i). Thus, gi(c) = gi(c
′
i, c−i)

contradicting (ii). ¤

Proof of Proposition 1.1.

Let ϕ be a single-valued rule. Let c ∈ C, (σ, t) = ϕ(c), and i ∈ N . Let

h ∈ H be as in Statement 2. Then,

ti = −∑
j∈N\{i}

∑
l∈{i,j}∩Fi(σ) cl + 1

(n−2)

∑
j∈N\{i}

∑
k∈N\{i,j}

∑
l∈{j,k}∩Fj(σ) cl

= −∑
l∈Fi(σ) cl + 1

(n−2)

∑
j∈N\{i}

∑
l∈Fj(σ−i) cl

= −∑
l∈Fi(σ) cl + 1

(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl

= −∑
l∈N\{i}(σl−1)cl+

∑
l∈N\{i}(σ

−i
l −1)cl+

1
(n−2)

∑
l∈N\{i}(σ

−i
l −1)cl (a Groves rule)

= −∑
l∈Fiσ

cl + 1
n−2

∑
l∈Pi(σ)(σl − 1)cl + 1

(n−2)

∑
l∈Fi(σ)(σl − 2)cl

=
∑

l∈Pi(σ)
(σl−1)
(n−2)

cl +
∑

l∈Fi(σ)
(σl−2)−(n−2)

(n−2)
cl

=
∑

l∈Pi(σ)
(σl−1)
(n−2)

cl−
∑

l∈Fi(σ)
(n−σl)
(n−2)

cl (rule in Mitra and Sen, 1998, and Mitra, 2001)

=
∑

l∈Pi(σ)
cl

2
−∑

l∈Fi(σ)
cl

2
−∑

l∈N\{i}
(n−2σl)cl

2(n−2)
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=
∑

l∈Pi(σ)
cl

2
−∑

l∈Fi(σ)
cl

2
− [

∑
l∈N\{i}

(n−σl−1)cl

2(n−2)
−∑

l∈N\{i}
(σl−1)cl

2(n−2)
]

=
∑

l∈Pi(σ)
cl

2
−∑

l∈Fi(σ)
cl

2
−∑

l∈N\{i}
∑

k∈Pl(σ)\{i}
ck−cl

2(n−2)
(rule in Suijs, 1996).

¤

Proof of Theorem 1.2.

Let ϕ be a single-valued rule. Then,

If part: Let ϕ be a rule satisfying the axioms in the first statement of

Theorem 1.2. Let c ∈ C and (σ, t) = ϕ(c). Then, by Pareto-efficiency,

σ ∈ Q∗(c). By Theorem 1.1, Pareto-efficiency and strategy-proofness im-

ply that ϕ is a Groves rule, i.e., there is (hi)i∈N ∈ H such that for each

i ∈ N , ti = −∑
l∈N\{i}(σl − 1)cl + hi(c−i). For (γi)i∈N ∈ H such that ti =

−∑
l∈Fi(σ) cl + γi(c−i). In what follows, we prove by induction that γi(c−i) =

1
(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl. Then, ti = −∑

l∈N\{i}(σl − 1)cl +
∑

l∈N\{i}(σ
−i
l −

1)cl + 1
(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl. Thus, by Proposition 1.1,

ti = −∑
j∈N\{i}

∑
l∈{i,j}∩Fi(σ) cl + 1

(n−2)

∑
j∈N\{i}

∑
k∈N\{i,j}

∑
l∈{j,k}∩Fj(σ) cl.

Without loss of generality, suppose N = {1, 2, ..., n} and c1 ≥ c2 ≥ ... ≥ cn.

Let i ∈ N . Then,

Basis Step: c = (cn, ..., cn).

By Pareto-efficiency, γ1(cn, ..., cn) + ... + γn(cn, ..., cn) = n(n−1)
2

cn. By equal

treatment of equals in welfare, γ1(cn, ..., cn) = ... = γn(cn, ..., cn). Thus, for

each j ∈ N , γj(cn, ..., cn) = (n−1)
2

cn.
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Step 1: c = (c1, cn, ..., cn).

By Pareto-efficiency, γ1(cn, ..., cn) + γ2(c1, cn, ..., cn) + ... + γn(c1, cn, ..., cn) =

(n−1)n
2

cn. By the basis step, γ1(cn, ..., cn) = (n−1)
2

cn. By equal treatment of

equals in welfare, γ2(c1, cn, ..., cn) = ... = γn(c1, cn, ..., cn). Thus, for each

j ∈ N\{1}, we have γj(c1, cn, ..., cn) = (n−1)
2

cn. This holds for each k ∈ N\{n}.

Thus, for each j ∈ N :

• if j = k, then γj(cn, ..., cn) = (n−1)
2

cn;

• if j ∈ N\{k}, then γj(ck, cn, ..., cn) = (n−1)
2

cn.

...

Step s: (Induction step) c = (c1, c2, ..., cs, cn, ..., cn).

By Pareto-efficiency, γ1(c2, c3, ..., cs, cn, ..., cn)+γ2(c1, c3, ..., cs, cn, ..., cn)+ ...+

γn(c1, c2, ..., cs, cn, ..., cn)

=
∑

l∈{1,2,...,s}(σl − 1)cl + (n−s)(n+s+1)
2

cn.

By Step s− 1, for j ∈ {1, 2, ..., s}, we have

γj(c1, c2, ..., cs, cn, ..., cn) =
∑

l∈{1,2,...,s}\{j}
(σ
{1,2,...,s}\{j}
l −1)

(n−2)
cl+

(n−1−(s−1))(n−2+(s−1))
2(n−2)

cn.

By equal treatment of equals in welfare, γs+1(c1, c2, ..., cs, cn, ..., cn) = ... =

γn(c1, c2, ..., cs, cn, ..., cn).

Thus, for each j ∈ N\{1, 2, ..., s}, we have

γj(c1, c2, ..., cs, cn, ..., cn) =
∑

l∈{1,2,...,s}
(σ
{1,2,...,s}
l −1)

(n−2)
cl + (n−1−(s))(n−2+(s))

2(n−2)
cn.

This holds for each S ⊂ N\{n} with |S| = s. Thus, for each j ∈ N :
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• if j ∈ S, then γj(cS\{j}, cn, ..., cn) =
∑

l∈S\{j}
(σ

S\{j}
l −1)

(n−2)
cl+

(n−1−|S\{j}|)(n−2+|S\{j}|)
2(n−2)

cn;

• if j ∈ N\S, then γj(cS, cn, ..., cn) =
∑

l∈S
(σS

l −1)

(n−2)
cl + (n−1−|S|)(n−2+|S|)

2(n−2)
cn.

...

Step n − 1: c = (c1, c2, ..., cn−1, cn).

By Pareto-efficiency, γ1(c2, c3, ..., cn−1, cn)+γ2(c1, c3, ..., cn−1, cn)+...+γn(c1, c2, ..., cn−1)

=
∑

l∈{1,2,...,n−1}(σl − 1)cl.

By Step n− 2, for j ∈ {1, 2, ..., n− 1}, we have

γi(c1, c2, ..., cn−1, cn) =
∑

l∈{1,2,...,n−1}\{i}
(σ
{1,2,...,n−1}\{i}
l −1)

(n−2)
cl + cn.

Thus, γn(c1, c2, ..., cn−1) =
∑

l∈{1,2,...,n−1}
(σ
{1,2,...,n−1}
l −1)

(n−2)
cl. Thus, we have

γi(c−i) =
∑

l∈N\{i}
(σ

N\{i}
l −1)

(n−2)
cl =

∑
l∈N\{i}

(σ−i
l −1)

(n−2)
cl.

Only if part:

Pareto-efficiency: Let c ∈ C and (σ, t) = ϕ∗(c). By definition of ϕ∗ rule,

σ ∈ Q∗(c) and by Proposition 1.1, for each i ∈ N ,

ti = −∑
l∈N\{i}(σl − 1)cl +

∑
l∈N\{i}(σ

−i
l − 1)cl + 1

(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl.

Thus,

∑
i∈N ti =

∑
i∈N [−∑

l∈N\{i}(σl−1)cl+
∑

l∈N\{i}(σ
−i
l −1)cl+

1
(n−2)

∑
l∈N\{i}(σ

−i
l −

1)cl]

=
∑

i∈N [−∑
l∈Fi(σ) cl + 1

(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl]

= −∑
i∈N

∑
l∈Fi(σ) cl + 1

(n−2)

∑
i∈N

∑
l∈N\{i}(σ

−i
l − 1)cl
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= −∑
i∈N(σi − 1)ci + 1

(n−2)

∑
i∈N(n− 2)(σi − 1)ci

= 0.

Strategy-proofness: By Proposition 1.1, ϕ∗ is a Groves rule. Thus, by Theo-

rem 1.1, ϕ∗ is strategy-proof. ¤

Proof of Remark 1. No-envy:10 Let c ∈ C, (σ, t) = ϕ∗(c), and {i, j} ⊂ N

with i 6= j. Then, by definition of ϕ∗, σ ∈ Q∗(c) and by Proposition 1.1,

ti =
∑

l∈Pi(σ)
(σl−1)
(n−2)

cl−
∑

l∈Fi(σ)
(n−σl)
(n−2)

cl and tj =
∑

l∈Pj(σ)
(σl−1)
(n−2)

cl−
∑

l∈Fj(σ)
(n−σl)
(n−2)

cl.

Then, we distinguish two cases:

Case 1: σi < σj. Let d ∈ N be such that σj = σi+d. Then, as, by assumption,

1 ≤ σi < σj ≤ n, we have d ≤ n− σi. Also, as σ ∈ Q∗(c), for each l ∈ Bij(σ),

we have ci ≥ cl ≥ cj. Thus,

ui(σi, ti)− ui(σj, tj) = (−(σi − 1)ci −
∑

l∈Bij(σ)
(n−σl)
(n−2)

cl − (n−σj)

(n−2)
cj)

− (−(σj − 1)ci + (σi−1)
(n−2)

ci +
∑

l∈Bij(σ)
(σl−1)
(n−2)

cl)

= (n−2)d−(σi−1)
(n−2)

ci − (n−1)
(n−2)

∑
l∈Bij(σ) cl − (n−σi−d)

(n−2)
cj

≥ ( (n−2)d−(σi−1)−(n−1)(d−1)−(n−σi−d)
(n−2)

)ci

= 0.

Case 2: σi > σj. Let d ∈ N be such that σi = σj +d. Then, as, by assumption,

10Chun (2004b) provides a necessary and sufficient condition for a rule ϕ to satisfy Pareto-
efficiency and no-envy : For each c ∈ N × RN

+ and each (σ, t) ∈ ϕ(c), we have σ ∈ Q∗(c),∑
i∈N ti = 0, and for each {i, j} ⊂ N , if σj = σi + 1, then ci ≥ tj − ti ≥ cj . An alternative

proof thus consists in proving that ϕ∗ satisfies this condition. In fact, rules in Suijs (1996)
satisfy this condition (Katta and Sethuraman, 2005). Thus, by Proposition 1.1, ϕ∗ satisfies
this condition.
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n ≥ σi > σj ≥ 1. Also, as σ ∈ Q∗(c), for each l ∈ Bji(σ), we have ci ≤ cl ≤ cj.

Thus,

ui(σi, ti)− ui(σj, tj) = (−(σi − 1)ci +
(σj−1)

(n−2)
cj +

∑
l∈Bji(σ)

(σl−1)
(n−2)

cl)

− (−(σj − 1)ci −
∑

l∈Bji(σ)
(n−σl)
(n−2)

cl − (n−σi)
(n−2)

ci)

=
−(n−2)d+(n−σj−d)

(n−2)
ci + (n−1)

(n−2)

∑
l∈Bji(σ) cl +

(σj−1)

(n−2)
cj

≥ (
−(n−2)d+(n−σj−d)+(n−1)(d−1)+(σj−1)

(n−2)
)ci

= 0. ¤

Proof of Theorem 1.3. By contradiction, let ϕ be a rule satisfying the

axioms of Theorem 1.3. We show that ϕ satisfies non-bossiness. Let c ∈ C, i ∈

N , c′i ∈ R+, (σ, t) = ϕ(c), and (σ′, t′) = ϕ(c′i, c−i) be such that (σi, ti) = (σ′i, t
′
i).

Suppose that there is j ∈ N such that (σj, tj) 6= (σ′j, t
′
j). Since (σi, ti) = (σ′i, t

′
i),

we have ui(σi, ti) = ui(σ
′, t′i). By efficiency of queues, σj = σ′j. Since (σj, tj) 6=

(σ′j, t
′
j), we have tj 6= t′j. First, suppose tj > t′j. Then, uj(σj, tj) > uj(σ

′
j, t

′
j).

Then, there is (c′i, cj) ∈ R{i,j}+ such that ui(σi, ti) = ui(σ
′
i, t

′
i) and uj(σj, tj) >

uj(σ
′
j, t

′
j) contradicting coalitional strategy-proofness. Second, suppose tj <

t′j. Then, uj(σj, tj) < uj(σ
′
j, t

′
j). Then, there is (ci, cj) ∈ R{i,j}+ such that

u′i(σi, ti) = u′i(σ
′
i, t

′
i) uj(σ

′
j, t

′
j) > uj(σj, tj) contradicting coalitional strategy-

proofness.

Now, we establish two claims:

Claim 1: For each c ∈ RN
+ , each i ∈ N , and each c′i ∈ R+, if (σ, t) = ϕ(c) and

(σ′, t′) = ϕ(c′i, c−i) are such that σi = σ′i, then (σ, t) = (σ′, t).
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Let c ∈ RN
+ , i ∈ N , c′i ∈ R+, (σ, t) = ϕ(c), and (σ′, t′) = ϕ(c′i, c−i) be such

that σi = σ′i. By strategy-proofness, −(σi − 1)ci + ti ≥ −(σ′i − 1)ci + t′i and

−(σ − 1)c′i + ti ≤ −(σ′i − 1)c′i + t′i. Thus, as σi = σ′i, we have ti = t′i. By

non-bossiness, (σ, t) = (σ′, t′).

Claim 2: For each c ∈ RN
+ such that for each {j, k} ⊆ N , we have cj 6= ck

if and only if j 6= k, for each i ∈ N , and each c′i ∈ R+ such that for each

j ∈ N\{i}, we have c′i > cj if and only if ci > cj, if (σ, t) = ϕ(c), then

(σ, t) = ϕ(c′i, c−i).

Let c ∈ RN
+ , i ∈ N , c′i ∈ R+ be such that for each j ∈ N\{i}, we have c′i 6= cj

and c′i > cj if and only if ci > cj, and (σ, t) = ϕ(c), (σ′, t′) = ϕ(c′i, c−i). By

efficiency of queues, we have σ′i = σi. By Claim 1, (σ, t) = ϕ(c′i, c−i).

Claims 1 and 2 being proved, we now come to a contradiction. Without loss

of generality, suppose N = {1, 2, ..., n}. Let {c, c′} ⊆ RN
+ be such that

(i) c1 > c2 > c3... > cn,

(ii) c′2 > c′1 > c′3 > ... > c′n, and

(iii) for each i ∈ N\{1}, c′i = ci.

Let (σ, t) = ϕ(c) and (σ′, t′) = ϕ(c′). By efficiency of queues, for each i ∈ N ,

we have σi = i, whereas σ′1 = 2, σ′2 = 1, and for each i ∈ N\{1, 2}, we

have σi = σ′i = i. Thus, (σ, t) 6= (σ′, t′). By strategy-proofness, u1(σ1, t1) =

t1 ≥ −c1 + t′1 = u1(σ
′
1, t

′
1) and u′1(σ

′
1, t

′
1) = −c′1 + t′1 ≥ t1 = u′1(σ1, t1). That is,
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t′1 ∈ [t1 +c′1, t1 +c1]. Thus, agent 1’s transfer depends either on a constant, i.e.,

t1 = t1 + c with c ∈ [c1, c
′
1], or on its own announcement, i.e., t1 = t1 +f(c′1, c1)

with f(c′1, c1) ∈ [c1, c
′
1]. Clearly, this contradicts strategy-proofness. ¤

Proof of Statement 1 in Theorem 1.4. Let ϕ be a rule. Then,

If Part Let ϕ be a rule satisfying the axioms of Theorem 1.4.1. Let c ∈ C and

(σ, t) ∈ ϕ(c). By Pareto-efficiency, σ ∈ Q∗(c). The Claims 1 and 2 state that

Pareto-efficiency and strategy-proofness imply that there is {h, h} ⊆ H such

that for each i ∈ N ,

• if (σ, t) ∈ arg min(σ,t)∈ϕ(c) ui(σi, ti), then ti = −∑
l∈N\{i}(σl−1)cl+hi(c−i)

and

• if (σ, t) ∈ arg max(σ,t)∈ϕ(c) ui(σi, ti), then ti = −∑
l∈N\{i}(σl − 1)cl +

hi(c−i).

Thus, repeating the proof by induction of Theorem 1.2, for each i ∈ N ,

• ti = −∑
l∈N\{i}(σl−1)cl +

∑
l∈N\{i}(σ

−i
l −1)cl +

1
(n−2)

∑
l∈N\{i}(σ

−i
l −1)cl

and

• ti = −∑
l∈N\{i}(σl−1)cl+

∑
l∈N\{i}(σ

−i
l −1)cl+

1
(n−2)

∑
l∈N\{i}(σ

−i
l −1)cl.

By Pareto-efficiency, for each i ∈ N , ui(σ, t) = ui(σ, t). Thus, for each

i ∈ N , ti = −∑
l∈N\{i}(σl−1)cl+

∑
l∈N\{i}(σ

−i
l −1)cl+

1
(n−2)

∑
l∈N\{i}(σ

−i
l −1)cl.

Thus, by Proposition 1.1, for each i ∈ N ,
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ti = −∑
j∈N\{i}

∑
l∈{i,j}∩Fi(σ) cl + 1

(n−2)

∑
j∈N\{i}

∑
k∈N\{i,j}

∑
l∈{j,k}∩Fj(σ) cl.

Claim 1: There is h ∈ H such that for each c ∈ C and each i ∈ N , if

(σ, t) ∈ arg max(σ,t)∈ϕ(c) ui(σi, ti), then ti = −∑
l∈N\{i}(σl − 1)cl + hi(c−i).

For each i ∈ N , let gi : RN
+ → R be a function such that (i) for each

c ∈ RN
+ if (σ, t) ∈ arg max(σ,t)∈ϕ(c) ui(σi, ti), then ti = −∑

l∈N\{i}(σl − 1)cl +

gi(c). By contradiction, suppose that for c ∈ RN
+ and c′i ∈ R, we have (ii)

gi(c) − gi(c
′
i, c−i) 6= 0. Let (σ, t) ∈ arg max(σ,t)∈ϕ(c) ui(σi, ti) and (σ, t) ∈

arg max(σ,t)∈ϕ(c′i,c−i) u′i(σi, ti). Then, by strategy-proofness,

• ui(σi, ti) ≥ max(σ′,t′)∈ϕ(c′i,c−i) ui(σ
′
i, t

′
i),

• max(σ,t)∈ϕ(c) u′i(σi, ti) ≤ u′i(σi, ti),

• max(σ′,t′)∈ϕ(c′i,c−i)ui(σ
′
i, t

′
i) ≥ ui(σi, ti),

• u′i(σi, ti) ≤ max(σ,t)∈ϕ(c)u
′
i(σi, ti).

Thus, (iii) ui(σi, ti)−ui(σi, ti) ≥ 0 and u′i(σi, ti)−u′i(σi, ti) ≥ 0. By the logic

of Theorem 1.1, (i), (ii), and (iii) together imply a contradiction.

Claim 2: There is h ∈ H such that for each c ∈ C and each i ∈ N , if

(σ, t) ∈ arg min(σ,t)∈ϕ(c) ui(σi, ti), then ti = −∑
l∈N\{i}(σl − 1)cl + hi(c−i).

Let c ∈ RN
+ , i ∈ N , c′i ∈ R+, (σ, t) ∈ arg min(σ,t)∈ϕ(c) ui(σi, ti) and

(σ, t) ∈ arg min(σ,t)∈ϕ(c′i,c−i) u′i(σi, ti). Let g
i
: RN

+ → R be a function such that

• ti = −∑
l∈N\{i}(σl − 1)cl + g

i
(c) and
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• t
i
= −∑

l∈N\{i}(σl
− 1)cl + g

i
(c′i, c−i).

In what follows, we prove that there is hi : RN\{i}
+ → R such that g

i
(c) = hi(c−i)

and g
i
(c′i, c−i) = hi(c−i). Thus, g

i
(c) = g

i
(c′i, c−i).

First, there is hi : RN\{i}
+ → R such that

• if (σ∗, t∗) ∈ arg min(σ,t)∈ϕ(c) u′i(σi, ti) then t∗i = −∑
l∈N\{i}(σ

∗
l − 1)cl +

hi(c−i) and

• if (σ∗∗, t∗∗) ∈ arg min(σ,t)∈ϕ(c′i,c−i) ui(σi, ti), then t∗∗i = −∑
l∈N\{i}(σ

∗∗
l −

1)cl + hi(c−i).

Let (σ∗, t∗) ∈ arg min(σ,t)∈ϕ(c) u′i(σi, ti) and (σ∗∗, t∗∗) ∈ arg min(σ,t)∈ϕ(c′i,c−i) ui(σi, ti).

Let g∗i : RN
+ → R be a function such that by choosing g∗i appropriately,,

(i) t∗i = −∑
l∈N\{i}(σ

∗
l − 1)cl + g∗i (c) and t∗∗i = −∑

l∈N\{i}(σ
∗∗
l − 1)cl +

g∗i (c
′
i, c−i).

By contradiction, suppose

(ii) g∗i (c)− g∗i (c
′
i, c−i) 6= 0.

Then, by strategy-proofness, ui(σi, ti) ≥ ui(σ
∗∗
i , t∗∗i ) and u′i(σ

∗
i , t

∗
i ) ≤ u′i(σi

, t
i
).

By assumption, ui(σ
∗
i , t

∗
i ) ≥ ui(σi, ti) and u′i(σi

, t
i
) ≤ u′i(σ

∗∗
i , t∗∗i ). Thus,

(iii) ui(σ
∗
i , t

∗
i )− ui(σ

∗∗
i , t∗∗i ) ≥ 0 and u′i(σ

∗∗
i , t∗∗i )− u′i(σ

∗
i , t

∗
i ) ≥ 0.

By the logic of Theorem 1.1, (i), (ii), and (iii) together imply a contradiction.

This holds for each c′i ∈ R+.
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Second, g
i
(c) = hi(c−i) and g

i
(c′i, c−i) = hi(c−i). By contradiction, suppose

g
i
(c) − hi(c−i) 6= 0. (The other case is immediate.) First, by assumption,

ui(σ
∗
i , t

∗
i ) ≥ ui(σi, ti). Thus, −(σ∗i − 1)ci −

∑
l∈N\{i}(σ

∗
l − 1)cl + hi(c−i) ≥

−(σi − 1)ci −
∑

l∈N\{i}(σl − 1)cl + g
i
(c). Thus, −∑

l∈N(σ∗l − 1)cl + hi(c−i) ≥

−∑
l∈N\{i}(σl − 1)cl + g

i
(c). Thus, by Pareto-efficiency, hi(c−i) ≥ g

i
(c).

Second, by strategy-proofness, ui(σi, ti) ≥ ui(σ
∗∗
i , t∗∗i ). Thus, −(σi − 1)ci −

∑
l∈N\{i}(σl−1)cl +g

i
(c) ≥ −(σ∗∗i −1)ci−

∑
l∈N\{i}(σ

∗∗
l −1)cl +hi(c−i). Thus,

g
i
(c) ≥ (σi − σ∗∗i )ci +

∑
l∈N\{i}(σl − σ∗∗l )cl + hi(c−i). Altogether,

(iv) hi(c−i) ≥ g
i
(c) ≥ (σi − σ∗∗i )ci +

∑
l∈N\{i}(σl − σ∗∗l )cl + hi(c−i).

By Pareto-efficiency, for each S ⊆ N , if for each {k, k′} ⊆ S with k 6= k′, we

have ck = ck′ and there is no k′′ ∈ N\S such that k′′ ∈ Bkk′(σ)∪Bkk′(σ
′), then

∑
l∈S −(σl − 1)cl =

∑
l∈S −(σ′l − 1)cl. Also, there is j ∈ N such that σj = σ∗∗i .

Thus,
∑

l∈N\{i}(σl − σ∗∗l )cl = −sign(σi − σ∗∗i )
∑

l∈Bij(σ)∪{j} cl. Thus, we may

rewrite (iv) as

(v) hi(c−i) ≥ g
i
(c) ≥ (σi−σ∗∗i )ci− sign(σi−σ∗∗i )

∑
l∈Bij(σ)∪{j} cl +hi(c−i).

We distinguish three cases:

Case 1: (σi − σ∗∗i ) = 0. Then, −sign(σi − σ∗∗i )
∑

l∈Bij(σ)∪{j} cl = 0. Thus, by

(v), g
i
(c) = hi(c−i) contradicting g

i
(c)− hi(c−i) 6= 0.

Case 2: |σi − σ∗∗i | = 1. Suppose c′i > ci. (The symmetric case is immediate.)

Then, (σi−σ∗∗i ) = 1 and −sign(σi−σ∗∗i )
∑

l∈Bij(σ)∪{j} cl = −cj. Thus, by (v),
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hi(c−i) ≥ g
i
(c) ≥ (ci − cj) + hi(c−i). Let c′′i ∈ R+ be such that (vi) g

i
(c) >

(c′′i−cj)+hi(ci) and c′i > c′′i > ci. Let (σ∗∗∗, t∗∗∗) ∈ arg min(σ,t)∈ϕ(c′′i ,c−i) ui(σi, ti).

Then, by Pareto-efficiency of queues, σ∗∗∗i = σ∗∗i . Then,

(σi − σ∗∗∗i ) = (σi − σ∗∗i ) = 1 and
∑

l∈N\{i}(σl − σ∗∗∗l )cl =
∑

l∈N\{i}(σl − σ′l)cl =

−cj. By (vi),

g
i
(c) > (σi − σ∗∗∗i )c′′i +

∑
l∈N\{i}(σl − σ∗∗∗l )cl + hi(ci).

Then, −(σi−1)c′′i −
∑

l∈N\{i}(σl−1)cl+g
i
(c) > −(σ∗∗∗i −1)c′′i −

∑
l∈N\{i}(σ

∗∗∗
l −

1)cl + hi(c−i).

Thus, u′′i (σi, ti) > u′′i (σ
∗∗∗
i , t∗∗∗i ). Also, u′′i (σ

∗∗∗
i , t∗∗∗i ) ≥ min(σ,t)∈ϕ(c′′i ,c−i)u

′′
i (σi, ti).

Therefore, u′′i (σi, ti) > min(σ,t)∈ϕ(c′′i ,c−i)u
′′
i (σi, ti) contradicting strategy-proofness.

Case 3: |σi − σ∗∗i | > 1. By the logic of Case 2, starting from σ∗∗i , we can find

c̃i such that σ̃i is one position closer to σi. We continue by one position at a

time and at each step we obtain g
i
(c̃i, c−i) = hi(c−i). Thus, g

i
(c) = hi(c−i)

contradicting g
i
(c)− hi(c−i) 6= 0.

Only if part:

Pareto-efficiency: Straightforward from Theorem 1.2.

No-envy: Straightforward from Theorem 1.2.

Strategy-proofness: Let c ∈ C, i ∈ N , c′i ∈ R+, (σ, t) ∈ Φ∗(c), and (σ′, t′) ∈

Φ∗(c′i, c−i). Then, by definition of Φ∗, σ ∈ Q∗(c) and by Proposition 1.1,

there is h ∈ H such that for each i ∈ N , hi(c−i) =
∑

l∈N\{i}(σ
−i
l − 1)cl +
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1
(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl =

∑
l∈N\{i}(σ

′−i
l − 1)cl + 1

(n−2)

∑
l∈N\{i}(σ

′−i
l − 1)cl

and ti = −∑
l∈N\{i}(σl− 1)cl +hi(c−i) and t′i = −∑

l∈N\{i}(σ
′
l− 1)cl +hi(c−i).

Suppose ui(σ
′
i, t

′
i) > ui(σi, ti). Thus, −(σ′i−1)ci−

∑
l∈N\{i}(σ

′
l−1)cl+hi(c−i) >

−(σi−1)ci−
∑

l∈N\{i}(σl−1)cl+hi(c−i). Thus, −∑
l∈N(σ′l−1)cl > −∑

l∈N(σl−

1)cl contradicting σ ∈ Q∗(c). Thus, ui(σ
′
i, t

′
i) ≤ ui(σi, ti). This holds for each

(σ, t) ∈ ϕ(c) and each (σ′, t′) ∈ ϕ(c′i, c−i). Thus, if Z = ϕ(c) and Z ′ =

ϕ(c′i, c−i), then Zi Ri(ci) Z ′
i.

Proof of Statement 2 in Theorem 1.4.

If Part: Let ϕ be a rule satisfying the axioms of the third statement of

Theorem 1.4. Let c ∈ C and (σ, t) ∈ ϕ(c). Then, by Pareto-efficiency, σ ∈

Q∗(c). By Statement 1, Pareto-efficiency and strategy-proofness imply that

there is {h, h} ⊆ H such that for each i ∈ N ,

• if (σ, t) ∈ arg min(σ,t)∈ϕ(c) ui(σi, ti), then ti = −∑
l∈N\{i}(σl − 1)cl +

hi(c−i),

• if (σ, t) ∈ arg max(σ,t)∈ϕ(c) ui(σi, ti), then ti = −∑
l∈N\{i}(σl − 1)cl +

hi(c−i).

By symmetry, for each {i, j} ⊂ N , if c−i = c−j, then hi(c−i) = hj(c−j) and

hi(c−i) = hj(c−j). Thus, for each {i, j} ⊂ N , if ci = cj, then hi(c−i) = hj(c−j)

and hi(c−i) = hj(c−j). This is true for each c ∈ R+. Thus, repeating the proof

by induction of Theorem 1.2, for each i ∈ N , we have ti = −∑
l∈Fi(σ) cl +
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1
(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl and ti = −∑

l∈Fi(σ) cl + 1
(n−2)

∑
l∈N\{i}(σ

−i
l − 1)cl.

Thus, by Pareto-efficiency, for each i ∈ N , ui(σ, t) = ui(σ, t). Thus, for each

i ∈ N , we have ti = −∑
l∈Fi(σ) cl+

1
(n−2)

∑
l∈N\{i}(σ

−i
l −1)cl. Thus, by Proposi-

tion 1.1, ti = −∑
j∈N\{i}

∑
l∈{i,j}∩Fi(σ) cl+

1
(n−2)

∑
j∈N\{i}

∑
k∈N\{i,j}

∑
l∈{j,k}∩Fj(σ) cl.

Thus, for each c ∈ C, we have ϕ(c) ⊆ Φ∗(c). Thus, by symmetry, ϕ(c) = Φ∗(c).

Only if part: Suppose that for each c ∈ C, we have ϕ(c) = Φ∗(c). By the

second statement of Theorem 1.4, ϕ satisfies Pareto-efficiency and strategy-

proofness. Also, ϕ does not depend on agents’ names. In particular, ti has the

same structure for each i ∈ N . Thus, ϕ satisfies anonymity. ¤

Appendix B

Proof of Proposition 2.1. Clearly, since ϕS is stable, it satisfies una-

nimity and individual rationality. Next, we show that ϕS satisfies own-side

population-monotonicity and other-side population-monotonicity. Let M =

(D, H,X, R) ∈ M and M̃ = (D̃, H̃, X̃, R̃) ∈ M be such that M is the

D-restriction of M̃ . Let AH ∈ ϕS(M) and ÃH ∈ ϕS(M̃) be the hospital-

optimal allocations of M and M̃ , respectively. By Ostrovsky (2005), for each

d ∈ D and each h ∈ H, we have (i) AH
d Rd ÃH

d and ÃH
h Rh AH

h . Then, by

Hatfield and Milgrom (2005), for each A ∈ ϕS(M), each h ∈ H, and each

d ∈ D, we have (ii) Ad Rd AH
d and AH

h Rh Ah. By (i) and (ii), for each
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A ∈ ϕS(M), each h ∈ H, and each d ∈ D, there is A′ = ÃH ∈ ϕS(M̃) such

that Ad Rd A′
d and A′

h Rh Ah. A symmetric result holds when M is the H-

restriction of M̃ . Thus, ϕS satisfies weak own-side population-monotonicity

and other-side population-monotonicity. By Theorem 1 of Haake and Klaus

(2005), ϕS satisfies Maskin-monotonicity. Next, we show that ϕS satisfies

weak consistency. Let M = (D,H, X, R) ∈ M and (i) A ∈ ϕS(M). Let

M ′ = (D′, H ′, X ′, R′) ∈ M be the type-2 reduced economy of M relative to

D′ ∪H ′ at A. Let A|D′∪H′ = A′. By contradiction, assume A′ 6∈ ϕS(M ′):

Case 1: There is d ∈ D′ such that C(A′
d, R

′
d) = ∅. Then, since for each

d ∈ D′, A′
d = Ad, we have C(Ad, Rd) = ∅, which contradicts (i).

Case 2: There is h ∈ H ′ such that C(A′
h, R

′
h) ( A′

h. Then, since A′
h = Ah,

then C(Ah, Rh) ( Ah, which contradicts (i).

Case 3: There are h ∈ H ′, D̃ ⊆ D′, and X̃ 6⊆ Ah such that for each d ∈ D̃,

there are x ∈ X̃ with {x} = C(A′
d ∪ {x}, R′

d) and X̃ = C(A′
h ∪ X̃, R′

h).

Then, since X̃ ⊆ X and A′
h = Ah, X̃ = C(Ah ∪ X̃, Rh) and for each d ∈ D̃,

{x} = C(Ad ∪ {x}, Rd), which contradicts (i). ¤

Proof of Lemma 2.1.

Let M = (D, H, X, R) ∈ M. Also, let i ∈ H and J ⊆ D with J 6= ∅

be such that, for each j ∈ J , there is xji ∈ X with {xji} = C(X, Rj) and

⋃
j∈J{xji} = C(X,Ri).
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Let M ′ = (D′, H ′, X ′, R′) ∈M be as follows:

– D′ = D ∪ D̂ such that, for each d ∈ D̂ and h ∈ H\{i}, there is xdh ∈ X ′

with {xdh} = C(X,Rd) = C(X,Rh),

– H ′ = H ∪ Ĥ such that, for each d ∈ D\J and h ∈ Ĥ, there is xdh ∈ X ′

with {xdh} = C(X,Rd) = C(X,Rh),

– for each x ∈ X ′\X, µ(x) = (d, h) where either d ∈ D\J and h ∈ Ĥ, or

h ∈ H\{i} and d ∈ D̂.

Then, (i) for each j ∈ J , C(X ′, R′
j) = C(X, Rj) and we have C(X ′, R′

i) =

C(X, Ri). Also, by unanimity, ϕ(M ′) = {A′} such that for each d ∈ D′ ∪H ′,

A′
d = C(X ′, R′

d). In particular, (ii) for each d ∈ D, we have A′
d = C(X ′, R′

d)

and A′
i = C(X ′, R′

i).

Let M ′′ = (D′′, H ′′, X ′′, R′′) ∈ M be the D-restriction of M ′ with D′′ = D.

Then, for each d ∈ D′′, the following statements hold:

• By (ii), A′
d = C(X ′, R′

d).

• C(X ′, R′
d) = C(X ′′, R′′

d).

• By own-side population-monotonicity, for each A′′ ∈ ϕ(M ′′), we have

A′′
d R′′

d A′
d.

Thus, for each d ∈ D′′, we have A′′
d = A′

d. That is, (iii) A′′
j = A′

j.

Clearly, M is the H-restriction of M ′′. Then, the following statements hold:

• By (iii), A′′
i = A′

i
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• By (ii), A′
i = C(X ′, R′

i).

• By (i), C(X ′, R′
i) = C(X,Ri) = C(X ′′, R′′

i ).

Since ϕ is own-side population-monotonic, for each A ∈ ϕ(M), we have Ai Ri

A′′
i . Thus, we have (iv) Ai = A′′

i . Together, (i), (ii), (iii), and (iv) imply

that, for each A ∈ ϕ(M), we have Ai = C(X,Ri). ¤

Proof of Proposition 2.2.

Let ϕ be a rule satisfying the first three of Proposition 2.2. By contra-

diction, assume that ϕ is not weakly individually rational. That is, there are

M = (D, H,X,R) ∈ M, A ∈ ϕ(M) and i ∈ D ∪H such that (i) Ai 6= ∅ and

C(Ai, Ri) = ∅. Let J ≡ {j ∈ D∪H : there is x ∈ Ai such that µ(x) = (i, j)}.

Let M ′ = (D′, H ′, X ′, R′) ∈M be as follows:

– D′ = D, H ′ = H, and X ′ = X,

– for each j ∈ (D ∪H)\{i}, we have C(X, R′
j) = Aj, C(X, R′

i) = ∅ and for

each X ′ ⊆ X such that X ′ 6= ∅, C(Ai ∪X ′) = Ai.

Clearly, R′ ∈ MT (R,A). Thus, by Maskin-monotonicity, A ∈ ϕ(M ′).

Let M ′′ = (D′′, H ′′, X ′′, R′′) ∈M be as follows:

– D′′ ∪H ′′ = D ∪H ∪ {k},

– X ′′ = X ′∪{Xk} where C(X ′′, R′′
k) = Xk, for each j ∈ J , there is xjk ∈ Xk

with µ(xjk) = (j, k) such that C(X ′′, R′′
j ) = {xjk}, and R′′

i = R′
i.

By unanimity, ϕ(M ′′) = {A′′} where for each j ∈ D′′ ∪H ′′, A′′
j = C(X ′′, R′′

j ).
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In particular, (ii) A′′
i = ∅.

Clearly, M ′ is a H-restriction of M ′′ if i ∈ H, and M ′ is a D-restriction of M ′′

if i ∈ D. By own-side population-monotonicity and (ii), for each A′ ∈ ϕ(M ′),

A′
i = ∅. By (i), A /∈ ϕ(M ′), which contradicts Maskin-monotonicity. ¤

Proof of Proposition 2.3.

Let ϕ be a rule satisfying the axioms of Proposition 2.3. Also, let M =

(D, H,X, R) ∈ M and A ∈ ϕ(M). The proof that ϕ(M) = ϕS(M) is in two

steps.

Step 1: ϕ(M) ⊆ ϕS(M). By contradiction, assume A 6∈ ϕS(M). Since

ϕ satisfies weak individual rationality, there is a blocking pair i ∈ H and

J ⊆ D such that there is X i ∈ Xi with X i 6= Ai and, for each j ∈ J ,

there is xji ∈ X i with {xji} = C(A ∪ X i, Rj) and X i = C(A ∪ X i, Ri). Let

K ≡ {k ∈ D : µ(Ad) = (k, i)}.

Let M ′ = (D′, H ′, X ′, R′) ∈M be as follows:

– D′ = D, H ′ = H, and X ′ = X,

– R′
i is such that, for each X ′ ∈ Xi, we have X ′ R′

i ∅ if and only if X ′ ⊆

Ai ∪X i.

– for each j ∈ J , R′
j is such that, for each x ∈ Xj, we have {x} R′

j ∅ if and

only if x ∈ Aj ∪X i and {xji} Rj Aj.

– for each k ∈ K, R′
k is such that, for each x ∈ Xk, we have {x} R′

k ∅ if
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and only if {x} = Ak.

– for each l ∈ [D\(J ∪K)] ∪ [H\{i}], we have R′
l = Rl.

Then, the following statements hold:

(i) R′ ∈ MT (R,A).

(ii) C(X, R′
i) = X i.

(iii) For each j ∈ J , C(X,R′
j) = {xji}.

(iv) For each k ∈ K, C(X,R′
k) = Ak.

(v) X i 6= Ai.

By Lemma 2.1, (ii), (iii), and (iv) imply that, for each A′ ∈ ϕ(M ′), we have

A′
i = X i. By (v), A 6∈ ϕ(M ′), which, by (i), contradicts Maskin-monotonicity.

Step 2: ϕ(M) = ϕS(M). Since ϕ satisfies Maskin-monotonicity, the result

follows from Corollary 1 of Haake and Klaus (2005).¤

Proof of Proposition 2.4.

Let ϕ be a rule satisfying the axioms of Proposition 2.4. Also, let M =

(D, H,X, R) and A ∈ ϕ(M). By contradiction, assume A 6∈ ϕS(M). Then,

since ϕ satisfies weak individual rationality, there are i ∈ H and J ⊆ D such

that there is X i ∈ Xi with X i 6= Ai and, for each j ∈ J , there is {xji} ∈ X i

with {xji} = C(A ∪ {xji}, Rj) and X i = C(A ∪ X i, Rhi). Let K ≡ {k ∈ D :

µ(Ak) = (k, i)} and L ≡ {l ∈ H : there is j ∈ J such that µ(Ak) = (j, k)}.

Also, let J ′ ≡ {j ∈ D : there is l ∈ L such that µ(Aj) = (j, l)}.
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Let M̂ = (D̂, Ĥ, X̂, R̂) be as follows:

– D̂ = J ∪K and Ĥ = {i} ∪ L,

– X̂ = {x ∈ X : there is {j, k} ⊆ D̂ ∪ Ĥ with µ(x) = (j, k)},

– R̂ = R|X̂ .

Then, for each j ∈ J , C({xji} ∪Aj, R̂j) = {xji} and (i) C(X i ∪Ai, R̂i) = X i.

By unanimity and own-side population-monotonicity, Lemma 1 holds. Hence,

for each Â ∈ ϕ(M̂), Âi = X i and for each j ∈ J , Âj = xji.

Let M ′ = (D′, H ′, X ′, R′) be as follows:

– D′ = J ∪K ∪K ′ and H ′ = {i} ∪ L,

– X ′ = {x ∈ X : there is {j, k} ⊆ D′ ∪H ′ with µ(x) = (j, k)},

– R′ = R|X′ .

By other-side population-monotonicity and (i), for each A′ ∈ ϕ(M ′), (ii)

A′
i R′

i X i. Note that M ′ is the reduced economy of M relative to D′ ∪H ′ at

A. Thus, by weak consistency, there is A′ ∈ ϕ(M ′) such that (iii) A′
i = Ai.

Then, (ii) and (iii) contradict (i).¤

Proof of Proposition 2.5.

Let ϕ satisfy the first three axioms in Proposition 2.5. By contradic-

tion, assume that ϕ is not weakly individual rational. Thus, there are M =

(D, H,X, R), A ∈ ϕ(M) and i ∈ D ∪H such that Ai 6= ∅ and C(Ai, Ri) = ∅.

Case 1: There are j ∈ D and k ∈ H such that µ(Aj) = (j, k), i = j, and
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Ak Rk ∅. Then, let J = {d ∈ D : there is xdk ∈ Ak such that µ(x) = (d, k)}.

Let M ′ = (D′, H ′, X ′, R′) be as follows:

– D′ = J and H ′ = {k},

– X ′ = {x ∈ X : there is j ∈ J with µ(x) = (j, k)},

– R′ = (Rl|X′)l∈J∪{k}.

By weak consistency, A′ = A|J∪{k} ∈ ϕ(M ′). Let K = {l ∈ J : A′
l R′

l ∅}. Let

l′ ∈ D\J be such that there is xl′k with µ(xl′k) = (l′, k) and xl′k Rl′ ∅. Let

X̃ =
⋃

l∈K{Al}.

Let M ′′ = (D′′, H ′′, X ′′, R′′) be as follows:

– D′′ = J ∪ {l′} and H ′′ = {k},

– X ′′ = X ′ ∪ {xl′k},

– R′′ = (R′′
l )l∈D′′∪H′′ be such that C(X ′′, R′′

k) = X̃ ∪ {xl′k}, R′′
l′ = Rl′|X′′ ,

and for each l ∈ J , R′′
l = R′

l.

By unanimity, ϕ(M ′′) = {A′′} where for each l ∈ D′′ ∪H ′′, A′′
l = C(X ′′, R′′

l ).

In particular, (ii) A′′
j = ∅.

Clearly, M ′ is the D-restriction of M ′′. By weak own-side population-monotonicity

and (ii), for each A′ ∈ ϕ(M ′), A′
j = ∅, which contradicts weak consistency.

Case 2: There is h ∈ H such that i = h. Then, let J = {j ∈ D : there is x ∈

Ai such that µ(x) = (j, i)}.

Let M ′ = (D′, H ′, X ′, R′) be as follows:
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– D′ = J and H ′ = {i},

– X ′ = {x ∈ X : there is j ∈ J with µ(x) = (j, i)},

– R′ = (Rk|X′)k∈J∪{i}.

By weak consistency, A′ = A|J∪{i} ∈ ϕ(M ′). Let k ∈ H\{i}.

Let M ′′ = (D′′, H ′′, X ′′, R′′) be as follows:

– D′′ = J and H ′′ = {i, k},

– X ′′ = X ′ ∪ {Xk} where |Xk| = |J |, C(X ′′, R′′
k) = Xk, for each j ∈ J ,

there is xjk ∈ Xk with µ(xjk) = (j, k) such that C(X ′′, R′′
j ) = {xjk}, and

R′′
i = R′

i.

By Lemma 2.1, ϕ(M ′′) = {A′′} where for each l ∈ D′′ ∪H ′′, A′′
l = C(X ′′, R′′

l ).

In particular, (ii) A′′
i = ∅.

Clearly, M ′ is the H-restriction of M ′′. By own-side population-monotonicity

and (ii), for each A′ ∈ ϕ(M ′), A′
i = ∅, which contradicts weak consistency. ¤

Proof of Proposition 2.6.

Let M = (D,H, X, R) and (i) A ∈ ϕS(M). Let M ′ = (D′, H ′, X ′, R′) be

the type-2 reduced economy of M relative to D′ ∪H ′ at A. Let A|D′∪H′ = A′.

By contradiction, assume A′ 6∈ ϕS(M ′).

Case 1: There is d ∈ D′ such that C(A′
d, R

′
d) = ∅. Then, since for each

d ∈ D′, A′
d = Ad, we have C(Ad, Rd) = ∅, which contradicts (i).

Case 2: There is h ∈ H ′ such that C(A′
h, R

′
h) ( A′

h. Then, by separability,
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there is x ∈ A′
h such that ∅ R′

h {x} and Ah\{x} Rh Ah, which contradicts (i).

Case 3: There are h ∈ H ′, D̃ ⊆ D′, and X̃ 6⊆ Ah such that for each d ∈ D̃,

there is x ∈ X̃ with (ii) {x} = C(A′
d ∪ {x}, R′

d) and X̃ = C(A′
h ∪ X̃, R′

h).

Then, we have X̃\A′
h 6= ∅. Moreover, there is d∗ ∈ D̃ and x∗ ∈ X̃\A′

h with

µ(x∗) = (d∗, h) such that (iv) {x∗} R′
h ∅. Otherwise, we would have ∅ R′

h X̃

and since X̃ R′
h A′

h, Case 2 applies. Now, since x∗ /∈ A′
h, then x∗ /∈ Ah.

Hence, by (iii) and separability, (iv) Ah ∪ {x∗} Rh Ah. By (ii) and (iv), it

contradicts (i).¤

Proof of Proposition 2.8.

Assume that the hospital-optimal solution ϕH(M) is not destruction-proof.

Let M = (D, H, X, R) ∈M, h ∈ H, X ′
h ⊆ Xh, and

M ′ = (D,H, X−h, X
′
h, R−h, Rh|X′

h
). Then, we have ϕH

h (M ′) Rh ϕH
h (M). For

any M ∈M, let X t
h(M) be the set of all contracts that h offers along the steps

of the hospitals-proposing deferred acceptance algorithm at M , up to the t-th

step. Let At
h(M) be the set of the contracts accepted at the end of the t-th

step. There exists a t such that At
h(M

′) Rh At
h(M). Since the preferences

are substitutable, we have At
h(M) = C(Rh, X

t
h(M)). Then, C(Rh, X

t
h(M

′)) Rh

C(Rh, X
t
h(M)). This yield a contradiction because X t

h(M
′) ⊆ X t

h(M). ¤

Proof of Theorem 2.3.

Assume that the hospitals’ preference satisfy all properties stated in the

theorem and let ϕ be a rule which satisfies stability and strategy-proofness.
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First, we will show that the doctor-optimal solution satisfy these proper-

ties. By Hatfield and Milgrom (2005), if the firms’ preferences satisfy the

law of aggregate demand and the substitutes condition, then for the doctor-

optimal solution, it is dominant strategy for doctors to reveal truthfully their

preferences over contracts. We need to show that hospitals reveal truth-

fully their preferences over set of contracts. For any R ∈ R, let X t
hi

(R)

be the set of all contracts that have offered to hi along the steps of the

doctors-proposing deferred acceptance algorithm at R, up to the t-th step.

Let At
i(R) be the set of the contracts at the end of the t-th step. Since

the preferences are substitutable, we have At
i(R) = C(Rhi

, X t
hi

(R)). Thus,

Ahi
(R) Rhi

At
hi

(R) or Ahi
(R) = At

hi
(R). Suppose that hi reveals R′

hi
in-

stead of Rhi
. For some k, X t

hi
(R) = X t

hi
(R−hi

, R′
hi

) holds for t = 1, 2, ..., k,

and Ak
hi

(R) = C(Rhi
, Xk

hi
(R)) 6= C(R′

hi
, Xh

i (R)) = Ak
hi

(R−hi
, R′

hi
). If ϕD is

not strategy-proof, then Ahi
(R−hi

, R′
hi

) R′
hi

Ak
hi

(R−hi
, R′

hi
) R′

hi
Ak

hi
(R) which

yields a contradiction to the fact that the hospitals’ preferences satisfy top-

dominance condition. Second, we will show that any stable rule which is not

the doctor-optimal solution is strategy-proof. Assume that A(M) is not the

doctor-optimal solution. Then, there exists a doctor d who has not the con-

tract that he would get under the doctor-optimal solution. By Hatfield and

Milgrom (2005), the set of stable allocation is a nonempty finite lattice. Then,

AD
d (M) Rd Ad(M). Now, consider the following preference relation R′

d, for
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each {x, x′} ⊆ Xd, x Rd x′ implies x R′
d x′, for each x ∈ Xd\{AD

d (M)},

x Rd AD
d (M) if and only if x R′

d ∅, and AD
d (M) R′

d ∅. The doctor-optimal

solution is still stable at M ′ = (D,H, R−d, R
′
d, X). If the hospitals’ preferences

satisfy the law of aggregate demand and the substitutes condition, then at

every stable allocation, the same doctors are employed and every hospital fills

the same number of positions. Since AD
d (M ′) 6= ∅, at another stable allocation

Ad(M
′) 6= ∅ and Ad(M

′) R′
d ∅. Then, we have Ad(M

′) R′
d Ad(M), which is

contradictory to strategy-proofness. ¤


