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Abstract

We consider bargaining games under the assumption that bargainers
are loss averse, i.e. experience disutility from obtaining an outcome lower
than some reference point. We follow the approach of Shalev (2002) by
imposing the self-supporting condition on a solution. Given a bargaining
game, we say outcome z is self-supporting under a given bargaining solu-
tion, whenever transforming the game using outcome z as reference point,
yields a transformed game in which the solution is z.

We show that n-player bargaining games have a unique self-supporting
outcome under the Kalai-Smorodinsky (KS) solution. We define a bar-
gaining solution, giving exactly this outcome, and characterize it by the
standard axioms of Scale Invariance [SI], Individual Monotonicity [IM],
and Strong Individual Rationality [SIR], and a novel axiom called Propor-

tional Concession Invariance [PCI]. A bargaining solution satisfies PCI
if moving the utopia point in the direction of the solution outcome, does
not change this outcome.

1 Introduction

In his seminal paper, Nash (1950) defined the ‘bargaining problem’ as a proxy for
real life bargaining situations. His model is described by two players attempting
to find agreement on a certain feasible outcome. They are motivated by the
fact that failure to cooperate results in an unfavorable outcome for all. Nash
himself defined and characterized a solution for this problem, the well known
Nash bargaining solution. A wide range of other solutions have been formulated
since. One of the most prominent alternatives to the Nash bargaining solution
is the Kalai-Smorodinsky solution, defined by Raiffa (1953) and characterized
by Kalai and Smorodinsky (1975).

∗Department of Quantitative Economics, University of Maastricht, P.O. Box 616, 6200
MD Maastricht, The Netherlands. Telephone: +31-43-3883835. Telefax: +31-43-3884874.
Email adresses: B.Driesen@maastrichtuniversity.nl, A.Perea@maastrichtuniversity.nl,
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In economics – and bargaining is no exception – risk attitudes tend to play
a pervasive role on how agents behave. In the bargaining literature, much at-
tention has been paid to the influence of risk attitudes, and in particular risk
aversion, on the outcomes players finally agree on according to certain bargain-
ing solutions. Several studies, among which Kannai (1977), Kihlstrom, Roth,
and Schmeidler (1981), and Roth (1985), find that the Nash bargaining so-
lution favors the less risk averse bargainer. Kihlstrom, Roth and Schmeidler
(1981) find similar results for the Kalai-Smorodinsky solution. Köbberling and
Peters (2003) also study the effect of risk aversion on the Kalai-Smorodinsky
solution, but distinguish between probabilistic risk aversion and utility risk aver-
sion. They find it is an advantage to have a more utility risk averse opponent,
or a less probabilistically risk averse opponent.

In the present article we investigate the Kalai-Smorodinsky solution under
a related behavioral phenomenon, called loss aversion. Loss aversion was intro-
duced by Kahneman and Tversky (1979, 1984). It is based on the premise that
economic agents derive utility from changes in wealth in comparison to some
reference point, and that changes for the worse – i.e. losses – carry more weight
than equivalent changes for the better.

To introduce this concept in the bargaining problem, we follow the approach
of Shalev (2002). Each bargainer’s preference is represented by a von Neumann-
Morgenstern utility function, a nonnegative loss aversion coefficient, and a ref-

erence point ; if a player’s utility level is below his reference point, then he
experiences a disutility equal to the size of his incurred loss, inflated by the loss
aversion coefficient. Thus, in a bargaining context, incorporating the players’
loss aversion is equivalent to applying a particular transformation to the bar-
gaining problem. Reference points are subsequently endogenized by imposing
the self-supporting condition. An outcome z is said to be self-supporting under
a given solution, whenever transforming the bargaining game using outcome z
as reference point, yields a game of which the solution is z. We may interpret a
bargainer’s reference point as the expectation or the aspiration of what utility
payoff that bargainer may realize given a certain bargaining solution. The self-
supporting condition then imposes that the bargaining solution assigns to each
player exactly the (initially) aspired utility level, and as a consequence, that no
losses are incurred.

The first purpose of this article is to show that n-player bargaining games,
n ≥ 2, have exactly one outcome that is self-supporting under the Kalai-
Smorodinsky solution1. Kalai and Smorodinsky (1975) defined their solution
on two-player bargaining games. In view of Roth’s (1979) result that it is not
generally defined on all n-player bargaining games, we consider the subclass
of all n-player bargaining games, defined by Peters and Tijs (1984), which ex-
cludes the problematic cases. On these games we define a class of asymmetric
n-person Kalai-Smorodinsky solutions. Consider an outcome in the Pareto set
and the line segments respectively connecting that outcome to the disagreement

1This was already remarked – without proof – by Shalev (2002) for the case of two-player
bargaining games.

2



point and the utopia point. For any two players we may then project these line
segments into the plane. Our solution is defined by the unique outcome in
the Pareto set such that for any two players, the slopes of these projected line
segments satisfy a given proportion. We establish that for each loss aversion
profile, there is a single bargaining solution in our class that yields the asso-
ciated self-supporting outcome. This implies uniqueness of a self-supporting
outcome under the Kalai-smorodinsky solution for n-player bargaining games.
Moreover, the bargaining solution we define provides an easy method of finding
this outcome.

We next provide an axiomatic characterization of this class of bargaining so-
lutions. In particular, we show that it is fully defined by the standard properties
Strong Individual Rationality, Scale Invariance, and Individual Monotonicity,
and a new axiom named Proportional Concession Invariance [PCI]. The axiom
of PCI says that if players make concessions with respect to their utopia values
in such a way that the new utopia point is on the line segment connecting the
solution outcome and the original utopia point, then the solution outcome is
left unchanged.

The article proceeds as follows. Section 2 introduces the notation, and in
Section 3 we show how loss aversion is incorporated in the bargaining problem.
Section 4 describes the concept of monotonic curves, their associated bargain-
ing solutions, and defines the Kalai-Smorodinsky solution as a special case. In
Section 5 we define a class of bargaining solutions, and we show that every so-
lution in this class is the self-supporting outcome under the Kalai-Smorodinsky
solution for some loss aversion profile. Section 6 contains the axiomatic charac-
terization of this class of bargaining solutions. We conclude in Section 7.

All claims made in the text are proven in the Appendix.

2 Preliminaries

The set of players or bargainers is denoted N := {1, . . . , n}, with n ≥ 2. For
x, y ∈ R

N we say x ≥ y if xi ≥ yi for all i ∈ N , and x > y if xi > yi for all
i ∈ N . The relations ‘≤’ and ‘<’ are defined similarly. We define R

N
+ := {z ∈

R
N | z ≥ 0} and R

N
++ := {z ∈ R

N | z > 0}. For x, y ∈ R
N we denote by xy the

vector (x1y1, . . . , xnyn), and for S ⊆ R
N we define xS := {xy ∈ R

N | y ∈ S}.
Similarly, we denote (x1 + y1, . . . , xn + yn) as x + y, and the set {x + z | z ∈ S}
as x + S. The vector in R

N that has i-th coordinate equal to 1 and all other
coordinates equal to 0 is denoted ei. The vector eM , M ⊆ N and M �= ∅, has
all coordinates i ∈ M equal to 1, and all coordinates i /∈ M equal to 0. For

x ∈ R
N
++, we denote

(
1

x1

, . . . , 1

xn

)
as x−1.

A bargaining problem for N is defined as a pair (S, d) where

• S ⊂ R
N is non-empty, closed, convex, and comprehensive,

• d ∈ S,

• there exists a z ∈ S such that z > d, and
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• Sd := {z ∈ S | z ≥ d} is bounded.

A set S is comprehensive if x ∈ S and x ≥ y together imply y ∈ S. In
a bargaining context, this assumption can be interpreted as free disposal of
utility in the sense that any player can choose a lower utility payoff without it
leading to an infeasible outcome. Bargainers seek agreement on an outcome z
in S where each player i ∈ N obtains utility zi. In case no agreement is reached
the disagreement outcome d results.

The set of all bargaining problems is denoted BN . For (S, d) ∈ BN and each
i ∈ N , we define

ui(S, d) := max{zi | z ∈ Sd}.

This represents the highest possible utility payoff bargainer i can attain in the
bargaining problem (S, d), given that no bargainer j ∈ N , j �= i, obtains a
utility payoff lower than dj . The vector u(S, d) := (u1(S, d), . . . , un(S, d)) is
termed the utopia point of (S, d). For all (S, d) ∈ BN we define the Pareto set

of (S, d) as

P (S) := {z ∈ S | for all x ∈ R
N if x ≥ z and x �= z, then x /∈ S}.

A bargaining solution or in short, a solution, is a map ϕ : BN → R
N that assigns

to any bargaining problem (S, d) ∈ BN a single point ϕ(S, d) ∈ S.

3 Bargaining with Loss Aversion

Shalev (2000, 2002) introduced a transformation that models bargainers’ loss
aversion. Each bargainer i ∈ N has a non-negative loss aversion coefficient

λi and a reference point ri. We denote the vector (λ1, . . . , λn) ∈ R
N
+ by λ.

Similarly, r := (r1, . . . , rn) ∈ R
N . Each bargainer i evaluates a utility payoff

zi ∈ R by the transformation wi, defined as

wi(zi, λi, ri) :=

{
zi if zi ≥ ri

zi − λi(ri − zi) if zi < ri.

Thus, a bargainer i who incurs a loss – i.e. obtains a utility payoff zi below
his reference point ri, experiences a disutility that is equal to his loss ri − zi,
inflated by the loss aversion coefficient λi. Payoffs above the reference point are
left unchanged. Note that we may also write

wi(zi, λi, ri) = (1 + λi)zi − λi max{ri, zi}.

For utility outcomes z ∈ R
N we define

w(z, λ, r) := (w1(z1, λ1, r1), . . . , wn(zn, λn, rn)).

For sets T ⊂ R
N we write w(T, λ, r) := {w(z, λ, r) | z ∈ T}. Henceforth,

the transformation w : R
N × R

N
+ × R

N → R
N is referred to as the Shalev

transformation.
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For bargaining problems (S, d) ∈ BN we define

w((S, d), λ, r) := (w(S, λ, r), w(d, λ, r)).

We then have the following.

Lemma 3.1 Let (S, d) ∈ BN , λ ∈ R
N
+ , and r ∈ R

N . Then w((S, d), λ, r) ∈ BN .

Let ϕ : BN → R
N be some bargaining solution, and let (S, d) be some

problem in BN . Then by Lemma 3.1, ϕ(w(S, d), λ, r) is well-defined for all
λ ∈ R

N
+ and r ∈ R

N . A point z ∈ S is called a self-supporting outcome under ϕ
if z = ϕ(w((S, d), λ, z)). The set of all such points is defined as

Selfϕ((S, d), λ) := {z ∈ S | z = ϕ(w((S, d), λ, z))}.

Then Selfϕ : BN × R
N
+ → R

N is a correspondence that assigns to each bar-
gaining problem (S, d) ∈ BN and loss aversion profile λ ≥ 0 a possibly empty
subset of S.

For two-player bargaining games (S, d), Shalev (2002) characterized the set
of self-supporting outcomes under the Nash bargaining solution. Specifically, he
showed that it is a closed, connected subset of the Pareto set P (S).

4 The Kalai-Smorodinsky Solution

Raiffa (1953), and Kalai and Smorodinsky (1975) defined and characterized a
solution – the Kalai-Smorodinsky solution (KS) – for bargaining problems in
B{1,2}. It was shown by Roth (1979) that the n-player extension of the KS
solution, n > 2, is not defined on all bargaining problems in BN . Therefore,
Peters and Tijs (1984) introduced the rather large subclass IN of bargaining
problems in BN for which this non-existence result does not hold. Consider the
following condition.

For all x ∈ S, x ≥ d, and i ∈ N we have: (1)

x /∈ P (S) and xi < ui(S, d) ⇒ there is an ε > 0 such that x + εei ∈ S

Then

IN := {(S, d) ∈ BN | (S, d) satifies condition (1)}.

Condition (1) says that if a feasible outcome x is not Pareto optimal, then for
any bargainer who does not get his utopia payoff there is a feasible outcome
that this bargainer strictly prefers over x. The class of bargaining problems
(S, 0) ∈ IN is denoted IN

0 ; for bargaining problems in IN
0 we henceforth omit

the disagreement point, i.e. we denote (S, 0) ∈ IN
0 as S.

Peters and Tijs (1984) defined the n-player extension of the KS solution by
making use of monotonic curves. Specifically, a monotonic curve for N is a map

ϑ : [1, n] →

{
x ∈ R

n
+ | xi ≤ 1 for all i ∈ N, and 1 ≤

∑
i∈N

xi

}
,
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such that for all 1 ≤ s ≤ t ≤ n we have ϑ(s) ≤ ϑ(t) and
∑

i∈N ϑi(s) = s. The
set of all monotonic curves for N is denoted ΘN .

Lemma 4.1 (Peters and Tijs, 1984) For each ϑ ∈ ΘN and S ∈ IN
0 with

u(S) = eN , the set

P (S) ∩ {ϑ(t) | t ∈ [1, n]}

contains exactly one point.

Let ϑ be some monotonic curve in ΘN . In view of Lemma 4.1 we can define
ρϑ : IN → R

N , the solution associated with ϑ. Let S ∈ IN
0 ; if u(S) = eN , then{

ρϑ(S)
}

:= P (S) ∩ {ϑ(t) | t ∈ [1, n]},

and if u(S) = β, then ρϑ(S) := βρϑ(β−1S). For (S, d) ∈ IN , we define
ρϑ(S, d) := d+ρϑ(S−d). The class of all solutions associated with a monotonic
curve in ΘN is referred to as the class of individually monotonic bargaining so-

lutions. The KS solution is an element of this class. Specifically, it is defined
as

ρϑ̂ where ϑ̂(t) :=
teN

n
for t ∈ [1, n].

Observe that ϑ̂ defines a straight line in R
N , which for bargaining games S ∈ IN

0

where u(S) = eN , is concurrent with the line connecting the disagreement point
0 and the utopia point eN . For general bargaining problems (S, d) ∈ IN , the
KS solution is the intersection of the Pareto set P (S) and the straight line
that connects the disagreement point d and the utopia point u(S, d). To ease

notation, we also refer to ρϑ̂ as KS, i.e. KS ≡ ρϑ̂.

5 The Solution Class DN

In this section we show that self-supporting outcomes under the KS solution
are well-defined, and that each game in IN has exactly one such outcome. Pe-
ters and Tijs (1984) show that I{1,2} = B{1,2}, which implies that our result
generalizes Shalev’s (2002) remark about the uniqueness of a self-supporting
outcome under the KS solution for two-player bargaining games. Furthermore,
we introduce a class DN of bargaining solutions on IN , where for any λ ∈ R

N
+

there is a single ϕ ∈ DN such that ϕ(S, d) is the unique self-supporting outcome
of the game (S, d) under the KS solution.

Observe that from Lemma 3.1 and the fact that the Shalev transforma-
tion preserves the ordering of payoffs, we obtain that (S, d) ∈ IN implies
w((S, d), λ, r) ∈ IN for all λ ∈ R

N
+ and r ∈ R

N . Therefore, SelfKS((S, d), λ),
the set of self-supporting outcomes under the KS solution, is well-defined.

We now introduce the class DN of bargaining solutions. Denote by N̄ the
player set without player n – i.e. N̄ := N \ {n}, and define the correspondence

6



Dk : IN → R
N for all k ∈ R

N̄
++ as

Dk(S, d) := {z ∈ P (S) | for all i ∈ N̄ we have:

(un(S, d)− zn)(zi − di) = ki(ui(S, d)− zi)(zn − dn)}. (2)

It is not hard to verify that Dk �= Dk′

whenever k, k′ ∈ R
N̄
++ with k �= k′.

The set DN :=
{

Dk | k ∈ R
N̄
++

}
is defined as the set that contains all such

correspondences. For any k ∈ R
N̄
++, define

ϑk(t) :=

{
z ∈ Gk |

n∑
i=1

zi = t

}
, (3)

where t ∈ [1, n], and Gk := {z ∈ R
N
+ | (1 − zn)zi = ki(1 − zi)zn for all i ∈

N̄}. In Lemma A.1, which can be found in the Appendix, we show that any
correspondence ϑk is a monotonic curve in ΘN .

Theorem 5.1 For all k ∈ R
N̄
++ and (S, d) ∈ IN , we have Dk(S, d) =

{
ρϑk

(S, d)
}
.

It follows from Theorem 5.1 that the set DN :=
{

Dk | k ∈ R
N̄
++

}
is a sub-

set of the class of individually monotonic bargaining solutions. The following
theorem establishes the equivalence between {SelfKS( . , λ) | λ ∈ R

N
+} and DN .

Theorem 5.2 For all (S, d) ∈ IN we have

SelfKS((S, d), λ) = Dk(S, d)

where k := (k1, . . . , kn−1), and ki := 1+λn

1+λi

for all i ∈ N̄ . That is,

SelfKS((S, d), λ) := {z ∈ P (S) | for all i ∈ N̄ we have:

(1 + λi)(un(S, d)− zn)(zi − di) = (1 + λn)(ui(S, d)− zi)(zn − dn)}.

With a slight abuse of notation, we henceforth consider Dk(S, d) to be an
outcome. That is, if Dk(S, d) = {z}, then we write Dk(S, d) = z. Then also

Dk(S, d) =
(
Dk

1 (S, d), . . . , Dk
n(S, d)

)
.

From Theorem 5.2 it follows that for each loss aversion profile λ ∈ R
N
+ , we may

look at SelfKS( . , λ) as an asymmetric n-player Kalai-Smorodinsky solution
where the asymmetry is fully defined by the bargainers’ degrees of loss aver-
sion. In the following section we provide an axiomatic characterization of these
solutions.

7



6 An Axiomatic Characterization of DN

From Theorem 5.1 it follows that DN is a subclass of the individual monotonic
bargaining solutions, defined and characterized by Peters and Tijs (1984). Of
their axioms we retain Scale Invariance [SI] and Individual Monotonicity [IM].

(SI) ϕ : BN → R
n satisfies Scale Invariance if t(ϕ(S, d)) = ϕ(t(S), t(d)), where

t : R
n → R

n is a linear transformation t(x) := α + βx, with α ∈ R
N ,

β ∈ R
n
++, and t(S) := α + βS for S ⊂ R

N .

(IM) ϕ : BN → R
n satisfies Individual Monotonicity if ϕi(S, d) ≤ ϕi(T, d) for

all (S, d), (T, d) ∈ BN and i ∈ N with S ⊆ T and uj(S) = uj(T ) for all
j ∈ N \ {i}.

The axiom of SI is consistent with the premise that bargainers’ preferences
are representable by von Neumann-Morgenstern utility functions. Kalai and
Smorodinsky (1975) introduced IM as a possible alternative to Nash’s (1950)
Independence of Irrelevant Alternatives after this axiom had been criticized. A
third well-known property we require is Strong Individual Rationality [SIR].

(SIR) ϕ : BN → R
n satisfies Strong Individual Rationality if ϕ(S, d) > d for all

(S, d) ∈ BN .

We now introduce a novel axiom called Proportional Concession Invariance

[PCI]. One can consider a solution outcome ϕ(S, d) as a representation of con-
cessions that bargainers make with respect to their utopia point values u(S, d).
The PCI axiom then says that if we replace u(S, d) by a point û on the line seg-
ment connecting ϕ(S, d) and u(S, d), and shrink the bargaining set accordingly,
then the solution outcome should not change. In other words, if the players’
utopia values are reduced in such a way that their concessions with respect to
the original solution outcome change proportionally, then this solution outcome
should not change.

(PCI) ϕ : BN → R
n satisfies Proportional Concession Invariance if for a bargain-

ing problem (S, d) ∈ BN with solution ϕ(S, d), and a bargaining problem
(Ŝ, d) with

Ŝ := {z ∈ S | z ≤ û},

where û = αϕ(S, d)+ (1−α)u(S, d) for some α ∈ [0, 1], we have ϕ(Ŝ, d) =
ϕ(S, d).

The property PCI can also be thought of as a very weak form of IIA, and
is therefore satisfied by the Nash bargaining solution and its asymmetric vari-
ants. Furthermore, observe that PCI is the counterpart to Disagreement Point

Convexity [DPC], one of the axioms used by Peters and van Damme (1991) to
characterize the class of asymmetric Nash bargaining solutions. This property
requires that the solution outcome ϕ(S, d) remain unchanged if we replace d
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by a point d̂ on the line segment connecting the disagreement point d and the
solution outcome ϕ(S, d).

It is worth noting that the characterization of DN makes no use of Pareto

Optimality [PO]. In fact, in the Appendix, we use an argument similar as in
Roth (1977) to show that PO is implied by our axioms. The following theorem
states our characterization result.

Theorem 6.1 Let ϕ : IN → R
N be a bargaining solution. Then ϕ ∈ DN if and

only if ϕ satisfies SIR, SI, IM, and PCI.

7 Concluding Remarks

We have established that bargaining games with n possibly loss averse players,
n ≥ 2, have exactly one self-supporting outcome under the Kalai-Smorodinsky
solution. Moreover, we defined an asymmetric n-player version of the KS so-
lution which directly captures the asymmetry resulting from the bargainers’
degrees of loss aversion. We may summarize these results in the following corol-
lary.

Corollary 7.1 Let λ ∈ R
N
+ be the profile of loss aversion. For every (S, d) ∈

IN , an outcome z ∈ S is self-supporting under the KS solution if and only if

z = Dk(S, d), where ki := 1+λn

1+λi

for all i ∈ N̄ .

We have characterized the class DN of all bargaining solutions Dk by the
axioms of Strong Individual Rationality, Scale Invariance, Individual Monotonic-

ity, and Proportional Concession Invariance. While the first three properties
are standard in the axiomatic bargining literature, the last one is newly defined
in this article.
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A Collected Proofs

In this appendix we prove the claims made in the article.

A.1 The proof of Lemma 3.1

Let (S, d) ∈ BN , λ ∈ R
N
+ , and r ∈ R

N . Since the Shalev transformation is
continuous, one-to-one, and preserves the ordering of payoffs, we have that

• w(S, λ, r) is non-empty, closed, and comprehensive,

• w(d, λ, r) ∈ w(S, λ, r),

• there are z ∈ w(S, λ, r) with z > w(d, λ, r), and

• w(Sd, λ, r) is bounded.

Left to show is that w(S, λ, r) is convex. Let x, y ∈ S and t ∈ [0, 1]. By
convexity of S, we have tx + (1− t)y ∈ S. By the fact that w is concave in the
first coordinate, we have

w(tx + (1− t)y, λ, r) ≥ tw(x, λ, r) + (1− t)w(y, λ, r).

By comprehensiveness of w(S, λ, r) this implies

tw(x, λ, r) + (1− t)w(y, λ, r) ∈ w(S, λ, r).

This implies convexity of w(S, λ, r).

A.2 The proof of Theorem 5.1

First, we show the following.

Lemma A.1 Let k ∈ R
N̄
++. Then the correspondence ϑk(t), t ∈ [1, n], is a

monotonic curve.

Proof. Let s̄ ∈ [1, n]. We show that there is a unique point z∗ ∈ R
N
+ such

that ϑk(s̄) = z∗. That is, we show that the system of equations

(1− zn)zi = ki(1− zi)zn for all i ∈ N̄ (4)

n∑
j=1

zj = s̄, (5)

has exactly one solution z∗ in R
N
+ . Suppose the system has a solution z ∈ R

N
+ ,

and suppose zn > 1. Then for each i ∈ N̄ we either have zi > 1 or zi < 0, which
by z ∈ R

N
+ implies zi > 1 for all i ∈ N . Since this is a violation of (5), we must

have zn ≤ 1. Since (1− ki)
−1 /∈ [0, 1] for all i ∈ N̄ , we can write

zi =
kizn

1− zn(1− ki)
for all i ∈ N̄ .
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Then for all i ∈ N̄ , zi is strictly increasing in zn on the domain [0, 1]. The
observations that

n∑
j=1

zj = 0 ≤ s̄ for zn = 0, and

n∑
j=1

zj = n ≥ s̄ for zn = 1,

together with continuity of
∑n

j=1
zj in zn then imply that there is exactly one

z∗ ∈ R
N
+ that solves the system of equations (4) and (5). It follows that the

correspondence ϑk is a map. Moreover, for all 1 ≤ s ≤ t ≤ n we have 0 <
ϑk(s) ≤ ϑk(t) ≤ eN and

∑
i∈N ϑk

i (s) = s. It follows that ϑk is a monotonic
curve.

To prove Theorem 5.1, we show that each map Dk ∈ DN is the bargaining
solution associated with the monotonic curve ϑk as defined in (3).

Proof of Theorem 5.1. Consider a normalized bargaining problem T ∈ IN
0 ,

i.e. u(T ) = eN . Let k ∈ R
N̄
++ and observe that by (2) we have

Dk(T ) = P (T ) ∩Gk.

By convexity of T we have P (T ) ⊂ {z ∈ R
N
+ |

∑
j∈N zj ≥ 1}, implying

Dk(T ) = P (T ) ∩ {ϑk(t) | t ∈ [1, n]},

where ϑk is defined by (3). It follows that Dk(T ) =
{

ρϑk

(T )
}

. From this it is

easily established that

Dk(S, d) =
{

ρϑk

(S, d)
}

for all (S, d) ∈ IN .

A.3 The Proof of Theorem 5.2

We start with the following lemma.

Lemma A.2 Let (S, d) ∈ IN . Then Dk(S, d) = KS(S, d) if and only if k = eN̄ .

Proof. It is easy to show that for any t ∈ [1, n), we have ϑk(t) = ϑ̂(t) if and
only if k = eN̄ . The result then follows from Theorem 5.1 and the definition of
KS.

Proof of Theorem 5.2 Let (S, d) ∈ IN and λ ∈ R
N
+ , and let u ≡ u(S, d). By

Lemma A.2 and the fact that KS(S, d) ≥ d, we have

KS(w((S, d), λ, z)) = {x ∈ P (w(S, λ, z)) | for all i ∈ N̄ we have

(un − xn)(xi − (1 + λi)di + λizi) = (ui − xi)(xn − (1 + λn)dn + λnzn)}.
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Observe that z ∈ SelfKS((S, d), λ) if and only if z = KS(w((S, d), λ, z)). That
is, z ∈ SelfKS((S, d), λ) iff

(i) z ∈ P (w(S, λ, z)), and

(ii) (un − zn)(zi − (1 + λi)di + λizi) = (ui − zi)(zn − (1 + λn)dn + λnzn) for
all i ∈ N̄ .

From z = w(z, λ, z), P (w(S, λ, z)) = w(P (S), λ, z), and the fact that the Shalev
transformation is one-to-one, it follows that z ∈ P (w(S, λ, z)) is equivalent to
z ∈ P (S).
Define k := (k1, . . . , kn−1) where ki := 1+λn

1+λi

for all i ∈ N̄ . Observe that the
statement in (ii) is equivalent to

(un − zn)(zi − di) = ki(ui − zi)(zn − dn) for all i ∈ N̄ .

It follows that z ∈ SelfKS((S, d), λ) is equivalent to

z ∈
{
x ∈ P (S) | (un − xn)(xi − di) = ki(ui − xi)(xn − dn) for all i ∈ N̄

}
.

Hence, SelfKS((S, d), λ) = Dk(S, d).

A.4 The proof of Theorem 6.1

The standard axiom of Pareto Optimality is useful for the proof.

(PO) ϕ : BN → R
N satisfies PO if ϕ(S, d) ∈ P (S) for all (S, d) ∈ BN .

From Peters and Tijs (1984) we obtain the following.

Lemma A.3 (Peters and Tijs, 1984) Let ϕ : IN → R
N be a bargaining

solution. Then ϕ satisfies PO, SI, and IM, if and only if ϕ = ρϑ for some

ϑ ∈ ΘN .

This we use to establish the following result.

Proposition A.4 Let ϕ : IN → R
N be a bargaining solution in DN . Then ϕ

satisfies SIR, SI, IM, and PCI.

Proof. Since ϕ ∈ DN we have ϕ = Dk for some k ∈ R
N̄
++. By Theorem 5.1,

we have ϕ = ρϑ where ϑ ∈ ΘN , which by Lemma A.3 implies that ϕ satisfies SI
and IM.
Consider a bargaining problem (S, d) ∈ IN , and the solution ϕ(S, d) =: z. To
see that ϕ satisfies SIR, suppose there is an i ∈ N such that zi = di. Observe
that z ∈ P (S) and

(un(S, d)− zn)(zj − dj) = kj(uj(S, d)− zj)(zn − dn) for all j ∈ N̄ .

If i = n, then zj = dj for all j ∈ N̄ , implying z = d. Let i ∈ N̄ , and observe
that zi = di implies zn = dn, and thus z = d. Since d /∈ P (S), we arrive at a
contradiction. It follows that z > d.
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To see that ϕ satisfies PCI, consider the problem (Ŝ, d) ∈ IN where

Ŝ := {x ∈ S | x ≤ û},

with û = αz+(1−α)u(S, d) for some α ∈ (0, 1). Then û−z = (1−α)(u(S, d)−z),
implying that

(ûn − zn)(zi − di) = ki(ûi − zi)(zn − dn) for all i ∈ N̄ . (6)

Since z ∈ Ŝ and z ∈ P (S), we have z ∈ P (Ŝ). This and (6) together imply
Dk(Ŝ, d) = z. Hence, ϕ satisfies PCI.

For the reverse implication we require two additional lemmas.

Lemma A.5 Let (S, d) ∈ IN , and z ∈ S \ P (S). Then for the function f :
[0, 1] → R

N defined as

f(α) := (1− α)z + αu(S, d),

there is exactly one α∗ ∈ [0, 1] such that f(α∗) ∈ P (S).

Proof. By compactness of S we have that

α∗ := max{α | f(α) ∈ S}

is well-defined. We now show that f(α∗) ∈ P (S). Suppose f(α∗) /∈ P (S). By
condition (1), it follows that for each i ∈ N with zi < ui(S, d), there is an εi > 0
such that f(α∗) + εie

i ∈ S. Then by convexity of S there is an ε > 0, such that

f(α∗) + ε(u(S, d)− z) ∈ S.

But then there is a β > α∗ with f(β) ∈ S. This is a contradiction.
To show uniqueness, let α1, α2 ∈ [0, 1] with α1 �= α2, and suppose f(α1), f(α2) ∈
P (S). Without loss of generality, assume α2 > α1. Then since u(S, d) ≥ z and
u(S, d) �= z, we have f(α2) ≥ f(α1) and f(α2) �= f(α1). Since f(α1) ∈ P (S),
this implies f(α2) /∈ S, a contradiction.

Lemma A.6 Let ϕ : IN → R
N be a solution satisfying SIR, SI, and PCI. Then

ϕ satisfies PO.

Proof. Let ϕ : IN → R
N be a bargaining solution satisfying SIR, SI, and

PCI. By SI it is sufficient to restrict attention to bargaining problems in IN
0 .

Let S ∈ IN
0 . By SIR we have ϕ(S) > 0. Now assume ϕ(S) /∈ P (S). By Lemma

A.5, there is a single z∗ ∈ P (S), such that

z∗ = (1− α)ϕ(S) + αu(S) for some α ∈ (0, 1].

Define Ŝ := {x ∈ S | x ≤ z∗}, and observe that by PCI we have

ϕ(Ŝ) = ϕ(S).
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Similarly, for the set T := {x ∈ S | x ≤ ϕ(S)} we have ϕ(T ) = ϕ(S). Now
observe that Ŝ = [z∗(ϕ(S))−1]T . Then by SI we have

ϕ(Ŝ) = z∗(ϕ(S))−1ϕ(T ) = z∗(ϕ(S))−1ϕ(S) = z∗.

This contradicts ϕ(Ŝ) = ϕ(S).

Proposition A.7 Let ϕ : IN → R
N be a bargaining solution satisfying SIR,

SI, IM, and PCI. Then ϕ ∈ DN .

Proof. Since ϕ satisfies SIR, SI, and PCI, it follows from Lemma A.6 that ϕ
satisfies PO. Then by Lemma A.3 it follows that ϕ ≡ ρϑ∗

for some monotonic
curve ϑ∗ ∈ ΘN .

Consider the problem

H := Conv
(
{ei | i ∈ N} ∪ {0}

)
,

and observe that H ∈ IN
0 . If there is an i ∈ N with ϕi(H) = 1, then ϕj(H) = 0

for all j �= i, which is a violation SIR. Hence, 0 < ϕ(H) < eN . Hence, k :=
(k1, . . . , kn−1), where

ki :=
1− ϕn(H)

1− ϕi(H)
·

ϕi(H)

ϕn(H)
, (7)

is well-defined and k ∈ R
N̄
++.

In what follows, we show that

ϑ∗(t) = ϑk(t) (8)

for all 1 ≤ t ≤ n. We do this in three steps. Let t̄ ∈ [1, n]. Then

1. we construct a specific problem S ∈ IN
0 ,

2. we show that ϕ(S) = ϑk(t̄), and

3. we show that ϕ(S) = ϑ∗(t̄).

By (8) we have ρϑk

= ρϑ∗

, which together with ϕ = ρϑ∗

and Dk = ρϑk

estab-
lishes ϕ = Dk.

Step 1: Define the function g : [0, 1] → [1, n] as

g(α) :=
∑
i∈N

ϕi(H)

αϕi(H) + (1− α)
. (9)

From the fact that g is strictly increasing2 and continuous, and the fact that
g(0) = 1 and g(1) = n, it follows that for each t ∈ [1, n] there is a unique
α ∈ [0, 1] such that g(α) = t.

2This follows from ϕ(H) �= 0 and ϕ(H) �= eN .

14



Let β := ᾱϕ(H) + (1 − ᾱ)eN , where ᾱ is such that g(ᾱ) = t̄. Then define the
problem S ∈ IN

0 as

S := {β−1z | z ∈ H and z ≤ β}.

Since ϕ satisfies SI and PCI, we have

ϕ(S) = β−1ϕ(H). (10)

It follows from (10) and (9), and the fact that g(ᾱ) = t̄ that
∑

i∈N ϕi(S) = t̄.

Step 2: Rewriting (7) yields

(1− ϕn(H))ϕi(H) = ki(1− ϕi(H))ϕn(H) for all i ∈ N̄ .

From the definition of β we have β − ϕ(H) = (1− ᾱ)(eN − ϕ(H)). Thus,

(βn − ϕn(H))ϕi(H) = ki(βi − ϕi(H))ϕn(H) for all i ∈ N̄ .

For each i ∈ N̄ , we can multiply both sides of the equation by 1

βnβi

. By (10)
this yields

(1− ϕn(S))ϕi(S) = ki(1− ϕi(S))ϕn(S) for all i ∈ N̄ .

It follows that ϕ(S) ∈ Gk. Since
∑

i∈N ϕi(S) = t̄, we have

ϕ(S) = ϑk(t̄). (11)

Step 3: Since ϕ ≡ ρϑ∗

, and S ∈ IN
0 with u(S) = eN , we have

{ϕ(S)} = P (S) ∩ {ϑ∗(t) | t ∈ [1, n]},

which implies ϕ(S) = ϑ∗(t∗) for some t∗ ∈ [1, n]. From the definition of mono-
tonic curves we obtain

t∗ =
∑
i∈N

ϑ∗i (t
∗) =

∑
i∈N

ϕi(S) = t̄.

Hence,
ϕ(S) = ϑ∗(t̄). (12)

Combining (11) and (12) yields the desired result.

Theorem 6.1 is then established by Propositions A.4 and A.7.

15



References

[1] Kahneman D., and A. Tversky. Prospect theory: an analysis of choice
under risk. Econometrica 47(2):263–291, 1979.

[2] Kahneman D., and A. Tversky. Choices, Values, and Frames. American

Psychologist 39(4):341–350, 1984.

[3] Kalai E., and M. Smorodinsky. Other solutions to Nash’s bargaining prob-
lem. Econometrica, 43(3):513–518, 1975.

[4] Kannai Y. Concavifiability and constructions of concave utility functions.
Journal of mathematical Economics, 4(1):1–56, 1977.

[5] Köbberling V., and H. Peters. The effect of decision weights in bargaining
problems. Journal of Economic Theory, 110(4):154–175, 2003.

[6] Nash J. The bargaining problem. Econometrica, 18(2):155–162, 1950.

[7] Peters H., and E. van Damme. Characterizing the Nash and Raiffa bar-
gaining solutions by disagreement point axioms. Mathematics of Operations

Research, 16(3):447–461, 1991.

[8] Peters H., and S. Tijs. Individually monotonic bargaining solutions for
n-person games. Methods of Operations Research, 51:377–384, 1984.

[9] Raiffa H. Arbitration schemes for generalized two-person games, in: Con-
tributions to the Theory of Games II. Kuhn H.W., and A.W. Tucker (eds.)
Annals of Mathematics Studies, 28:361–387, 1953.

[10] Roth A.E. An impossibility result concerning n-person bargaining games.
International Journal of Game Theory, 8(3):129–132, 1979.

[11] Roth A.E. Individual rationality and Nash’s solution to the bargaining
problem. Mathematics of Operations Research, 2(1):64–65, 1977.

[12] Shalev J. Loss aversion equilibrium. International Journal of Game theory,
29(2):269–287, 2000.

[13] Shalev J. Loss aversion and bargaining. Theory and Decision, 52(3):201–
232, 2002.

16


