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Abstract

This paper proposes a new duration-based backtesting procedure for
VaR forecasts. The GMM test framework proposed by Bontemps (2006)
to test for the distributional assumption (i.e., the geometric distribution)
is applied to the case of VaR forecast validity. Using simple J-statistics
based on the moments defined by the orthonormal polynomials associ-
ated with the geometric distribution, this new approach tackles most of
the drawbacks usually associated with duration based backtesting proced-
ures. In particular, it is among the first to take into account problems
induced by the estimation risk in duration-based backtesting tests and
to offer a sub-sampling approach for robust inference derived from Escan-
ciano and Olmo (2009). An empirical application of the method to Nasdaq
returns confirms that using the GMM test has major consequences for the
ex-post evaluation of risk by regulation regulatory authorities.
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1 Introduction

The recent Basel II agreements have left open the possibility for financial in-
stitutions to develop and apply their own internal model of risk management.
Value-at-Risk (VaR hereafter), which measures the quantile of the distribution
of gains and losses over a target horizon, constitutes the most popular measure
of risk. Consequently, regulatory authorities need to set up adequate ex-post
techniques to validate or invalidate the amount of risk taken by financial insti-
tutions. The standard assessment method for VaR consists of backtesting or
reality check procedures. As defined by Jorion (2007), backtesting is a formal
statistical framework that verifies whether actual trading losses are in line with
projected losses. This approach involves a systemic comparison of the history
of model-generated VaR forecasts with actual returns and generally relies on
testing over VaR violations (also called the Hit).

A violation is said to occur when ezx-post portfolio returns are lower than
VaR forecasts. Christoffersen (1998) argues that a VaR with a chosen cover-
age rate of a% is valid as soon as VaR violations satisfy both the hypothesis
of unconditional coverage and independence. The hypothesis of unconditional
coverage means that the expected frequency of observed violations is precisely
equal to a%. If the unconditional probability of violation is higher than a%,
then the VaR model understates the portfolio’s actual level of risk. The op-
posite finding, with too few VaR violations, would signal an overly conservative
VaR measure. The hypothesis of independence means that if the model of VaR
calculation is valid, then violations must be distributed independently. In other
words, clusters must not appear in the violation sequence. Both assumptions
are essential to characterizing VaR forecast validity: only hit sequences that
satisfy each of these conditions (and hence the conditional coverage hypothesis)
can be presented as evidence of a useful VaR model.

Although the literature about conditional coverage is quite recent, various
tests on independence and unconditional coverage hypotheses have already been

developed (see Campbell, 2007 for a survey). Most of them directly employ the



L' Yet another line of thinking within the literature uses the

violation process.
statistical properties of the duration between two consecutive hits. The baseline
idea is that if the VaR one period ahead is correctly specified for a coverage
rate a, then the durations between two consecutive hits must have a geometric
distribution, with a probability of success equal to a%. On these grounds, Chris-
toffersen and Pelletier (2004) proposed a test of independence. Their duration-
based backtesting test specifies a duration distribution that nests the geometric
one and allows for duration dependence. The independence hypothesis can thus
be tested by means of simple likelihood ratio (LR) tests. This general duration-
based approach to backtesting is very appealing (see Haas, 2007) given its ease
of use and that it provides a clear-cut interpretation of parameters. Neverthe-
less, it must be stressed that this approach requires one to specify a particular
distribution under the alternative hypothesis, which is not always easy to do.
Consequently, duration-based backtesting methods have relatively little power
for realistic sample sizes (Haas, 2005). For these reasons, actual duration-based
backtesting procedures are not very popular among practitioners. The aim of
this paper is to improve these procedures and make them more appealing for
practitioners.

Relying on the GMM framework of Bontemps and Meddahi (2005, 2006),
we derive test statistics similar to J-statistics relying on particular moments
defined by the orthonormal polynomials associated with the geometric distri-
bution. This duration-based backtest considers discrete lifetime distributions,
which we expect to improve power and size compared to those of competitors
using continuous approximations, such as that of Christoffersen and Pelletier
(2004). In sum, the present approach appears to have several advantages. First,
it provides a unified framework that we can use to separately investigate the
unconditional coverage hypothesis, the independence assumption and the con-
ditional coverage hypothesis. Secondly, the optimal weight matrix of our test is

known and does not need to be estimated. Thirdly, the GMM statistics can be

IExamples include Christoffersen’s test (1998) based on the Markov chain, the hit regres-
sion test developed by Engle and Manganelli (2004) that relies on a linear auto-regressive
model and the tests by Berkowitz et al. (2005) based on tests of martingale difference.



numerically computed for almost all realistic backtesting sample sizes. Fourth,
elaborating on a study by Escanciano and Olmo (2008), this paper is the first to
control for estimation uncertainty using a subsampling approach for backtesting
duration-based tests. Fifth, in contrast with the LR tests, this technique does
not impose a particular distribution under the alternative hypothesis. Finally,
some Monte-Carlo simulations indicate that, for realistic sample sizes, our GMM
test has good power properties as compared to other backtests, especially those
based on an LR approach.

The paper is organized as follows. In section 2, we present the main VaR
assessment tests and, more specifically, the duration-based backtesting proced-
ures. Section 3 presents our GMM duration-based test. In section 4, we present
the results of various Monte Carlo simulations in order to illustrate the finite
sample properties of the proposed test. Section 5 is devoted to the issue of para-
meter uncertainty and robust inference. In section 6, we present an empirical
application of the method using daily Nasdaq returns. Finally, the last section

concludes.

2 Environment and testable hypotheses

Let 7; denote the return of an asset or a portfolio at time ¢ and VaR;_ ()
the ez-ante VaR forecast obtained conditionally on an information set F;_; and
for an a% coverage rate. If the VaR model is valid, then the following relation
must hold:

Prlry < VaRy—1(o)] = a, Vi € Z. (1)

Let I; () be the hit variable associated with the ez-post observation of an

a% VaR violation at time ¢, i.e.:

Ii(a) = (2)

1 ifry <VaRy—q(a)
0 else

As stressed by Christoffersen (1998), VaR, forecasts are valid if and only if

the violation sequence {I;(«)} satisfies the following two hypotheses:



e The unconditional coverage (UC hereafter) hypothesis: the probability
of a ex-post return exceeding the VaR forecast must be equal to the a
coverage rate

Pr[I}(a) = 1] = E[I}(a)] = a. (3)

e The independence (IND hereafter) hypothesis: VaR violations observed
at two different dates for the same coverage rate must be distributed in-
dependently. Formally, the variable I;(«) associated with a VaR violation
at time ¢ for an a% coverage rate should be independent of the variable
Ii—(a), VE # 0. In other words, past VaR violations should not be in-

formative of current and future violations?.

When the UC and IND hypotheses are simultaneously valid, VaR forecasts
are said to have correct conditional coverage (CC hereafter) and the VaR viol-

ation process is a martingale difference, with:
E[L(a) —a] Q-1]=0. (4)

It is worth noting that equation (4) implies that the violation sequence
{I;()} is a random sample from a a Bernoulli distribution with a success prob-

ability equal to a
{L;(a)} are i.i.d. Bernoulli random variables (r.v.). (5)

This last property is at the core of most of the backtests of VaR models
presented in the literature (Christoffersen, 1998; Engle and Manganelli, 2004;
Berkowitz, Christoffersen and Pelletier, 2009; etc.). However, as suggested by
Christoffersen and Pelletier (2004), another appealing way of testing (5) is reli-
ance on the duration between two consecutive violations. Formally, let us denote

d; the duration between two consecutive violations as

di =t; —ti_1, (6)

2The independence property of violations is an essential property because it is related to
the ability of a VaR model to accurately model the higher-order dynamics of returns. In fact,
that which does not satisfy the independence property can lead to clusters of violations (for
a given period) even if it has the correct average number of violations. Thus, there must be
no dependence in the hit variable, regardless of the considered coverage rates.



where t; denotes the date of the i** violation. Under the CC hypothesis, the
duration variable {d;} follows the pattern of a geometric distribution with para-

meter a and a probability mass function given by
flda)=a(l—a)™" deN* (7

The geometric distribution characterizes the memory-free property of the
violation sequence {I:()}, which means that the probability of observing a
violation today does not depend on the number of days that have elapsed since
the last violation. Exploiting (7), development of a likelihood ratio (LR) test
for the null of the CC hypothesis is straightforward. The general idea is to
specify a lifetime distribution that nests the geometric distribution, so that
the memoryless property can be tested by means of LR tests. In this line of
thinking, Christoffersen and Pelletier (2004) propose the first duration-based
test. They used the exponential distribution under the null hypothesis, which is
the continuous analogue of the geometric distribution with a probability density

function defined as follows:
g9(d;a) = aexp(—ad). (8)

with E(d) = 1/a because the CC hypothesis implies that a mean duration
between two violations is equal to 1/a. Under the alternative hypothesis, they
postulate a Weibull distribution for the duration variable with distribution func-
tion

h(d;a,b) = abbd*~'exp {f (ad)b] . (9)

Because the exponential distribution corresponds to a Weibull distribution
with a flat hazard function, i.e b = 1, the test for IND (Christoffersen and

Pelletier, 2004) is then simply as follows:
HO,IND . b =1. (10)

In a recent work, Berkowitz et al.(2009) extended this approach to consider the
CC hypothesis; that is,
HO,CC : b= 1, a =, (11)



They also propose the corresponding LR test. Nevertheless, as stressed by Haas
(2005), relying on the continuous approximation of the geometric distribution
is not entirely satisfying and can have major consequences for the finite sample
properties of the duration-based backtests. He then motivates the use of discrete
lifetime distributions instead of continuous ones, arguing that the parameters of
the distribution have a clear-cut interpretation in terms of risk management. He
also conducts Monte-Carlo experiments showing that the backtesting tests based
on discrete distribution exhibit a higher power than the continuous competitor
tests.

However, some limitations may explain the lack of popularity of duration-
based backtesting tests among practitioners. First, they exhibit low power for
realistic backtesting sample sizes. For instance, in some GARCH-based exper-
iments, Haas (2005) found that for a backtesting sample size of 250, the LR
independence tests have an effective power that ranges from 4.6% (continuous
Weibull test) to 7.3% (discrete Weibull test) for a nominal coverage of 1%VaR.
Similarly, for coverage of 5%VaR, the level of power only reaches 14.7% for the
continuous Weibull test and 32.3% for the discrete Weibull test. In other words,
when VaR forecasts are not valid, LR tests do not reject VaR validity in 7 cases
out of 10 at best. Secondly, duration-based tests do not allow formal separate
tests for (7) unconditional coverage, the (ii) conditional coverage assumption or

eventually (ii7) the independence assumption within a unified framework.?

3 A GMM duration-based test

In this paper, we propose a new duration-based backtesting test able to tackle
these issues. Based on a GMM approach and orthonormal polynomials, our test
is in line with the distributional testing procedures recently proposed by Bon-
temps and Meddahi (2005, 2006) and Bontemps (2006). Our approach presents
several advantages. First, it is extremely easy to implement because it consists

of a simple GMM moment condition test. Second, it allows for optimal treat-

3Unlike in the other approaches based on violations processes (Christoffersen, 1998 or Engle
and Manganelli, 2004).



ment of the problem associated with parameter uncertainty. Third, the choice
of moment conditions enables us to develop separate tests for the UC, IND and
CC assumptions, which was not possible with the existing duration-based tests.
Finally, Monte-Carlo simulations will show that this new test has relatively good

power properties. Our approach is further discussed in the following section.

3.1 Orthonormal Polynomials and Moment Conditions

In the continuous case, it is well known that the Pearson family of distribu-
tions (Normal, Student, Gamma, Beta, Uniform) can be associated with some
particular orthonormal polynomials that have an expectation equal to zero.
These polynomials can be used as special moments to test for a distributional
assumption. For instance, the Hermite polynomials associated with the nor-
mal distribution are employed to test for normality (Bontemps and Meddahi,
2005). In the discrete case, orthonormal polynomials can be defined for distribu-
tions belonging to the Ord family (Poisson, Binomial, Pascal, hypergeometric).
The orthonormal polynomials associated with the geometric distribution (7) are

defined? as follows:

Definition 1 The orthonormal polynomials associated with a geometric distri-
bution with a success probability 5 are defined by the following recursive rela-

tionship Vd € N*:

1-B)2i+1)+pB(j—d+1)
G+H)V1-8

Myo (d: 8) = M (d;b’)—( J )Mj_l (@5).

j+1
(12)
for any order j € N | with M_q (d;3) = 0 and My (d;8) = 1. If the true
distribution of D is a geometric distribution with a success probability (3, then
it follows that
E[M;(d;8)) =0 VjeN",VdeN". (13)

Our duration-based backtest procedure utilizes these moment conditions.

More precisely, let us define {d;;...;dxn} as a sequence of N durations between

4These polynomials can be viewed as a particular subset of the Meixner orthonormal
polynomials associated with a Pascal (negative Binomial) distribution.



VaR violations, computed from the sequence of hit variables {I; (04)}3;1 . Under
the conditional coverage assumption, the durations d;, ¢ = 1, .., N, are 4.i.d. and
have a geometric distribution with a success probability equal to the coverage

rate . Hence, the null of CC can be expressed as follows:®
Hocco: EB[M,; (d;;o)] =0, j={1,..,p}, (15)

where p denotes the number of moment conditions.
This framework allows one to separately test for the UC and IND hypothesis.
First, the null UC hypothesis can be expressed as

HO,UC : E [Ml (dz,()[)] =0. (16)

Indeed, under UC, the expectation of the duration variable is equal to 1/a. Be-
cause M (d;a) = (1 — ad) //1 — «a, verification that the condition E [M; (d; )] =
0 is equivalent to the UC condition E (d;) = 1/, Vd; is straightforward.

Second, a separate test for the IND hypothesis can also be derived. It con-
sists of testing the hypothesis of a geometric distribution (implying the absence
of dependence) with a success probability equal to 3, where 3 denotes the true
violation rate, which is not necessarily equal to the coverage rate o. This inde-

pendence assumption can be expressed with the following moment conditions:
Honp: B[M;(di; 8)] =0 j=1,.,p, (17)

In this case, the expectation of the duration variable is equal to 1/8 as soon
as the first polynomial M (d; §) is included in the set of moments conditions.
Therefore, under Hy ;np, the duration between two consecutive violations has

a geometric distribution, and the correct UC is not valid if § # a.

5Tt is possible to test the conditional coverage assumption by considering at least two
moment conditions, even if they are not consecutive, as soon as the first condition E [M; (d;)] =
0 is included in the set of moments. For instance, it is possible to test the CC with the
following:
Hoco: B[M;(di)] =0 j={1,3,7} (14)
For the sake of simplicity, we exclusively consider the cases in which moment conditions are
consecutive polynomials in the remainder of the paper.



3.2 Empirical Test Procedure

It turns out that VaR forecast tests can be tested within the well-known GMM
framework. As observed by Bontemps (2006), the orthonormal polynomials
present the great advantage that their asymptotic matrix of variance covariance
is known. Indeed, in an i.i.d. context, the moments are asymptotically inde-
pendent with unit variance. As a result, the optimal weight matrix of the GMM
criteria is simply an identity matrix, and the implementation of the backtesting
test becomes very easy. Let us denote Jo¢ (p) as the CC statistic test associated

with the p first orthonormal polynomials.

Proposition 2 Assume that the duration process {d; : 1 < i} is stationary and

ergodic. Under the null hypothesis (15) of conditional coverage (CC), we have

Joo (p ( ZM(d“a> ( ZM dl,a> LX (). (18)

where M (d;; o) denotes a (p,1) vector whose components are the orthonormal

polynomials M; (d;; ), for j =1,..,p and a denotes the coverage rate o.

The proof follows from Lemma 4.2. in Hansen (1982). Note that among
the assumptions used by Hansen (1982) to derive the asymptotic distribution
of the over-identified restrictions test statistic, the only relevant ones in this
framework are the stationarity and ergodicity of the process that defines the
moment conditions (here, the duration variable).

The test statistic for UC, denoted as Jyc, is obtained as a special case of
the Joe statistic when one considers only the first orthonormal polynomial—i.e.

when M (d;; o) = M (d; o). Jyce is then equivalent to Joe (1) and verifies

N 2
Juc = (\/IN ;Ml (di§a)> N%’X) X2 (1). (19)

Finally, the statistic for IN D, denoted as Jynp, can be expressed as follows
N T 1 N 4
Jinp (p) = | = (di; B) — di;B)] == x*(»). (20)
Jrmen) (JeSmen) 2

10



where M (d;; 8) denotes a (p, 1) vector with components that are the orthonor-
mal polynomials M (d;; 8), for j = 1,..,p, evaluated for a success probability
equal to f.

However, in this case, the true VaR violations rate S (which may be different
from the coverage rate « fixed by the risk manager in the model) is generally
unknown. Consequently, the independence test statistic must be based on or-
thonormal polynomials that depend on estimated parameters, i.e. instead of
having M; (d;; ) where 8 is known, we have to deal with M (di; B) where B
denotes a square-N-root-consistent estimator of 5. It is well known that re-
placing the true value of g with its estimates B may change the asymptotic
distribution of the GMM statistic. However, Bontemps (2006) shows that the
asymptotic distribution remains unchanged if the moments can be expressed as
a projection onto the orthogonal of the score. Appendix A shows that the mo-
ment conditions defined by the Meixner orthonormal polynomials satisfy this
property. Thus, it can be concluded that the asymptotic distribution of the
GMM statistic Jryp (p) based on M; (di;B) is similar to the one based on

M; (di; ) -

N T N
Jixo () = (jNZ;M (di;3)> (VlNZlM (di;B)) -,
(21)
where M (di; B) denotes the (1, p) vector defined as (M1 (di; B) ..M, (di; B)) .
Note that in this case, the first polynomial M; (d,;E) is strictly proportional
to the score used to define the maximum likelihood estimator S and thus
M, (di;ﬁ) = 0. Therefore, the degree of freedom of the J-statistic must be

adjusted accordingly.

4 Small Sample Properties

In this section, we use Monte Carlo simulations to illustrate the finite sample
properties (empirical size and power) of the conditional coverage test statistic

Joc (p). However, it is worth noting that one of the main issues in the literature

11



on VaR assessment is the relative scarcity of violations. Indeed, even with one
year of daily returns, the number of observed durations between two consecutive
violations may often be dramatically small (in particular for a 1% coverage rate),
and this situation can lead to small sample bias. For this reason, the size of
the test should be controlled using, for example, the Monte Carlo (MC) testing
approach of Dufour (2006)—as done, for example, in Christoffersen and Pelletier

(2004) and Berkowitz et al. (2009).

4.1 Empirical Size Analysis and Numerical Aspects

To illustrate the size performance of our duration-based test using a finite
sample, we generated a hits sequence of violations by taking independent draws
from a Bernoulli distribution, considering successively a = 1% and a = 5% for
the VaR nominal coverage. Several sample sizes T ranging from 250 (which
roughly corresponds to one year of trading days) to 1,500 were also used. The
durations were computed using the simulated hits sequence and reported em-
pirical sizes correspond to the rejection rates calculated over 10, 000 simulations

for a nominal size equal to 5%.
Insert Table 1

Table 1 reports the empirical sizes of the Joc (p) test statistic for differ-
ent values of p the number of orthonormal polynomials. For the purpose of
comparison, we also display results for the duration-based CC test statistics
of Berkowitz et al. (2009). Recall that their test statistic, denoted as LRcc,
is designed to test the exponential distribution of the duration variable within
a likelihood ratio framework. We also present the results of the CC test in
Christoffersen (1998), denoted as LRY47%°v. This CC test is currently one of
the most used in empirical studies. It is directly based on the violation process
(and not on duration) and employs a Markov chain approach.5

For a 5% VaR and whatever the choice of p, the empirical size of the Jo¢

test is below the nominal size but relatively close to 5%, even for small sample

6We are grateful to an anonymous referee for this suggestion.
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sizes. On the contrary, we verify that both LR tests are over-sized. For a
1% VaR, the Jo¢ test is undersized for a finite sample but converges to the
nominal size when T increases. However, recall that under the null hypothesis in
a sample with T = 250 and a coverage rate equal to 1%, the expected number of
durations between two consecutive hits ranges from two to three. This scarcity
of violations explains why the empirical size of our asymptotic test is different
from the nominal size in small samples.

It is important to note that these rejection frequencies are only calculated
for the simulations providing a Joc as well as the LR test statistics. Indeed,
for a realistic backtesting sample size (for instance, T = 250) and a coverage
rate of 1%, many simulations do not deliver a statistic. The implementation
of LRcc test statistic requires at least one non-censored duration and an addi-
tional possible censored duration (i.e. two violations). Our GMM test statistic
also requires at least two violations because it can be computed only by using
uncensored durations. Indeed, if the duration is censored or truncated, then the
polynomial M; (d;, o) do not have a zero expectation. This is particularly clear
for the first polynomial M (d;, ): if duration d; is truncated or censored, then
its unconditional expectation E (d;) is different from 1/a under Hy cc¢, and so
E[M; (d;;a)] = (1 — aE(d;)) /v/1 — « is also different from zero.

In order to assess the influence of these truncated durations on the finite
sample of our test, we report in Table 1 the size of J&Z4° test statistic calculated
using both uncensored durations and censored durations (observed before the
first VaR violation and after the latest VaR violation). We observe that the
sizes are then comparable to those previously obtained and that the difference
tends to disappear as T increases and the weight of the two truncated durations

decreases.
Insert Table 2

Table 2 reports the feasibility ratios, i.e. the fraction of simulated samples
where the LR, the J&Z° and the Jo¢ tests are feasible. Theoretically, the feas-

ibility ratios should be exactly the same for our J-statistic (based on uncensored

13



durations) and for the Christoffersen’s LR test. However, we can observe that
the feasibility ratios of the J-statistic are slightly superior to those of the LR
test for a small samples size. Indeed, for some simulations in which there are
only two violations (i.e., three durations), the numerical optimization of the like-
lihood function for the Weilbull distribution” under H; cannot be achieved, and
then the LR cannot be computed. In contrast, the J statistic does not require
any optimization and so can always be computed. These cases are relatively

rare but explain the difference between feasibility ratios.

4.2 Empirical Power Analysis

We now investigate the power of the test for different alternative hypotheses.
Following Christoffersen and Pelletier (2004), Berkowitz et al.(2009) or Haas
(2005), the DGP under the alternative hypothesis assumes that returns, ry,
are issued from a GARCH(1, 1)-t (d) model with an asymmetric leverage effect.

More precisely, it corresponds to the following model:

fv—2
Tt = 0O¢ Z¢ " s (22)

where {z} is an 4.7.d. sequence from a Student’s t-distribution with v degrees

of freedom and where conditional variance is given as follows:

2
v—2
PEU (x/ - zt_l—e) ey (23)

The parameterization of the coefficients is similar to that proposed by Chris-

toffersen and Pelletier (2004) and used by Haas (2005)—i.e. v = 0.1, § = 0.5,

B = 085, w = 3.9683¢7% and d = 8. The value of w is set to target an an-
nual standard deviation of 0.20, and the global parameterization implies a daily
volatility persistence of 0.975.

Using the simulated Profit and Loss (P&L thereafter) distribution issued

from this DGP, it is then necessary to select a method of forecasting the VaR.

"The corresponding codes are based on the function wblfit of Matlab 7.10. The feasibility
ratio varies with the choice of initial conditions. The reported results correspond to the initial
conditions defined by default in Matlab. All programs are available at http :
hitp : //www.univ — orleans. fr/deg/masters/ESA/CH/churling.htm

14



This choice is of major importance for the power of the test. Indeed, it is neces-
sary to choose a VaR calculation method that is not adapted to the P&L dis-
tribution, as that adaptation would violate efficiency— i.e the nominal coverage
and\or independence hypothesis. Of course, we expect that the larger the de-
viation from the nominal coverage and\or independence hypothesis, the higher
the power of the tests. For comparison purposes, we consider the same VaR
calculation method as used by Christoffersen and Pelletier (2004), Berkowitz et
al.(2009) or Haas (2005)—i.e. the Historical Simulation (HS). As in Christof-
fersen and Pelletier (2004), the rolling window T'e is taken to be either 250 or
500. Formally, HS-VaR is defined by the following relation:

VaR—1(a) = percentile ({rj ;;1—Te’ 100&) . (24)

HS easily generates VaR violations. In Figure 1, observed simulated returns
r¢ for a given simulation and VaR-HS are plotted. Violation clusters are evident,

whether for 1% VaR or for 5% VaR .
Insert Figure 1

For each simulation, the zero-one hit sequence I; is calculated by comparing
the ex post returns r; to the ex ante forecast VaRy;_1(a), and the sequence
of durations Di (or Y;) between violations is calculated from the hit sequence.
From this duration sequence, the test-statistics Joc(p) for p = 1,...,5 and the
Berkowitz et al. (2009) (LRcc) and Christoffersen (1998) (LRY4kov) tests are
implemented. The empirical power of the tests is then deduced from rejection
frequencies based on 10,000 replications. However, as previously mentioned, the
use of asymptotic critical values (based on a x? distribution) induces important
size distortions, even for a relatively large sample. Thus, given the scarcity of
violations (particularly for a 1% coverage rate), it is particularly important to
control for the size of the backtesting tests. As usual in this literature, the Monte

Carlo technique proposed by Dufour (2006) is implemented (see Appendix B).

Insert Table 3
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Table 3 reports the rejection frequencies (the nominal size is fixed at 5%) of
the tests for 1% and 5% VaR. We report the power of our test for various values
of the number of moment conditions, p. We observe that except for T' = 250,
power is increasing with p. This result illustrates that the Bontemps’s framework
is not robust to any specification under the alternative hypothesis if one uses
only a small number of polynomials. Each test based on a specific polynomial
is robust against the alternatives for which the corresponding moment has some
expectation different from zero. Therefore, the tests will be robust only if we
consider a sufficient number of polynomials. In our simulations, the power is
optimized by considering three moment conditions in the case of the 5% VaR,
whereas five Meixner polynomials are required for a 1% VaR. To illustrate this
point, the empirical power is plotted for different number of moment conditions

in Figure 2.
Insert Figure 2

In all cases, the power of the GMM-based backtesting test Joc is greater
than that of the Berkowitz et al. (2009) test regardless of the considered sample
size. The gain provided by our test is especially noticeable for the more in-
teresting cases from a practical point of view; that is, those with small sample
size and @ = 1%. For T' = 250, the power of our test is twice the power of the
standard LR test. Besides, the power of the GMM duration-based test is always
higher than that of the Markov chain LR test, which is one of the most often
used backtests. This property constitutes a key point in promoting the empir-
ical popularity of duration-based backtesting tests. Comparison with the test
for UC is not possible because traditional duration-based tests do not provide
such information.® Nevertheless, its power is always relatively high and in all
cases is larger than 17%.

These simulation experiments confirm that the GMM-based duration test

has improved power compared to traditional duration-based tests. IT also

8 As already noted, traditional duration-based tests do not provide a separate test for UC.
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provides a separate test for CC, UC, and IND hypotheses. Our initial objectives
are thus fulfilled.

4.3 Discrete versus continuous distribution

When one compares our GMM duration-based test with other duration-based
backtesting procedures, the differences observed in finite sample properties may
have different origins: (¢) the use of a discrete distribution instead of a continu-
ous approximation (Haas, 2005), (i7) and the use of an M-test approach instead
of the traditional LR one. In order to assess the relative importance of these two
channels, we now propose to consider an extension of our GMM testing proced-
ure based on the exponential distribution. Through a comparison of this GMM
test to the GMM test proposed in section 3, it will be possible to evaluate the
influence on the duration process of the choice of a discrete distribution versus
a continuous approximation.

As in Christoffersen and Pelletier (2004), we assume that under the null
hypothesis of CC, the duration d; between two violations has an exponential
distribution with a rate parameter equal to o and a pdf defined by (8). As pre-
viously mentioned, the Pearson family of distributions, including the exponential
distribution, can be associated with some particular orthonormal polynomials
with an expectation equal to zero (Bontemps and Meddahi, 2006). For the

exponential distribution, these are known as Laguerre polynomials.

Definition 3 The orthonormal polynomials associated with an exponential dis-
tribution with a rate parameter B are defined by the following recursive relation-
ship Vd € N*:

L1 (d; B) = %—i—l [(2k +1—Bd) Ly (d;3) =k Li_1(d; )], (25)

for any order j € N, with Lo (d;8) = 0 and My (d; 8) = 1 — Bd. If the true
distribution of D is an exponential distribution with a rate parameter 3, then it
follows that

E[L;(d;8)]=0 VjeN"VdeN". (26)
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Hence, in this context, the null of CC can be expressed as follows:
Hocco: E[Lj(di;)] =0, j={1,.,p}, (27)

where p denotes the number of moment conditions, whereas the UC hypothesis

corresponds to the nullity of the expectation of the first Laguerre polynomial.
Houc : E[L (di;a)] = 0. (28)

It is then possible to define appropriate J-test statistics, as in section 3. Let
exp

us denote J & (p) as the CC statistic test associated with the p first orthonormal

Laguerre polynomials and J;;% as the UC statistic equal to J&& (1).

Insert Table 4

In Table 4, we report a comparison of the 5% power of both statistics J5 & (p)

and Joce (p). The experiment design is exactly the same as that described in
section 4.2. We can observe that whatever the sample size and whatever the
VaR coverage rate (1% or 5%), the finite sample power of the Joc tests is very
close to that of its continuous analogue JZ & . The only exception is the case
in which T is equal to 250 and the coverage rate is equal to 1%. In this case,

exp

the power of the J ¢ test is even greater than the power of the Joc tests.
This result seems to prove that, at least in our experiment, the gain in power
(compared to standard LR backtesting tests) is mainly due to the use of a GMM
approach. Unlike for the results achieved by Haas (2005), the use of a discrete or
continuous distribution does not appear to change the finite sample properties

of our test.

5 Parameter uncertainty and robust inference

This last section is devoted to a discussion’ of the effect of parameter uncer-
tainty on statistical inference through our three tests statistics Joc (p), Juc (p)

and Jrnp (p; B) Indeed, as shown by Escanciano and Olmo (2009), the use

9We are grateful to an anonymous referee and to the editor for this suggestion.

18



of standard backtesting procedures to assess VaR models on an out-of-sample
basis can be misleading because these procedures do not consider the impact
of parameter uncertainty or estimation risk. They denote g;;—; () the true
conditional a%-VaR of ry, i.e..Pr (rt < Qeje—1 (a)) = @, Vt € Z, and consider
a given VaR model M = {VaRﬂt,l(oz;G) 10 €O CRP VL€ Z}, where 0 is a
vector of parameters that can be either finite-dimensional for parametric VaR
models or infinite-dimensional for semi-parametric or non-parametric VaR mod-
els. Escanciano and Olmo (2009) note that inference within the VaR model M
is heavily based on the hypothesis that g, (a) € M, i.e. if there exists some
0° € © such that VaRt‘t,l(a;Oo) = qj¢—1 (@) almost surely (a.s.). Therefore,

the candidate model M is correctly specified if and only if
Pr (rt <VaRy—1(a; 90)) =, a.s. for some 8° € ©, Vt € Z, or (29)

E L (a;6°)] = a a.s. for some 6° € ©, Vit € Z. (30)

In this context, the correct CC hypothesis defined through equation (5) must

be expressed as
{It (o 6‘0)} are i.i.d. Bernoulli r.v. for some 6° € ©, Vt € Z. (31)

and the duration between two consecutive violations d; (6’0) =t (90) —tiq (00)

follows a geometric distribution with parameter a, i.e.,
F(di (09)) = a (1= a)%(”)7! for some 6° € ©, d; (6°) e N*.  (32)

The main point of this discussion is that the asymptotic distributions (see,
equations 18,19 and 21) of our three test statistics Joc (p), Juc (p) and Jrnp (p; B)

should be written strictly as follows:

Joo (p:6°) = (;N éM (d: (6) ;@)T (;N ij (d: (6) ;a)>

-4 (), (33)

N—o0

Juc (p; 90) = (\}N ZM1 (di (90) ;oz)) N%;O x*(1), and (34)
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Jivp (9i5,6°) = (\/%éM(di(eo);B)y(;NiM(di(eo);ED

N%;o X’(p—-1). (35)

Nevertheless, the above test statistics are not operational because 6° is not
known. In practice, one must replace §° with a consistent estimator using
available data. Formally, the sample with size T is divided into an in-sample
portion of size R and an out-of-sample portion of size P, with T'= R+ P. The P
VaR forecasts are produced using a fixed, rolling or recursive forecasting scheme.
For example, the fixed forecasting scheme involves estimating the parameters
0 only once on the first R observations and using these estimates to produce
all of the VaR forecasts for the out-of-sample period. Denote VaRt|t,1(a;5R),
t=R+1,..,T, the P conditional VaR forecasts, I; (a;@R), t=R+1,.,T,
the sequence of the hit variable, and d; (53), i=1,...,N, the durations between
violations. Then, the three test statistics can be computed by replacing 6° with

B in equations (33), (34) and (35).

5.1 A subsampling approach

Uncertainty about the value of @R could affect the asymptotic distributions of
the tests statistics. In the framework of hypothesis testing, this problem is re-
ferred to as parameter uncertainty or estimation risk. As previously mentioned,
in the GMM framework, the problem of parameter uncertainty can be handled
by finding moments that are robust against estimation risk'?. However, the
above results are valid only under the assumption that the moments are smooth
in the parameters. Unfortunately, under the present setup, this requirement is
violated because the duration variable depends on the hit variable, which is not
differentiable with respect to the vector of parameters 6.

A possible solution for dealing with the issue of parameter uncertainty is

the use of robust backtesting procedures that entail (block) bootstrap or sub-

10These moments can be either residuals of the projection of the moments on the score
function of the stochastic process that defines the moments, or they can be obtained through
a suitable transformation of the original moments that guarantees the orthogonality of the
score function (see Bontemps and Meddah, 2006).
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sampling approximations of the true test statistic distributions. Escanciano and
Olmo (2009) advocate the use of subsampling approximation in the context of
VaR backtesting, arguing that it is a general resampling method that is con-
sistent under a minimal set of assumptions, including cases where the (block)
bootstrap is inconsistent. Therefore, following Escanciano and Olmo (2008),
we deal with the issue of parameter uncertainty by using subsampling to ap-
proximate the true distribution of the test statistic Joc (pﬁR). The basic idea,
described in detail in Politis, Romano and Wolf (2001), is to approximate the
sampling distribution of a statistic based on the values of the statistic computed
over smaller subsets of the data.

To introduce the notation, let (r,...,7tk+5—1) be any of the subsamples of
size b from the returns {Tt}thl, with k = 1,..., T —b+ 1. Divide each subsample
into an in-sample portion of size R, and an out-of-sample portion of size P,
according to the ratio 7 = P,/R, = P/R. Let us denote Gy g (w) the c.d.f of
the test statistic Joo (p,@R) . Then, the sampling distribution of Jo¢ (p;@R)

is approximated by

T—b+1
Gr g, (w) = T%b—kl Z 1 (Jgg <p,§Rb) < w) Vw € R, (36)
k=1

For each subsample, the statistic Jé% (p,/éRb> is computed by first estimating
the vector of parameters 6 using (X, ..., Xp+r,—1)and using the estimates @Rb
to produce the P, VaR forecasts over the period t = k+ Ry, ...,k +b—1. Given
the estimated sampling distribution, the critical value for the correct CC is

obtained as the 1 — 7 quantile of G g, (w) defined as
g7,r, (1 — 1) = inf {w :Grog, (w)>1— 77} . (37)

As a result, one rejects the null hypothesis at the nominal level 7, if and only

it Joo (p,@R) > grm, (1— 7).

Proposition 4 Assume that {d; o (0) : 1 <1, 0 € O} is stationary and ergodic.
Assume also that b/T — 0 and b — 0o as T — oo. Under the assumption that

the mizing sequence corresponding to {r;} converges to 0, then grp (1 —n) —
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g (1 —mn) in probability and Pr {JCC (Pagl%) > gr.R, (1= 77)} —0asT — oo,
where g (1 —n) is the (1 —n)™ quantile of Gr g, (w).

The proof follows from theorem 5.1. in Politis, Romano and Wolf (2001).
The stationarity and ergodicity condition of d; . (f) is required because it en-
sures (see proposition 2) continuity of the distribution function of Jeo¢ (p, 90),

which is in occurrence a chi-square.

5.2 Finite sample properties

For some popular VaR backtests (Kupiec, 1995; Christoffersen, 1998), Escan-
ciano and Olmo (2008) have used Monte Carlo experiments to show the im-
portance of correcting for parameter uncertainty using the above subsampling
approximation. We provide similar evidence for our test statistic Jo¢ (p;ag)
using a VaR model in which the true dynamics of r; are known.

More precisely, let us consider a --GARCH(1,1) data-generating process for
the returns r;. The parameters of the GARCH(1,1) process are chosen'! to
reflect standard values found in real-time series of financial returns. Then, the

VaR model is defined for a given coverage rate o € {1%, 5%} by

M ={VaR;_1(a;0): 0 € © C RVt € Z}, with (38)
1 v—2
VaRt\tfl(Oﬁe) =F""(a)oy v (39)
2 v—2 2
op =wty zi—1+ Boi_q, (40)

where F'(.) is the c.d.f. of a t(v), and 6 = (w,~, 3,v) the vector of parameters.

The simulation exercise consists of generating returns data from the GARCH
process described above and a sample size T equal to P+ R; in a second stage, the
parameters of the model are estimated by QMLE using the first R observations,
and the corresponding VaR model is computed for the remaining P out-of-

sample observations. For ease of computation, we have implemented a fixed

1'We consider w = 7.9778e~7, v = 0.0896, 8 = 0.9098 and v = 6.12. These values correspond
to the values estimated over a sample of SP500 daily returns from 02/01/1970 and 05/05/2006.
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forecasting scheme for estimating the GARCH parameters, and where the out-
of-sample size P equal to 1000 is considerably greater than the in-sample size
R = 500. The choice of this sample size embodies a mix of absence of estimation
risk effects (P/R < 1) and meaningful results derived from the subsampling
and asymptotic tests (P sufficiently large). Let us denote VaR ;4 (a;§R>, for
t=R+1,...,T, the out-of-sample VaR forecasts and I . (53) the corresponding
VaR violations observed ez-post. Given the violations sequence, we compute the

durations variable di@(b\pb), for ¢ = 1,..., N and our three test statistics.
Insert Table 5

Table 5 also reports the (uncorrected) empirical sizes, for a nominal size 7
equal to 5%, of the test statistic Joc(p) = Jcc(p,aR), with p = 2,3,5. This
size corresponds to the rejection frequencies over 1,000 simulations for each test
using the asymptotic critical values. For the purpose of comparison, we also
display results for the duration-based CC test statistic of Christoffersen and
Pelletier (2004) and the Markov CC test in Christoffersen (1998). We verify
that the estimation risk, induced by 53, creates a size distortion for all three
tests, even if Joo tests seem to be less oversized than other LR tests. This
distortion is relatively important in the case of o = 5%, but less important for
a = 1%, especially for our Jo¢ tests.

The second part of Table 5 presents the rejection frequencies over 1,000
simulations for each test using the subsampling critical values. Following Es-
canciano and Olmo (2008), we have used a subsample size b = [K p?/ 5] , that
has been implemented for K = {65, 70, 75,80} and P = 1,000. For each value of
K, we report the number N} of subsamples and the size P, of the out-of-sample
portion of the subsamples. We observe that for all tests, the Monte Carlo cor-
rection reduces the size distortion, especially for @ = 5%. It thus appears the
subsampling methods offer a reliable approximation of the asymptotic critical

values.
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6 Empirical Application

To illustrate these new tests, an empirical application is performed, considering
three sequences of 5%VaR forecasts on the daily returns of the Nasdaq index.
These sequences correspond to three different VaR forecasting methods tradi-
tionally used in the literature: a pure parametric method (GARCH model under
Student distribution), a non-parametric method (Historical Simulation) and a
semi-parametric method based on a quantile regression (CAViaR, Engle and
Manganelli, 2004). Each sequence contains 250 successive one-period-ahead
forecasts for the period June 22, 2005 to June 20, 2006. The parameters of
the GARCH and CAViaR models are estimated according to a rolling windows
method with a length '? fixed to 250 observations.

Insert Table 6

The results obtained using the GMM duration-based tests are reported in
Table 6. For each VaR method, we report the UC, CC and IND statistics. For
the two last tests, the number of moments p is fixed at 2, 4 and 6. For the sake
of comparison, LRc¢ statistics (Christoffersen and Pelletier, 2004; Berkowitz et
al. 2005) are also reported. For all tests, two p-values are reported: the first one
corresponds to the size-corrected p-value based on the Dufour’s MC procedure
(see Appendix B), while the second one corresponds to the p-value based on
the subsampling approximation of the true test statistic distributions obtained
with K = 5,p=1,P = R = 250 and P, = Ry = 98 (see Section 5). Several
comments can be made about these results. First, at a 10% significance level,
our unconditional coverage test statistic Jy¢c leads to an unambiguous rejection
of the validity of the CAViaR-based VaR (even if the rejection is stronger when
we ignore the potential estimation risk). As expected, this result is due to the
too-low violation rate associated with this method. Of course, the value of Jy¢
is identical for HS and GARCH because these two methods lead to the same

number of hits even if these violations do not occur during the same periods.

12 The total sample runs from June 20, 2004 to June 20, 2006 (500 observations). The length
of the rolling estimation window of the HS is also fixed to 250 observations.
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Second, we observe that our GMM independence test (Jrnyp) is able to reject
(except in the case p = 2) the null for HS-VaR. In contrast, the LR;yp test
does not reject the null of independence for any of the three VaRs, regardless of
the distribution (MC or sub-sampling). Third, the GMM conditional coverage
test (Joc) rejects the validity of CAViaR and HS VaR forecasts, unlike standard
LR tests. Finally, the GARCH-t(d) emerges as the best method by which to
forecast risk: the UC, IND and CC are not rejected. This application shows the
ability of our GMM test to discriminate between various VaR models, especially

when one takes into account the potential estimation risks.

7 Conclusion

This paper develops a new duration-based backtesting procedure for VaR fore-
casts. The underlying idea is that if the one-period-ahead VaR is correctly
specified, then every period, the duration until the next violation should be dis-
tributed according to a geometric distribution with a success probability equal to
the VaR coverage rate. On this basis, we adapt the GMM framework proposed
by Bontemps (2006) in order to test for this distributional assumption that cor-
responds to the null of VaR forecast validity. The test statistic is essentially a
simple J-statistic based on particular moments defined by the orthonormal poly-
nomials associated with the geometric distribution. This new approach tackles
most of the drawbacks usually associated with the duration-based model. First,
its implementation is extremely easy. Second, it allows for a separate test for
the unconditional coverage, independence and conditional coverage hypotheses
(Christoffersen, 1998). Third, Monte-Carlo simulations show that, for realistic
sample sizes, our GMM test outperforms traditional duration-based tests. Fi-
nally, we pay particular attention to the consequences of the estimation risk for
the duration-based backtesting tests and propose a sub-sampling approach for
robust inference derived from Escanciano and Olmo (2009).

Our empirical application of the method to Nasdaq returns confirms that

using the GMM test leads to main in the ez-post evaluation of risk by regulation
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authorities. Our hope is that this paper will encourage regulatory authorities
to use duration-based tests to assess the risk taken by financial institutions.
There is no doubt that a more adequate evaluation of risk would decrease the

probability of banking crises and systemic banking fragility.
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Appendix A: Proof of parameter uncertainty ro-
bustness with respect to (3

N N
Under the IND hypothesis, the sequence of durations d = {di (9 R)} is i.4.d.

=1

geometric with parameter 5. The p.d.f. of d is
f(dB)=1-p)"""8 deN. (41)

The score function is defined as

OInf(d:B)  1-pd
95 BU-B) (42)

It is straightforward to prove that this score is proportional to the first Meixner

polynomial because

1—-pd

VI=5’

Ol f(d; ) _ M (d; ) (44)
op BVI-5B

Consequently, the orthonormal polynomials with degrees greater than or equal

M, (d; 8) = and (43)

to 2 are also proportional to the score function, and the moments M; (d; 5),
j = 1,...,p are robust against estimation risk with respect to 5. Indeed, ro-
bust moments defined by the projection of the moments on the score function
correspond exactly to the initial moments.

Appendix B: Dufour (2006) Monte-Carlo Method

To implement MC tests, first generate M independent realizations of the test
statistic—say S;, ¢ = 1,..., M—under the null hypothesis. Denote by Sy the
value of the test statistic obtained for the original sample. As shown by Dufour
(2006) in a general case, the MC critical region is obtained as pas(Sop) < n with
1 — 7 the confidence level and pas(Sy) defined as

M GM(S()) +1

P (So) = Ml (45)
where
N 1 X
G (S0) = 7 ;H(Si > So), (46)
when the ties have zero probability, i.e. Pr(S; = 5;) # 0, and otherwise,
R | M | M
G (So) =1 — MZH(&- < So) + MZ]I(SZ- =80 xI(U; > Up).  (47)

i=1 i=1



Variables Uy and U; are uniform draws from the interval [0,1] and I(.) is
the indicator function. As an example, for the MC test procedure applied to
the test statistic Sy = Joco (p;@R), we just need to simulate under Hy M
independent realizations of the test statistic (i.e., using durations constructed
from independent Bernoulli hit sequences with parameter «), and then apply
formulas (45-47) to make inferences at the confidence level 1 — n. Throughout
the paper, we set M at 9,999.
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Table 1. Empirical size of 5% asymptotic CC tests

Backtesting 5% VaR
Sample size  Jyc  Joc(2)  Joc(3)  Joc(5)  LRce  LRMgrkev
T =250 0.0467  0.0448 0.0369 0.0323 0.0866 0.0901
T =500 0.0448  0.0474 0.0413 0.0342 0.0717 0.0878
T =750 0.0473  0.0481 0.0405 0.0343 0.0725 0.1029
T = 1000 0.0533  0.0500 0.0440 0.0373 0.0828 0.1125
T = 1500 0.0496 0.0491 0.0439 0.0345 0.0929 0.1132

Backtesting 5% VaR with censored durations
Sample size  JFES  JEET(2)  JEST(B)  JEES (D)
T = 250 0.0482  0.0435 0.0378 0.0316 — —
T =500 0.0512  0.0486 0.0419 0.0362 — —
T =750 0.0430  0.0475 0.0398 0.0329 — —
T =1000 0.0536  0.0508 0.0445 0.0377 — —
T =1500 0.0524  0.0503 0.0440 0.0347 — —

Backtesting 1% VaR
Sample size  Jyc Joc (2)  Jec () Joc(5) LRcc LRMarkov
T =250 0.0042 0.0053 0.0140 0.0401 0.0615 0.0281
T =500 0.0098 0.0069 0.0076 0.0077 0.0849 0.0188
T =750 0.0353 0.0263 0.0217 0.0185 0.1000 0.0285
T = 1000 0.0417 0.0350 0.0306 0.0282 0.0883 0.0363
T = 1500 0.0439 0.0445 0.0368 0.0346 0.0706 0.0439

Backtesting 1% VaR with censored durations
Sample size  JEZS  JEns(2)  JEns(3)  JEns (5)
T =250 0.0053 0.0060 0.0054 0.0019 — —
T =500 0.0124  0.0058 0.0065 0.0031 — —
T =750 0.0188 0.0282 0.0235 0.0217 — —
T = 1000 0.0447  0.0422 0.0379 0.0318 — —
T = 1500 0.0543 0.0465 0.0375 0.0339 — —

Notes: Under the null, the hit data are i.i.d. from a Bernoulli distribution. The results are
based on 10,000 replications. For each sample, we provide the percentage of rejection at a 5% level.
Jee(p) denotes the GMM-based conditional coverage test with p moment conditions. Juc denotes
the unconditional coverage test obtained for p=1. LRcc denotes the Weibull conditional coverage
test proposed by Berkowitz et al. (2009), and LRmarkov corresponds to the Christoffersen (1998)
CC test based on a Markov chain approach.
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Table 2. Fraction of samples where tests are feasible

Size Simulations
1% VaR 5% VaR
Sample Size  Joc  JEE® LRcc LR?J/IC Joc  JEE® LRcc LRJ‘C/[C
T = 250 0.715 0.920 0.630 0.920 1.000 1.000  1.000 1.000
T =500 0.959 0.993 0.934 0.993 1.000 1.000 1.000 1.000
T =750 0.994 0999 0.989 0.999 1.000 1.000 1.000 1.000
T =1000 0.999 1.000 0.999 1.000 1.000 1.000 1.000  1.000

Power Simulations (T'e = 250)
1% VaR 5% VaR

Sample Size  Joo  JEB® LRee LRM. Joo  JER® LRece LRY,
T=250 0775 0901 0.742 0901 0992 0997 0990 0.997
T=500 0988 0997 0981 0997 1.000 1.000 1.000 1.000
T=750 0999 1000 0.999 1.000 1.000 1.000 1.000 1.000
T=1000 1.000 1.000 0.742 1.000 1.000 1.000 1.000  1.000

Power Simulations (Te = 500)
1% VaR 5% VaR
Sample Size  Joe  JE2°  LRee LRM. Jee  JER* LRee  LRM,
T =250 0.628 0.793 0.598 0.793 0.974 0.990 0.967  0.990
T =500 0.907 0966 0.886 0.966 0.999 1.000 0.999  1.000
T =750 0.990 0998 0985 0.998 0.999 1.000 0.999 1.000
T = 1000 0.999 0999 0998 0.999 1.000 1.000 1.000  1.000

Notes: The results are based on 10,000 replications. For each sample and for each test, we
provide the percentage of samples for which the statistic can be computed. Jcc denotes the GMM-
based (un)conditional coverage test based only on uncensored data. Jcc(cens) denotes the J-statistic
based on both uncensored and censored durations. For the J test, note that the feasible ratios are
independent of the number p of moments used. LRcc denotes the Weibull conditional coverage test
proposed by Berkowitz et al. (2009), and LR,M corresponds to the Christoffersen (1998) CC test

based on the Markov chain approach. Te denotes the rolling window length.
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Table 3. Power of 5% finite sample tests

Backtesting 1% VaR
Length of rolling estimation window T'e = 250
Sample size  Jyc  Joc(2) Joc(3) Joc(5) LRcc  LRE&*v
T = 250 0.3868 0.4150  0.3669  0.3090 0.1791 0.2788
T =500 0.3592 0.4202 0.4516  0.5024 0.2404 0.2994
T =750 0.3238 0.4239  0.5062  0.5743 0.3341 0.3505
T =1000 0.3276 0.4684 0.5603  0.6365 0.4557 0.3891
T =1500 0.4045 0.5462 0.6632  0.7451 0.6593 0.4968

Length of rolling estimation window 7T'e = 500
Sample size  Jyc  Joc(2) Joc(3) Joc(5) LRcc  LREEkev
T = 250 0.4034 0.4425  0.4011  0.3539  0.2262 0.3154
T =500 0.3971  0.4557  0.4949  0.5387  0.3240 0.3207
T =150 0.3333 0.4556  0.5197  0.5823  0.4033 0.3205
T =1000 0.3068 0.4971  0.5836  0.6437  0.5248 0.3546
T =1500 0.2969 0.5887 07078 0.7579  0.6997 0.4414

Backtesting 5% VaR
Length of rolling estimation window T'e = 250
Sample size  Jyc  Joc(2) Joc(3) Joc(5) LRcc  LREE*ev
T = 250 0.3175  0.4241  0.4577  0.4527 0.2616 0.2561
T = 500 0.2300 0.6113  0.6730  0.6600  0.3927 0.2803
T =750 0.1796  0.7515  0.8132  0.7976  0.5266 0.3255
T =1000 0.1811 0.8524  0.8977  0.8873  0.6472 0.3861
T =1500 0.180 0.9511 0.9737  0.9675 0.8149 0.5099

Length of rolling estimation window 7T'e = 500
Sample size  Jyc  Joc(2) Joc(3) Joc(5) LRcc  LREEkev
T = 250 0.3271  0.4350  0.4759  0.4688  0.3398 0.3134
T =500 0.3426  0.6877  0.7370  0.7241  0.5006 0.3878
T =750 0.2748 0.8083  0.8584  0.8523 0.6170 0.4280
T =1000 0.2193 0.8889  0.9230 0.9145 0.7178 0.4359
T =1500 0.1711 0.9629 0.9801 0.9773 0.8532 0.5416

Notes: The results are based on 10,000 replications and the MC procedure of Dufour (2006)
with ns=9,999. The nominal size is 5%. Jcc(p) denotes the GMM-based CC test with p moment
conditions. Juc denotes the UC test obtained for p=1. LRcc denotes the Weibull CC test proposed

by Berkowitz et al. (2009), and LRcc(Markov) corresponds to the Christoffersen (1998) CC test.
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Table 4. Power of GMM duration-based tests

Backtesting 1% VaR
Discrete distribution (geometric)
Sample size  Jyc  Joc(2) Jec ()  Joc (5)
T =250 0.3868  0.4150 0.3669 0.3090
T =500 0.3592  0.4202 0.4516 0.5024
T =750 0.3238  0.4239 0.5062 0.5743
T =1000 0.3276 0.4684 0.5603 0.6365
T =1500 0.4045 0.5462 0.6632 0.7451

Continuous distribution (exponential)

Sample size  J; 8 Jo& (2)  JEE(3)  JEE(5)
T =250 0.3868  0.4218 0.4408 0.4576
T = 500 0.3591  0.4250 0.4784 0.5251
T =750 0.3239  0.4368 0.5053 0.5670
T =1000 0.3276 0.4660 0.5551 0.6269
T =1500  0.4045 0.5437 0.6593 0.7369

Backtesting 5% VaR
Discrete distribution (geometric)
Sample size  Juc  Joc (2)  Jec (3)  Joce (5)
T =250 0.3175  0.4241 0.4577 0.4527
T =500 0.2300 0.6113 0.6730 0.6600
T =750 0.1796  0.7515 0.8132 0.7976
T = 1000 0.1811  0.8524 0.8977 0.8873
T = 1500 0.1850  0.9511 0.9737 0.9675

Continuous distribution (exponential)

Sample size  J;b  Jo&(2)  JEE(B)  JEE(B)
T =250 0.3176  0.4175 0.4437 0.4309
T =500 0.2300  0.5951 0.6439 0.6228
T =750 0.1796  0.7311 0.7831 0.7574
T =1000 0.1811 0.8314 0.8715 0.8535
T =1500 0.1850 0.9396 0.9586 0.9498

Notes: The results are based on 10,000 replications and the MC procedure of
Dufour (2006) with ns=9,999. The nominal size is 5%. Jcc(p) denotes the GMM-
based CC test based on a geometric distribution. J‘Zi‘fp(p) denotes the GMM-based

CC test based on an exponential distribution. In both cases, Juc denotes the UC test

(p=1).
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Table 5. Empirical size of 5% tests and estimation risk

Sample size

P =1000

Ny

K =65 471
K=70 392
K=17 313
K =80 324

Sample size

P =1000

Ny

K =65 471
K=70 392
K=7 313
K =80 324

P,
687
740
792
845

Py
687
740
792
845

Backtesting 5% VaR with estimation risk

Juc
0.2860

Juc
0.0920
0.0950
0.1170
0.1060

Jue
0.1520

Jue
0.0830
0.0850
0.0980
0.0930

Uncorrected sizes

Jec (2) Jec(3) Jec(5) LRec
0.3080 0.2770 0.2480  0.3140
Sub-sampling Corrected sizes
Joc (2) Joc(3) Jec(5) LRce
0.0820 0.0820 0.0840  0.0890
0.0850 0.0860 0.0870  0.1010
0.1020 0.0940 0.0950 0.1160
0.0960 0.0990 0.0890 0.1120
Backtesting 1% VaR with estimation risk
Uncorrected sizes
Jec (2) Joc(3) Jec(5) LRec
0.1410 0.1150 0.0870  0.1950
Sub-sampling Corrected sizes
Jece)  Jec(3) Jec(5) LRcc
0.1100 0.1210 0.1380  0.0850
0.1000 0.1170 0.1230  0.0930
0.1090 0.1210 0.1310  0.1010
0.1010 0.1070 0.1170  0.1170

LRggvrkov
0.3400

LRmarkov
0.0710
0.0850
0.0810
0.0930

LRnCmgrkov
0.1430

LRzarkov
0.0640
0.0900
0.0880
0.1110

Notes: For each replication, the returns are simulated according to a t-GARCH. The t-GARVH

is then estimated over R=500 periods, and the VaR forecasts are produced for P periods. Given

these forecasts, the hits and durations are computed. The estimation risk affects the uncorrected

sizes (nominal size is fixed at 5%) of the various backtesting tests. Juc denotes the unconditional

coverage test obtained for p=1. LRcc denotes the Weibull conditional coverage test proposed by

Berkowitz et al. (2009), and LRcc(Markov) corresponds to the Christoffersen (1998) CC test based

on a Markov chain approach. Finally, the corrected rejection rates are reported for various values

of K, Nb and Pb. In each case, the critical value is obtained through the ub-sampling procedure

described in section 5
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Table 6. Backtesting tests of 5% VaR forecasts for Nasdaq index

VaR forecasting methods

Backtesting Tests Statistic

Unconditional Coverage Hits Freq.

Juc

Independence Tests Jinp (2)

Jinp (4)

Jinp (6)
LRinD

Conditional Coverage Joo (2)
Joco (4)

Joc (6)

LRcc

GARCH-t(d)

0.036
1.1977

0.261)
0.446

0.2489
0.646)
0.713

0.3839

(0.779)
0.838

0.3856
0.907)
0.929

0.5121
0.532
0.710)

1.5228
0.315
0.477)

1.5456
0.522
0.610)

1.5867
0.646
0.752)

2.3356
0.364
0.550)

HS
0.036
1.1977

0.261)
0.140

0.1866
0.719
0,839)

4.6521
0.036
0,070)

7.8571
0.016)
0.042

1.7725
0.236
0.529)

2.7080
0.157
l),l)67)

11.147
0.025
<0.0()1)

11.891
0.030
0,014)

3.5960
0.213)
0.449

CAViaR
0.028
4.0662

(5:05%)
0.0801

(U‘867)
0.924

0.5323
(5582
2.1271
(0332
0.0584
(0573
4.4663
(0:0%3)
9.8744
(5:022)
12.050
(5028
4.1989

(0.168)
0.314

Notes: The hit empirical frequency is the ratio of VaR violations to the sample size (T=250)
observed for the Nasdaq between June 22, 2005 and June 20, 2006. Three methods of VaR fore-
casting are used: the GARCH with Student conditional, distribution, historical simulation (HS)
and a CAViaR (Engle and Manganelli, 2004. For the VaR method, Juc denotes the unconditional
coverage test statistic obtained for p=1. Jind(p), and Jcc(p) denotes the GMM-based independence
and conditional coverage tests base on p moments conditions. The number of moments is fixed at
2, 4 or 6. LRind and LRcc respectively denote the Weibull independence and conditional coverage
tests proposed by Christoffersen and Pelletier (2004) and Berkowitz et al. (2005). For all of these
tests, the two numbers in parentheses respectively denote the p-values corrected by Dufour’s Monte

Carlo procedure (Dufour, 2006) and the p-value obtained using the sub-sampling approach (with

K=15, Rb=Pb=68 and 365 sub-samples)
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Figure 1: GARCH-t(v) Simulated Returns with 1% and 5% VaR from HS (Te =
250).

0.05 T

1
0.04 - Returns - P&L Distribution 4
VaR 1%

—-— VaR5%
0.03 - N

0.02 -

0.01 “

TP

- |
002 |
008 o El

0.04 - B

0.05 I I I I I I I I I

36



Figure 2: Empirical Power: Sensitivity Analysis to the choice of p
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Figure 3: Historical Returns and 5% VaR Forecasts. Nasdaq (June 2005- June
2006)
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