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Abstract

Natural ponds are rich in biodiversity, contributing greatly to regional aquatic biodiversity.

Artificial reservoirs used for irrigation can be significant additional features of the landscape.

They infill the local natural pondscape, and are attractors for aquatic insects. Here, we deter-

mine the extent to which artificial reservoirs represent the local natural pond biota, and how

they contribute to the pondscape in conservation corridors used to mitigate the impact of

plantation forestry in a global biodiversity hotspot. We did this by: 1) identifying the environ-

mental factors, including plants, that drive dragonfly, water beetle, and water bug species

richness, diversity and composition, and 2) determining the value of natural ponds vs. artifi-

cial reservoirs for maintaining the population size and expanding the area of occupancy for

dragonflies, beetles and bugs in conservation corridors. While vegetation cover was central

for maintaining species richness and composition of the assemblages in general, many

other environmental variables are necessary to encourage the full suite of local diversity.

Artificial reservoirs are attractive habitats to many species, overall increasing area of occu-

pancy for 75% of them (ranging from 62–84% for different taxa). These reservoirs provide

complementary alternative habitats to natural ponds, leading to improved ecological resil-

ience across the pondscape. We conclude that maintaining a diverse and heterogeneous

pondscape is important for conserving local aquatic insect diversity, and that artificial reser-

voirs increase the local area of occupancy for a range of pond insects in conservation corri-

dors, and improve the biodiversity value of these pondscapes.

Introduction

Freshwater ponds are lentic water bodies <2 ha in size [1], common throughout the world [2].

They contribute greatly to local ecology [3] and support high biodiversity, sometimes greater

than that in larger water bodies such as rivers and lakes [4], due partly to their high habitat het-

erogeneity at the landscape scale [4]. In transformed areas with limited numbers of natural

ponds, artificial reservoirs can also provide refuge habitat for rare and threatened species [5].
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Artificial reservoirs are constructed for water storage [6] and may replace small, natural

wetlands and ponds, especially in agricultural and urban landscapes [7; 8]. Compared to natu-

ral ponds, reservoirs are often of recent origin. Yet, reservoirs can support considerable fresh-

water biodiversity [6; 9], and like natural ponds, can expand the area of occupancy for many

aquatic species, often supporting rare species not in the immediate area [7; 9]. This may come

about through provision of essential physical characteristics, such as vegetation structure, sub-

strate composition, and reservoir size [11; 12], or physico-chemical characteristics such as ele-

vation, temperature, and pH [8].

Groups of ponds, natural and/or artificial, across a landscape are known as pondscapes [3].

They are important in conservation efforts, as they support higher community diversity than

single large ponds or reservoirs [11; 13]. Pondscapes have been poorly explored in areas of the

world with exceptionally high biodiversity. One of these areas is the Maputaland-Pondoland-

Albany (MPA) biodiversity hotspot in South Africa, where large-scale conservation corridors

of remnant land are in place to mitigate timber production [14]. These conservation corridors

extend across the landscape to make up large-scale ecological networks [15]. They have a rich

toposcape of hills, wetlands, natural ponds, and artificial reservoirs [16].

With increasing pressures on water resources, there has been much interest in aquatic

insects occupying freshwater habitats [17; 18; 19], as a wide range of aquatic habitats lend

themselves to understanding landscape ecology and contribute to conservation planning [20].

Aquatic insects make up much of the total freshwater fauna [21], fulfill many ecological roles

[17; 22], and have the potential to reflect the physical and biological state of ecosystems [23; 24;

25; 26]. The aquatic insects that occupy ponds, natural and artificial, in the MPA biodiversity

hotspot are poorly studied, yet their diversity is likely to be high in view of what is known for

dragonflies in the area [27].

Dragonflies are excellent model organisms for ecology [28; 29], as they are taxonomically

well-known, adults are easy to identify in field, they are highly mobile as adults, and they

occupy almost any aquatic habitat. Furthermore, they are variously sensitive to environmental

differences in relation to physical structure of the aquatic and aerial biotopes [30] as well as in-

water physico-chemical conditions [31], leading to them being used in freshwater condition

assessment, including in the MPA hotspot [29].

Two additional insect groups receiving increasing attention as indicators of water quality

are aquatic beetles and bugs [32; 33; 34]. Twenty-four families of strictly aquatic beetles [35]

and 17 families of true bugs [36] are known from South Africa. Aquatic beetles and bugs are

highly mobile as adults, possess several unique morphological characteristics, have adaptations

to various ecological conditions [37; 38], and fulfill many roles in many aquatic ecosystems

[35; 39]. At the family level, water beetles and water bugs variously respond to physico-chemi-

cal change and vegetation structure [33; 39; 40]. However, especially in South Africa, their tax-

onomy and distribution are not well known, restricting their use as bioindicators.

Little research has been undertaken using a range of aquatic taxa for assessing natural vs.

artificial ponds, especially in conservation corridors designed and managed principally using

terrestrial taxa and interactions. One study considers the drivers of the composition of various

aquatic insect taxa composition in the MPA hotspot [41], in addition to that of dragonflies

[e.g. 40; 42; 43].

Here, we focus on the value of pondscapes as conservation clusters, and: 1) identify the

physical and environmental variables driving dragonfly, water beetle, and water bug species

richness, diversity, and composition in the MPA hotspot, and 2) determine the ecological

value of artificial reservoirs vs. natural ponds for maintaining population sizes and expanding

the local area of occupancy for dragonflies, beetles and bugs in conservation corridors. As con-

servation corridors have proven to be an effective conservation measure for terrestrial and
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aquatic ecosystems, we identify the important features of artificial reservoirs relative to natural

ponds for maintaining aquatic insect diversity across this production landscape.

Sites, materials and methods

Study sites

Forty study sites were selected in the KwaZulu-Natal Midlands, South Africa: 20 natural ponds

and 20 artificial reservoirs, in five geographical areas (Fig 1; Table 1). Sampling sites were

selected to represent a spectrum of variation in natural quality, based on past records (obtained

from satellite imagery) and initial inspection. Demarcation of natural pond sites was based on

the presence/absence of hydrophilic plant species, benthic slow-flow characteristics of the

water body, and the geomorphological setting. Only open grassland matrix valley bottoms and

plains were considered, being the position of most ponds and reservoirs. Geomorphological

data were obtained from the National Freshwater Ecosystem Priority Areas (NFEPA)

database.

Fig 1. Locations of sampling areas in the Maputaland-Pondoland-Albany biodiversity hotspot. Pentagon: Mount Shannon Estate, diamond: Faber’s Hill Estate,

circle: Good Hope Estate, triangle: Linwood Estate, and square: Mount Gilboa Estate. Black circles represent nearby towns.

https://doi.org/10.1371/journal.pone.0204148.g001
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Data collection

Data were collected during two sampling seasons: early summer (January-February) and late

summer (February-March). Adult dragonfly (Odonata), water beetle (Coleoptera), and water

bug (Hemiptera) individuals were sampled on cloudless, windless days, 10h30-15h30, once

during each sampling season. Each insect order was treated as a separate entity, as they differ

substantially in terms of habitat requirements and traits. Ten quadrats of 4 m2 were selected

Table 1. Geographic location and pond type of sampling sites in each sampling area.

Area Site Latitude Longitude

Mount Shannon Artificial reservoir 1 29˚ 42’ 50" S 29˚ 59’ 34" E

Mount Shannon Natural pond 1 29˚ 42’ 35" S 29˚ 58’ 33" E

Mount Shannon Natural pond 2 29˚ 42’ 49" S 29˚ 59’ 36" E

Mount Shannon Natural pond 3 29˚ 42’ 55" E 29˚ 59’ 25" E

Faber’s Hill Artificial reservoir 1 29˚ 40’ 26" S 29˚ 54’ 57" E

Faber’s Hill Artificial reservoir 2 29˚ 40’ 37" S 29˚ 56’ 21" E

Faber’s Hill Artificial reservoir 3 29˚ 40’ 20" S 29˚ 55’ 10" E

Faber’s Hill Artificial reservoir 4 29˚ 44’ 27" S 29˚ 54’ 56" E

Faber’s Hill Natural pond 1 29˚ 40’ 39" S 29˚ 55’ 07" E

Faber’s Hill Natural pond 2 29˚ 40’ 42" S 29˚ 54’ 58" E

Faber’s Hill Natural pond 3 29˚ 40’ 21" S 29˚ 56’ 10" E

Faber’s Hill Natural pond 4 29˚ 40’ 02" S 29˚ 56’ 09" E

Faber’s Hill Natural pond 5 29˚ 40’ 27" S 29˚ 56’ 05" E

Faber’s Hill Natural pond 6 29˚ 44’ 23" S 29˚ 55’ 02" E

Mount Gilboa Artificial reservoir 1 29˚ 14’ 42" S 30˚ 20’ 35" E

Mount Gilboa Artificial reservoir 2 29˚ 14’ 32" S 30˚ 19’ 45" E

Mount Gilboa Artificial reservoir 3 29˚ 14’ 19" S 30˚ 20’ 02" E

Mount Gilboa Artificial reservoir 4 29˚ 15’ 21" S 30˚ 19’ 02" E

Mount Gilboa Artificial reservoir 5 29˚ 14’ 42" S 30˚ 17’ 01" E

Mount Gilboa Artificial reservoir 6 29˚ 14’ 52" S 30˚ 19’ 49" E

Mount Gilboa Artificial reservoir 7 29˚ 15’ 13" S 30˚ 18’ 45" E

Mount Gilboa Natural pond 1 29˚ 14’ 44" S 30˚ 17’ 40" E

Mount Gilboa Natural pond 2 29˚ 15’ 04" S 30˚ 15’ 41" E

Mount Gilboa Natural pond 3 29˚ 14’ 59" S 30˚ 15’ 05" E

Mount Gilboa Natural pond 4 29˚ 14’ 41" S 30˚ 19’ 46" E

Mount Gilboa Natural pond 5 29˚ 15’ 15" S 30˚ 15’ 37" E

Mount Gilboa Natural pond 6 29˚ 15’ 03" S 30˚ 14’ 59" E

Mount Gilboa Natural pond 7 29˚ 15’ 02" S 30˚ 15’ 03" E

Mount Gilboa Natural pond 8 29˚ 14’ 42" S 30˚ 19’ 48" E

Good Hope Artificial reservoir 1 29˚ 39’ 18" S 29˚ 58’ 12" E

Good Hope Artificial reservoir 2 29˚ 39’ 09" S 29˚ 58’ 18" E

Good Hope Artificial reservoir 3 29˚ 37’ 40" S 29˚ 59’ 06" E

Good Hope Artificial reservoir 4 29˚ 40’ 07" S 29˚ 58’ 26" E

Good Hope Natural pond 1 29˚ 39’ 13" S 29˚ 57’ 13" E

Good Hope Natural pond 2 29˚ 39’ 27" S 29˚ 58’ 28" E

Good Hope Natural pond 3 29˚ 40’ 08" S 29˚ 58’ 19" E

Linwood Artificial reservoir 1 29˚ 33’ 38" S 30˚ 05’ 38" E

Linwood Artificial reservoir 2 29˚ 32’ 59" S 30˚ 06’ 07" E

Linwood Artificial reservoir 3 29˚ 33’ 54" S 30˚ 06’ 47" E

Linwood Artificial reservoir 4 29˚ 33’ 38" S 30˚ 05’ 33" E

https://doi.org/10.1371/journal.pone.0204148.t001
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on the edge of the water body, and swept with an aquatic net (300 mm x 300 mm; 1000 micron

mesh size) for 3 min to collect beetles and bugs. Quadrats were selected to represent all features

of the water body at a depth of<1.2 m, below which aquatic insect diversity in this area drops

off considerably [43]. Collected individuals were identified to at least genus by making use of

the Water Research Commission identification guides [39], museum collections, and expert

opinion (P. Reavell, pers. Comm.). In the case of adult dragonflies, two 50 m transects were

selected per site, wherein all individuals were visually recorded for 30 min. Any other, large

hawking species (e.g. Anax imperator) that were within 5 m of transects were also recorded.

Dragonfly larvae were not included, as local larval taxonomy is not sufficiently well known to

species level. To confirm the identity of species, individuals were collected with an insect net

and identified using relevant field guides [27; 29]. The procedure was repeated for the second

sampling season. Two individuals of each species sampled are kept in a reference collection at

the Stellenbosch University Entomological Museum.

At each study site, ten point measurements of physico-chemical conditions were recorded

at each sampling depth on cloudless, windless days, 10h30-15h30: dissolved oxygen (mg/L),

water temperature (˚C), conductivity (μs), turbidity (cm visibility, using a clarity tube), and

sampling depth (m, using a measuring pole). In addition, water body size (m2) and elevation

(m a.s.l.) was recorded using Garmin eTrex 30 map data. Vegetation structure and composi-

tion was determined in five quadrats of 4 m2 at the edge of each water body. Within each quad-

rat, the percentage grass cover, percentage reed cover, percentage forb cover, average

vegetation height, and dominant marginal and submerged plant species were recorded.

Geomorphological data of each study site were obtained from the NFEPA database, and

each site was ground-truthed. In the event of inaccurate classification in the NFEPA database

due to coarse spatial scale, the particular site was reclassified in field by making use of geomor-

phological classification guidelines [44].

Statistical analyses

In order to determine whether sampling was sufficient and that the subset of data was repre-

sentative of the sampling area, two species estimators were calculated and compared with the

number of observed species (Sobs):

SChao2 ¼ Sobs þ
Q2

1

2Q2

Chao2

Where Q1 is species occurring exclusively in one sample and Q2 species occurring in two

samples and,

Sjack2 ¼ Sobs þ
Q1ð2m � 3Þ

m
�

Q2ðm � 2Þ
2

mðm � 1Þ
Jackknife2

�

Where m is the total number of samples collected.

The Chao2 species estimator is proven to be very effective for insect studies as non-

parametric estimators are better for datasets with a large number of rare species. Jackknife2

species estimator is another effective non-parametric estimator, that is particularly unrespon-

sive to sampling bias.

Generalized linear mixed modeling was used to pre-select and test the random and fixed

effects of environmental variables on overall species richness and abundance, as well as within

natural ponds and artificial reservoirs, using the lme4 package in R [45; 46]. For species richness,

the three separate models (overall effect, within natural ponds and within artificial reservoirs)

were built with pond size, elevation, site type, geomorphological class of pond, vegetation

Pondscape resilience in conservation corridors
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height, percentage total cover, percentage reed cover, percentage forb cover, percentage grass

cover, water depth, dissolved oxygen, water temperature, water conductivity, water pH, and tur-

bidity as fixed variables, and the sampling season and area where the sites were located as ran-

dom variables. For species abundance, a single overall model was built with pond type as fixed

variable, and area where site is located, sampling season and site identity as random variables,

to determine the difference in abundance between natural ponds and artificial reservoirs. All

generalized linear mixed models were fitted by a Laplace approximation and a Poisson distribu-

tion. For all significant regressions, we used piece-wise regressions to segregate environmental

data and determine the breakpoint in each regression using the segmented package in R [46; 47].

The Shannon diversity index (hereafter referred to as “diversity”), accounting for species

abundance and evenness, was calculated for each insect order at each sampling site in R using the

vegan package [46; 48] and log-transformed. Linear mixed modeling was then used to pre-select

and then test the random and fixed effect of environmental variables on overall insect diversity,

as well as within natural ponds and artificial reservoirs. The three separate models (overall effect,

within natural ponds and within artificial reservoirs) were again built with site size, elevation, site

type, geomorphological class of site, vegetation height, percentage total cover, percentage reed

cover, percentage forb cover, percentage grass cover, water depth, dissolved oxygen, water tem-

perature, water conductivity, water pH, and turbidity as fixed variables, and the sampling season

and area where the sites were located as random variables. The linear models were fitted by a

Laplace approximation and a normal distribution. In the case of categorical fixed variables, cate-

gorical pairwise t-tests and Tukey post-hoc tests were used to determine significance. Again, for

all significant regressions, we used piece-wise regressions to segregate environmental data and

determine the breakpoint in each regression using the segmented package in R [46; 47].

Distance-based linear modeling (DistLM), based on resemblance matrices and effects of

multiple predictor variables, was performed to explain the variation in species composition

using recorded environmental variables, in PRIMER version 6 [49]. Forward selection of envi-

ronmental variables was used, meaning that each environmental variable was added into the

analysis until no significant effect on the species composition was evident. In addition, permu-

tational multivariate analyses of variance (PERMANOVA) were used to determine the differ-

ence in environmental variables between natural ponds and artificial reservoirs. 9999

permutations were used to determine effects of environmental variables on the overall species

composition of the three orders, as well as within each water body type. Permutational analyses

were used to randomize factors and to select the factors that explained species composition the

best. The Bray-Curtis similarity measure (which measures species composition based on the

abundance of each species) was used to evaluate species composition of all groups.

Results

A total of 61 lentic species were sampled (4 895 individuals), comprising 27 dragonfly species

(1 053 individuals), 16 beetle species (658 individuals) and 18 bug species (3 184 individuals).

The number of observed species (Sobs) neared the estimated number of species (Chao2 and

Jackknife2) across the insect orders, as well as within each pond type. This indicated that sam-

pling was sufficient, and that the subset of data is representative (S1 Table). For the complete

list of species, refer to S2 Table.

Influence of environmental variables on species richness, abundance and

insect diversity

Overall dragonfly species richness and diversity increased with an increase in water tempera-

ture, but diversity decreased with an increase in % forb cover (Table 2). There was a significant

Pondscape resilience in conservation corridors
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negative relationship between water body size, and dragonfly species richness, although drag-

onfly diversity increased with water body size, until a size of about 20 260 m2 was reached,

after which diversity decreased significantly (t = 10.4; p< 0.001). There was no significant dif-

ference between dragonfly abundance for natural ponds and artificial reservoirs (t = 0.6;

p = 0.532). For natural ponds, dragonfly species richness and diversity increased with an

increase in water temperature and % reed cover. Natural ponds in valley bottoms had signifi-

cantly higher dragonfly species richness and diversity over natural ponds on open plains. In

the case of artificial reservoirs, dragonfly species richness decreased with an increase in water

body size. An increase in dissolved oxygen, sampling depth, % reed cover, and % grass cover

gave an increase in dragonfly species richness. Dragonfly diversity decreased with an increase

in dissolved oxygen, and in the case of % forb cover, decreased until about 22% cover was

reached, above which there was an increase in diversity (t = 9.8: p< 0.001). Dragonfly diversity

increased with water body size until about 15 400 m2, after which diversity decreased (t = 11.5;

p< 0.001). For a summary on the ranges of measured environmental variables, consult S3

Table.

Type of water body (natural pond vs. artificial reservoir) had a significant effect on overall

beetle species richness (Table 2), with natural ponds supporting more species. Overall beetle

species richness increased with a decrease in water temperature and conductivity, while species

Table 2. Effects of environmental variables on the overall species richness and diversity, and in the two water body types, natural vs. artificial.

Overall Natural Ponds Artificial reservoirs

Species richness Shannon index Species richness Shannon index Species richness Shannon index

Dragonflies Water body size (-)4.091� (+/-)13.036��� (-)17.066��� (+/-)26.098���

Temperature (+)8.815�� (+)10.584�� (+)6.521�

Dissolved oxygen (+)10.919��� (-)4.196�

Depth (+)6.64��

% Reed cover (+)7.191� (+)3.894� (+)4.660�

% Grass cover (+)3.928�

% Forbs cover (-)4.104� (-/+)5.284�

Geomorph class -3.154�� -2.26� -6.252���

Beetles Depth (-)9.376�� (-)4.403�

Temperature (-)4.285� (-)4.408� (+)8.523�� (+)23.155���

Conductivity (-)4.436� (-)4.743�

pH (+)15.795���

Dissolved oxygen (-)17.851���

Elevation (-/+)8.317��

% Forbs cover (+)9.526�� (+)5.351�

% Reed cover (-)9.970��

Water body type 3.07�� 2.636�

Bugs Temperature (+)5.564� (+)7.361� (+)4.328�

Conductivity (-)6.743�

% Grass cover (-/+)9.814��

Chi square values are indicated, and t-values are indicated in bold in the case of categorical variables. (+): positive correlation; (-): negative correlation; (+/-): initial

positive correlation; (-/+): initial negative correlation.

Significance levels

�: p < 0.05

��: p < 0.01

���: p < 0.001.

https://doi.org/10.1371/journal.pone.0204148.t002
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richness decreased with an increase in water depth. There was no significant difference

between beetle abundance for natural ponds and artificial reservoirs (t = -0.3; p = 0.077). For

natural ponds, beetle species richness and diversity increased with water temperature,

although beetle species richness decreased with increasing water depth. Beetle diversity

increased with an increase in water pH, and decreased with increased dissolved oxygen and %

reed cover. Beetle diversity decreased with increasing elevation, but above 1 500 m a.s.l., diver-

sity increased (t = 0.9; p = 0.036). For artificial reservoirs, beetle species richness and diversity

increased with increased % forb cover.

Overall bug species richness increased with water temperature but decreased with increased

conductivity (Table 2). There was no significant difference between bug abundances for natu-

ral ponds and artificial reservoirs (t = 0.1; p = 0.928). For natural ponds, bug species richness

and diversity increased with water temperature. For artificial reservoirs, bug species richness

decreased with an initial increase % grass cover but increased above 13% grass cover

(t = 9.795; p< 0.001).

Influence of environmental factors on dragonfly, beetle and bug

assemblages

Pond type (natural vs. artificial) had a significant effect on dragonfly (pseudo-F = 3.08), beetle

(pseudo-F = 3.12) and bug (pseudo-F = 2.97) assemblages, respectively. Within each water

body type, the geomorphological class had no effect on the species assemblage of any of the

three groups. Of the 13 environmental variables measured, distance based on linear modeling

(DistLM) selected six variables as significant to overall aquatic insect species composition.

These were water temperature, pH, conductivity, depth, pond size and elevation (Table 3; Fig

2). Water turbidity, dissolved oxygen, % reed cover, % forb cover, total % vegetation cover,

Table 3. Distance based on linear modeling (DistLM) sequential results indicating environmental variables most descriptive of aquatic insect species composition

structure between habitat types.

Group Type Environmental variables F Variation explained (%) Cumulative variation explained (%)

Dragonflies Overall Temperature 5.181��� 14.29 14.29

Water body size 2.792�� 7.83 22.12

Elevation 2.437� 4.79 26.91

Depth 2.692� 1.93 28.84

Ponds Temperature 4.556��� 20.2 20.2

Reservoirs Temperature 3.177�� 19.01 19.01

Water body size 3.033�� 27.87 46.88

Beetles Overall pH 3.522��� 8.48 8.48

Ponds pH 2.288� 11.28 11.28

Reservoirs Depth 1.748� 8.85 8.85

Bugs Overall Temperature 3.535��� 11.56 11.56

Conductivity 3.032�� 6.84 18.4

Water body size 2.308� 2.13 20.53

Ponds Temperature 3.399��� 15.89 15.89

Reservoirs % Grass cover 4.122� 18.63 18.63

Significance levels

�: p < 0.05

��: p < 0.01

���: p < 0.001.

https://doi.org/10.1371/journal.pone.0204148.t003
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and vegetation height did not influence species composition. For overall dragonfly species

composition, 14.29% of the variation was explained by water temperature, 7.83% explained by

water body size, 4.79% explained by elevation, and 1.93% explained by water depth.

For overall beetle species composition, water pH explained 8.48% of total variation, and for

overall bug species composition 11.56% of the variation was explained by water temperature,

6.84% by conductivity, and 2.13% by water body size. Two variables (water temperature and

pH) influenced species composition in natural ponds (Table 3). Water temperature explained

20.2% of the variation in dragonfly species composition, and 15.89% of the variation in bug

species composition. Water pH explained 11.28% of the variation in beetle species composi-

tion. Four environmental variables influenced species composition in artificial reservoirs.

These were water temperature, depth, water body size, and % grass cover. Water temperature

and water body size explained 19.01% of the variation and 27.87% of the variation in dragonfly

species composition respectively. Sampling depth explained 8.85% of the variation in beetle

species composition and % grass cover explained 18.63% of the variation in bug species

composition.

15% of the sampled dragonfly species were unique to natural ponds (Fig 2). These were

Chlorolestes fasciatus, Elattoneura glauca, Proischnura rotundipennis and Zosteraeshna minus-
cula. No dragonfly species was unique to the artificial reservoirs. 25% of beetle species was

unique to natural ponds (Fig 2), and included Amphiops sp., Aulonogyrus sp. 1, Copelatus sp.,

Derovatellus sp. and Orectogyrus sp., and 13% unique to artificial reservoirs, and included

Aulonogyrus sp. 2 and Hydropeplus sp. 28% of the bug species sampled was unique to natural

ponds (Fig 2). These were Borborophilus afzelii, Laccotrephes brachialis, Limnogonus capensis,
Ranatra grandicollis and Sigara pectoralis. No bug species were unique to the artificial

reservoirs.

Discussion

Relative significance of the environmental variables

We found that any one of the investigated habitat descriptors cannot be substituted by another,

and the focal taxa respond to each in different ways. As a result, high habitat heterogeneity cre-

ated by the combination of environmental variables and pond types which maintain high

insect diversity. Aquatic habitat heterogeneity in the form of vegetation complexity, substrate

structure, and/or physico-chemical characteristics are important for aquatic insects [51; 53;

54], and adult, terrestrial dragonflies [31], as we found here. This supports earlier studies [19;

22; 31; 50; 51], whether at the regional scale [52], or at the finer scale of the pondscape [3; 15].

Many dragonflies occupying lentic habitats require marginal and/or submerged vegetation

[19; 27; 29] as perching sites, substrate for larvae to seek refuge, and to emerge as adults [10].

Furthermore, vegetation provides habitat for food items for both adult and larval dragonflies.

Here, margins of natural ponds were predominantly covered by a mixture of grasses and forbs,

with little variation between ponds, and were neither extensive, nor casting much shade which

otherwise diminishes local dragonfly assemblages [30].

Artificial reservoirs had less marginal grasses and forbs coverage, more reed coverage, and

were rich in submerged aquatic weeds (dominated by Elodea spp.). These seemingly open hab-

itats favour early aquatic beetle and bug colonization [55; 56; 57]. However, consistent with

Fig 2. Distance-based redundancy analysis (dbRDA) results indicating significant effects of environmental

variables on insect species composition. Vectors represent the effect of environmental variables on dragonfly (A),

beetle (B) and bug (C) species composition between natural ponds (open circles) and artificial reservoirs (filled circles).

Axes represent Bray-Curtis distance measure.

https://doi.org/10.1371/journal.pone.0204148.g002
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recent suggestions [19; 22; 58], beetle species richness and diversity was positively correlated

with increased forb cover in artificial reservoirs. Vegetation with complex growth forms allows

Dytiscidae and Gyrinidae to exit the water when macerating prey [59], allows for the comple-

tion of their life cycles [60], and provides refuge against predators [61], all of which are impor-

tant for improving their persistence. As reeds are generally tall and throw much shade, few

beetles select reedy stands as microhabitat. We found that only grass cover significantly drove

bug species composition in artificial reservoirs, the reason for which is possibly the presences

of some scavenger families (here, Hebridae, Hydrometridae and Veliidae) having a strong

preference for vegetated margins, being surface dwellers that require emergent vegetation as

refuge [22; 35].

Consistent with previous studies, adult dragonflies [31; 62], aquatic beetles [19; 41] and

aquatic bugs [51] respond to in-water physico-chemical conditions. Although it has been sug-

gested that adult dragonflies are likely unable to assess water biochemistry directly [26], it has

been found that in South Africa they actually can do so [31], but this is secondary to the pri-

mary response to certain visual cues from vegetation [10; 63; 64].

The beetles and most bugs sampled here are water-dwelling during their adult and larval

stages, and might also be capable of assessing water biochemistry directly. Nevertheless, mod-

erate water temperature increases activity [43; 57] and shortens larval development time [10]

for dragonflies, beetles and bugs occupying both natural ponds and artificial reservoirs. For

these reasons, most aquatic beetles occupy ponds characterized by moderate water tempera-

ture, yet dragonflies (and their larvae) and bugs may be able to tolerate slightly elevated water

temperature. The effect of dissolved oxygen on dragonflies was only detected in artificial reser-

voirs, where oxygen levels were much more variable. In general, dragonfly larvae are reliant on

dissolved oxygen for respiration, unlike adult beetles and bugs, being atmospheric breathers

[35; 65]. Artificial reservoirs rich in dissolved oxygen were predominantly occupied by zygop-

terans, as most anisopterans (the majority sampled here) are physiologically better equipped to

tolerate low dissolved oxygen conditions. Furthermore, high aquatic beetle diversity in natural

ponds was associated with lower dissolved oxygen, as higher dissolved oxygen might be synon-

ymous with presence of predatory vertebrate species, although not directly measured here.

Fluctuating conductivity as a proxy for salinity [66] determines overall aquatic beetle and

bug species richness, and shapes aquatic bug assemblages, as high salinity interferes with meta-

bolic capabilities and water retention in aquatic insects [67]. Here, only aquatic beetle diversity

in natural ponds showed a response to water pH, suggesting that most of our aquatic beetles

have a strong preference for slightly alkaline waters, related to their physiology and develop-

ment [68].

Overall, natural ponds and artificial reservoirs were clearly distinct in physical characteris-

tics (size and depth). Artificial reservoirs here were much larger and deeper than the natural

ponds. Island biogeography theory suggests that larger water bodies should sustain higher spe-

cies richness and a more complex species composition [69]. However, our findings suggest

that dragonflies have a preference for maintained intermediate-sized natural ponds, as they

provide a suitable number of microhabitats throughout the season, reducing competition for

resources [14; 70]. The water level of large artificial reservoirs may also fluctuate more than

natural ponds as a result of agricultural abstraction and seasonal variation [14; 27]. Similarly,

the water level of small natural ponds may fluctuate greatly between seasons. In both cases,

marginal and submerged vegetation is exposed [70], increasing competition for suitable

microhabitats, as was the case in our area [71].

We found that water body size and depth are less important to chance colonization by

aquatic beetles and bugs. Most are highly mobile as adults and occupy mostly the shallow

edges regardless of water body size [22; 72]. Water depth> 1.2 m sees a great drop in
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temperature and dissolved oxygen, combined with a decrease in aquatic insect richness and

abundance in our area [43]. Although size and depth are apparently of lesser importance to

them than fine vegetation characteristics, larger and often deeper artificial reservoirs are still

occupied by widespread generalist species (here, the largest proportion of beetles and bugs

sampled), partly because larger size of a water body means a higher likelihood of being found

by aerial and potential colonizing individuals moving across the landscape [69; 73].

We found that geomorphology of natural ponds was a significant descriptor of dragonfly

species richness and diversity, but not of aquatic beetle and bug species richness, diversity or

composition, suggesting that most beetle and bug species here occupy both the grassy valley-

bottom and open plain ponds. Geomorphology cannot fully be used as a measure of perma-

nency, but remains important to consider as it is likely to be related to the relative age of

ponds, determine variability in physico-chemical characteristics [31] and climatic factors such

as wind speed, surface water run-off, and variation in marginal/submerged vegetation struc-

ture [44], all of which contribute to habitat heterogeneity.

Among the narrow range of elevations we investigated (~1100–1500 m), there was little

effect of elevation on overall dragonfly species richness and diversity, but wide elevation gradi-

ents over hundreds of meters significantly influence dragonfly species assemblages in this

region [42]. Here, the three dragonfly species C. fasciatus, A. nigridorsum and P. jucunda were

present only at the highest elevations, A. pinheyi and Z. minuscula at intermediate elevations,

and P. rotundipennis only at low elevations. With changing elevation, habitat characteristics

related to vegetation composition and temperature change, result in a subsequent change in

dragonfly species’ assemblages as different microhabitats become available/unavailable [42;

74]. Here, low beetle diversity was associated with natural ponds at intermediate elevations,

but showed an increase at higher elevations. High beetle diversity probably arises from high

species turnover between lentic and lotic habitats at higher elevations [75; 76] and high micro-

habitat availability in natural ponds at low elevations respectively [25]. Increased aquatic bug

species richness and diversity can be associated with increased elevation [57], but we did not

find that here across our short elevation range. Aquatic bugs in this area are mainly widespread

generalists [35; 36] possessing great plasticity [77], allowing them to occupy a variety of aquatic

environments. The range of elevations investigated here might simply have been too narrow to

detect differences in bug species richness and assemblages.

Added ecological value of artificial reservoirs

Range-restricted species (e.g. P. rotundipennis, a localized endemic damselfly), habitat-specific

species (e.g. deposition pools coupled with bushes for oviposition, C. fasciatus (a damselfly);

cool, shallow water, B. afzelii and L. brachialis, both bugs) and nearly one third of beetles did

not occupy the artificial reservoirs, as their preferred microhabitats were only available in nat-

ural ponds. Nevertheless, most of the sampled species were shared between natural ponds and

artificial reservoirs (75% overall; 84% of dragonflies, 62% of beetles and 72% of bugs), includ-

ing two South African endemic dragonflies (A. sapphirinum and A. leucosticta), and one

endemic beetle (Algophilus sp.).

Comparatively, there was little difference in abundance between natural ponds and artificial

reservoirs across all three insect taxa. This suggests that artificial reservoirs function well in

maintaining local population sizes, expanding the area of occupancy and, as natural ponds and

artificial reservoirs are interspersed and close together, improve functional connectivity for

most pond species. However equally important is the landscape context, as many species

require areas away from water to mature, forage, roost, and seek out hibernation sites [78].

The conservation management activity of setting aside remnant corridors in and among
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plantation compartments provides suitable habitats and makes up ecological networks [15]

improving ecological resilience across the pondscape for aquatic insects. Although not directly

measured here, dispersal ability should in part determine how well aquatic insects use land-

scape-scale ecological networks in addition to ecological preference [79; 80]. Most aquatic

insects sampled here are highly mobile as adults, enabling them to move readily between inter-

spersed lentic habitats and track favorable ecological conditions [22; 78; 81; 82].

Conclusion

The relatively similar environmental conditions in artificial reservoirs and natural ponds

meant that most local species occupied the reservoirs (through similar levels of species rich-

ness, abundance and assemblage composition), emphasizing their great conservation value.

Importantly however, it is the whole pondscape that is required to provide the wide range of

environmental variables necessary to support this diversity. This is supported by no one envi-

ronmental variable driving all the aquatic diversity in the same way. A range of pond types

does this, as they provide a range of abiotic and biotic conditions. While the ideal is to achieve

this with only natural ponds to support all the local diversity, reservoirs nevertheless go a long

way to enhance the local abundance of most aquatic species.

Nearly a quarter of the species occupied only natural ponds, indicating the fundamental

importance of natural ponds if we are to conserve all the local aquatic diversity. Yet, artificial

reservoirs as part of a functioning pondscape in large-scale conservation corridors, improve

much aquatic diversity and abundance, so contributing to improved resilience in the face of

climate and land-use change. They do this principally by increasing the area of occupancy for

most species.
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