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Computing Equilibria in Finance Economies with

Incomplete Markets and Transaction Costs�

P� Jean�Jacques Heringsy Karl Schmeddersz

December �� ����

Abstract

Transaction costs in �nancial markets may have important consequences for volumes of

trade� asset pricing and welfare� In the economic literature they are often given as one reason

for the incompleteness of asset markets� which is a striking example of their potential impact on

volumes of trade� We argue that analytical results on the impact of transaction costs are hard

to obtain and a computational approach is needed� This paper introduces the �rst algorithm for

the computation of equilibria in the general equilibrium model with incomplete asset markets

and linear transaction costs on the �nancial markets� The algorithm is based on the homotopy

principle and is able to deal with the two major technical di�culties of the model� namely the

existence of non�di�erentiabilities of agents� asset demands as a function of the asset prices and

the existence of locally non�unique equilibria� Several numerical examples give a �rst glimpse of

the impact of transaction costs on the nature of the equilibria� We show that the consequences of

transaction costs for volumes of trade and prices can be counterintuitive even for small economic

models�
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� Introduction

General equilibrium models with incomplete asset markets such as the two�period GEI model

and the multi�period model of a stochastic �nance economy are generalizations of the classical

Arrow�Debreu model of complete markets� While the Arrow�Debreu model considers only spot

markets for commodities� the incomplete markets models distinguish between spot markets for

commodities and �nancial markets for securities� As a result these models study many phenomena

that the Arrow�Debreu model cannot describe� and they have led to fundamental insights into

market behavior� Financial instruments and money signi�cantly in�uence equilibrium allocations�

markets are not even constrained e�cient despite being perfectly competitive� and markets may be

vulnerable to sunspots� The surveys by Geanakoplos ��		
� and Magill and Shafer ��		�� discuss

other consequences of the incompleteness of markets such as the limitations of representative agent

and single commodity models� the con�icting objectives of �rms� and the important distinction

between nominal and real assets�

However� the GEI model and its multi�period extensions do not attempt to model the reasons

for market incompleteness� Instead� these models take the nonexistence of many markets as given�

that is� the market structure is exogenous� Geanakoplos ��		
� calls the problem of explaining

which markets are open and which are closed� perhaps the most unexplored part of the GEI

Model�� One of the main arguments for the consideration of incomplete markets is the existence of

transaction costs� It is commonly thought that for some markets the set�up or transaction costs are

prohibitively large and so these markets are closed� But the exact impact of transaction costs on

the level of transactions on the asset markets is not described in these models� This de�ciency of the

existing models provides us with the motivation to incorporate transaction costs in a GEI model in

order to study endogenously determined market incompleteness� We explain below why analytical

results on the impact of transaction costs are hard to obtain and a computational approach is

needed� This paper introduces the �rst algorithm for the computation of equilibria in the general

equilibrium model with incomplete asset markets and linear transaction costs on the �nancial

markets�

There are several reasons to study transaction costs� Transaction costs are likely to have a

big impact on volumes of trade� asset pricing and agents� welfare� The explanation of market

incompleteness as a consequence of transaction costs is one striking example of the consequences of

transaction costs on the volume of trade of �nancial assets� Tobin�s proposal to impose a tiny tax

on asset trades� which plays the role of a grain of sand in the �nancial system to avoid excessive

speculation� is another one� The intuition is in both cases that increasing transaction costs should

lead to decreasing volumes of trade�

Transaction costs are likely to have consequences for asset pricing and are sometimes raised as

an explanation for the equity premium puzzle� The e�ect of transaction costs on pricing are at least

threefold as has been argued in Heaton and Lucas ��		��� There are the two contrary direct e�ects

that a seller of an asset desires a higher price and a buyer a lower price when faced with transaction

costs� A third� indirect� e�ect arises as transaction costs make it more costly to change the initial
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income stream and to insure against bad shocks� This e�ect makes markets more incomplete and�

under certain reasonable assumptions on utility functions� makes agents less willing to trade risky

assets� and leads to lower prices for risky assets� A similar reasoning has been used in Elul ��		��

to show that increasing market incompleteness� and therefore increasing transaction costs� leads

to a lower riskfree rate and a higher price for a riskless asset� A priori it is unclear which of the

e�ects� the indirect one or the direct ones� dominate�

Welfare e�ects can be quite complicated in a world with transaction costs on �nancial assets�

It is little surprising that in general the �rst�best of an economy without transaction costs cannot

be realized� and that a second�best allocation that is optimal when accounting for the presence

of transaction costs is the best one can hope for� It is very surprising that even the latter result

does not obtain as is shown in Arrow and Hahn ��			�� For the case of complete markets with

transaction costs� a social planner that is restricted to redistributing assets against the existing

transaction costs� can in general improve upon the competitive equilibrium allocation� This result

thereby parallels a similar constrained suboptimality result of Geanakoplos and Polemarchakis

��	��� for an economy with incomplete markets but no transaction costs� The magnitude of such

e�ects have not been quanti�ed yet�

Analytic results are almost impossible to obtain when transaction costs prevail in a GEI econ�

omy� unless when one is willing to make very strong assumptions like mean�variance preferences�

But even then such results provide little insight as they would be characterized by a huge number

of di�erent regimes that depend on the individual bid�ask structures in the economy� Transaction

costs lead to non�di�erentiable comparative statics with a non�di�erentiability occurring each time

an individual trader changes the sign of his position in an asset market� that is� whenever he reduces

a short position or a long position down to zero� or does the opposite� These non�di�erentiabilities

greatly obscure the potential insights from analytical results� This di�culty explains why compar�

ative static results for GEI economies with transaction costs are not available in the literature to

the best of our knowledge�

We propose a computational approach instead� thereby extending the work of Brown� DeMarzo

and Eaves ��		�a� �		�b�� DeMarzo and Eaves ��		��� and Schmedders ��		�� �			� on the com�

putation of GEI equilibria to a setting with transaction costs� The non�di�erentiabilities mentioned

above imply that such an extension is far from being straightforward� Moreover� it will turn out

that due to transaction costs robust examples of locally non�unique equilibria exist� which is a fact

that complicates matters further�

The purpose of this paper is to lay the theoretical foundation for a computational analysis

of the impact of transaction costs in GEI economies and to preview some of the consequences of

transaction costs� Speci�cally� the contributions of this paper are�

�� We present the �rst algorithm for the computation of equilibria in �nance economies with

transaction costs� The algorithm is based on the homotopy principle� Finding equilibria in

models with transaction costs is frequently thought of as a combinatorial problem �see Du�e

and Jackson ��	�	�� which leads to the conclusion that the search for an equilibrium is quite
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cumbersome� We show that instead we can phrase the problem as solving a single� small�

system of equations� Our algorithm allows a fast and reliable computation of equilibria�

�� Simple numerical examples give already a glimpse of the crucial impact transaction costs can

have in the model of �nance economies� In particular we show the consequences for volumes

of trade and prices� which can be counterintuitive even for standard parameter values� The

transaction cost variables in the model have a variety of interpretations� For example� we

could also interpret them as a tax on �nancial market transactions� We believe that there

are many important economic questions that can be addressed and investigated using our

algorithm�

�� The theoretical development reveals di�culties that are of economic importance� Excess

demand functions are typically not di�erentiable and equilibria do not need to be locally

unique� In particular� equilibria with closed markets typically exhibit a continuum of asset

prices in the closed market� This fundamental di�erence between models with and without

transaction costs implies that computing equilibria in transaction cost models is not a simple

extension of the known methods for models without transaction costs� The way we take care

of these problems are of general interest and not restricted to the computation of equilibria

in the GEI Model with transaction costs�

�� The technical approach of the paper is presented in a novel way that� we believe� exempli�es

how a homotopy approach should be motivated� validated� and implemented� We present

three practically identical homotopies� each of which has its own advantages depending on

what we want to accomplish� The �rst one� the intuitive homotopy� is most useful for an

intuitive description of the conceptual approach and the ensuing di�culties� The second one�

the theoretical homotopy� is used for the proofs and the precise description of the algorithm�

Finally� the third one� the practical homotopy� is the easiest for a robust implementation of

our algorithm�

The remainder of the paper is organized as follows� In Section � we describe the model of a

�nance economy with transaction costs and characterize the set of no�arbitrage prices� Section

� introduces the intuitive homotopy and outlines the main ideas of our homotopy approach� In

Section � we de�ne the theoretical homotopy which is used for our proofs� Section � depicts the

homotopy that we use for the implementation of the algorithm� and in Section � we report numerical

results� The paper concludes with some �nal remarks in Section � and an appendix containing the

proofs of all results�

� A Finance Economy with Transaction Costs

We consider the standard model of a �nance economy with the additional feature of transaction

costs on the �nancial markets� There are two dates� t � 
� �� with uncertainty at t � 
 about the
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state of nature that realizes at t � �� We identify date 
 with state of nature 
� At date �� exactly

one out of S possible states of nature realizes�

In the economy there are H agents� An agent h is characterized by his initial income stream

eh � IR��S and his preferences� The future initial income stream� which is uncertain� is denoted

by eh�� � IRS � Agent h has a preference over income spent for consumption in the various states�

ch � IR��S
� � Preferences of agent h are represented by a utility function uh � IR��S

� � IR�

Agents have the possibility to use J assets in order to modify their income stream across time

and across states� Asset j pays a dividend djs in state of nature s � S� The stream of dividends

is dj � �dj�� � � � � d
j
S�

� and the asset return matrix is A � �d�� � � � � dJ�� Without loss of generality�

assets are in zero net supply� Indeed� a model where agent h has an initial income stream eeh and

an initial asset portfolio e�h is equivalent to a model where agent h has zero initial holdings of all

assets and an initial income stream eh given by eh� � eeh� and eh�� � eeh�� �Ae�h� With a slight abuse of

notation we also use H� J and S to denote the set of agents� the set of assets and the set of future

states of nature� respectively�

Prices q � �q�� � � � � qJ�
� of assets are denoted in units of income� Sales of assets by agent h

are denoted by �h�� � IRJ
� and purchases by �h�� � IRJ

�� The net trade in assets then leads to an

asset portfolio �h � �h�� � �h��� Both buyers and sellers of assets incur real transaction costs��

Agent h�s trade ��h��� �h��� leads to transaction costs
P

j�J k
h��
j �h��j �

P
j�J k

h��
j �h��j � Here� kh��j

and kh��j are nonnegative transaction costs� denoted in units of income per unit of trade in asset

j� For notational simplicity� we assume kh��j � kh��j � kh
���

j for all agents h and h�� and denote

these costs by kj� This approach to modeling transaction costs is identical to the one in Arrow

and Hahn ��			�� A �nance economy with incomplete markets and transaction costs is given by

E � f�eh� uh�h�H � A� kg�

Throughout the paper we make the following assumptions�

A� For all h � H� the initial income stream eh belongs to IR��S
�� � We de�ne the open set E �

�In the economic theory literature there have been at least three other approaches to the GEI model with trans�

action costs� Yamazaki ���� proves existence of an equilibrium for GEI economies with real transaction costs and

outside money� Both transactions on the asset markets and on the spot markets incur transaction costs� These

transaction costs are expressed in terms of individual transaction possibility sets� Laitenberger ���� considers a

GEI economy with real transaction costs on the �nancial markets� where transaction costs take the form of a pro�

portional loss of at least one good in the second period� In addition to proving the existence of an equilibrium�

Laitenberger shows how the usual no�arbitrage condition must be modi�ed for her model with real transaction costs�

Pr�echac ���� introduces nominal intermediation costs� that take the form of commissions proportional to the value

of trades� The commissions are paid to a privately owned brokerage house that redistributes the commissions to

the consumers� These intermediation costs also result in endogenous bounds on the asset transactions and thereby

ensure the existence of an equilibrium� Pr�echac ���� also develops a new no�arbitrage condition for his model�

In the macroeconomic literature� transaction costs have usually been assumed to be quadratic in the volume of

trade� an example is the paper of Heaton and Lucas ����� This assumption avoids any di�erentiability problems

and the computation of equilibria can be handled by any standard homotopy algorithm� It seems hard to defend�

however� that quadratic transaction costs are a reasonable description of transaction costs made in the real world�

even if one incorporates increasing bid�ask spreads for large transactions� Moreover� quadratic transaction costs

cannot be used to generate endogenous market incompleteness as the marginal costs of trading small quantities are

zero and typically there is trade in all assets�
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IR
���S�H
�� �

A� For all h � H� the utility function uh is three times continuously di�erentiable on IR��S
�� �

�uh � 
� ��uh is negative de�nite� and interior income streams are preferred to income

streams with zero components� uh�ch� � uh�ch�� when ch � IR��S
�� and ch � IR��S

� n IR��S
�� �

A� The rank of the asset return matrix A is J�

A� For all j � J� transaction costs are positive� kj � 
�

With the exception of the requirement that ��uh is negative de�nite everywhere� Assump�

tions A� and A� are standard in the literature� when di�erentiability of demand functions is

needed for the analysis� The stronger assumption on u can be made without loss of generality

�Mas�Colell ��	����� however� and it simpli�es some of our proofs� The assumption that interior

income streams are preferred is standard as well� but can easily be dispensed with when using the

techniques developed in this paper� The assumption that the asset return matrix has full rank�

A�� is not without loss of generality in the case with transaction costs� but it greatly simpli�es the

proofs� The general case remains to be investigated in future research�

At an asset price system q the decision problem of agent h consists of choosing an asset trade

��h��� �h��� � IRJ
� � IRJ

� and a compatible consumption pattern� He chooses an element of his

budget set�

Bh�q� �
n
��h��� �h��� ch� � IR�J���S

�

��� ch� �
P

j�J�qj � kj��
h��
j � eh� �

P
j�J�qj � kj��

h��
j

ch�� � eh�� �A��h�� � �h���
�
�

that maximizes utility�

We restrict ourselves in this paper to transaction costs on the units of assets traded� Of course�

we could instead consider transaction costs on the nominal value of assets traded� Our algorithm

can easily be extended to models with such transaction costs� Note also that we consider transac�

tion costs in a broad sense� so they incorporate e�ort� fees� taxes� or bid�ask spreads�

Some asset prices q � IRJ may lead to arbitrage in which case an agent�s decision problem

does not have a solution� This fact creates the need to characterize the set of no�arbitrage prices�

Because of the presence of transaction costs� the set of no�arbitrage prices gets larger than in the

model of a �nance economies without transaction costs�

Definition ���� A vector q � IRJ is a no�arbitrage asset price system when there does not exist

an asset portfolio ���� ��� � IRJ
�� IRJ

� such that �q� k� � ��� �q� k� � �� � 
 and A���� ��� � 
�

or �q � k� � �� � �q � k� � �� � 
 and A��� � ��� � 
��

�For a vector x � IRn we de�ne x � � as xi � � for all i and xj � � for at least some j�
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A vector q admits arbitrage possibilities whenever it is possible to make strictly positive pro�ts

in at least one state and nonnegative pro�ts in all states� We have the following characterization

of no�arbitrage prices�

Proposition ���� A vector q � IRJ is a no�arbitrage asset price system if and only if there is

� � IRS
�� such that ��A� k � q � ��A� k�

Proposition ��� does not require A to have full column rank� and it is also true for degenerate

asset return matrices A� For k � 
 the theorem reduces to the fundamental theorem on the pricing

of �nancial securities� The set of no�arbitrage prices is denoted by Q� It follows directly by Proposi�

tion ��� that Q is no longer a cone with vertex zero� It is not even necessarily a cone with a non�zero

vertex �for a de�nition� see Debreu ��	�	��� See Figure � for a graphical illustration of how the set

of no�arbitrage prices of an economy with transaction costs compares to the no�arbitrage cone of

an economy without transaction costs� Figure � corresponds to the case

A �

�
� �

� �

�
� k �

�
�

�

�
�

�
�
�
�
�
�
�
�
�
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�
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Figure �� The set of no�arbitrage prices�

It is straightforward to show that Q is an open set if A has full column rank�

Proposition ���� When q � Q� the budget set Bh�q� is compact and convex� and the agent�s

decision problem has a solution ��h��� �h��� ch� that is unique and that satis�es �h�� � �h�� � 
�

Proposition ��� implies that a single agent is never active simultaneously on the demand side

and the supply side of an asset market� There is no ambiguity when we do not consider supply and

demand of assets separately� but instead use the net asset portfolio purchased� �h � �h�� � �h���

Proposition ��� implies that the �net� demand of agent h for assets at prices q � Q is a func�

tion gh � Q � IRJ � The demand of all agents for all assets is given by the HJ�vector g�q� �

�g��q�� � � � � gH�q��� Total asset demand is a function G � Q � IRJ � where G�q� �
PH

h�� g
h�q��

Obviously� the income stream used for consumption is determined uniquely by the asset portfolio
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purchased� We �nish the discussion of the economic model with the de�nition of a competitive

equilibrium�

Definition ���� A competitive equilibrium for an economy E is a collection of portfolio holdings

�� � ����� � � � � ��H� � IRHJ and asset prices q� � IRJ such that

�� ��h is a utility maximizing asset portfolio for agent h at prices q��

��
P

h�H ��h � 
�

The price vector q� is a competitive equilibrium price system if and only if G�q�� � 
� Equilib�

rium asset portfolios and equilibrium incomes spent on consumption in each state are completely

determined by equilibrium prices� since� due to the monotonicity of the utility function� the solution

to an agent�s optimization problem satis�es all inequalities in the de�nition of the budget set with

equality��

At this point we can give a preview of the di�culties in this model to compute equilibria which

are due to the transaction costs� Neither the individual asset demand functions gh nor the total

asset demand function G are typically di�erentiable� Non�di�erentiabilities occur at all prices q

for which at least one agent is on the edge between supplying and not supplying an asset� or on

the edge between buying and not buying an asset� Because of positive transaction costs there

are nondegenerate regions of prices where some agents are not active in at least one of the asset

markets� Even with only small transaction costs� this phenomenon may occur at equilibrium prices

thereby leading to robust degeneracies because an agent who is not active in a certain asset market

is typically not a�ected by changes in the price of that asset� Robust continua of equilibria may be

expected when all agents stop trading in a certain asset� Both the non�di�erentiabilities and the

degeneracies cause di�culties in our proofs and in the numerical implementation of our algorithm�

� The Homotopy Approach

In this section we give a general description of our algorithmic approach� In particular we motivate

our approach by pointing out the consequences of the depicted di�culties for the computation of

equilibria� We show how to circumvent the detected problems and summarize the main results in

a number of propositions which will follow from the results in the next section� We focus on the

intuition behind these results and �nish this section with a conceptual description of our algorithm�

Our algorithm is based on the homotopy principle which has been successfully applied to the

computation of equilibria in general equilibrium models with incomplete markets� see Brown� De�

�Using standard methods one can now proceed to prove the existence of a competitive equilibrium� Extending

the work of Hens ���� to our model with transaction costs one can show that the asset demand functions gh are

continuous on the set Q and that they satisfy a properness condition� see Proposition ���� Proposition ��� shows that

these properties are inherited by the total asset demand function G� which is su�cient to show the existence of an

equilibrium�

�



Marzo� and Eaves ��		�� and Schmedders ��		�� �			�� For an introduction to homotopy methods

see Garcia and Zangwill ��	��� and Eaves and Schmedders ��			�� Here we give just a concise

review of the general approach of the homotopy principle as it relates to our problem�

Following the general homotopy approach a natural homotopy for computing equilibria in our

model would be the function F � �
� �� �Q� IRJ which is de�ned by

F �t� q� � tG�q� � ��� t��q� � q�� �t� q� � �
� �� �Q�

where q� may be any price system in Q� Note that for t � 
� there is a unique solution� q � q�� For

t � �� the problem F ��� q� � 
 is equal to the problem G�q� � 
� and therefore solving F ��� q� � 


amounts to �nding an equilibrium asset price vector q� The idea now would be to start at the

unique solution for F �
� q� � 
 and to follow a path of solutions to F �t� q� � 
 until eventually a

solution to F ��� q� � 
 is reached�

When F is a twice continuously di�erentiable function the following conditions are su�cient

for the convergence of the algorithm �see Garcia and Zangwill ��	�����

�i� F���f
g� 	 �f
g �Q� has a unique solution�

�ii� F �
� �� 
	 f
g and F ��� �� 
	 f
g�

�iii� F 
	 f
g�

�iv� F���f
g� is compact�

Under �i���iv� it follows that F���f
g� is a compact ��dimensional di�erentiable manifold with

boundary� so F���f
g� is a �nite collection of disjoint paths and loops�	 Moreover� the boundary

of F���f
g� equals the intersection of F���f
g� and the boundary of �
� ���Q� so it consists of all

�t� q� such that t � 
 or t � �� and F �t� q� � 
� Since F���f
g� 	 �f
g �Q� has a unique solution�

that solution must be an end�point of a path with another end�point� The only possibility is that

the other end�point belongs to F���f
g�	�f�g�Q�� so it is a competitive equilibrium price system�

A minor problem in the argument is that conditions �ii� and �iii� are usually not satis�ed for all

economies� The standard approach �Debreu ��	�
�� is to invoke methods from transversality the�

ory such as Sard�s theorem to show that these conditions are satis�ed for a generic set of economies�

When we try to apply the standard homotopy approach to �nding equilibria in our model we

encounter two signi�cant problems� The �rst di�culty is the existence of non�di�erentiabilities of

the homotopy F� which are due to non�di�erentiabilities in the market excess demand function G�

We approach this problem by subdividing the domain of F into subsets where the excess demand

G and thus the homotopy F are di�erentiable� The zero sets of F on the di�erent subsets are then

nicely tied together to guarantee the convergence of the algorithm� The second di�culty is that

even the application of transversality theory cannot rule out the occurrence of robust degeneracies

which occur at t � �� Notice that �i���iv� imply the existence of a �nite number of equilibrium price

�A path is a set di�eomorphic to the unit interval and a loop is a set di�eomorphic to the unit circle�

	



systems� With transaction costs it cannot be ruled out that certain assets are robustly non�traded

by every trader� even at equilibrium prices� In that case there is a continuum of equilibrium prices�

as small perturbations in prices of assets that nobody trades in� do not a�ect market clearing�

The solutions to the homotopy equations cannot even be expected to constitute a ��dimensional

topological manifold� For example� if two or more assets are robustly non�traded� then the prices

of all these assets can vary within some neighborhood without a�ecting the equilibria�

��� The Intuitive Homotopy

We solve the robust degeneracy problem by making an equilibrium selection� The idea of equilib�

rium selection in a competitive framework has been exploited in Dubey� Geanakoplos and Shubik

��		�� but it is rarely used in a competitive equilibrium analysis� We analyze two alternatives for

equilibrium selection� The �rst alternative considers only those competitive equilibria where for

each asset market there is non�zero trade� or at least one agent is indi�erent between selling an

asset and not selling an asset� The second alternative considers those competitive equilibria where

for each asset market there is non�zero trade� or at least one agent is indi�erent between buying

and not buying an asset�

We say that an agent h is indi�erent at q between selling asset j and being inactive in asset mar�

ket j if ghj �q� � 
 and the relaxation of the non�negativity constraint on �h��j would not a�ect the

optimal decision of household h� Under the di�erentiability assumptions made the latter condition is

equivalent to the requirement that the Lagrange multiplier corresponding to the inequality �h��j � 


equals zero at q� This Lagrange multiplier is denoted by �h��j �q� and equals ��ch�
uh�ch�q���qj�kj��PS

s�� �chsu
h�ch�q��djs� A similar de�nition applies for an agent to be indi�erent between buying as�

set j and being inactive in asset market j� The Lagrange multiplier corresponding to the inequality

�h��j � 
 is denoted by �h��j �q� and equals �ch�
uh�ch�q���qj � kj��

PS
s�� �chsu

h�ch�q��djs� The set of

agents which is indi�erent between selling asset j and not selling asset j is denoted by I�j �q� and

the set of agents which is indi�erent between buying asset j and not buying asset j by I�j �q�� The

demand function of agents in I�j �q��I�j �q� displays a non�di�erentiability at the asset price system

q� It is due to this non�di�erentiability that robust non�degeneracies may occur�

Definition ���� A competitive equilibrium ���� q�� of E is demand�perfect� if in each asset

market j there is non�zero trade� ��hj �� 
 for some h� or at least one agent is indi�erent between

selling asset j and not selling asset j� I�j �q�� �� �

The terminology demand�perfect comes from the fact that generically demand�perfect equilib�

ria are the ones that are robust to the introduction of a trader that demands all assets� Indeed�

generically� demand�perfect equilibria are obtained by perturbing the total excess demand function

of the economy by an excess demand function of a trader that demands all assets� considering the

set of competitive equilibria that result� and taking the limit of the set of competitive equilibria

for a perturbation going to zero� For each asset market� it holds in the limit either that there is

non�zero trade or that one agent will be on the limit of supplying the asset or not supplying the

�




asset� Indeed� in the perturbed economy this household supplies a tiny amount to clear the market�

and in the limit it is indi�erent between supplying and not supplying� A similar motivation can be

given for supply�perfect equilibria� From an economic point of view� no information is lost by re�

stricting attention to supply�perfect or demand�perfect equilibria� in the sense that no competitive

equilibrium allocations are lost�

Proposition ���� For each competitive equilibrium ���� q�� of E there is exactly one allo�

cationally equivalent supply�perfect equilibrium ���� qs� and exactly one allocationally equivalent

demand�perfect equilibrium ���� qd��

The proof of Proposition ��� yields another important aspect of supply�perfect and demand�

perfect equilibria� These equilibria give a lower bound� respectively an upper bound� on prices

that sustain a certain allocation� We exploit this property in our numerical examples� to give the

equilibrium interval of asset prices in case there is no trade in a certain asset�

We modify the natural homotopy to compute demand�perfect equilibria� To this end we de�ne�

for q � Q�

��
j �q� �

HY
h��

�h��j �q�� j � �� � � � � J�

We now add the term
��
�j �q��

��e
qj to the total excess demand function Gj� where � � IR � IR is any

bounded� di�erentiable function with ��
� � 
 and �� � 
� The function ��eqj in the denominator

is used for simplicity of the proofs� Any function of qj with an everywhere nonnegative derivative

that diverges to plus in�nity as qj tends to plus in�nity would su�ce� This addition results in the

function eG� de�ned by

eGj�q� � Gj�q� �
����

j �q��

� � eqj
� j � J� q � Q�

Proposition ���� It holds that �g��qd�� � � � � gH �qd�� qd� is a demand�perfect competitive equi�

librium of E if and only if eG�qd� � 
�

The intuitive homotopy is the function eF � �
� �� �Q� IRJ de�ned byeF �t� q� � t eG�q� � ��� t��q� � q�� �t� q� � �
� �� �Q�

where q� may be any price system in Q� Note that for t � 
� there is a unique solution� q � q�� For

t � �� the problem eF ��� q� � 
 is equal to the problem eG�q� � 
� and therefore� by Proposition ����

solving eF ��� q� � 
 amounts to �nding an asset price vector q that induces a demand�perfect equi�

librium� The idea now would be to start at the unique solution for eF �
� q� � 
 and to follow a path

of solutions to eF �t� q� � 
 until eventually a solution to eF ��� q� � 
 is reached�

��



��� Bid�Ask Structures

The remaining problem is the existence of non�di�erentiabilities of eF � The basic idea is to subdivide

the domain of eF into subsets on which eF is di�erentiable� and to jump from one such subset to

the next when tracking the solution curve of eF from �
� q�� to a demand�perfect equilibrium� This

approach is supported by the fact that generically these subsets are a covering of Q� that is� the

relative interiors of any two such subsets have an empty intersection� and the union of all those

subsets equals the set Q� The standard homotopy approach allows us to follow a path of solutions

in any of these subsets� Once we hit a boundary of our domain subset we switch over to the next

subset and continue the path� In order to formalize this idea we need some further notation�

We de�ne a set R of sign vectors�

R � fr � IRHJ j rhj � f��� 
���gg�

A sign vector r � R determines a subset of Q where the sign of the trades being made� the bid�ask

structure� is determined by r� If rhj � ��� then agent h supplies asset j� if rhj � 
 then agent h does

not trade in asset market j� and if rhj � ��� then agent h is buying asset j�

Formally� for r � R�

Q�r� � fq � Q j ghj �q� 	 
� or ghj �q� � 
 and h � I�j �q�� when rhj � ���

ghj �q� � 
� when rhj � 
�

ghj �q� � 
� or ghj �q� � 
 and h � I�j �q�� when rhj � ��g�

and gh�r � Q�r� � IRJ and Gr � Q�r� � IRJ denote the restrictions of the individual demand

functions for assets and the total demand function for assets to Q�r�� For all q � Q�r� an agent h

is always taking a long position in the same set of assets� a short position in the same set of assets�

and not trading at all in the same set of assets� The fact that the long or short position could go to

zero complicates the de�nition somewhat� Furthermore� ��r � Q�r� � IRJ denotes the restriction

of �� to Q�r�� Notice that ��r
j is identically equal to zero if rhj � �� for at least one household h�

Proposition ���� For r � R� the asset demand functions gh�r and Gr� and the function ��r

are twice continuously differentiable��

The next observation concerns the asset demand functions� If an asset price ever approaches

an arbitrage price� then the asset demand will diverge� This property will prove crucial in the

convergence proof of our algorithm� We denote the excess demand for income by agent h at date 


by gh� � so g
h
� �q� � ch� � eh� with ch the utility maximizing consumption bundle at prices q� We de�ne

Q� as the set of no�arbitrage asset prices in the absence of transaction costs� so Q� � Q�

�A function with domain a subset of Euclidean space which is not necessarily open is di�erentiable if it has a

di�erentiable extension to an open neighborhood of its domain of de�nition�

��



Proposition ���� Let qn � Q be any sequence converging to �q � �Q or diverging� that is�

kqnk � �� Then k�gh� �q
n�� gh�qn��k � �� Moreover� for any q� � Q�� ��� q�� �

�
gh� �q

n�� gh�qn�
�
�

���

The latter part of Proposition ��� will prove most important� and carries over to aggregate asset

demand functions�

Proposition ���� Let qn � Q be any sequence converging to �q � �Q or diverging� that is�

kqnk � �� Then� for any q� � Q�� ��� q�� � �G��q
n�� G�qn��� ���

Next we de�ne the set P �r� consisting of the pairs of the homotopy parameter and the asset price

vectors that satisfy the homotopy equation� together with the requirement that r be compatible

with the bid�ask structure in all markets� that is�

P �r� � f�t� q� � �
� �� �Q�r�j eF �t� q� � 
g�

Recall our de�nition of the open set E � IR
���S�H
�� � We now have the following result�

Theorem ��	� There is a subset E� of E such that E nE� has a closure with Lebesgue measure

zero and for all e � E�� for all r � R� P �r� is a compact� ��dimensional C� manifold with bound�

ary� A point �t� q� in the boundary of P �r� is either not a boundary point of P �r� for all r �� r

and belongs to f
� �g � Q� or is a boundary point of exactly one P �r� with r �� r and belongs to

�
� ���Q� Moreover� r and r di�er in exactly one element which changes from �� to 
 or from ��

to 
� or the reverse�

For almost all economies� for all r � R� the set P �r� is a compact� ��dimensional di�erentiable

manifold with boundary� so it is a �nite collection of disjoint paths and loops� It follows that each

component of P �r�� i�e� a maximally connected subset of P �r�� is either a path or a loop� We write

P �r� � P �r� �� � � � � � P �r� c�r��� where P �r� c�� c � �� � � � � c�r�� is a component of P �r� and c�r� is

the number of components in P �r�� The set P � �r�RP �r� is the set of all potential solutions to

the homotopy equations� so P � eF���f
g��

As a corollary to the results in the Appendix we get the following result� which con�rms that

the non�di�erentiabilities of eF are well�behaved and do lead to well�behaved non�di�erentiabilities

of eF���f
g� that allow us to prove convergence of our algorithm�

Theorem ��
� There is a subset E� of E such that E nE� has a closure with Lebesgue measure

zero and such that for all e � E� the following statements hold� The set eF���f
g� is a compact

��dimensional piecewise C� manifold with boundary�� The boundary of eF���f
g� equals the inter�

�A manifold is a ��dimensional piecewise C� manifold if it is a ��dimensional topological manifold that is a �nite

union of C� manifolds�

��



section of F���f
g� and f
� �g � Q and is a compact ��dimensional manifold� There is a unique

boundary point in f
g �Q�

��� The Essence of the Method

The unique starting point is given by q � q�� and corresponds to a bid�ask structure r� that is given

by r� � sign�g�q���� It holds that �
� q�� � P �r�� c�� for some c� � f�� � � � � c�r�g� The set P �r�� c�� is

either a path or a loop� Since �
� q�� is a boundary point of P �r�� c��� it is a path and must possess

another end point� say �t�� q��� If t� � �� then a demand�perfect competitive equilibrium has been

found� If t� 	 �� then the reason that we cannot continue following the path P �r�� c�� is that we

are at a boundary point of Q�r���

Either exactly one agent h� for which r�h
�

j� � 
 belongs to I�j� �q
�� or I�j� �q

��� or there is exactly

one agent h� for which r�h
�

j� � �� or r�h
�

j� � ��� such that gh
�

j� �q
�� � 
� In the �rst case an inactive

agent is on the edge of becoming an active trader in the market for asset j�� In the second case an

active agent becomes inactive in the market for asset j�� In both cases it holds that q� � Q�r���

where� in the �rst case� r� is such that r�h
�

j� � 
 and r�hj � r�hj � �h� j� �� �h�� j��� and� in the second

case� r� is such that r�h
�

j� � �� or r�h
�

j� � ��� and r�hj � r�hj � �h� j� �� �h�� j���

The key insight is that �t�� q�� � P �r�� c�� for exactly one c� � f�� � � � � c�r��g� and is a boundary

point of P �r�� c��� Therefore� P �r�� c�� is a path and should have another end point� say �t�� q���

Now� again� either t� � � and a demand�perfect equilibrium has been found� or t� 	 � and it holds

that q� is a boundary point of a uniquely determined P �r�� c���

The general argument is as follows� The homotopy will generate a sequence of components

fP �rn� cn�gn������ �N � where N might �still� be in�nite� The sequence �rn�n������ �N is alternating� it

cannot happen that two components P �r� c� and P �r� c� of the same manifold P �r� are generated

consecutively� Moreover� from a certain bid�ask structure r � R� the next bid�ask structure r � R

found by the homotopy di�ers from r in exactly one component� Either some rhj � 
 and rhj is ��

or ��� or some rhj is �� or �� and rhj � 
� In economic terms� either an agent h that was inactive

in asset market j� starts supplying or demanding asset j� or an agent h that was short or long in

asset market j� gets inactive�

The total number of di�erent components P �r� c� is �nite� as the number of bid�ask structures is

�nite and� by Theorem ���� each bid�ask structure leads to a �nite number of components� Hence�

the sequence fP �rn� cn�gn������ �N is a �nite sequence� or one component P �r� c� is the �rst to be

generated for the second time� In the �rst case� the last end point found� say �tN � qN � satis�es that

tN � � and qN is a demand�perfect equilibrium� �If tN 	 �� it should have been the starting point

of another component�� The second case cannot occur� as it would be inconsistent with the door�in

door�out principle of Lemke and Howson ��	���� In order for a component P �r� c� to be regenerated

by the algorithm� it has to be connected to at least two other components� which is shown to be

impossible in the Appendix� This argument shows both generic convergence of the algorithm and

that P has a component which is a path� connecting q� to a demand�perfect equilibrium�

The set P is a compact� ��dimensional piecewise C� manifold with boundary� so it consists of

a �nite number of paths and loops� Loops contain no competitive equilibria� There may be no

��



loops at all� Paths come in two sorts� There is a unique path starting at �
� q�� and terminating

at ��� q���� where q�� is a demand�perfect competitive equilibrium� This path is piecewise C�� our

algorithm is convergent� All other paths have two end points at t � �� so connect two di�erent

demand�perfect competitive equilibria� We get the following corollary�

Corollary ���� There is a subset E� of E such that E n E� has a closure with Lebesgue

measure zero and for all e � E�� P consists of one path connecting �
� q�� and ��� q��� where q�� is

a demand�perfect equilibrium� so the homotopy algorithm is convergent� consists of a �nite number

of paths connecting two di�erent demand�perfect equilibria� and consists of a �nite number of loops

without equilibria� The number of demand�perfect equilibria is odd�

The homotopy we have used so far is well suited for the intuitive discussion of the technical

di�culties in this model� Many general equilibrium theorists like to use excess demand functions

for their arguments� Therefore� a homotopy using excess demand functions appears to be a natural

choice for the discussion of the approach� However� both for proving convergence of our algorithm as

well as for an implementation� a homotopy with excess demand functions proves to be impractical�

When asset markets are incomplete� excess demand functions are notoriously hard to compute� In

our case this problem is compounded by the presence of transaction costs� These problems lead

us to two di�erent homotopies which we discuss in the next two sections� In particular� we treat

two complications� The �rst is the di�culty of getting closed�form solutions for demand functions�

The second is the potentially huge number of switches between several pieces P �r� c��

� The Theoretical Homotopy

The very serious di�culty of �nding a closed form solution for the total demand function typically

receives very little attention� Nevertheless� we are not aware of any utility function satisfying the

standard monotonicity and concavity assumptions for which closed�form solutions are available in

the presence of both transaction costs and incomplete markets� In fact� even in the case without

transaction costs� Brown� DeMarzo and Eaves ��		�a� had to resort to a not everywhere monotonic

utility function� in order to get a closed�form expression� However� the homotopy approach makes

it possible to tackle this problem in an elegant way� Instead of de�ning the homotopy by means of

the total demand function for assets G� the homotopy is de�ned in terms of the �rst�order equations

that characterize demand� see Garcia and Zangwill ��	��� and Schmedders ��		��� We need some

additional notation to give such a formulation�

Given a sign vector r � R we are interested in the collection of assets for which agent h is a

supplier� the assets in which he does not trade� and the assets for which agent h acts as a buyer�

��



These sets are denoted by J�h �r�� J�h�r�� and J�h �r�� so

J�h �r� � fj � J j rhj � ��g�

J�h�r� � fj � J j rhj � 
g�

J�h �r� � fj � J j rhj � ��g�

The following notation indicates for each sign vector r � R all combinations of agents and assets

where supply� inactivity or demand occurs�

R��r� � f�h� j� � H � J j rhj � ��g�

R��r� � f�h� j� � H � J j rhj � 
g�

R��r� � f�h� j� � H � J j rhj � ��g�

Consider any sign vector r � R and any �t� q� � IR � Q� then �t� q� � P �r� if and only if there is

���� ��� �� c� � IRHJ � IRHJ � IRHJ � IRH���S� such that

�h��j � 
� �h� j� � R��r�� ���

�h��j � 
� �h� j� � R��r�� ���

�hj � 
� �h� j� � R��r�� ���

ch� � eh� �
X

j�J�
h
�r�

�hj �qj�kj��
X

j�J�
h
�r�

�hj �qj�kj� � 
� h � H� ���

chs � ehs �
X

j�J�
h
�r��J�

h
�r�

�hj d
j
s � 
� h � H� s � S� ���

�h��j � �ch�
uh�ch��qj � kj��

SX
s��

�chsu
h�ch�djs � 
� h � H� j � J� ���

�h��j � �ch�
uh�ch��qj � kj� �

SX
s��

�chsu
h�ch�djs � 
� h � H� j � J� ���

t
X
h�H

�hj � ��� t��q�j � qj� � t
��
QH

h�� �
h��
j �

� � eqj
� 
� j � J� ���

�h��j � 
� �h� j� � R��r�� �	�

�h��j � 
� �h� j� � R��r�� ��
�

��hj � 
� �h� j� � R��r�� ����

�hj � 
� �h� j� � R��r�� ����

t � 
� ����

�� t � 
� ����

Equations ��� are the perturbed market�clearing conditions that correspond to the intuitive ho�

motopy equations eF �t� q� � 
� only that the asset�demand functions are replaced by the portfolio

choices �hj � Note that equations ��� are the only equations containing the homotopy parameter t

��



that is constrained to lie between 
 and � by inequalities ���������� Equations ������� and inequal�

ities �	������ are the �rst�order conditions of the agents� utility maximization problems� These

conditions are necessary and su�cient since the agents� utility maximization problems are convex

programming problems with linear constraints� so a constraint quali�cation is satis�ed� In fact�

the �rst�order conditions of the agents� utility maximization problems also lead to the inequalities

�h�
�

j � 
 for �h� j� � R��r� and �h��j � 
 for �h� j� � R��r�� These inequalities are redundant� as

they follow with strict inequality from equations ���� ��� and ���� and ���� ��� and ���� respectively�

making use of the assumption that �ch�
uh�ch� and kj are strictly positive� These inequalities are

therefore omitted� Equations ��� and ��� are the budget constraints� equations ��� and ��� are the

derivatives with respect to the decision variables �hj � and equations ������� are the complementary

slackness conditions for the multipliers corresponding to the sign constraints on the decision vari�

ables� Note that for �h� j� � R��r� the complementarity condition reduces simply to �hj � 
� that is�

to equation ���� If �hj 	 
� then �h��j must be 
� and the complementarity condition is just equation

���� Inequalities �	������ are the sign restriction on the decision variables and multipliers�

The number of variables �t� q� ��� ��� �� c� in the system of equations ������� equals ��J��HJ�

HJ�H���S�� one more than the number of equations which is given by HJ�H���S���HJ�J�

Typically� we would expect a one�dimensional set of solutions� If� in addition to �������� we require

exactly one of the inequalities in �	������ to hold with equality� we expect to obtain generically a

�nite set of locally unique solutions� This intuition is con�rmed by formal proofs in the Appendix�

For r � R� the solutions to the system of equations ������� and the inequalities �	������ is denoted

by eP �r�� In the Appendix it is shown that eP �r� is a compact� di�erentiable ��dimensional manifold

with boundary� It is in this way that we show that P �r� is a ��dimensional manifold with boundary

as the following proposition states that the two sets are di�eomorphic�

Proposition ���� For r � R� P �r� and eP �r� are C� di�eomorphic�

Theorem ���� There is a subset E� of E such that E nE� has a closure with Lebesgue measure

zero and for all e � E�� for all r � R� eP �r� is a compact� ��dimensional C� manifold with boundary�

A point �t� q� ��� ��� �� c� in the boundary of eP �r� is either not a boundary point of eP �r� for all

r �� r and belongs to f
� �g �Q� IRHJ � IRHJ � IRHJ � IRH���S�� or is a boundary point of exactly

one eP �r� with r �� r and belongs to �
� ���Q� IRHJ � IRHJ � IRHJ � IRH���S�� Moreover� r and r

di�er in exactly one element which changes from �� to 
 or from �� to 
� or the reverse�

Theorem ��� is a corollary to Proposition ��� and Theorem ���� Once we have shown that eP �r�

is a C� manifold with boundary� and that there is a C� di�eomorphism between eP �r� and P �r��

it follows that P �r� is a manifold with boundary� where the di�eomorphism maps the boundary ofeP �r� to the boundary of P �r�� see Jongen� Jonker and Twilt ��	���� Corollary ������ page �
�� The

way to generate the homotopy path is similar to before� The major di�erence is that the� usually

not available� closed form expression for eG needed for the homotopy eF � is not needed anymore�

The homotopy eF is replaced by the equations ��������

��



��� Observations

Before we continue the discussion of the development of our three homotopies we make a few

observations about the homotopy�path following using the theoretical homotopy�

Multiplying equations ��� with some vector of state prices � � IRS
�� satisfying the condition of

Proposition ��� and adding equation ��� results in the inequality

�ch� � eh�� �
SX

s��

�s�c
h
s � ehs � � 
 for all h � H�

with equality if only if the agent doesn�t trade on the �nancial markets or in the special case k � 
�

In both cases the agent doesn�t burn� any resources on the �nancial markets because he doesn�t

incur transaction costs� The latter case just re�ects the Cass trick for GEI economies without

transaction costs� Note� that the above inequality holds along the entire homotopy path and not

only in equilibrium�

Adding equations ��� and ��� yields the following equation

�h��j � �h��j � ��ch�
uh�ch�kj �

This equation shows that �h��j � �h��j � 
 implying the last statement of Proposition ���� namely

that �h��j � �h��j � 
� it can never be optimal for an agent to be both long and short in a �nancial

security� Moreover� this equation sheds light on what happens along the homotopy path when

an agent changes sides on a security market� for example� from being long� to being inactive� to

being short� When the agent�s long position in asset j is reduced down to zero� and the homotopy

path is at the boundary of two sets P �r� and P �r�� the shadow prices are �h��j � ��ch�
uh�ch�kj

and �h��j � 
� As the homotopy path moves through the interior of P �r�� both shadow prices are

positive indicating by complementary slackness that the asset variable is zero� that is �hj � 
� or

equivalently �h��j � �h��j � 
� As the path hits a set P �r��� where the agent is short in asset j �in

its interior� the shadow prices reach the point where �h��j � 
 and �h��j � ��ch�
uh�ch�kj �

In addition� we can infer some properties of demand� and supply�perfect equilibria from equa�

tions ��� and ���� The shadow prices always satisfy �h��j � �h��j � 
 resulting in the following

inequalities for all h � H�

qj � kj �

SX
s��

�
�chs u

h�ch�

�ch�
uh�ch�

djs�� and qj � �kj �
SX

s��

�
�chs u

h�ch�

�ch�
uh�ch�

djs��

Hence� the price range for asset j in equilibrium equals

�kj �maxh�H

	
SX

s��

�chsu
h�ch�

�ch�
uh�ch�

djs



� qj � kj �minh�H

	
SX

s��

�chsu
h�ch�

�ch�
uh�ch�

djs



�

An immediate consequence of the last inequalities is that the price di�erence between the asset

prices in a demand�perfect equilibrium and a supply�perfect equilibrium never exceeds �kj � In a

��



demand�perfect equilibrium the upper bound kj � minh�H

�PS
s��

�
chs

uh�ch�

�
ch
�
uh�ch�

djs

�
and in a supply�

perfect equilibrium the lower bound �kj �maxh�H

�PS
s��

�
chs
uh�ch�

�
ch�
uh�ch�

djs

�
is computed�

� The Practical Homotopy

A drawback of the our algorithm based on the theoretical homotopy is that a large number of

bid�ask structures might be generated before reaching a demand�perfect equilibrium� To avoid this

problem we exploit the complementarity between the portfolio variables �h��j ��h��j � and the shadow

prices �h��j ��h��j � of the nonnegativity constraints for the portfolio variables� See also Garcia and

Zangwill ��	��� and Herings and Peeters ��


� for a discussion of this approach� Equations �������

and inequalities �	������ imply the standard complementarity conditions

�h��j � �h��j � 
 and �h��j � �h��j � 
�

Therefore� we actually can represent� for example� �h��j and �h��j by a single variable� We introduce

two vectors 
�� 
� � IRHJ and substitute the following functions for the portfolio variables and

shadow prices

�h��j � �maxf
� 
h��
j g�l�

�h��j � �maxf
� 
h��
j g�l�

�h��j � �maxf
��
h��
j g�l�

�h��j � �maxf
��
h��
j g�l�

where l can be any integer greater than or equal to two� Note that the functions are l�� times con�

tinuously di�erentiable in the variables 
h��j and 
h��j � respectively� By de�nition of these functions

inequalities �	������ are always automatically satis�ed and we can drop them from consideration�

A bid�ask structure r corresponds to �
�� 
�� � A��r��A��r�� where

A��r� � f
� � IRHJ j 
h��
j � 
 if �h� j� � R��r�


h��
j � 
 if �h� j� � R��r� �R��r�g

A��r� � f
� � IRHJ j 
h��
j � 
 if �h� j� � R��r�


h��
j � 
 if �h� j� � R��r� �R��r�g�

Given a particular bid�ask structure� equations ������� are also automatically satis�ed� There

is a solution �t� q� ��� ��� �� c� � eP �r� if and only if there is �t� q� 
�� 
�� c�� where �
�� 
�� �

�	



A��r� �A��r�� such that

�ch�
uh�c��qj � kj��

SX
s��

�chsu
h�c�djs � �maxf
� 
h��

j g�l � 
� �h� j� � H � J� ����

�ch�
uh�c��qj � kj��

SX
s��

�chsu
h�c�djs � �maxf
� 
h��

j g�l � 
� �h� j� � H � J� ����

ch� � eh� �
X
j�J

qj��maxf
��
h��
j g�l � �maxf
��
h��

j g�l�

�
X
j�J

kj��maxf
��
h��
j g�l � �maxf
��
h��

j g�l� � 
� h � H� ����

chs � ehs �
X
j�J

��maxf
��
h��
j g�l � �maxf
��
h��

j �lg�djs � 
� h � H� s � S� ����

t
X
h�H

��maxf
��
h��
j g�l � �maxf
��
h��

j g�l�

���� t��q�j � qj� � t
��
Q

h�H�maxf
� 
h��
j g�l�

� � eqj
� 
� j � J� ��	�

The advantage of this reduced system is the absence of inequality constraints and the indepen�

dence of the system of the sign vector r� We can use standard path�following methods to follow the

path generated by this particular homotopy� Obviously the values of all variables along the path

generated by this homotopy are identical to the values along the path generated by the theoretical

homotopy�

� Numerical Analysis� Examples

In this section we report numerical results from an application of our algorithm to a few economies�

First� we illustrate the algorithmic procedure via an example� Next we perform some comparative

statics exercises to give a �rst glimpse of the impact of transaction costs in economies with incom�

plete markets�

We implemented our homotopy algorithm on a ��
 MHz PCPentiumII using the software pack�

age HOMPACK� This software package is a collection of FORTRAN �� subroutines for solving

systems of nonlinear equations using homotopy methods �Watson� Billups� and Morgan ��	�����

From the three methods available in HOMPACK we selected the most robust path�following algo�

rithm� which tracks the homotopy path by solving an ordinary di�erential equation� The starting

point of the homotopy can be found using a standard nonlinear equation solver� We use a variation

of the penalty approach of Schmedders ��		��� We approximate the Jacobian of the homotopy

function with a one�sided di�erence formula� When the path�following routine �nds a solution we

use a Newton routine to re�ne the solution to further reduce the error� In all our examples the

maximum relative errors are of the order of magnitude of �
���� The running time of the computer

implementation of our algorithm is less than two seconds for the examples in the next sections�

�




��� A First Example

Consider an economy with H � � agents� S � � possible states in period t � �� and J � � assets�

called a bond and a stock� Both agents have identical von�Neumann�Morgenstern CRRA utility

functions with identical uniform beliefs� That is� agent i�s utility function equals�

ui�c� �
c
���i
�

�� �i
�

	X
s��

�

�

c
���i
s

�� �i
�

The two agents have coe�cients of risk�aversion of �� � � and �� � �� respectively� Both agents

have an endowment of e�� � e�� � � in period 
� Agent � has an endowment �labor income�

e�� � �
�	� ���� 
�	� ���� at date t � �� agent � has zero endowment at t � �� but he owns the

entire stock paying dividends dst � �
��� ��
� ���� ��
�� The stock is in unit net supply� �Agent ��s

endowment at t � 
 can be thought of as the stock�s dividend at t � 
�� The bond pays one unit

in the second period regardless of the state of nature and is in zero net supply� Agents trading the

bond and the stock have to pay identical transaction cost k � kb � kst for both securities� In this

�rst example we set k � 
�
��

Using the practical homotopy of Section � we need to solve a system of �HJ�H�HS�J � �


equations with �� unknowns� By solving equations ���� and ���� for the consumption variables

and substituting the obtained values into the �rst�order conditions ���� and ���� we can reduce the

system to the quite modest system with �HJ � J � �
 equations and �� unknowns� We use the

expected payo�s of the two assets as values for the starting� prices q�� that is� q�b � � and q�st � �����

�FIGURES � AND � ABOUT HERE�

We depict the nature of the homotopy path in a few �gures� Figures � and � show the change

of agent ��s and agent ��s portfolio� respectively� as a function of the homotopy parameter� The

behavior of the two portfolios is extremely di�erent along the path� For small values of t the �rst

agent is long in the bond and short in the stock� This is not surprising� as the starting price system

is based on the expected payo�s� and does not include a risk premium� The short position in the

stock decreases quickly to zero as t increases and the path of ��b exhibits a kink which in turn leads

also to a kink in the path of ��st� This type of behavior of the portfolio functions is typical� whenever

one function exhibits a kink with a function value of zero then the other portfolio function also has

a non�di�erentiability� However� these kinks in the �rst agent�s portfolio functions do not a�ect the

second agent�s portfolio functions� Along the homotopy path no holding of the second agent hits

zero for t 	 � resulting in smooth portfolio functions� Note that equation ��	� does not enforce

market clearing for t 	 �� Only as t hits � the variable ��b decreases to zero� In equilibrium the

bond market is closed� The equilibrium trade on the stock market equals a sale of 
�
�� shares by

agent � to agent �� Figure � displays the behavior of the asset prices along the homotopy path�

Both price functions are smooth and are una�ected by the kinks in the portfolio functions of agent ��

�FIGURE � ABOUT HERE�

��



��� The Need for an Equilibrium Selection� An Example

With this simple economy we can also show the importance of an equilibrium selection� Figure

� shows the prices along the homotopy path for the homotopy without the term used for the

equilibrium selection� that is� for the homotopy where equation ��	� is replaced by the following

equation�

t
X
h�H

��maxf
��
h��
j g�l � �maxf
��
h��

j g�l� � ��� t��q�j � qj� � 
� j � J�

Until t hits � the price paths are identical� But in equilibrium the bond is not traded due to

the large transaction costs resulting in a continuum of equilibrium bond prices� If we don�t force

the homotopy to make an equilibrium selection then the path runs into this continuum and the

homotopy exhibits a drop in rank at t � � which causes numerical problems� �In this example the

homotopy solver cannot �nd a unique stable solution at t � � and instead �nds many solutions

with varying bond prices� Eventually the solver reports one of the found solutions and indicates a

numerical problem��

�FIGURE � ABOUT HERE�

��� Comparative Statics� A Two�Asset Model

We perform a comparative statics analysis in our economy� We compute an equilibrium for various

values of the transaction costs k in the interval �
� 
����� Figure � shows the optimal portfolio of

agent � as a function of the unit transaction cost k� Not surprisingly� the holdings decrease fast as

k increases� At around k � 
�
� the bond market closes at which point the rate of decline of the

stock holding changes considerably� Finally� as the unit transaction cost exceeds k � 
���� also the

stock market closes� The economy has reached a no�trade equilibrium�

�FIGURE � ABOUT HERE�

Figure � shows the bond price at both the supply�perfect and the demand�perfect equilibrium

as a function of the transaction cost k� Of course� as long as the bond is traded the bond prices

at the two equilibria coincide� However� once the market closes the prices start to di�er and their

di�erence eventually becomes very substantial� Figure � shows the corresponding picture for the

stock� The equilibrium stock price as a function of k displays a kink at the k�value where the bond

market closes�

�FIGURES � AND � ABOUT HERE�

��



��� The Impact of Transaction Costs� A Three�Asset Model

We extend the model to include a third security� a call option on the stock� The option is traded

at time t � 
 and has payo�s in period t � � depending on the state of nature� The stock is not

traded anymore at time t � �� so there is no endogenous uncertainty about the value of the stock

and the option� In this simple two�period model the option�s payo� is exogenously determined once

the strike price has been set� Denoting the strike price by K the return of the option in state s � �

equals max�dsts �K� 
�� We consider a strike price of K � dst� � ��
 leading to option payo�s of

do � �
� 
� 
��� ��
� at date t � �� We examine the impact of identical real per unit transaction costs

of k � kb � kst � ko on the three securities�

�FIGURE 	 ABOUT HERE�

Figure 	 displays the portfolio of agent � as a function of the unit transaction cost k� Depending

on the value of k the portfolio positions of an agent can be vastly di�erent� For very small trans�

action costs below 
�

� agent � is long in the option and short in both the bond and the stock�

For approximately 
�

� � k � 
�
��� the stock market is closed� and when k � 
�
��� agent � is

long in the stock� The bond market closes at around k � 
��� and never opens again as k increases

further� Similarly� the option market closes for good around k � 
�
��� Once the option market

closes the agents� portfolios are identical to those in the two�asset model�

The �gure shows that for some values of k only the option market is open� for some other values

agent � is short in the stock� and again for some other values he is long in the stock� Moreover�

as k increases the trading volume of an asset does not change monotonically� For example� as k

increases from 
 to about 
�

� the trading volume of the bond increases�

�FIGURES �
������ ABOUT HERE�

Figures �
� ��� and �� show the equilibrium prices of the bond� stock� and option� respectively� as

a function of the unit transaction cost k� As discussed previously� whenever a market is closed there

is a continuum of equilibrium prices bounded above by the price of the demand�perfect equilibrium

and bounded below by the supply�perfect equilibrium price� Figure �� shows how these two prices

for the stock coincide for small values of k when the agents trade the stock� then become di�erent

when the stock market is closed� and �nally coincide again when the stock market reopens as k

exceeds 
�
����

� Conclusion

We have presented a new algorithm for the computation of equilibria in �nance economies with

transaction costs on �nancial markets� Our homotopy algorithm is able to deal with the two

major technical di�culties that are caused by transaction costs� namely the non�di�erentiabilities

of agents� asset demand functions and the existence of robust examples of locally non�unique

��



equilibria� The algorithm enables us to prove generic existence of an equilibrium� and we can

also easily implement it using standard path�following software� We have computed the equilibria

for some small �nance economies and have seen some �rst counterintuitive result� an increase of

transaction fees for all assets in the economy does not lead to a decreasing trading volume in all

security markets�

This paper has laid the theoretical foundation for a computational analysis of �nance economies

with transaction costs� With our algorithm researchers can now address many interesting issues

concerning transaction costs or taxes in the context of stochastic �nance economies�

��



Appendix� Proofs

In this appendix we collect the proofs of all the results in our paper� We proceed in four steps�

First� we present the proofs of the results that do not rely on transversality arguments� such as the

properties of the no�arbitrage prices� equilibria� and demand functions� Secondly� we give a short

overview of the theories of regular constraint sets and of manifolds with generalized boundaries�

which we use heavily in the proofs of our main theorems� We motivate how we use this theory for

our purpose� In the third section of this appendix we prove seven lemmas that are very important

for our main results� since they allow us to use the mentioned theories� Finally� we complete the

appendix with the proofs of the main theorems�

A�� Proofs with no Transversality Arguments

Proof of Proposition ����

We de�ne the matrix M by

M �

�����
�q � k�� ��q � k��

�A A

I 



 I

������ �
where I is a �J � J��identity matrix and 
 a �J � J��zero matrix� By de�nition� a vector

q � IRJ is a no�arbitrage price system if and only if for each s � 
� � � � � S� there is no solution

�s � ��s��� �s��� � IRJ � IRJ to �M�s�s � 
 and M�s � 
� By the variant of Farkas� lemma given

in Rockafellar ��	�
�� Theorem ����� page �	�� the latter condition is equivalent to� for every

s � 
� � � � � S� there exists �s � IR��S��J
� with �ss � 
 and �s

�

M � 
� which is the case if and only

if there exists � � IR��S
�� � IR�J

� such that ��M � 
� Now the theorem follows immediately after

some elementary algebra� Q�E�D�

Proof of Proposition ����

The budget set Bh�q� is a polyhedron� and so it is closed and convex� Extending the argument

of Hens ��		�� p� �	� we next show that the budget set is also bounded� Let l�q� �h��� �h��� �

min f�q�k� ��h��� �q�k� ��h��� d���
h����h���� � � � � dS��

h����h���g be the greatest loss incurred

across all states from the portfolio ��h��� �h��� at asset prices q� For q � Q and ��h��� �h��� �� 
�

l�q� �h��� �h��� 	 
 since k � 
 and A has full rank� The function l�q� �h��� �h��� is homogeneous

implying that l�q� �h��� �h��� � l�qk��
h��� �h���k where l�q � max k��h����h���k��l�q� �

h��� �h��� 	 


exists due to the continuity of the function l� Now de�ne e�h � max feh� � e
h
� � � � � � e

h
Sg� Since c

h � 


it follows that eh� � �q� k� � �h��� �q� k� � �h�� and ehs � ds��
h��� �h���� s � �� � � � � S resulting for

all q � Q in the inequalities �e�h � l�q� �h��� �h��� � l�qk��
h��� �h���k� Hence� k��h��� �h���k � e�h

�l�q

for all ��h��� �h��� such that there is a ch with ��h��� �h��� ch� � Bh�q�� Bounded portfolios only

allow bounded consumption� so kchk is bounded on Bh�q��

��



Suppose ��h��� �h��� ch� is a solution to the agent�s decision problem with �h�� � �h�� � 
�

Then there is some asset j� such that �h��j� �h��j� � 
� Without loss of generality it holds that

�h��j� � �h��j� � De�ne the asset portfolio �b�h���b�h��� by b�h��j� � 
� b�h��j� � �h��j� ��h��j� � and b�h��j � �h��j �b�h��j � �h��j � for j �� j�� De�ne the income stream bch by bch� � ch� � �kj��
h��
j� and bch�� � ch��� Clearly�

�b�h���b�h���bch� � Bh�q�� and ch 	 bch� so uh�ch� 	 uh�bch�� a contradiction to the supposition that

��h��� �h��� ch� is a solution to the agent�s decision problem� Consequently� �h�� � �h�� � 
�

Assumption A� implies that agent h has a unique utility maximizing consumption bundle ch�

From the full column rank of A together with the property that at an optimal solution �h����h�� � 
�

it follows that the asset portfolio ��h��� �h��� is uniquely determined as well� Q�E�D�

Proof of Proposition ����

Let ���� q�� be a competitive equilibrium of E � inducing income streams used for consumption c��

If for all j � J there exists h � H such that ��hj �� 
 then ���� q�� is both a supply�perfect and a

demand�perfect equilibrium and the proposition holds�

Suppose asset market j � J is such that ��hj � 
 for all h � H� We give the argument for

the existence of a demand�perfect equilibrium that is allocationally equivalent to the competitive

equilibrium� the argument for the existence of an allocationally equivalent supply�perfect equilib�

rium is similar� If minh�H �h��j �q�� � 
� then we de�ne qdj � q�j � Otherwise� minh�H �h��j �q�� �

minh�H ��c�h�
uh�c�h��q�j � kj� �

PS
s�� �chsu

h�c�h�djs � 
� Since �h��j �q� is a function that is linearly

decreasing in qj� we may de�ne qdj unambiguously by

min
h�H

��c�h�
uh�c�h��qdj � kj� �

SX
s��

�chsu
h�c�h�djs � 
�

If asset market j � J is such that ��hj �� 
 for some h � H� then we de�ne qdj � q�j �

Using the �rst�order conditions for the decision problem of household h� it is easily veri�ed

that ��h is an optimal asset portfolio at prices qd� For all asset markets j for which ��hj � 
 for

all h � H� it holds that I�j �qd� �� � It follows that ���� qd� is a demand�perfect equilibrium� Q�E�D�

Proof of Proposition ����

Consider a demand�perfect equilibrium induced by prices qd� It holds that G�qd� � 
 and� for every

asset j� either there is a household h� such that gh
�

j �qd� �� 
� or for all h� ghj �q
d� � 
 and there is a

household h� such that �h
���

j �qd� � 
� In the �rst case it follows by the de�nition of a competitive

equilibrium that without loss of generality gh
�

j �qd� 	 
 and therefore �h
���

j �qd� � 
� In both cases

it is then immediate that eG�qd� � 
�

Consider a price system qd such that eG�qd� � 
� For every asset j� either gh
�

j �qd� �� 
 for some

agent h�� or ghj �q
d� � 
 for all agents h � �� � � � �H� Since ��

j �q
d� � 
� ��
� � 
 and �� � 
� it

holds that ����
j �q

d�� � 
� It follows that gh
�

j �qd� 	 
 for some agent h� in the former case� so

�h
���

j �qd� � 
 and ��
j �q

d� � 
� Then it is immediate that Gj�q
d� � 
� In the latter case it holds

that Gj�q
d� � 
� so ��

j �q
d� � 
� which implies that �h

���
j �qd� � 
 for some agent h�� Combining

��



the two cases implies that qd induces a demand�perfect equilibrium� Q�E�D�

Proof of Proposition ����

The necessary and su�cient �rst�order conditions that characterize gh�r on Q�r� are given by

ch� � eh� �
X

fjjrhj���g

�hj �qj � kj� �
X

fjjrhj���g

�hj �qj � kj� � 
� ��
�

chs � ehs �
X

fjjrhj �f�����gg

�hj d
j
s � 
� s � S� ����

�ch�
uh�ch��qj � kj��

SX
s��

�chsu
h�ch�djs � 
� if rhj � ��� ����

�hj � 
� if rhj � 
� ����

��ch�
uh�ch��qj � kj� �

SX
s��

�chsu
h�ch�djs � 
� if rhj � ��� ����

In fact� this set of conditions characterizes a demand function for assets on the set Q of no�arbitrage

prices� which satis�es that trade in assets j for which rhj � 
 is not permitted� the transaction costs

kj are subtracted from the price qj when rhj � ��� and added to the price qj when rhj � ��� This

function is an extension of gh�r to the open set Q � Q�r�� The implicit function theorem implies

that ��h� ch� is a twice di�erentiable function of q if and only if the derivative with respect to ��h� ch�

of the left�hand side of the �rst�order conditions is nonsingular� This derivative is represented by

the following matrix�

ch ��hj �rhj ���
��hj �rhj ��

��hj �rhj ���

qj � kj 
 qj � kj �
I

�dj 
 �dj S

�qj � kj ��d
j����uh�ch� 
 
 
 rhj � ��


 
 I 
 rhj � 


�qj � kj ��d
j����uh�ch� 
 
 
 rhj � ��

S � � J

The variables above the matrix indicate those with respect to which the derivatives in the respective

column have been taken� The numbers below the matrix show the number of columns� The notation

I denotes an identity matrix of appropriate dimension� Notice that the derivative doesn�t have full

rank if and only if there exists �x�� x�� � �IR��S � IRfjjrhj��� or rhj ���g� n f
g such that

x�� � x�� B
���uh � 
�

x�� B � 
�

where B is the matrix with columns �qj � kj ��d
j��� for j such that rhj � �� or rhj � ���

Notice that B has full column rank� Substituting for x� yields �x�� B
���uhB � 
� which implies

��



�x�� B
���uhBx� � 
� The full rank of ��uh gives that Bx� � 
� and so x� � 
 by the full column

rank of B� Since x�� � x�� B
���uh � 
� it follows that x� � 
� contradicting that either x� or x�

is not equal to zero� As a consequence� the derivative with respect to ��h� ch� of the left�hand side

of the �rst�order conditions is nonsingular� It follows that� for r � R� gh�r is twice continuously

di�erentiable for h � H� which in turn implies the twice continuous di�erentiability of Gr�

For r � R� if rhj � �� for at least one household h� then ��r
j is identically equal to zero� so

certainly twice continuous di�erentiable� Otherwise�

��r
j �q� �

HY
h��

�
��ch�

uh�ch��qj � kj� �

SX
s��

�chsu
h�ch�djs

�
�

where

ch� � eh� �
X

fjjrh
j
���g

gh�rj �q��qj � kj��
X

fjjrh
j
���g

gh�rj �q��qj � kj��

chs � ehs �
X

fjjrhj �f�����gg

gh�rj �q�djs� s � S�

The twice continuous di�erentiability of gh�rj �q� implies that ��r is twice continuous di�erentiable�

Q�E�D�

Proof of Proposition ����

Suppose the statement of the theorem is false� Then there is a subsequence� also denoted by

qn � Q� such that k�gh� �q
n�� gh�qn��k � ��

h

� � �
h
�� where �

h

� � ch� � eh� for some positive ch� � Consider

�rst the case where qn � q � �Q� For � � IRJ � de�ne vh��� as the utility induced by portfolio ��

We show that �
h
maximizes vh when prices are q� Since vh�gh�qn�� � uh�eh�� it follows that the

consumption bundle ch generated by �
h
is strictly positive� If not� then there exists e� � IRJ such

that vh�e�h� � vh��
h
�� implying that the consumption bundle ech induced by e�h is strictly positive�

and in particular ech� � 
� It follows that e�h is a�ordable at prices qn� for n su�ciently large� By

continuity� vh�e�h� � vh�gh�qn��� for n su�ciently large� a contradiction to the optimality of gh�qn��

Consequently� �
h
maximizes vh when prices are q� Since q allows for arbitrage opportunities� this

leads to a contradiction� and as a consequence the statement of the theorem can only be false if

kqnk � �� the case we consider next�

Up to now we have normalized the price of date 
 consumption to be one� By homogene�

ity of degree 
� demand for date 
 consumption and assets at prices q� �� ��kqnk for date 


consumption� and prices qn�kqnk for assets� denoted �egh� ���kqnk� qn�kqnk�� egh���kqnk� qn�kqnk���
equals �gh� �q

n�� gh�qn��� Suppose it is not the case that k�gh� �q
n�� gh�qn��k � �� Then there is a

subsequence� also denoted qn� such that qn

kqnk � q� k�gh� �q
n�� gh�qn��k remains bounded� and con�

verges to some ��
h

� � �
h
�� Moreover� �

h
is a utility maximizing portfolio at prices �q�� q�� Suppose

not� then there is e�h such that vh�e�h� � vh��
h
�� with e�h inducing a strictly positive consumption

bundle ech� which implies that e�h is a�ordable at prices ���kqnk� qn�kqnk� for n su�ciently large�

Moreover� by continuity� vh�e�h� � vh�gh�qn�� for n su�ciently large� which contradicts that gh�qn�

��



is the demand at qn� Consequently� �
h
maximizes utility at prices �q�� q�� But this leads to a con�

tradiction� since kqnk � �� so ��kqnk � 
� so q� � 
� and agents can choose unbounded date 


consumption� Consequently� the �rst part of the proposition holds�

Since q� � Q�� there is �� � IRS
�� such that q� � ��

�
A� So� ��� q�� � �gh� �q

n�� gh�qn�� �

��� ��
�
� � �gh� �q

n�� Agh�qn��� Since k�gh� �q
n�� gh�qn��k � � and A has full column rank� it fol�

lows that k�gh� �q
n�� Agh�qn��k � �� Moreover� since �gh� �q

n�� Agh�qn�� is bounded below by �eh�

it follows that at least one component of �gh� �q
n�� Agh�qn�� converges to plus in�nity� and therefore

��� ��
�
� � �gh� �q

n�� Agh�qn��� ��� Q�E�D�

Proof of Proposition ����

By Proposition ���� ��� q�� � �G��q
n�� G�qn�� �

PH
h����� q

�� � �gh� �q
n�� gh�qn��� ��� Q�E�D�

Proof of Proposition ����

We de�ne the function f � IR�Q�r�� IR�Q�r�� IRHJ � IRHJ � IRHJ � IRH���S� by

f�t� q� � �t� q� ���q�� ���q�� g�q�� c�q���

where ch��q� � eh� �
P

j�J qjg
h
j �q� �

P
j�J�

h
�r� kjg

h
j �q� �

P
j�J�

h
�r� kjg

h
j �q�� and ch�� � eh�� � Agh�q��

Then �t� q� � P �r� if and only if f�t� q� � eP �r�� That the function f is C� follows easily from

Proposition ���� Obviously� f�� is C�� Q�E�D�

A�� Regular Constraint Sets

Since our convergence proof uses transversality theory� where the parameters to be perturbed are

the initial endowments� we have the initial endowments entering the notation in the appendix� The

proofs run very smoothly when we use the theory of regular constraint sets� see Herings ��		�� for

a �rst application of this theory in economics and an overview of the most relevant concepts�

For some r � � a subset M of IRk is called a Cr l�dimensional manifold with generalized

boundary �MGB�� if for every x � M there exists a local Cr coordinate system of IRk around x�

i�e� a Cr di�eomorphism  � U � V� where U is an open subset of IRk containing x and V is open

in IRk� and some b�x� � 
 such that �x� � 
 and �U 	M� equals�
y � V j y� � � � � � yk�l � 
� yk�l�� � 
� � � � � yk�l�b�x� � 


�
�

If� for every element x of an MGB M� b�x� � �� then M is called a manifold with boundary and

it is easily shown that the set of elements x for which b�x� � � is an �l � ���dimensional manifold�

called the boundary of M�

Let I� and I� be two �nite index sets and let egi� i � I�� and ehi� i � I�� be Cr functions de�ned

on some open subset X of IRk� We de�ne

M �eg�eh� �
n
x � X j egi�x� � 
� i � I�� ehi�x� � 
� i � I�

o
�

For x � X� we de�ne I��x� � fi � I� j hi�x� � 
g� If for every x �M �eg�eh� it holds thatn
�egi�x�� i � I�� �ehi�x�� i � I��x�

o
�	



is a set of independent vectors� then the equations egi� ehi are called a regular Cr constraint system�

and M �eg�eh� is called a Cr regular constraint set �RCS�� In Jongen� et al� ��	��� Lemma ������

Example ������ it is shown that every Cr RCS is a �k � jI�j��dimensional Cr MGB with� for every

x �M �eg�eh�� b�x� � jI��x�j�

To show Theorem ���� we phrase the set eP �r� as a regular constraint system� Typically� a given

set eP �r� can be represented by several such systems� Asset markets without trade will need a

careful treatment� The set of asset markets without trade is denoted by

J��r� � 	h�HJ
�
h�r��

Another special case occurs when only one agent is short in a certain asset market� whereas all

other agents are inactive in that asset market� In equilibrium this is obviously impossible� but

along the homotopy path such a situation may occur� The set of asset markets with one trader

short and no other traders is denoted by J���r��

J���r� � fj � J j �h� � H� rh
�

j � ��� rhj � 
� h �� h�g�

When J��r� � J���r� �� � we need two di�erent regular constraint systems� each representing a

part of eP �r� and together representing the entire set� The �rst regular constraint system is given

by the system of equations ��������� This system of equations is a regular constraint system for

sign vectors r such that J��r� � J���r� � � and for values of t 	 � when J��r� � J���r� �� �

It is not true that ��������� when de�ned for all values of t� is a regular constraint system if

J��r��J���r� �� � Two problems occur at t � �� Suppose that there is an equilibrium without trade

in asset market j� Then at t � � the market clearing condition in ��� reduces to
QH

h�� �
h��
j � 
�

so for at least one household �h��j � 
� But then necessarily two inequalities get binding at the

same time� t � � and �h��j � 
� By counting the number of equations and unknowns� the matrix of

derivatives of all equations and binding inequalities with respect to all endogenous variables cannot

have full rank� so the augmented system is not a regular constraint system�

A similar problem occurs when along the homotopy path� for t unequal but close to �� there is

exactly one supplier in asset market j� say household h�� whereas nobody demands asset j� and as a

consequence j � J���r�� Obviously� �h
���

j � 
� so� at t � �� the market clearing equation ��� implies


 �
P

h�H �hj � �h
�

j � Again� two inequalities get binding at the same time� t � � and �h
�

j � 
� again

implying that the augmented system is not a regular constraint system�

Although we have indicated that the system above is not a regular constraint system when t is

unrestricted and J��r� � J���r� �� � it remains to be shown that it is a regular constraint system

when t 	 � if J��r� � J���r� �� � We start out with a few useful lemmas �rst�

For r � R� we de�ne the open set Or as the set of all elements �t� q� ��� ��� �� c� e� � IR �Q�

IRHJ�IRHJ�IRHJ�IR
H�S���
�� �IR

H�S���
�� that satisfy the inequalities �	������ with strict inequality�

We de�ne a function �r � Or � IRH�S�����HJ�J by associating the left�hand side of equations ����

��� to �r�t� q� ��� ��� �� c� e�� For e � E� the function �r�e is de�ned by �r�e��� � �r��� e��

�




A�� Transversality Arguments

We state and prove seven lemmas that are crucial for the latter proofs of our main results� These

lemmas state all the relevant properties of our homotopy paths and loops so that we can apply the

theories of regular constraint sets and of manifolds with generalized boundaries� Intuitively� the

�rst three lemmas provide the tools for the typical genericity arguments in homotopy applications�

The �rst lemma implies that �generically� the set of zeros of our homotopy is one�dimensional� the

second one implies that boundaries are hit transversely� and the third one shows that never two

boundaries are hit simultaneously� Unfortunately� due to the described problems at t � � these

results do not su�ce for our problem� Therefore� we need four additional lemmas in order to deal

with the special case at t � �� As we will see� the intuition for the situation at t � � will be just as

in the standard situation�

We begin with Lemma A�� showing that the set of solutions to �������� with the inequality

constraints satis�ed with strict inequality� is a ��dimensional manifold�

Lemma A��� There is a subset E� of E of full Lebesgue measure such that for all e � E�� for

all r � R� �r�e 
	 f
g�

Proof� Fix some r � R� First� it is shown that �r 
	 f
g� Let � � �t� q� �
�
� �

�
� �� c� e� be such

that �r��� � 
� The matrix of partial derivatives of �r evaluated at � is denoted by M and is given

in Table �� It has to be shown that the rows of M are independent� This is done by proving that

y�M � 
 implies y � 
�

The matrix M is subdivided into eight parts in Table �� and the components of y will be de�

noted accordingly� so y � �y�� y�� � � � � y��� where y� � �y��h�j��h�j��R��r�� y� � �y��h�j��h�j��R��r�� y� �

�y��h�j��h�j��R��r�� y	 � �y	�h�h�H � y� � �y��h�s��h�s��H�S � y� � �y��h�j��h�j��H�J � y� � �y��h�j��h�j��H�J �

and y� � �y��j�j�J � The last column in the table gives the number of rows in each one of the eight

parts� The last row in the table indicates the number of columns in the corresponding part�

We order ��hj
�rst by h and then by j� We order �chs �rst by h and then by s� For �e� we start

with �e� and continue with �e�� � Parts in the table indicated by � are irrelevant for our proof�

An identity matrix of appropriate dimension is denoted by I� and a matrix of zeroes by 
� Row

�h� j�� �h� j� � R��r�� of the matrix E� contains exactly one �� corresponding to the derivative

with respect to �h��j � Row �h� j�� �h� j� � R��r�� of the matrix E� contains exactly one �� cor�

responding to the derivative with respect to �h��j � Row �h� j�� �h� j� � R��r�� of the matrix E�

contains exactly one �� corresponding to the derivative with respect to �hj � The vector 
 � IRJ

is de�ned by 
j �
PH

h�� �
h

j � q�j � qj � ��
QH

h�� �
h��
j ���� � eqj �� The matrix �h� is a diagonal

matrix with �h�

jj � t���
QH

h�� �
h��
j �

Q
h	�h� �

h��
j ��� � eqj �� The matrix T is a diagonal matrix with

Tjj � �t� ��� t��
QH

h�� �
h��
j �eqj��� � eqj ���

Let y � IRH�S�����HJ�J satisfy y�M � 
� From Table � it is immediate that y	 � 
 and y� � 
�

��



�t �q ��� ��� �� �c �e
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 jR��r�j
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 E� 
 
 
 jR��r�j
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 E� 
 
 jR��r�j

� 
 � 
 
 � � �I 
 H

� 
 
 
 
 � � 
 � I HS
� � �

� 
 � I 
 


�
q � k

�A

��
��uh�ch� 
 HJ

� � �

� � �

� 
 � 
 I 
 �

�
q � k

�A

��
��uh�ch� 
 HJ

� � �

� 
 T � � ��h � � � 
 � � � tI � � � 
 
 J

� J HJ HJ HJ H�S � �� H�S � ��

Table �� The matrix M�

simply consider �e�
r���� It also holds that

y��ch�
r��� �

JX
j��

y��h�j�qj � kj ��d
j����uh�ch��

JX
j��

y��h�j�qj � kj ��d
j����uh�ch�� ����

For j � J�h �r��J�h�r� it holds that 
 � y��
�
h��
j

�r��� � y��h�j� Consider some j � J�h �r�� Since t � 


and 
 � y���hj
�r��� � ty��j� it holds that y��j � 
� Then it follows that 
 � y��

�
h��
j

�r��� � y��h�j

for j � J�h �r�� Equation ���� reduces to

y��ch�
r��� �

X
j�J�

h
�r��J�

h
�r�

y��h�j�qj � kj ��d
j����uh�ch��

X
j�J�

h
�r�

y��h�j�qj � kj ��d
j����uh�ch�� ����

Since the rank of A equals J� the matrix�� qj � kj

�dj

�
j�J�

h
�r��J�

h
�r�

��

�
qj � kj

�dj

�
j�J�

h
�r�

��
has rank J� The rank of ��uh�ch� equals S � � implying that y��h�j � 
 for j � J�h �r� � J�h�r� and

y��h�j � 
 for j � J�h �r�� Consequently� y� � 
 and y� � 
�

Since t 	 � by de�nition of �r and 
 � y��qj�
r��� � ��t���� t��

QH
h�� �

h��
j �eqj���� eqj ���y��j�

it follows that y��j � 
� for j � J�

��



Now it follows from ����
r���� ����

r���� and ���
r���� respectively� that y� � 
� y� � 
� and

y� � 
�

We conclude that �r 
	 f
g� The lemma then follows directly from the parametric transversality

theorem as stated for instance in Mas�Colell ��	���� I����� page ��� Q�E�D�

We denote the set of indices corresponding to the inequalities in �	������ by I� with generic

element i� For r � R with J��r� � J���r� �  and i � I� we de�ne the open set Or
i as the set of all

elements �t� q� ��� ��� �� c� e� � IR�Q� IR�HJ� IR
�H�S���
�� that satisfy the inequalities �	������ with

strict inequality� with the exception of the inequality related to i� which is not taken into account�

For r � R with J��r� � J���r� ��  and i � I the de�nition is similar� but now t is restricted to

���� ��� and i never corresponds to inequality �����

For r � R and i � I� we de�ne a function �r
i � Or

i � IRH�S�����HJ�J��� by associating the

left�hand side of equations ������� to �r
i �t� q� �

�� ��� �� c� e�� and the left�hand side of exactly one

inequality� indexed by i� in �	������� � For e � E� the function �r�e
i is de�ned by �r�e

i ��� � �r
i ��� e��

The next lemma� Lemma A��� serves to show that the set of solutions to ������� and any binding

inequality i� is a 
�dimensional manifold� Moreover� it shows that the set of solutions to �������

intersects the manifold generated as the solutions to inequality i in a transversal way�

Lemma A��� There is a subset E� of E of full Lebesgue measure such that for all e � E��

r � R� and i � I� �r�e
i 
	 f
g�

Proof� Fix some r � R and some i � I� We start out by showing that �r
i 
	 f
g� Let � �

�t� q� �
�
� �

�
� �� c� e� be such that �r

i ��� � 
� It has to be shown that the rows of the matrix of partial

derivatives of �r evaluated at �� denoted byM i� are independent� Let y � IRH�S�����HJ�J�� satisfy

y�M i � 
� We index y as before� and let y� be the component of y corresponding to inequality i�

Three cases have to be distinguished� depending on which inequality i has been chosen�

Case �� The index i corresponds to one of the inequalities in �	����
��

If �h
���

j� � 
 is added for some �h�� j�� � R��r�� then by the proof of Lemma A�� it follows that

y� � � � � � y� � 
� It is shown that y� � 
 by considering �
�
h���

j�

�r����

If �h
���

j� � 
 is added for some �h�� j�� � R��r�� then it follows from the proof of Lemma A��

that y	 � 
� y� � 
� y��h�j � 
� �h� j� � R��r�� and y��h�j � 
� �h� j� � R��r��R��r� n f�h�� j��g� For

h �� h�� it follows that y��h�
 � 
 and y��h�
 � 
 as before� The proof for h� is more complicated� We

claim �rst that rank�A� � J implies that the matrix

B �

�� qj � kj

�dj

�
j�J�

h�
�r��J�

h�
�r�

��

�
qj � kj

�dj

�
j�J�

h�
�r��fj�g

��
has rank J � �� Indeed� suppose we partition B in three parts corresponding to indices in J n fj�g�

the column corresponding to j� where transaction costs are subtracted from the price� and the

	Again� when J��r� � J�
��r� �� �� then i is never chosen to correspond to inequality �����

��



column corresponding to j� where transaction costs are added� Then �B�� B�� B���x
�
� � x�� x��

� � 


implies x� � 
 and x� � x� � 
� because A has rank J� Next�

�qj� � kj��x� � �qj� � kj��x� � qj��x� � x��� kj��x� � x�� � �kj��x� � x�� � 
�

so x� � x� � 
� completing the proof of the claim� Since the matrix B has rank J � �� it follows

from y��ch��
r��� � 
 that y��h��
 � 
 and y��h��
 � 
� The remainder of the proof is as before�

Case �� The index i corresponds to one of the inequalities in ����������

If �h
�

j� � 
 is added for some �h�� j�� � R��r�� then the proof of Lemma A�� can be used to show

that y� � � � � � y� � 
� Furthermore� 
 � y��
�h

�

j�
�r
i ��� � y��

If �h
�

j� � 
 is added for some �h�� j�� � R��r�� then it follows as in the proof of Lemma A�� that

y	 � 
� y� � 
� y��h�j � 
� �h� j� � R��r�� and y��h�j � 
� �h� j� � R��r� � R��r� n f�h�� j��g� For

h �� h�� it follows that y��h�
 � 
 and y��h�
 � 
 by considering �ch�
r
i ���� For h

� this follows as well�

since the matrix B has rank J � �� The remainder of the proof is as before�

Case �� The index i corresponds to one of the inequalities in ����������

If t � 
 is added� then it follows as in the proof of Lemma A�� that y	 � 
� y� � 
� and y��h�j � 
�

�h� j� � R��r� �R��r�� Since t � 
��h � 
 for all h and 
 � y��
�
h��
j

�r
i ��� � y��h�j� �h� j� � R��r��

The remainder of the proof is as before�

If t � � is added� then it follows as in the proof of Lemma A�� that y	 � � � � � y� � 
� Since

this equality is only added when J��r� � J���r� � � for each j there is h�j� such that r
h�j�
j �� 
�

Then 
 � y��
�
h
j�
j

�r
i ��� � y��j� The remainder of the proof is standard�

We conclude that �r
i 
	 f
g� The lemma now follows from the parametric transversality theo�

rem� Q�E�D�

For r � R with J��r��J���r� � � we de�ne the open set eOr by eOr � IR�Q�IR�HJ�IR
�H�S���
�� �

and for r � R with J��r�� J���r� �� � we de�ne eOr � ���� ���Q� IR�HJ � IR
�H�S���
�� � We de�ne

a function �r
i��i� � eOr � IRH�S�����HJ�J��� by associating the left�hand side of equations �������

to �r
i��i��t� q� �

�� ��� �� c� e�� and the left�hand side of exactly two di�erent inequalities� indexed by

i�� i�� in �	�������� For e � E� the function �r�e

i��i�
is de�ned by �r�e

i��i�
��� � �r

i��i���� e��

The purpose of Lemma A�� is to show it cannot occur that two inequalities become binding at

the same time�

Lemma A��� There is a subset E� of E of full Lebesgue measure such that for all e � E��

r � R� i�� i� � I� i� �� i�� �r�e

i��i�

	 f
g�

Proof� Fix some r � R and some i�� i� � I with i� �� i�� We start out by showing that

�r
i��i� 
	 f
g� Six cases have to be distinguished� depending on which inequalities i�� i� have been

chosen�

�Again� when J��r� � J�
��r� �� �� none of the indices is taken to correspond to �����

��



Case �� The indices i�� i� both correspond to inequalities in �	����
�� The proof can be done

by using the techniques of Lemma A��� unless the equations added are �h
���

j�
� �h

���
j�

� 
 and

h� � h�� We consider the latter case in more detail�

That y	 � 
 and y� � 
 follows as before�

If t
Q

h	�h� �
h��
j� � 
� then 
 � y��

�
h���

j�

�r
i��i���� � y��h��j� � and the remainder of the proof follows

as in Lemma A��� Suppose t
Q

h	�h� �
h��
j� �� 
� This implies in particular that t �� 
�

If �h � H� rh
j�
�� 
� then 
 � y���h

j�
�r
i��i���� � ty��j�� so y��j� � 
� and y��h��j� � 
 as well� and

the remainder of the proof follows easily� Suppose rh
j�

� 
� �h � H� Then j� � J��r� and it follows

that t 	 � by de�nition of �r
i��i� �

If h� is not the only household in the economy� say there exists a household h� other than h��

then it is straightforward to show that y��h��
 � 
 and y��h��
 � 
� Since �
h���
j� � 
� it follows from

equations ��� and ��� that �
h���
j� �� 
� and since t

Q
h	�h� �

h��
j� �� 
� it follows that t

Q
h	�h� �

h��
j� �� 
�

So 
 � y��
�
h���

j�

�r
i��i���� � �t���

QH
h�� �

h��
j� �

Q
h	�h� �

h��
j� ���� eqj ��y��j� � which implies that y��j� � 
�

and it follows that y��h��j� � 
 as well� The remainder of the proof is straightforward�

Suppose next that h� is the only household in the economy� From 
 � y��
ch

��r
i��i���� it follows

that

JX
j��

y��h��j�qj � kj ��d
j����uh

�
�ch

�
��

JX
j��

y��h��j�qj � kj��d
j����uh

�
�ch

�
� � 
�

Since ��uh
�
�ch

�
� has full rank� this implies that

JX
j��

y��h��j�qj � kj ��d
j���

JX
j��

y��h��j�qj � kj ��d
j�� � 
�

and in particular

JX
j��

�y��h��j � y��h��j�d
j� � 
�

Since A has full column rank� this implies that y��h��
 � y��h��
 � 
� Moreover�


 � y��q�
r
i��i���� � �

ch
�

�
uh

�
�ch

�
�y��h��
 � �

ch
�

�
uh

�
�ch

�
�y��h��
 � Ty��
 � Ty��
�

Since T has full rank� it follows that y��
 � 
� For j � J�
h�
�r��J�

h�
�r�� we �nd that y��h��j � y��h��j � 


by considering �
�h

����
r
i��i����� Using that j �� j� and j �� j�� we �nd for j � J�

h�
�r� that


 � y��
�
h���
j

�r
i��i���� � y��h��j � y��h��j�

The remainder of the proof is straightforward�

Case �� The index i� corresponds to an inequality in �	����
� and the index i� to an inequality

in ���������� The proof is similar to the one of Lemma A��� unless the equations added are

��



�h
���

j�
� 
� for some �h�� j�� � R��r�� �h

�

j� � 
� for some �h�� j�� � R��r�� and h� � h�� But then the

proof is similar to the one of Case ��

Case �� The index i� corresponds to an inequality in �	����
� and the index i� to an inequality

in ���������� The proof is straightforward when using the techniques of Lemma A���

Case �� The indices i�� i� both correspond to inequalities in ���������� The proof is similar to

the one of Lemma A��� Case �� unless the equations added are �h
�

j� � �h
�

j� � 
 and h� � h�� The

proof is then similar to the one used in Case � in this proof�

Case �� The index i� corresponds to an inequality in ��������� and the index i� to an inequality

in ���������� The proof is straightforward when using the techniques of Lemma A���

Case �� The indices i�� i� both correspond to inequalities in ���������� In this case 
 � t � ��

a contradiction� so no solution to �r
i��i���� exists� and transversality of �r

i��i� holds trivially�

The lemma now follows from the parametric transversality theorem� Q�E�D�

Before we continue with the second regular constraint system that describes eP �r� in a neigh�

borhood of t � � when J��r� � J���r� �� � we derive some further properties of eP �r� for r with

J��r� � J���r� �� � These properties are needed to show that the second system of equations is

a regular constraint system� First� when J��r� �� � we show that generically it cannot be the

case that for a solution in eP �r� with t � �� there is an asset j � J��r� with two shadow prices

�h
���

j � �h
���

j � 
� By de�nition of the homotopy one such shadow price must be zero� But� gener�

ically� two will never be simultaneously zero at t � � when the asset market j is closed� Second�

when J���r� �� � we show that generically it cannot be the case that for a solution in eP �r� with

t � �� there is an asset j � J���r� with �h
�

j � 
 and �h
���

j � 
� where h� is the only household such

that rh
�

j � �� and h� �� h�� Intuitively� as with h� the last agent leaves asset market j at t � ��

there is generically no other agent h� for whom the shadow price �h
���

j hits zero exactly at that

point�

Fix some r � R with J��r��J���r� �� � De�ne subsets H�
j �r�� H�

j �r� and H
�
j �r� of H as follows�

H�
j �r� � fh � H j rhj � ��g�

H�
j �r� � fh � H j rhj � 
g�

H�
j �r� � fh � H j rhj � ��g�

For j � J��r� � J���r�� �x subsets eH�
j �r� of H�

j �r�� where
eH�
j �r� ��  if j � J��r�� Moreover� to

show the desired properties of eP �r� we only need to consider cases where at least one of the subsetseH�
j �r�� j � J��r�� contains at least two elements� or at least one of the subsets eH�

j �r�� j � J���r�� is

non�empty� The non�empty set of assets satisfying one of these two requirements is denoted eJ� Fix
an asset ej � eJ� A solution �t� q� �

�
� �

�
� �� c� � eP �r� that satis�es t � � and� for j � J��r� � J���r��

�
h��
j � 
 if and only if h � eH�

j �r�� has to be a solution to the following system of equations and

��



inequalities� even though the reverse is not necessarily true�

�h��j � 
� �h� j� � R��r�� ����

�h��j � 
� �h� j� � R��r�� ����

�hj � 
� �h� j� � R��r�� ��	�

ch��e
h
��

X
j�J�

h
�r�

�hj �qj�kj��
X

j�J�
h
�r�

�hj �qj�kj� � 
� h � H� ��
�

chs � ehs �
X

j�J�
h
�r��J�

h
�r�

�hj d
j
s � 
� h � H� s � S� ����

�h��j � �ch�
uh�ch��qj � kj��

SX
s��

�chsu
h�ch�djs � 
� h � H� j � J� ����

�h��j � �ch�
uh�ch��qj � kj� �

SX
s��

�chsu
h�ch�djs � 
� h � H� j � J� ����

t
X
h�H

�hj � ��� t��q�j � qj� � t
��
QH

h�� �
h��
j �

� � eqj
� 
� j � J n eJ� ����

�
h�j���
j � 
� j � eJ� ����

�
eh��
ej

� 
� if ej � J��r�� ����

�
eh��
ej

� 
� if ej � J���r�� ����

�� t � 
� ����

�h��j � 
� j � J��r� n eJ� h � H n eH�
j �r�� ��	�

where� for j � eJ� h�j� is a uniquely determined choice in eH�
j �r��

eh � eH�
ej
�r�nfh�ej�g if ej � J��r�� andeh is the uniquely determined household for which rh

ej
� �� if ej � J���r�� In the system �������	�� the

market clearing equations for assets in eJ have been omitted� Instead� for all such assets the shadow

price �
h�j���
j is required to be zero� Moreover� for one such asset� asset ej� one more constraint is

speci�ed� If the system can be shown to be regular� then there are evidently no solutions to it� as

it is overdetermined�

For r � R with J��r� � J���r� �� � and a speci�cation of sets eH � � eH�
j �r��j�J��r��J���r� such

that eJ �� � we de�ne the open set Or� eH as the set of all elements �t� q� ��� ��� �� c� e� � �
��� �

Q � IR�HJ � IR
�H�S���
�� satisfying ��	�� We de�ne the function �r� eH � Or� eH � IRH�S�����HJ�J��

by associating the left�hand side of equations ��������� to �r� eH�t� q� ��� ��� �� c� e�� For e � E� the

function �r� eH�e is de�ned by �r� eH�e��� � �r� eH��� e��

Lemma A��� There is a subset E	 of E of full Lebesgue measure such that for all e � E	� r � R

with J��r� � J���r� �� � and eH � � eH�
j �r��j�J��r��J���r� with

eJ �� � �r� eH�e 
	 f
g�

Proof� Fix some r � R and eH satisfying the requirements of the lemma� We start out by

showing that �r� eH 
	 f
g� Let � be such that �r� eH��� � 
� It has to be shown that the rows of the

��



matrixM of partial derivatives of �r� eH � evaluated at �� are independent� Let y � IRH�S�����HJ�J��

satisfy y�M � 
� We index y as before� let y��j for j � eJ be the component of y corresponding

to equalities ����� y�� the component of y corresponding to equalities ���� or ����� and y�� the

component of y corresponding to equality �����

It follows as in the proof of Lemma A�� that y	 � � � � � y� � 
� Consider some j� � J n eJ� If
there is h such that rhj� �� 
� then 
 � y���h

j�
�r� eH��� � y��j� � Otherwise� for all h � H� rhj� � 
� Since

j� �� eJ� there is a uniquely determined h� such that �
h���
j� � 
� and by ��	�� �

h��
j� � 
 for h �� h��

Now� 
 � y��
�
h���

j�

�r� eH��� � ����
QH

h�� �
h��
j� �

Q
h	�h� �

h��
j� ��� � eqj� ��y��j� implies y��j� � 
� We have

shown that y� � 
� The remainder of the proof is straightforward�

We conclude that �r� eH 
	 f
g� The lemma then follows directly from the parametric transver�

sality theorem� Q�E�D�

We are now in the position to formulate a second system of equalities and inequalities that

applies for r with J��r��J���r� ��  in a neighborhood of t � �� Let � be a function from J��r� into

f�� � � � �Hg� When ��j� � h� it is required that �h
���

j is minimal over all households� so household

h�� By Lemma A�� it follows that for a generic economy� for solutions in a neighborhood of t � ��

�h��j � 
 if h �� h�� Similarly� for j � J���r�� by Lemma A��� it holds for a generic economy that

�h��j � 
 in a neighborhood of t � � if rhj � 
�

Consider any sign vector r � R and any function � � J��r�� f�� � � � �Hg� If �t� q� �
�
� �

�
� �� c� �eP �r�� t � �� and ��j�� for j � J��r�� is the �generically unique� household for which �

h��
j equals

zero� then the following system of equalities and inequalities coincides with eP �r� in a neighborhood

��



of �t� q� �
�
� �

�
� �� c��

�h��j � 
� �h� j� � R��r�� ��
�

�h��j � 
� �h� j� � R��r�� ����

�hj � 
� �h� j� � R��r�� ����

ch��e
h
��

X
j�J�

h
�r�

�hj �qj�kj��
X

j�J�
h
�r�

�hj �qj�kj� � 
� h � H� ����

chs � ehs �
X

j�J�
h
�r��J�

h
�r�

�hj d
j
s � 
� h � H� s � S� ����

�h��j � �ch�
uh�c��qj � kj��

SX
s��

�chsu
h�c�djs � 
� h � H� j � J� ����

�h��j � �ch�
uh�c��qj � kj� �

SX
s��

�chsu
h�c�djs � 
� h � H� j � J� ����

t
X
h�H

�hj � ��� t��q�j � qj� � t
��
QH

h�� �
h��
j �

� � eqj
� 
� j � J� ����

�h��j � 
� �h� j��R��r�� j �� J��r� � J���r�� ����

�h��j � 
� �h� j� � R��r�� ��	�

��hj � 
� �h� j� � R��r�� j � �J���r�� ��
�

�hj � 
� �h� j� � R��r�� ����

qj � q�j � 
� j � J��r�� ����

q�j � qj � 
� j � J���r�� ����

�� t � 
� ����

�h��j � 
� j � J��r�� h � H n f��j�g� ����

�h��j � 
� j � J���r�� h � H�
j �r�� ����

Notice that the system of equalities remains the same for both regular constraint systems� This

fact explains why we can use a single homotopy� even though we need two regular constraint systems

for the proofs� It remains to be shown that the system above is a regular constraint system� The

proof proceeds in three steps� as was the case for the �rst regular constraint system� The intuition

behind the three steps remains the same� First� we prove that the set of zeros of the homotopy is

��dimensional� next� we prove that boundaries are hit transversely� and �nally we prove that never

two boundaries are hit simultaneously�

For r � R with J��r� � J���r� ��  and � � J��r� � f�� � � � �Hg� we de�ne the open set Or��

as the set of all elements �t� q� ��� ��� �� c� e� � �
��� � Q � IR�HJ � IR
�H�S���
�� that satisfy the

inequalities ��������� with strict inequality� We de�ne a function �r�� � Or�� � IRH�S�����HJ�J �

by associating the left�hand side of equations ��
������ to �r���t� q� ��� ��� �� c� e�� For e � E� the

function �r���e is de�ned by �r���e��� � �r����� e��

�	



Lemma A��� There is a subset E� of E of full Lebesgue measure such that for all e � E�� r � R

with J��r� � J���r� �� � and � � J��r�� f�� � � � �Hg� �r���e 
	 f
g�

Proof� The proof is parallel to the one of Lemma A��� Q�E�D�

For the �nal proof that eP �r� is a compact ��dimensional manifold� we only need to consider the

case where inequality ���� gets binding� The reason is that the system of equalities and inequalities

��
������ is only needed in a neighborhood of t � �� and Lemma A�� will show that it cannot

happen that two inequalities get binding simultaneously� We denote the index corresponding to

inequality ���� by � �

For r � R with J��r��J���r� ��  and � � J��r�� f�� � � � �Hg� we de�ne the open set Or��
	 as the

set of all elements �t� q� ��� ��� �� c� e� � �
����Q� IR�HJ � IR
�H�S���
�� that satisfy the inequalities

���������� ��������� with strict inequality� We de�ne a function �r��
	 � Or��

	 � IRH�S�����HJ�J���

by associating the left�hand side of equations ��
������ to �r��
	 �t� q� ��� ��� �� c� e�� and the left�hand

side of inequality ����� For e � E� the function �r���e
	 is de�ned by �r���e

	 ��� � �r��
	 ��� e��

Lemma A��� There is a subset E� of E of full Lebesgue measure such that for all e � E�� r � R

with J��r� � J���r� �� � and � � J��r�� f�� � � � �Hg� �r���e
	 
	 f
g�

Proof� Fix some r � R and some � � J��r� � f�� � � � �Hg� Then the proof is parallel to the

one of Lemma A��� Q�E�D�

For r � R with J��r��J���r� ��  and � � J��r�� f�� � � � �Hg� we de�ne the open set eOr�� as the

set of all elements �t� q� ��� ��� �� c� e� � �
����Q� IR�HJ � IR
�H�S���
�� that satisfy the inequalities

��������� with strict inequality� The set of indices corresponding to ��������� is denoted by I� For

i � I� we de�ne a function e�r��

i � eOr�� � IRH�S�����HJ�J�� by associating the left�hand side of

equations ��
������ to e�r��

i �t� q� ��� ��� �� c� e�� the left�hand side of one inequality� indexed by i� in

���������� and inequality ����� For e � E� the function �r���e
i is de�ned by �r���e

i ��� � �r��
i ��� e��

Lemma A�	� There is a subset E� of E of full Lebesgue measure such that for all e � E�� r � R

with J��r� � J���r� �� � � � J��r�� f�� � � � �Hg and i � I� �r���e
i 
	 f
g�

Proof� Fix some r � R� some � � J��r� � f�� � � � �Hg� and some i � I� We start out by

showing that �r��
i 
	 f
g� Let � be such that �r��

i ��� � 
� It has to be shown that the rows of the

matrixM of partial derivatives of �r��
i � evaluated at �� are independent� Let y � IR�H����S����HS��

satisfy y�M � 
� We index y as before� let y� be the component of y corresponding to inequality � �

and y�� be the component of y corresponding to inequality i� Three cases have to be distinguished�

depending on which inequality i has been chosen�

Case �� The index i corresponds to an inequality in �������	�� As in the proof of Lemma A�� it

can be shown that y	 � � � � � y� � 
� Fix an asset j� If j �� J��r�� then there is h� such that rh
�

j �� 
�

�




and 
 � y��
�h

�

j
��� � y��j� If j � J��r�� then using that the equality �h��j � 
 is not added for

j � J��r�� it follows that 
 � y��
�
�
j���
j

��� � ����
�
Q

h	���j� �
h��
j ��� � eqj ��y��j � and since �

h��
j �� 


for h �� ��j�� it follows that y��j � 
� The remainder of the proof is standard�

Case �� The index i corresponds to an inequality in ��
������� As in the proof of Lemma A��

it can be shown that y	 � � � � � y� � 
� Because of Case � there is no loss of generality in assuming

that �
h��
j � 
 for �h� j� � R��r�� j �� J��r� � J���r�� and �h��j � 
 for �h� j� � R��r�� Fix an asset j

and suppose the index i corresponds to �h
�

j� � 
� The derivative with respect to �hj such that rhj �� 


can be used to show that y��j � 
� unless j � J��r� or j � j� and there is no household h but h� such

that rhj� �� 
� In the former case it holds that 
 � y��
�
�
j���
j

��� � ����
�
Q

h	���j� �
h��
j ��� � eqj ��y��j�

so y��j � 
� In the latter case� 
 � y��
�
h���
j

��� � ����
�
Q

h	�h� �
h��
j ��� � eqj ��y��j � so y��j � 
� The

remainder of the proof is standard�

Case �� The index i corresponds to an inequality in ���������� This case follows immediately

by using the arguments of Case ��

We conclude that e�r��

i 
	 f
g� The lemma then follows directly from the parametric transver�

sality theorem� Q�E�D�

A�� Proofs of the Main Theorems

In this section the full power of the previous seven lemmas becomes apparent� Using these lemmas�

the theory of regular constraint sets� and the theory of manifolds with generalized boundary we

can now prove our main results�

Proof of Theorem ����

Consider the set E� � E� 	 E� 	 E� 	 E	 	 E� 	E� 	 E�� This set has full Lebesgue measure by

Lemmas A�� � A��� Fix any e � E��

We show �rst that eP �r� is a ��dimensional C� manifold with boundary� Consider any point

�t� q� �
�
� �

�
� �� c� in eP �r�� It is su�cient to show that eP �r�	N is a ��dimensional C� manifold with

boundary� where N is an open neighborhood of �t� q� �
�
� �

�
� �� c� such that t 	 � implies t 	 � for

all �t� q� ��� ��� �� c� � N� Two cases have to be considered� Case � where either J��r� � J���r� � 

or J��r� � J���r� ��  and t 	 �� and Case � where J��r� � J���r� ��  and t � ��

Case �� We de�ne the function eg � N � IRH�S�����HJ�J by associating the left�hand side

of equations ������� to eg�t� q� ��� ��� �� c�� and the function eh � N � IRjR��r�j�HJ�� by associating

the left�hand side of inequalities �	������ to eh�t� q� ��� ��� �� c�� We show that M �eg�eh� is a regular

constraint set� Consider any �t� q� ��� ��� �� c� �M �eg�eh�� It has to be shown thatn
�egi�t� q� ��� ��� �� c�� i � I�� �ehi�t� q� ��� ��� �� c�� i � I��t� q� ��� ��� �� c�

o
is a set of independent vectors� When I��t� q� ��� ��� �� c� � � this is a consequence of Lemma A���

when I��t� q� ��� ��� �� c� �� � a consequence of Lemma A��� Suppose jI��t� q� ��� ��� �� c�j � � and

choose two elements� say i� and i�� from I��t� q� ��� ��� �� c�� It follows from Lemma A�� thatn
�egi�t� q� ��� ��� �� c�� i � I�� �ehi��t� q� ��� ��� �� c�� �ehi���t� q� ��� ��� �� c�o

��



is a set of independent vectors� which leads to a contradiction as the set contains H�S � �� �

�HJ �J �� vectors of dimension H�S�����HJ �J��� Consequently� jI��t� q� ��� ��� �� c�j � ��

Moreover� M �eg�eh� is a C� regular constraint set� Since M �eg�eh� � P �r�	N� it follows that eP �r�	N

is a ��dimensional C� manifold with boundary� and that the boundary of eP �r� 	 N is given by

the elements �t� q� ��� ��� �� c� � M �eg�eh� for which jI��t� q� ��� ��� �� c�j � �� Therefore� a point ineP �r� 	 N is a boundary point if and only if exactly one of the inequalities in �	������ holds with

equality�

Case �� Suppose that� for some j � J��r�� there are at least two households such that �
h��
j � 
�

or� for some j � J���r�� there is at least one household h � H�
j �r� such that �

h��
j � 
� For

j � J��r� � J���r�� de�ne the set eH�
j �r� as the set of households in H�

j �r� for which �
h��
j � 
�

Then �t� q� �
�
� �

�
� �� c� is a solution to �������	�� It follows from Lemma A�� that ��r� eH�e 
	 f
g�

Counting the number of equations and unknowns it follows that ��r� eH�e����f
g� � � contradicting

that ��r� eH�e����t� q� �
�
� �

�
� �� c� � 
� Consequently� for j � J��r�� there is at most one household h

such that �
h��
j � 
� and� for j � J���r�� there is no household h � H�

j �r� such that �
h��
j � 
�

We de�ne the function eg � N � IRH�S�����HJ�J by associating the left�hand side of equations

��
������ to eg�t� q� ��� ��� �� c�� and the function eh � N � IRjR��r�j�HJ�� by associating the left�

hand side of inequalities ��������� to eh�t� q� ��� ��� �� c�� Moreover� it is possible to take N such

that ���� and ���� are satis�ed for all �t� q� ��� ��� �� c� � N� We show that M �eg�eh� is a regular

constraint set� Consider any �t� q� ��� ��� �� c� �M �eg�eh�� It has to be shown thatn
�egi�t� q� ��� ��� �� c�� i � I�� �ehi�t� q� ��� ��� �� c�� i � I��t� q� ��� ��� �� c�

o
is a set of independent vectors� When I��t� q� ��� ��� �� c� � � this is a consequence of Lemma A���

when I��t� q� ��� ��� �� c� �� � a consequence of Lemma A��� Suppose jI��t� q� ��� ��� �� c�j � � and

choose two elements� say i� and i�� from I��t� q� ��� ��� �� c�� It follows from Lemma A�� thatn
�egi�t� q� ��� ��� �� c�� i � I�� �ehi��t� q� ��� ��� �� c�� �ehi���t� q� ��� ��� �� c�o

is a set of independent vectors� which leads to a contradiction as the set contains H�S � �� �

�HJ �J �� vectors of dimension H�S�����HJ �J��� Consequently� jI��t� q� ��� ��� �� c�j � ��

Moreover� M �eg�eh� is a C� regular constraint set� Since M �eg�eh� � P �r�	N� it follows that eP �r�	N

is a ��dimensional C� manifold with boundary� and that the boundary of eP �r� 	 N is given by

the elements �t� q� ��� ��� �� c� � M �eg�eh� for which jI��t� q� ��� ��� �� c�j � �� Therefore� a point ineP �r� 	N is a boundary point if and only if exactly one of the inequalities in ��������� holds with

equality�

Next we show compactness of eP �r�� or� by Proposition ���� the equivalent result that P �r� is

compact� Let �tn� qn� be a sequence in P �r��

First we show that �tn� qn� is bounded� Suppose not� then� without loss of generality� kqnk � ��

Since �tn� qn� � P �r�� it holds that eF �tn� qn� � 
� Therefore�


 � �q� � qn� � eF �tn� qn�

� tn�q� � qn� �G�qn� � tn
JX

j��

�q�j � qnj �
����

j �q
n��

� � eq
n
j

� ��� tn��q� � qn� � �q� � qn�� ����

��



We continue by analyzing the tree terms in ����� Notice that G��q
n� � qnG�qn� is equal to minus

the total transactions costs paid in the economy at prices qn� and therefore less than or equal to

zero� We �nd that

�q� � qn� �G�qn� � q� �G�qn�� qn �G�qn� � q� �G�qn� �G��q
n����

where the last part follows by Proposition ���� The �rst term in ���� equals tn times an expression

that goes to in�nity� The second term is bounded below if qnj � �� and tends to in�nity if

qnj � ��� Since kqnk � � implies that �q� � qn� � �q� � qn���� the third term equals ��� tn�

times an expression that goes to in�nity� It follows that the entire expression in ���� goes to in�nity�

a contradiction to the fact that it is equal to zero� Consequently� the sequence �tn� qn� is bounded�

Next we show that P �r� is closed� Consider a convergent sequence �tn� qn� in P �r�� with limit

�t� q�� We prove �rst that q � Q� Suppose not� then q � �Q� We analyze again the expression in

����� As before� it follows by Proposition ��� that the �rst term equals tn times an expression going

to in�nity� the second term equals tn times an expression that is bounded� and since qn converges

to a point in �Q� the third term equals �� � tn� times an expression that converges to a strictly

positive number� We conclude that� for n large� the expression in ���� is not equal to zero� giving

rise to a contradiction� Consequently� q � Q� Since eF is continuous on �
� �� � Q� it follows thateF �t� q� � 
� so �t� q� � P �r��

We conclude that eP �r� is a compact� ��dimensional C� manifold with boundary� It follows from

standard arguments that the set E� can be chosen such that the closure of E n E� has Lebesgue

measure zero� see Herings ��		���

Finally� we show that the sets eP �r� are linked together by their boundary points as described

in the theorem� Consider a point �t� q� �
�
� �

�
� �� c� in the boundary of eP �r��

Suppose J��r� � J���r� � � or J��r� � J���r� ��  and t 	 �� It holds that �t� q� �
�
� �

�
� �� c� is a

solution to �������� with exactly one of the inequalities �	������ holding with equality�

If one of the inequalities in �	������ holds with equality� then �t� q� �
�
� �

�
� �� c� belongs to

�
� �� � Q � IRHJ � IRHJ � IRHJ � IRH���S�� If �	� holds with equality for some �h�� j�� � R��r��

then de�ne er by erh�j� � ��� and erhj � rhj for �h� j� �� �h�� j��� If ��
� holds with equality for some

�h�� j�� � R��r�� then de�ne er by erh�j� � ��� and erhj � rhj for �h� j� �� �h�� j��� If ���� or ���� holds

with equality for some �h�� j��� then de�ne er by erh�j� � 
� and erhj � rhj for �h� j� �� �h�� j��� Since either

J��er� � J��er� � � or J��er� � J��er� ��  and t 	 �� it is easily veri�ed that �t� q� �
�
� �

�
� �� c� is a

solution to �������� when speci�ed for er� with exactly one of the inequalities �	������ holding with

equality� Therefore� �t� q� �
�
� �

�
� �� c� is a boundary point of eP �er�� It is immediate that for any other

choice for er� the resulting system of equalities and inequalities does not admit �t� q� �
�
� �

�
� �� c� as

a solution�

If one of the inequalities in ��������� holds with equality� then �t� q� �
�
� �

�
� �� c� belongs to

f
� �g�Q� IRHJ � IRHJ � IRHJ � IRH���S�� It is immediate that for any er �� r� the resulting system

of equalities and inequalities �������� does not admit �t� q� �
�
� �

�
� �� c� as a solution�

Suppose J��r� � J���r� ��  and t � �� It holds that �t� q� �
�
� �

�
� �� c� is a solution to ��
������

with exactly one of the inequalities ��������� holding with equality� Since t � �� inequality ����

��



holds with equality� It follows that �t� q� �
�
� �

�
� �� c� belongs to f�g �Q � IRHJ � IRHJ � IRHJ �

IRH���S�� It is immediate that for any er �� r� the resulting system of equalities and inequalities

�������� does not admit �t� q� �
�
� �

�
� �� c� as a solution� Q�E�D�

Proof of Theorem ��	�

The properties of P �r� follow immediately from those of eP �r� since the two sets are di�eomorphic

by Proposition ���� Q�E�D�

Proof of Theorem ��
�

Consider the set E� of Theorem ���� For all e � E�� for all r � R� the set P �r� consists of a �nite

number of paths and loops� Each path in P �r� has two boundary points� If it has a boundary point

in f
� �g�Q� then the boundary point does not belong to any P �r� for r �� r� It is then a boundary

point of P� If a path has a boundary point in �
� �� � Q� then it is a boundary point of exactly

one P �r� with r �� r� So it is a boundary point of a path in P �r�� This path has another boundary

point� either in f
� �g �Q or in �
� �� �Q� In the former case� we have found a boundary point of

P� In the latter case� there is exactly one er such that the boundary point is also a boundary point

of an arc in P �er�� etc�
Since the cardinality of the set R is �nite� and each P �r� consists of �nitely many paths and

loops� it will either be the case that eventually a path is generated with a boundary point in

f
� �g � Q� or a path is generated that has been generated before� In the latter case� we have

found a piecewise C� loop of P� In the former case� the �nite chain of paths constitutes a piecewise

C� path of P with boundary points belonging to f
� �g � Q� It follows that P is a compact ��

dimensional piecewise C� manifold with boundary� where the boundary is given by the intersection

of P and f
� �g � Q� Notice that the argument above is nothing but a nonlinear version of the

door�in door�out principle of Lemke and Howson ��	����

It is easy to see that there is a unique boundary point in f
g�Q� since eF �
� q� � q�� q� which

has q � q� as the unique solution in eF���f
g�� Q�E�D�

��
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