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Abstract

In spite of the increased use of factor-augmented regressions in recent years, little

is known regarding the relative merits of the two main approaches to estimation and

inference, namely, the cross-sectional average and principal components estimators. As

a response to this, the current paper offers an in-dept theoretical analysis of the issue.
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1 Introduction

Recently, there has been increased interest in analysis of panel data models in which the

standard assumption that the regression errors are cross-sectionally uncorrelated is violated.

When the regression errors are cross-sectionally correlated standard estimation methods do

not necessarily produce consistent estimates of the coefficients of interest, and much effort

has therefore gone into the development of robust methods. In particular, the use of factor-

augmented regressions has recently become very popular.
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The key assumption in factor-augmented regressions is that the cross-section depen-

dence can be represented by means of a small number of common factors, which can then

be included as additional regressors. For factors that are observed, such as interest rates or

oil prices, this is of course very easy. However, many factors are unobserved and lack good

proxies. The most common approach to deal with the presence of such latent factors is to use

estimates in their stead. In this paper we focus on two estimators of the factor-augmented

regression; (1) the principal components (PC) estimator considered by for example Bai (2009)

and Greenaway-McGrevy et al. (2010), and (2) the cross-sectional average (CA) estimator of

Pesaran (2006). The main reason for this is that in spite of their popularity, the relative mer-

its of these estimators are not well understood. In fact, most practitioners seem to use them

quite interchangeably, as though their properties were the same. In Pesaran (2006) the CA

estimator is termed the common correlated effects (CCE) estimator. However, since Pesaran

(2006) only proposes CCE as an estimator of the coefficient of the factor-augmented regres-

sion and not of the factors themselves, in order to keep the distinction, in this paper we use

CA to refer to the estimator based on cross-sectional averages.

Stock and Watson (2002), and Bai (2003) study the PC estimator of the factors in the

context of a conventional factor model. They show that the PC estimates are consistent

for the space spanned by the true factors instead of the factors themselves. Fortunately,

in factor-augmented regressions consistent estimation of the factors is not necessary, as the

factor estimates are there merely to control for the cross-section dependence. This has been

shown in recent works of Bai (2009) and Greenaway-McGrevy et al. (2010), who study the

theoretical properties of the estimated PC factor-augmented regression. According to their

results, in spite of the generated regressor problem caused by the use of the estimated factors,

normal inference is usually possible with the estimated coefficients converging to their true

values at the rate
√

NT, where T and N denote the number of time series and cross-sectional

observations, respectively.

Pesaran (2006) is not interested in the estimation of the factors per se and only considers

the estimation of the factor-augmented regression. The CA approach consists of approxi-

mating the common component of the data by the cross-sectional averages of the dependent

and explanatory variables, and then augmenting the panel regression with these averages.

As Pesaran (2006) shows, the CA estimator of the regression coefficients is asymptotically

normal with the rate of consistency again given by
√

NT.
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However, while the inferential theory is there, little is known regarding the relative mer-

its of the PC and CA estimators. Indeed, as Pesaran (2006, page 1001) concludes:

It is also of interest to compare the approach proposed in this paper with the

alternative procedure that proxies the unobserved common factors by principal

components (PC) of yit and xit. This alternative is considered in a series of Monte

Carlo experiments in Kapetanios and Pesaran (2006) and Coakley, Fuertes, and

Smith (2006). Kapetanios and Pesaran’s experiments allow for up to four regres-

sors and factors, and find that the PC procedure does not perform as well as the

CCE approach and leads to substantial size distortions even if, when using the

PC procedure, the true number of unobserved factors is assumed to be known.

As the quotation suggests the knowledge regarding the relative merits of the two esti-

mators is limited, at best, and where evidence exists is it based exclusively on Monte Carlo

simulation, which need not be informative of any theoretical differences. In Kapetanios and

Pesaran (2006, page 13) it is concluded that: “Overall, it appears that even if one knows the

factors, the small sample bias in the model selection aspect of the PC augmented procedure

is important enough to adversely affect the performance of the estimators for moderate val-

ues of T, even if one abstracts from the small sample bias in estimation of the unobserved

factors.” Thus, while the results seem to suggest that the CA estimator performs best, the

reason for this is largely unknown.

In this paper we offer a theoretical explanation for the previously obtained simulation

results. The paper is organized as follows. Section 2 introduces the model of interest, and

discusses how it relates to the models considered by Bai (2009), Greenaway-McGrevy et al.

(2010) and Pesaran (2006). Section 3 presents the asymptotic results. Since Pesaran (2006)

does not consider the estimation of the factors themselves, nothing is known regarding the

CA factor estimates. Therefore, since any differences in the regression estimates can only be

due to the augmentation, we start by studying the relative properties of the PC and CA factor

estimates. Two of the results that emerges are that (i) the PC factor estimator is relatively

more efficient, and (ii) the PC and CA estimators of the factor-augmented regression can

be biased, even asymptotically, with the size of the bias depending on the variance of the

estimated factors. Thus, given the efficiency of the PC factor estimator, one would expect

the associated PC regression estimator to perform best. However, this is not what we find.

In fact, according to our results the CA estimator generally performs best, a finding that is
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verified in small-samples in Section 4. Section 5 concludes. Proofs of important results are

provided in Appendix.

A word on notation. The symbols →d and →p will be used to signify convergence in

distribution and convergence in probability, respectively. As usual, yT = Op(Tr) will be

used to signify that yT is at most order Tr in probability, while yT = op(Tr) will be used

in case yT is of smaller order in probability than Tr.1 For a m × n matrix A, tr(A), rk(A),

A− and ||A|| =
√

tr(A′A) will be used to denote its trace, rank, generalized inverse and

Euclidean norm, respectively.

2 Model

Consider the scalar and m-dimensional vector of observable panel data variables yit and xit,

where i = 1, ..., N and t = 1, ..., T indexes the cross-sectional and time series dimensions,

respectively. The data generating process of the vector of stacked observations on yit, yi =

(yi1, ..., yiT), is given by

yi = xiβ + ei, (1)

ei = Fλi + ϵi, (2)

where xi = (x′i1, ..., x′iT)
′ stacks xit, β is a m-dimensional vector of slope coefficients, F =

(F′
1, ..., F′

T)
′ is a T × r matrix of common factors with λi being the associated r-dimensional

vector of factor loadings, which is assumed to be non-random, and ϵi = (ϵi1, ..., ϵiT)
′ is a

T-dimensional vector of idiosyncratic errors that are independent of F and xi. Although ϵi

can in principle be cross-section correlated to some extent, in this paper we assume it to be

independent with mean zero and positive definite covariance matrix σ2
ϵi IT.

The above model is the prototypical pooled panel regression with a factor error structure,

in which ϵi is independent of xi. If F is also independent of xi, then (1) is nothing but a static

panel data regression with exogenous regressors, which can be estimated consistently using

least squares, although efficiency will be gained by using weighted least squares based on

the factor error structure. If, however, xi is correlated with F, then consistency will be lost.

To allow for this possibility, we assume that

xi = FΛ′
i + ε i, (3)

1If yT is deterministic, then Op(Tr) and op(Tr) are replaced by O(Tr) and o(Tr), respectively.
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where Λi is a m × r loading matrix and ε i = (ε′i1, ..., ε′iT)
′ is a T × m matrix of idiosyncratic

errors that are independent of F. Analogous to ϵi, ε i is assumed to be independent across i,

having zero mean and positive definite covariance matrix IT ⊗ Σεi. The assumptions placed

on ϵi, ε i and F may be summarized in the following way.

Assumption 1.

(a) ϵi ∼ iid(0, σ2
ϵi IT) and ε i ∼ iid(0, IT ⊗ Σεi) with σ2

ϵi < ∞ and Σεi > 0;

(b) Ft is covariance stationary such that E(||Ft||4) < ∞ and E(FtF′
t ) = ΣF > 0;

(c) λi and Λi are non-random such that ||λi|| < ∞ and ||Λi|| < ∞;

(d) ϵit, ε it and Ft are mutually independent.

Consider the T × (m + 1) matrix zi = (yi, xi). By combining (1)–(3),

zi = FCi + ui, (4)

where Ci = (Λ′
iβ + λi, Λ′

i) is r × (m + 1) and ui = (u′
i1, ..., u′

iT)
′ = (ε iβ + ϵi, ε i) is T × (m + 1)

with covariance matrix

E(uitu′
it) = Σui =

[
β′Σεiβ + σ2

ϵi β′Σεi

Σεiβ Σεi

]
.

Thus, (1)–(3) can be rewritten equivalently as a static factor model for zi. At times it will be

useful to write this model in matrix notation. Let us therefore introduce the T × N(m + 1)

matrix z = ((z′1t, ..., z′Nt)
′, ..., (z′1T, ..., z′NT)

′)′ with a similar definition of u, and the N(m+ 1)×

r matrix C = (C1, ..., CN)
′. In this notation, (4) becomes

z = FC′ + u.

Define Ai = CiC′
i , Bi = CiΣuiC′

i and Di = σ2
ϵiΣεi, and let Ā denote the cross-sectional

average of Ai with a similar definition of B̄, C̄, D̄, Σ̄ε and Σ̄u. In what follows the rank of

the limits of these quantities is going to be important, and we therefore make the following

assumption.

Assumption 2.

(a) Ā, B̄, and Σ̄ε are positive definite for all N, including N → ∞;

5



(b) rk(C̄) = r ≤ m + 1 for all N, including N → ∞.

Remarks.

1. Many of the conditions stated in Assumption 1 are not strictly necessary, but are re-

tained in order to simplify the comparison between the two estimators. The assump-

tion that ϵi and ε i are iid across i can, for example, be relaxed in the usual manner,

by simply replacing all contemporaneous variances with their corresponding long-

run variances. Thus, in case of uit, Σui = E(uitu′
it) is replaced by ∑∞

s=−∞ E(uitu′
it−s).

In case of the PC estimator we can also relax the assumption that ϵi and ε i are iid

across i, but then at the cost of some extra moment conditions, see Bai (2009, Section 4)

and Greenaway-McGrevy et al. (2010, Assumption A). The assumption that the cross-

section dependence of xi has a common factor structure is similarly not necessary, at

least not for the PC estimator, see remark 5 to Theorem 1. Again depending on the es-

timator used, the requirement that yi and xi are stationarity can similarly be relaxed in

various ways, see for example Bai et al. (2009) in case of the PC estimator and Kapetan-

ios et al. (2010) in case of the CA estimator. Finally, while we only consider non-random

loadings, the results of Section 3 still hold when λi and Λi are random, provided that

they are independent of ϵit, ε it and Ft, and satisfies some moment conditions.

2. Assumption 2 (a) ensures that Ā, B̄ and Σ̄ε are invertible, which in turn implies that D̄

and Σ̄u are invertible. To appreciate this, note that Ci = (λi, Λ′
i)P′, where

P =

[
1 β′

0 Im

]

has rank m + 1. Thus, since Σui = P diag(σ2
ϵi, Σεi)P′ and Σ̄ε is of full rank, Σ̄u must be

of full rank too. Finally, D̄ and Σ̄ε are full rank by Assumption 1. Assumption 2 (b)

ensures that the r × r matrix C̄C̄′ is invertible.

3. The assumption that ei and xi depend on the same set of factors is not a restriction.

Suppose for example that the factors to ei and xi do not have any elements in common.

In order to capture this we introduce the r × r orthogonal matrix J = (Je, Jx), which is

such that J′ J = J J′ = Ir. The component matrices Je and Jx, which are of dimension

r × re and r × (r − re), respectively, are such that J′x Je = 0, J′eΛi = 0 and J′xλi = 0. The

6



matrix J allows us to rotate F as FJ = (FJe, FJx) = (Fe, Fx). Thus, defining J′eλi = λei

and J′xΛi = Λxi, we have ei = Fλi + ϵi = FJ J′λi + ϵi = Feλei + ϵi and similarly xi =

FxΛxi + ε i.

3 Asymptotic results

As usual, β, λi, F, ϵi, Λi and ε i are treated as unknown, and the interest lies with the estima-

tion of β, λi, Λi and F. Initially, however, we will assume that Ci is known, which allows us

to focus on the estimation on F, and then we show how to proceed in the more general case.

3.1 Ci known

The first estimator of Ft that we consider is the infeasible PC (IPC) estimator, which in the

current setting is given by

F̂IPC
t =

(
N

∑
i=1

CiC′
i

)−1 N

∑
i=1

Cizit

In order to obtain the limiting distribution of this estimator, and also that of the infeasible

CA (ICA) estimator, we make use of Assumptions 1 and 2, which ensure that a law of large

numbers and a central limit theorem for heterogeneous processes apply. It follows that

√
N(F̂IPC

t − Ft) =

(
1
N

N

∑
i=1

CiC′
i

)−1
1√
N

N

∑
i=1

Ciuit →d N(0, ΩIPC) (5)

as N → ∞, where

ΩIPC = lim
N→∞

Ω̄IPC = lim
N→∞

Ā−1B̄Ā−1.

The second estimator the we consider, the ICA estimator, is defined as

F̂ICA
t = (C̄C̄′)−1C̄z̄t,

where z̄t is the cross-sectional average of zit. The asymptotic distribution of
√

N(F̂ICA
t − Ft)

is also normal, but the covariance matrix is now given by

ΩICA = lim
N→∞

Ω̄ICA = lim
N→∞

(C̄C̄′)−1C̄Σ̄uC̄′(C̄C̄′)−1.

The purpose of the current paper is to analyze the relative efficiency of the PC and CA

estimators, and also that of the associated factor augmented estimators of β. Foreshadowing
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this analysis, it is useful to view F̂IPC
t and F̂ICA

t as instrumental variables estimators, having

the general form (∑N
i=1 ZiC′

i)
−1 ∑N

i=1 Zizit, with Zi being the instrument. The choice Zi = Ci

leads to the PC estimator, while Zi = C̄ leads to the CA estimator. Intuitively, since Ci is

independent of uit, the PC estimator should be more efficient. The next proposition shows

that this is indeed the case.

Proposition 1. Under Assumptions 1 and 2, Ω̄ICA − Ω̄IPC ≥ 0.

Thus, the PC estimator is generally superior in terms of efficiency. The only exception is

when Σεi, Λi and λi are equal across i, in which case the two estimators are equally efficient.

Note also that Proposition 1 implies ΩICA − ΩIPC ≥ 0.

The next step in our analysis is to make use of Proposition 1 when analyzing the effi-

ciency of estimators of β. In so doing, it is convenient to define the factor projection matrix

MF = IT − F(F′F)−1F′,

suggesting that the infeasible LS (ILS) estimator of β can be written as

β̂ ILS =

(
N

∑
i=1

x′i MFxi

)−1 N

∑
i=1

x′i MFyi

The asymptotic distribution of this estimator can be readily deduced by noting that MFxi =

MFε i, suggesting

√
NT(β̂ ILS − β) =

(
1

NT

N

∑
i=1

ε′i MFε i

)−1
1√
NT

N

∑
i=1

ε′i MFϵi →d N(0, ΩILS) (6)

as N, T → ∞, where

ΩILS = lim
N→∞

Σ̄−1
ε D̄Σ̄−1

ε .

Hence, β̂ ILS is not only
√

NT-consistent for β but also asymptotically normal.2

2In this paper we focus on the comparison between the CA and PC estimators, and do not spend time on
issues such as implementation and inference, for which there are results available already (see for example
Pesaran, 2004; Bai, 2009). However, it should be mentioned that in order to make inference based on the asymp-
totic normality results provided herein, typically all that is needed is an estimator of the asymptotic variance.
For example, in order to make inference using β̂ ILS an estimator of ΩILS is needed, which can be obtained by
simply replacing Σεi and Di in Σ̄ε and D̄ with 1

T x′i MF̂IPC xi and 1
T (yi − xi β̂ ILS − F̂IPCλi)

′(yi − xi β̂ ILS − F̂IPCλi),
respectively. The alternative would be to use F̂ICA instead of F̂IPC.
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Let us now consider replacing the true factors by their IPC and ICA estimators. In the

next theorem we report asymptotic distributions of the resulting ILS estimators of β, hence-

forth denoted β̂ IPC and β̂ ICA, respectively. Note that the ICA estimator can be seen as an

infeasible version of the CCE estimator of Pesaran (2006).

Theorem 1. Under Assumptions 1 and 2, as N, T → ∞ with
√

T
N → 0,

√
NT(β̂ IPC − β̂ ILS) = Σ̄−1

ε

√
TN−1/2(B1IPC − B2IPC) + op(1),

√
NT(β̂ ICA − β̂ ILS) = Σ̄−1

ε

√
TN−1/2(B1ICA − B2ICA) + op(1),

where

B1IPC = lim
N→∞

1
N

N

∑
i=1

ΛiΩ̄IPCλi,

B2IPC = lim
N→∞

1
N

N

∑
i=1

Σεi((ββ′ + Im)Λi + βλ′
i)Ā−1λi,

B1ICA = lim
N→∞

1
N

N

∑
i=1

ΛiΩ̄ICAλi,

B2ICA = lim
N→∞

1
N

N

∑
i=1

Σεi((ββ′ + Im)Λ̄ + βλ̄′)(C̄C̄′)−1λi.

Remarks.

1. The fact that the estimators are biased in the current setup might come as a surprise.

Indeed, since Ci is known, it should be possible to just add it as a regressor when

estimating β. Since the regressors in a regression of yi on xi and Ci are exogenous, there

should not be any bias. However, this is not how the estimation is carried out here. In

particular, since the data are projected upon the estimated factors, the knowledge of

Ci is not really used in this step of the estimation procedure, and it is this practice that

leads to bias. The reason for doing the estimation in this way is that it works also when

Ci is unknown.

2. Consider the IPC estimator. According to Theorem 1,

√
NT(β̂ IPC − β) =

√
NT(β̂ ILS − β) +

√
NT(β̂ IPC − β̂ ILS)

=
√

NT(β̂ ILS − β) + Σ̄−1
ε

√
TN−1/2(B1IPC − B2IPC) + op(1),
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suggesting that if we assume that Σ̄ε → Σε, T
N → τ > 0 and

√
T

N → 0 as N, T → ∞,

√
NT(β̂ IPC − β) →d N(0, ΩILS) + Σ−1

ε

√
τ(B1IPC − B2IPC).

A similar result applies to the ICA estimator. Thus, if τ > 0, while consistent, be-

cause of the correlation between ei and xi, the asymptotic distributions of the estima-

tors are biased. On the other hand, if τ = 0, then the bias is negligible and therefore
√

NT(β̂ IPC − β̂ ICA) = op(1). Another possibility is if λi = 0, in which case the correla-

tion between ei and xi is zero and therefore the bias disappears.

3. The bias in the case when T
N → τ > 0 depends critically on the choice of estimator of

Ft. Unfortunately, in general one cannot say anything about the size and direction of

this bias. However, suppose that m = r = 1, and that Σεi = Σε, Λi = Λ and λi = λ.

Then the difference in absolute bias of the ICA and IPC estimators is given by

Σ̄−1
ε

√
τ(|B1ICA − B2ICA| − |B1IPC − B2IPC|) = Σ−1

ε

√
τ|Λ||λ|(ΩICA − ΩIPC) = 0,

where the last equality follows from the fact that ΩICA = ΩIPC whenever Σεi, Λi and

λi are equal across i. In this case it is therefore clear that the two estimators as equally

biased.

4. Proposition 1 and Theorem 1 make use of Assumption 2 requiring that Ā, B̄, D̄, Σ̄ε and

Σ̄u all have full rank and that rk(C̄) = r. However, careful inspection of the results of

these propositions reveal that the two estimators are actually based on different mo-

ment conditions, and that it is only when taken together that Assumption 2 is required.

For example, consider Proposition 1. While the result for the PC estimator requires that

Ā, B̄ and D̄ have full rank, the corresponding result for the CA estimator requires that

D̄ and Σ̄u have full rank and that rk(C̄) = r.

5. In this paper F is estimated from zi. This is not necessary. Bai (2009) considers a similar

model, but where F is estimated by applying PC to yi − xi β̂LS, where β̂LS is obtained

by applying LS to (1). This estimator can then be used in a second step to obtain the

associated IPC estimator of β. These steps can then be repeated until convergence. Bai

(2009, Corollary 1) shows that in the special case when σ2
εi = σ2

ε for all i, the resulting

iterated IPC estimator of β is
√

NT-consistent and asymptotically normal as N, T → ∞
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with T
N → 0.3 The variance is in our notation given by σ2

ε D−1
0 , where

D0 = lim
N,T→∞

1
NT

N

∑
i=1

x′i MFxi −
N

∑
j=1

x′i MFxjλ
′
i

(
N

∑
j=1

λiλ
′
i

)−1

λj

 ,

which under (3) reduces to

D0 = lim
N,T→∞

1
NT

N

∑
i=1

ε′i MFε i = lim
N→∞

Σ̄ε.

Thus, since ΩILS = σ2
ε lim

N→∞
Σ̄−1

ε in this case, we have that under the additional require-

ment that
√

T
N → 0 the PC and CA estimators considered here have the same asymptotic

distributions as the one considered by Bai (2009). Another possibility is to estimate F

from (3). However, in this case there must be no factors that are unique to ei.

6. One advantage of using the approach of Bai (2009) is that the cross-section dependence

in xi does not need to have a factor structure. In fact, the only necessary requirement

in this case is that xi is independent of ϵi, see Bai (2009, Assumption D). However, it is

important to note that if xi does not have a factor structure, then the above results are

no longer valid. Specifically, since in this case x′i MFxi ̸= ε′i MFε i, Σεi should be replaced

by var(x′i MFxi), which is then assumed to be nonsingular, see Bai (2009, Assumption

A) and Greenaway-McGrevy et al. (2010, Assumption B).4

7. Bai (2009) and Greenaway-McGrevy et al. (2010) relax the common factor assumption

for xi. However, since no alternative structure is assumed, the results for their PC

estimators are not as clear as ours with the limiting distributions being expressed in

terms of the parameters of the model.5 They are also not as clear as ours when it comes

to the restrictions placed on the relative expansion rate of N and T. For example, while

Bai (2009, Theorem 3) only assumes that T
N → τ > 0, as Theorem 1 makes clear, in order

to ensure that the various sample moments converge to their population counterparts,

we also need
√

T
N → 0. Thus, as always, there is a trade-off here between generality

and clearness of results.
3Thus, while the first-step LS estimator of β is inconsistent, the iterated estimator is not.
4But while quite general when it comes to the allowable cross-sectional dependencies in xi, the Bai (2009)

approach also has some drawbacks. One drawback is that because yi − xi β̂LS is used in place of ei to estimate F,
the second-step estimator may not be able to identify β (Greenaway-McGrevy et al., 2010). This can for example
happen when there are common factors that are unique to xi.

5Compare to Bai (2009, Theorem 3) and Greenaway-McGrevy et al. (2010, Theorem 1).
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8. Pesaran (2006) relaxes Assumption 2.6 However, this greater generality comes at the

expense of additional assumptions regarding β and γi, which then have to admit a

random coefficient representation. To illustrate this suppose that instead of (1) we have

yi = xiβi + ei, where βi = β + vi, vi ∼ iid(0, Σv) and Σv > 0. A similar assumption

is assumed to hold for λi. Specifically, we assume that λi = λ + wi, where wi is again

iid with mean zero and positive definite covariance matrix. vi and wi are mutually

independent. It can be shown that

√
N(β̂ ICA − β) =

(
1

NT

N

∑
i=1

x′i MF̂ICA xi

)−1
1√
NT

N

∑
i=1

x′i MF̂ICA(xivi + Fλi + ϵi)

=

(
1

NT

N

∑
i=1

x′i MF̂ICA xi

)−1
1√
NT

N

∑
i=1

x′i MF̂ICA(xivi + Fλi) + op(1).

If Assumption 2 holds, then one can replace MF̂ICA with MF, and therefore it is not

difficult to see that

√
N(β̂ ICA − β) =

(
1

NT

N

∑
i=1

ε′i MFε i

)−1
1√
NT

N

∑
i=1

ε′i MFε ivi + op(1)

= Σ̄−1
ε

1√
N

N

∑
i=1

Σεivi + op(1)

→d

(
lim

N→∞
Σ̄−1

ε

1
N

N

∑
i=1

ΣεiΣvΣεiΣ̄−1
ε

)1/2

N(0, Im)

as T → ∞ and then N → ∞. Thus, in this case the normality assumption is a direct

consequence of the assumed randomness of βi. A similar result applies in case As-

sumption 2 fails but then the normality stems from the assumed randomness of both

βi and λi. Thus, while Assumption 2 can be relaxed, this does not come free of charge,

and, depending on the application, it is unclear which assumption is most restrictive.

Note also that if βi is allowed to vary, the rate of convergence is reduced, from
√

NT to
√

N.

3.2 Ci unknown

Relaxing the assumption of known Ci has at least two important consequences. First, since Ft

and Ci are no longer separately identifiable, Ft can only be estimated up to a matrix rotation.

6More precisely, Pesaran (2006) relaxes the assumption that the limit of the cross-sectional average of (λi, Λ′
i)

has rank r ≤ m + 1.
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Hence, instead of estimating Ft as in the previous section, now the best that we can hope for

is consistent estimation of the space spanned by Ft. Second, the number of common factors,

r, is unknown.

The feasible PC (FPC) estimator of F, denoted F̂FPC, is
√

T times the matrix consisting

of the eigenvectors corresponding to the k largest eigenvalues of the T × T matrix zz′. The

feasible CA (FCA) estimator is just the cross-sectional average of zit, that is, F̂FCA
t = z̄t. To

capture the fact that Ft, F̂FPC
t and F̂FCA

t may be of different dimension, we introduce the r × k

matrix H = 1
NT C′CF′ F̂FPCV−1 and the r × (m + 1) matrix G = C̄, where V is a k × k diagonal

matrix containing the k largest eigenvalues of 1
NT zz′ in descending order. These matrices

will be use to rotate F, suggesting that something has to be assumed regarding their rank.

Given Assumption 2 (b) the rank of G is clearly r ≤ m + 1. As for H, we make the following

assumption.

Assumption 3. rk(H) = r ≤ k.

The asymptotic distributions of the feasible factor estimators are given in Proposition 2.

Proposition 2. Under Assumptions 1–3, as N, T → ∞ with
√

N
T → 0,

√
N(F̂FPC

t − H′Ft) →d N(0, ΩFPC),
√

N(F̂FCA
t − G′Ft) →d N(0, ΩFCA),

where

ΩFPC = lim
N,T→∞

H′Ω̄IPC H,

ΩFCA = lim
N,T→∞

G′Ω̄ICAG.

As expected, we see that the ΩFPC and ΩFCA depend on the rotation matrices H and

G, thus making it impossible to compare the relative variance of the estimators. However,

while C′
i and Ft are not identifiable, their product is. Proposition 3 therefore provides the

limiting distributions of the PC and CA estimators of the common component, C′
i Ft. The

PC and CA estimators of Ci are obtained from a LS regression of zit onto the corresponding

factor estimate.
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Proposition 3. Under Assumptions 1–3, as N, T → ∞,

(N−1C′
i ΩIPCCi + T−1F′

t Σ−1
F FtΣui)

−1/2((ĈFPC
i )′ F̂FPC

t − C′
i Ft) →d N(0, 1),

(N−1C′
i ΩICACi + T−1F′

t Σ−1
F FtΣui)

−1/2((ĈFCA
i )′ F̂FCA

t − C′
i Ft) →d N(0, 1).

In contrast to Proposition 2, Proposition 3 holds regardless of the relative expansion rate

of N and T. However, the results simplify if either N
T → 0 or T

N → 0. On the one hand, if
N
T → 0, then

(N−1C′
i ΩIPCCi + T−1F′

t Σ−1
F FtΣui)

−1/2((ĈFPC
i )′ F̂FPC

t − C′
i Ft)

= (C′
i ΩIPCCi + NT−1F′

t Σ−1
F FtΣui)

−1/2
√

N((ĈFPC
i )′ F̂FPC

t − C′
i Ft)

= (C′
i ΩIPCCi)

−1/2
√

N((ĈFPC
i )′ F̂FPC

t − C′
i Ft) + op(1).

suggesting that (ĈFPC
i )′ F̂FPC

t is
√

N-consistent for C′
i Ft and that the asymptotic variance is

given by C′
i ΩIPCCi. The rate of consistency for (ĈFCA

i )′ F̂FCA
t is the same. However, since the

variance of this estimator is given by C′
i ΩICACi, the relative efficiency depends on the choice

of estimator of Ft. In particular, since C′
i ΩICACi − C′

i ΩIPCCi = C′
i(ΩICA − ΩIPC)Ci ≥ 0, the

PC estimator of the common component is as least as efficient as the CA estimator. On the

other hand, if T
N → 0, then

(N−1C′
i ΩIPCCi + T−1F′

t Σ−1
F FtΣui)

−1/2((ĈFPC
i )′ F̂FPC

t − C′
i Ft)

= (F′
t Σ−1

F FtΣui)
−1/2

√
T((ĈFPC

i )′ F̂FPC
t − C′

i Ft) + op(1).

The same result applies (ĈFCA
i )′ F̂FCA

t . Hence, in contrast to the case when N
T → 0, since the

variances are now the same, in this case the two estimators are equally efficient.

Proposition 4 provides the relevant asymptotic theory for the feasible estimators of β.

Proposition 4. Under Assumptions 1–3, as N, T → ∞ with
√

T
N → 0 and

√
N

T → 0,

√
NT(β̂FPC − β̂ ILS) =

√
NT(β̂ IPC − β̂ ILS) + op(1),

√
NT(β̂FCA − β̂ ILS) =

√
NT(β̂ ICA − β̂ ILS) + op(1).

Remarks.
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1. Proposition 4 requires that
√

T
N and

√
N

T should both go to zero, which is satisfied if
√

T < N < T2. The asymptotic distributions of
√

NT(β̂FPC − β) and
√

NT(β̂FCA − β)

in this case can be deduced in the same way as in remark 1 to Theorem 1. They are

normal with variance ΩILS. To also ensure that the mean is zero we need T
N → 0, which

together with the requirement that
√

T
N → 0 implies that for valid inference based on

the FPC and FCA estimators of β we need T < N < T2.

2. As already mentioned the FPC and FCA estimators of the common component are

equally efficient if T
N → 0. Coincidentally, this is also the requirement for

√
NT(β̂FPC −

β) and
√

NT(β̂FCA − β) to be asymptotically unbiased.

3. The fact that the FPC estimator is biased when T
N → τ > 0 is in agreement with the

results reported by Bai (2009, Theorem 3) for his residual-based PC estimator, and as

such it is not that surprising. The fact that also the FCA estimator is biased is, on the

other hand, new to this paper. Proposition 4 can therefore be seen as a generalization

of the results of Pesaran (2004) to the case when the assumption that T
N → 0 is violated.

4. An obvious solution to the problem with bias in case T
N → τ > 0 is to use bias correc-

tion. In case of PC estimation, this means using β̂FPC − 1
N Σ̂−1

ε (B̂1IPC − B̂2IPC) in place of

β̂FPC, where Σ̂ε =
1

NT ∑N
i=1 x′i MF̂FPC xi and B̂1IPC and B̂2IPC are B1IPC and B2IPC, respec-

tively, with β, Σεi and σ2
ϵi replaced by β̂FPC, Σ̂εi =

1
T x′i MF̂FPC xi and σ̂2

ϵi =
1
T (yi − xi β̂FPC −

F̂FPCλ̂FPC
i )′(yi − xi β̂FPC − F̂FPCλ̂FPC

i ), respectively. The estimators λ̂FPC
i and Λ̂FPC

i of λi

and Λi, respectively, are obtained by simply picking the appropriate elements in ĈFPC
i .

5. Assumptions 2 (a) and 3 clarify an often overlooked fact in applied work, namely, that

the problem of selecting k in PC estimation is the same as the problem of selecting m+ 1

in CA estimation. According to these assumptions the assumed number of common

factors must be at least as large as the true number, r. In case of the PC estimator this

means that one has to put k large enough in the estimation of the factors, whereas in

case of the CA estimator it means that the number of regressors must be large enough.

Thus, the results reported in Propositions 2–4 for the PC estimator only require r ≤ k

and the results for the CA estimator only require r ≤ m + 1. Kapetanios and Pesaran

(2006) claim that unlike the CA approach the implementation of the PC procedure re-

quires the determination of the number of factors. But this ignores the fact that the
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implementation of the CA approach requires setting m = r − 1, which is just as prob-

lematic as trying to set k = r. In fact, to the extent that more factors also require more

regressors, one can even claim that the CA method is more demanding than PC.

4 Monte Carlo simulations

A small-scale simulation study was conducted to assess the accuracy of our theoretical re-

sults in small samples. The data generating process is a restricted version of the one given

in (4), and sets m = 1, r = 2, β = 1 and (F′
t , ϵit, ε it)

′ ∼ N(0, diag(I2, σ2
ϵ , Σεi)). Also,

Σεi ∼ a + bU(0, 1), where we use a and b to control the level and heterogeneity of Σεi. To

ensure that Ci is positive definite, we further set Λi = Λ = (0, 1) and use c to determine the

heterogeneity of λi ∼ (1, 1)′ + cU(0, 1). The data are generated for 3,000 panels with either

N = T or N = T4/3 and T = 25, 50, 100, 200. If N = T, the CA and PC estimators should be

biased, whereas if N = T4/3, they should be asymptotically unbiased.

We focus on the estimation of β. Specifically, in order to verify Theorem 1 and Proposition

5, we report the mean and standard deviation of
√

NT(β̂ ICA − β̂ ILS),
√

NT(β̂ IPC − β̂ ILS),
√

NT(β̂FCA − β̂ ILS) and
√

NT(β̂FPC − β̂ ILS). The theoretical bias obtained from evaluating

the formula given in Theorem 1 is also reported. As a measure of the relevance of these

results for inference, we also report the size of a double-sided t-test for the null hypothesis

of β = 1 when the 5% critical value of 1.96 is used. The feasible estimators are implemented

using the true number of factors and their standard errors are computed using the standard

LS formula.

The results reported in Tables 1 and 2 are generally in agreement with theory and can be

summarized as follows:

• While the estimators are on average equally biased when b = c = 0 such that Σεi = Σε

and λi = λ, this is not the case when b and c are set differently. In particular, based

on the results reported here, the two CA estimators consistently outperform their PC

counterparts. To take an extreme example, consider the case when N = T, a = 3 and

c = 4, in which the theoretical PC bias according to Theorem 1 is roughly −1.5.7 As

the table makes clear, this is a very accurate prediction of the empirical IPC and FPC

bias. The CA, on the other hand, seems to perform very well with a bias close to zero.

7The bias results in this case is of similar magnitude as the ones reported by Greenaway-McGrevy et al. (2010).
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• The bias is generally very close to what is predicted by our asymptotic theory. The

only exception is for the FPC estimator, which tends to be more biased than expected,

especially when b = c = 0. However, the discrepancy vanishes quickly as T increases,

suggesting that the bias in this case is merely a small-sample effect. We also see that

the extent of this effect depends on a and σ2
ϵ , which determine the variance of the

idiosyncratic component relative to that of the common component. As expected, the

bias is increasing in a and σ2
ϵ .

• The size of the bias depend on whether N = T or N = T4/3. If N = T, except possibly

for FPC estimator when b = c = 0, we see that the bias is flat in T. By contrast, if

N = T4/3, then the bias is clearly decreasing in T. This is in agreement with Theorem

1 showing that the bias is O(
√

T/N ), which is O(1) when N = T and O(T−1/6) when

N = T4/3. The effect is especially pronounced for the PC estimators being severely

biased in the case when N = T.

• As expected, regardless of whether N = T or N = T4/3, the standard deviation of the

simulated bias is decreasing in T. We also see that the rate at which the bias vanishes

is roughly of the theoretically predicted rate of 1
T .

• The size of the t-tests depend critically on the extent of bias. In particular, we see that

there is a clear tendency for the size distortions to increase with the size of the bias.

The PC estimators are much more biased than the CA estimators, which translates into

relatively large size distortions. In fact, based on the results reported here, it is not

unusual for these tests to have sizes that are in excess of 50% when they should be 5%.

However, as expected the size distortions are substantially reduced when N = T4/3

and as T increases.

5 Conclusions and implications for empirical work

The results obtained here are interesting in their own right but also because of the implica-

tions they have for applied work. The fact that the CA estimator of the factor-augmented

regression, which is the CCE of Pesaran (2006), is in general less biased than PC is, for ex-

ample, very useful. Specifically, since the variances of the two estimators are the same, it

means that in practice one is unlikely to do better than when using the relatively simple CA
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approach.

In this paper we have assumed that the true number of factors, r, is known, which is not

the case in practice. However, it is reasonable to assume that r is bounded by a sufficiently

large integer value, rmax say. One way to implement the CA and PC estimators is to simply

set rmax = k = m + 1, thereby allowing true number of factors to be anything between zero

and rmax. Thus, in this case we are not interested in the number of factors but just want to

make sure that the effect of the cross-section dependence has been accounted for. Of course,

with rmax large, for the CA estimator this approach is not really feasible. As an alternative

in such cases one may chose r using some model selection criteria, such as an information

criterion. This approach has been shown to work in the context of a conventional common

factor model (Bai and Ng, 2002) and it is expected to work well also in the current regression

setting. Note also that all results reported in this paper are based on the assumption that r ≤

m + 1 in case of the CA estimator and r ≤ k in case of the PC estimator. If these assumptions

are violated, which in practice means setting rmax too low, then the results reported here are

no longer valid.

Chudik et al. (2010) introduce the notions of weak, semi-strong and strong factor struc-

tures and prove that these do not affect the consistency of the FCA estimator, a result that

is partly confirmed by our simulations. The FPC estimator, on the other hand, seems to be

severely small-sample biased even if the cross-section dependence is absent. The implication

is that if the objective is just to mop up the effect of a relatively weak common component,

then the FCA estimator seems like the best choice.

The relative magnitude of N and T has important implications for performance, not only

in small samples but also asymptotically. Thus, given the size of the potential bias, unless

N > T, some kind of bias-correction might be appropriate (see Bai, 2009). A natural can-

didate towards this end consists of subtracting from FCA and FPC an estimator of the bias

given in Theorem 1. For example, instead of β̂FCA we use β̂FCA − N−1Σ̄−1
ε (B1ICA − B2ICA),

where the unknown coefficients in Σ̄ε, B1ICA and B2ICA should be replaced by estimates. In

case of the FPC estimator, given its small-sample bias, this is probably not enough. Similarly,

even if N > T, for the FPC estimator to work properly one also needs N and T relatively

large.
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Appendix: Proofs

Proof of Proposition 1.

Define the N(m + 1) × N(m + 1) covariance matrix Σu = diag(Σu1, ..., ΣuN). Thus, letting

J = ιN ⊗ Im+1, where ιN = (1, ..., 1)′ is a N-dimensional vector of ones, Ā, B̄, C̄ and Σ̄u can

be rewritten as

Ā =
1
N

C′C,

B̄ =
1
N

C′ΣuC,

C̄ =
1
N

C′ J,

Σ̄u =
1
N

J′Σu J.

In this notation,

Ω̄IPC = N(C′C)−1C′ΣuC(C′C)−1,

Ω̄ICA = N(C′ J J′C)−1C′ J J′Σu J J′C(C′ J J′C)−1.

We now show that Ω̄ICA − Ω̄IPC is positive semidefinite, which holds if R̄ = Ω̄−1
IPC − Ω̄−1

CA

is positive semidefinite. Thus, letting

V = C′C,

S = C′ΣuC,

W = C′(CC′)− J J′(CC′)−C,

we have

VWSWV = (C′C)
(
C′(CC′)− J J′(CC′)−C

)
(C′ΣuC)

(
C′(CC′)− J J′(CC′)−C

)
(C′C)

= (C′C)C′(CC′)− J J′Σu J J′(CC′)−C(C′C) = C′ J J′Σu J J′C,

VWV = (C′C)
(
C′(CC′)− J J′(CC′)−C

)
(C′C) = C′ J J′C,

which in turn implies

R̄ =
1
N
(C′C)(C′ΣuC)−1(C′C)− 1

N
C′ J J′C(C′ J J′Σu J J′C)−1C′ J J′C

=
1
N

VS−1V − 1
N

VWV(VWSWV)−1VWV.
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Moreover, since C′ΣuC is positive definite, there exists a nonsingular (m + 1)× (m + 1) ma-

trix L such that (C′ΣuC)−1 = L′L. Let H = LV and MG = Im+1 − G(G′G)−1G′, where

G = (L′)−1WV. It follows that

R̄ =
1
N

VL′LV − 1
N

VWV(VWL−1(L′)−1WV)−1VWV

=
1
N

H′H − 1
N

H′G(G′G)−1G′H = H′MG H.

But MG is symmetric and idempotent, as M′
G = MG and MG MG = MG, suggesting that for

any (m + 1)-dimensional vector v,

v′R̄v = v′H′MG Hv = w′MGw ≥ 0,

where w = Hv and the inequality holds because MG is positive semidefinite. Therefore, R̄ is

positive semidefinite. �

Proof of Theorem 1.

We begin by considering the PC estimator. Write

yi = xiβ + F̂IPCλi − dλi + ϵi,

where d = F̂IPC − F. The least squares estimator of β is given by

β̂ IPC =

(
N

∑
i=1

x′i MF̂IPC xi

)−1 N

∑
i=1

x′i MF̂IPC yi,

suggesting that

√
NT(β̂ IPC − β) =

(
1

NT

N

∑
i=1

x′i MF̂IPC xi

)−1
1√
NT

N

∑
i=1

x′i MF̂IPC ϵi

−
(

1
NT

N

∑
i=1

x′i MF̂IPC xi

)−1
1√
NT

N

∑
i=1

x′i MF̂IPC dλi.

We begin by considering the second term on the right-hand side. Clearly,

− 1√
NT

N

∑
i=1

x′i MF̂IPC dλi =
1√
NT

N

∑
i=1

x′i MF̂IPC Fλi =
1√
NT

N

∑
i=1

ΛiF′MF̂IPC Fλi

+
1√
NT

N

∑
i=1

ε′i MF̂IPC Fλi = R1 + R2,
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with R1 and R2 implicitly defined.

Consider R1, where F′MF̂IPC F can be expanded as

F′MF̂IPC F = d′MF̂IPC d = d′MFd − d′(MF − MF̂IPC)d

From the definitions of MF and MF̂IPC ,

d′(MF − MF̂IPC)d = d′d((F̂IPC)′ F̂IPC)−1d′d + d′d((F̂IPC)′ F̂IPC)−1F′d

+ d′F((F̂IPC)′ F̂IPC)−1d′d + d′F[((F̂IPC)′ F̂IPC)−1 − (F′F)−1]F′d.

Write

((F̂IPC)′ F̂IPC)−1 − (F′F)−1 = ((F̂IPC)′ F̂IPC)−1((F̂IPC)′ F̂IPC − F′F)(F′F)−1

= ((F̂IPC)′ F̂IPC)−1(d′ F̂IPC + F′d)(F′F)−1,

where

√
NT−1/2F′d =

√
N√
T

T

∑
t=1

Ftd′t =
1√
NT

N

∑
i=1

T

∑
t=1

Ftu′
itC

′
i Ā−1 = Op(1),

with dt = F̂IPC
t − Ft. Similarly, since

1
NT

N

∑
i=1

N

∑
j=1

T

∑
t=1

Ciuitu′
jtC

′
j →p B̄

as T → ∞, we have

√
NT−1/2d′ F̂IPC =

√
N√
T

T

∑
t=1

dt(F̂IPC
t )′ = Ā−1 1√

NT

N

∑
i=1

T

∑
t=1

Ciuit(F̂IPC
t )′

= Ā−1 1√
NT

N

∑
i=1

T

∑
t=1

CiuitF′
t + Ā−1 1

N3/2
√

T

N

∑
i=1

N

∑
j=1

T

∑
t=1

Ciuitu′
jtC

′
j Ā

−1

= Ā−1 1√
NT

N

∑
i=1

T

∑
t=1

CiuitF′
t +

√
T√
N

Ā−1B̄Ā−1 + op(1)

= Op(1) + Op

(√
T√
N

)
.

Hence,

T||((F̂IPC)′ F̂IPC)−1 − (F′F)−1|| ≤ ||(T−1(F̂IPC)′ F̂IPC)−1||T−1||d′ F̂IPC + F′d||

× ||(T−1F′F)−1||

= Op

(
1√
NT

)
+ Op

(
1
N

)
.
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But we also have

NT−1d′d =
N
T

T

∑
t=1

dtd′t = Ā−1 1
N

N

∑
i=1

N

∑
j=1

Ci
1
T

T

∑
t=1

uitu′
jtC

′
j Ā

−1 →p Ā−1B̄Ā−1 = Ω̄IPC

as T → ∞, from which it follows that

||T−1d′(MF − MF̂IPC)d|| ≤ ||T−1d′d|| ||(T−1(F̂IPC)′ F̂IPC)−1|| ||T−1d′d||

+ ||T−1d′d|| ||(T−1(F̂IPC)′ F̂IPC)−1|| ||T−1F′d||

+ ||T−1d′F||||(T−1(F̂IPC)′ F̂IPC)−1|| ||T−1d′d||

+ ||T−1d′F||T||((F̂IPC)′ F̂IPC)−1 − (F′F)−1|| ||T−1F′d||

= Op

(
1

N2

)
+ Op

(
1

N3/2
√

T

)
.

Hence,∣∣∣∣∣∣∣∣ 1√
NT

N

∑
i=1

Λid′(MF − MF̂IPC)dλi

∣∣∣∣∣∣∣∣ ≤
√

NT||T−1d′(MF − MF̂IPC)d||
1
N

N

∑
i=1

||Λi|| ||λi||

= Op

( √
T

N3/2

)
+ Op

(
1
N

)
.

Moreover, since d′MFd = d′d − d′F(F′F)−1F′d with∣∣∣∣∣∣∣∣ 1√
NT

N

∑
i=1

Λid′F(F′F)−1F′dλi

∣∣∣∣∣∣∣∣ ≤ 1√
NT

||
√

NT−1/2d′F|| ||(T−1F′F)−1||

× ||
√

NT−1/2F′d|| 1
N

N

∑
i=1

||Λi|| ||λi|| = Op

(
1√
NT

)
,

we obtain

R1 =
1√
NT

N

∑
i=1

Λid′MFdλi −
1√
NT

N

∑
i=1

Λid′(MF − MF̂IPC)dλi

=
1√
NT

N

∑
i=1

Λid′MFdλi + Op

( √
T

N3/2

)
+ Op

(
1
N

)
=

1√
NT

N

∑
i=1

Λid′dλi + Op

(
1√
NT

)
+ Op

( √
T

N3/2

)
+ Op

(
1
N

)
.

As for the first term on the right-hand side, we have

1
T

N

∑
i=1

Λid′dλi =
1
N

N

∑
i=1

Λi(NT−1d′d)λi →p B1IPC

as N, T → ∞, where

B1IPC = lim
N→∞

1
N

N

∑
i=1

ΛiΩ̄IPCλi,
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which in turn suggests

R1 −
√

TN−1/2B1IPC = Op

(
1√
NT

)
+ Op

( √
T

N3/2

)
+ Op

(
1
N

)
.

Next, consider R2. Clearly,

R2 = − 1√
NT

N

∑
i=1

ε′i(MF − MF̂IPC)Fλi

= − 1√
NT

N

∑
i=1

ε′id((F̂IPC)′ F̂IPC)−1d′Fλi −
1√
NT

N

∑
i=1

ε′id((F̂IPC)′ F̂IPC)−1F′Fλi

− 1√
NT

N

∑
i=1

ε′iF((F̂IPC)′ F̂IPC)−1d′Fλi −
1√
NT

N

∑
i=1

ε′iF[((F̂IPC)′ F̂IPC)−1 − (F′F)−1]F′Fλi.

Since d′t((F̂IPC)′ F̂IPC)−1ds is a scalar, the order of the first term can be inferred as follows:

1√
NT

N

∑
i=1

ε′id((F̂IPC)′ F̂IPC)−1d′Fλi =
1√
NT

N

∑
i=1

T

∑
t=1

ε itd′t((F̂IPC)′ F̂IPC)−1
T

∑
s=1

dsF′
sλi

=
√

T
1

T2

T

∑
t=1

T

∑
s=1

d′t(T
−1(F̂IPC)′ F̂IPC)−1ds

1√
N

N

∑
i=1

ε itF′
sλi

≤
√

T
1
T

T

∑
t=1

||dt||2||(T−1(F̂IPC)′ F̂IPC)−1||

×
(

1
T2

T

∑
t=1

T

∑
s=1

∣∣∣∣∣∣∣∣ 1√
N

N

∑
i=1

ε itF′
sλi

∣∣∣∣∣∣∣∣2
)1/2

= Op

(√
T

N

)
.

Similarly, since F′
t ((F̂IPC)′ F̂IPC)−1d′Fλi is scalar, the third term can be written as

1√
NT

N

∑
i=1

ε′iF((F̂IPC)′ F̂IPC)−1d′Fλi =
1√
NT

N

∑
i=1

T

∑
t=1

ε itF′
t ((F̂IPC)′ F̂IPC)−1d′Fλi

=
1√
N

1
T

T

∑
t=1

F′
t (T−1(F̂IPC)′ F̂IPC)−1

√
NT−1/2d′F

1√
N

N

∑
i=1

λiε it

≤ 1√
N

(
1
T

T

∑
t=1

||Ft||2
)1/2

||(T−1(F̂IPC)′ F̂IPC)−1|| ||
√

NT−1/2d′F||

×
(

1
T

T

∑
t=1

∣∣∣∣∣∣∣∣ 1√
N

N

∑
i=1

λiε it

∣∣∣∣∣∣∣∣2
)1/2

= Op

(
1√
N

)
.
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The corresponding result for the fourth term is given by

1√
N

N

∑
i=1

T−1/2ε′iFT[((F̂IPC)′ F̂IPC)−1 − (F′F)−1]T−1F′Fλi

=
√

T
1
T

T

∑
t=1

F′
t T[((F̂IPC)′ F̂IPC)−1 − (F′F)−1]T−1F′F

1√
N

N

∑
i=1

λiε it

≤
√

T

(
1
T

T

∑
t=1

||Ft||2
)1/2

T||((F̂IPC)′ F̂IPC)−1 − (F′F)−1|| ||T−1F′F||

×
(

1
T

T

∑
t=1

∣∣∣∣∣∣∣∣ 1√
N

N

∑
i=1

λiε it

∣∣∣∣∣∣∣∣2
)1/2

= Op

(
1√
N

)
+ Op

(√
T

N

)
.

As for the second term, by using Taylor expansion of (T−1(F̂IPC)′ F̂IPC)−1 around (T−1F′F)−1,

1
T

N

∑
i=1

ε′id(T−1(F̂IPC)′ F̂IPC)−1T−1F′Fλi =
1
T

N

∑
i=1

ε′idλi + Op

(
1√
N

)
.

Moreover, since E(ε itu′
it) = Σεi(β, Im) and (β, Im)C′

i = ((ββ′ + Im)Λi + βλ′
i), we obtain

1
T

N

∑
i=1

ε′idλi =
1
T

N

∑
i=1

T

∑
t=1

ε itd′tλi =
1
N

N

∑
j=1

N

∑
i=1

1
T

T

∑
t=1

ε itu′
jtC

′
j Ā

−1λi →p B2IPC

as N, T → ∞, where

B2IPC = lim
N→∞

1
N

N

∑
i=1

Σεi((ββ′ + Im)Λi + βλi)Ā−1λ′
i,

suggesting

R2 +
√

TN−1/2B2IPC = Op

(
1√
N

)
+ Op

(√
T

N

)
.

Thus, by adding the results,

R1 + R2 −
√

TN−1/2(B1IPC − B2IPC) = − 1√
NT

N

∑
i=1

x′i MF̂IPC dλi −
√

TN−1/2(B1IPC − B2IPC)

= Op

(
1√
N

)
+ Op

(√
T

N

)
.

Next, consider

1√
NT

N

∑
i=1

x′i MF̂IPC ϵi =
1√
NT

N

∑
i=1

x′i MFϵi −
1√
NT

N

∑
i=1

x′i(MF − MF̂IPC)ϵi
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where

1√
NT

N

∑
i=1

x′i(MF − MF̂IPC)ϵi =
1√
NT

N

∑
i=1

x′id((F̂IPC)′ F̂IPC)−1d′ϵi

+
1√
NT

N

∑
i=1

x′id((F̂IPC)′ F̂IPC)−1F′ϵi

+
1√
NT

N

∑
i=1

x′i F((F̂IPC)′ F̂IPC)−1d′ϵi

+
1√
NT

N

∑
i=1

x′i F[((F̂IPC)′ F̂IPC)−1 − (F′F)−1]F′ϵi.

The order of these terms can be obtained by using the same steps as when analyzing R2. The

order of the first term is given by

1√
NT

N

∑
i=1

x′id((F̂IPC)′ F̂IPC)−1d′ϵi =
1√
NT

N

∑
i=1

T

∑
t=1

xitd′t((F̂IPC)′ F̂IPC)−1
T

∑
s=1

dsϵis

=
√

T
1

T2

T

∑
t=1

T

∑
s=1

d′t(T
−1(F̂IPC)′ F̂IPC)−1ds

1√
N

N

∑
i=1

xitϵis

≤
√

T
1
T

T

∑
t=1

||dt||2||(T−1(F̂IPC)′ F̂IPC)−1||

×
(

1
T2

T

∑
t=1

T

∑
s=1

∣∣∣∣∣∣∣∣ 1√
N

N

∑
i=1

xitϵis

∣∣∣∣∣∣∣∣2
)1/2

= Op

(√
T

N

)
.

Similarly,

1√
NT

N

∑
i=1

x′id((F̂IPC)′ F̂IPC)−1F′ϵi =
1√
NT

N

∑
i=1

T

∑
t=1

xitd′t((F̂IPC)′ F̂IPC)−1
T

∑
s=1

Fsϵis

=
1
T

T

∑
t=1

d′t(T
−1(F̂IPC)′ F̂IPC)−1 1√

NT

N

∑
i=1

T

∑
s=1

Fsxitϵis

≤
(

1
T

T

∑
t=1

||dt||2
)1/2

||(T−1(F̂IPC)′ F̂IPC)−1||

×
(

1
T

T

∑
t=1

∣∣∣∣∣∣∣∣ 1√
NT

N

∑
i=1

T

∑
s=1

Fsxitϵis

∣∣∣∣∣∣∣∣2
)1/2

= Op

(
1√
N

)
,

with the third term being of the same order. The order of the fourth term is given by

1√
N

N

∑
i=1

T−1x′i FT[((F̂IPC)′ F̂IPC)−1 − (F′F)−1]T−1/2F′ϵi

≤
√

N

(
1
N

N

∑
i=1

||T−1x′i F||2
)1/2

T||((F̂IPC)′ F̂IPC)−1 − (F′F)−1||
(

1
N

N

∑
i=1

||T−1/2F′ϵi||2
)1/2

= Op

(
1√
N

)
+ Op

(
1√
T

)
.
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It follows that∣∣∣∣∣∣∣∣ 1√
NT

N

∑
i=1

x′i(MF − MF̂IPC)ϵi

∣∣∣∣∣∣∣∣ = Op

(√
T

N

)
+ Op

(
1√
N

)
+ Op

(
1√
T

)
,

which in turn implies

1√
NT

N

∑
i=1

x′i MF̂IPC ϵi =
1√
NT

N

∑
i=1

x′i MFϵi + Op

(√
T

N

)
+ Op

(
1√
N

)
+ Op

(
1√
T

)
.

Next, consider

1
NT

N

∑
i=1

x′i MF̂IPC xi =
1

NT

N

∑
i=1

x′i MFxi −
1

NT

N

∑
i=1

x′i(MF − MF̂IPC)xi.

We have NT−1||d||2 = Op(1), implying
√

NT−1/2||d|| = Op(1). Similarly, since T−1||F||2 =

T−1 ∑T
t=1 ||Ft||2 = Op(1), we have T−1/2||F|| = Op(1). Hence,

||MF − MF̂IPC || = T−1||d||2||(T−1(F̂IPC)′ F̂IPC)−1||+ 2T−1||d|| ||F|| ||(T−1(F̂IPC)′ F̂IPC)−1||

+ T−1||F||2T||((F̂IPC)′ F̂IPC)−1 − (F′F)−1|| = Op

(
1√
N

)
,

implying∣∣∣∣∣∣∣∣ 1
NT

N

∑
i=1

x′i(MF − MF̂IPC)xi

∣∣∣∣∣∣∣∣ ≤ ||MF − MF̂IPC ||
1

NT

N

∑
i=1

||xi||2 = Op

(
1√
N

)
.

Therefore,

1
NT

N

∑
i=1

x′i MF̂IPC xi =
1

NT

N

∑
i=1

x′i MFxi + Op

(
1√
N

)
.

By adding all the results,

√
NT(β̂ IPC − β) =

(
1

NT

N

∑
i=1

x′i MF̂IPC xi

)−1
1√
NT

N

∑
i=1

x′i MF̂IPC ϵi

−
(

1
NT

N

∑
i=1

x′i MF̂IPC xi

)−1
1√
NT

N

∑
i=1

x′i MF̂IPC dλi

=

(
1

NT

N

∑
i=1

x′i MFxi

)−1
1√
NT

N

∑
i=1

x′i MFϵi + Σ̄−1
ε

√
TN−1/2(B1IPC − B2IPC)

+ Op

(
1√
N

)
+ Op

(
1√
T

)
+ Op

(√
T

N

)
=

√
NT(β̂ ILS − β) + Σ̄−1

ε

√
TN−1/2(B1IPC − B2IPC) + Op

(
1√
N

)
+ Op

(
1√
T

)
+ Op

(√
T

N

)
,
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which completes the proof for the PC estimator. The proof for the CA estimator is almost

identical, and the details are therefore omitted. The only difference is the bias terms, B1IPC

and B2IPC. Indeed, redefining d = F̂CA − F, we have

B1ICA = lim
N, T→∞

1
N

N

∑
i=1

Λi(NT−1d′d)λi = lim
N→∞

1
N

N

∑
i=1

ΛiΩ̄ICAλi.

Similarly, since (β, Im)C̄′ = ((ββ′ + Im)Λ̄ + βλ̄′), we obtain

1
T

N

∑
i=1

ε′idλi =
1
T

N

∑
i=1

T

∑
t=1

ε itd′tλi =
1
T

N

∑
i=1

T

∑
t=1

ε itū′
tC̄

′(C̄C̄′)−1λi

=
1
N

N

∑
i=1

N

∑
j=1

1
T

T

∑
t=1

ε itu′
jtC̄

′(C̄C̄′)−1λi →p B2ICA

as N, T → ∞, where

B2ICA = lim
N→∞

1
N

N

∑
i=1

Σεi((ββ′ + Im)Λ̄ + βλ̄′)(C̄C̄′)−1λi.

This establishes the proof. �

Proof of Proposition 2.

We begin by considering the PC estimator. As in Bai (2003, page 158), if we denote by V

the k × k diagonal matrix consisting of the first k eigenvalues of 1
NT zz′ in descending order,

then, by the definition of eigenvalues and eigenvectors, F̂FPC = 1
NT zz′ F̂FPCV−1. Thus, letting

H = 1
NT C′CF′ F̂FPCV−1, we have

F̂FPC − FH =
1

NT
zz′ F̂FPCV−1 − 1

NT
FC′CF′ F̂FPCV−1

=
1

NT
(zz′ − FC′CF′)F̂FPCV−1

=
1

NT
(uu′ + uCF′ + FC′u′)F̂FPCV−1,

or, in vector notation,

F̂FPC
t − H′Ft =

1
NT

V−1(F̂FPC)′(uu′
t + FC′ut + uCFt).

Now, by using Lemma A.2 of Bai (2003),

1
NT

(F̂FPC)′uu′
t = Op

(
1
N

)
+ Op

(
1
T

)
,

1
NT

(F̂FPC)′uCFt = Op

(
1
N

)
+ Op

(
1√
NT

)
.
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Hence, since V = Op(1),

√
N(F̂FPC

t − H′Ft) =
√

N
1

NT
V−1(F̂FPC)′FC′ut + Op

(
1√
N

)
+ Op

(
1√
T

)
+ Op

(√
N

T

)
=

√
NH′(C′C)−1C′ut + Op

(
1√
N

)
+ Op

(
1√
T

)
+ Op

(√
N

T

)
→p N(0, ΩFPC)

as N, T → ∞ with
√

N
T → 0, where the second equality holds because, via the definition of

H, 1
NT V−1(F̂FPC)′F = H′(C′C)−1.

Let us now consider the CA estimator, in which case F̂FCA
t = z̄t. Because G = C̄, we have

that z̄t = C̄′Ft + ūt = G′Ft + ūt. Hence, since

G′Ω̄ICAG = C̄′(C̄C̄′)−1C̄Σ̄uC̄′(C̄C̄′)−1C̄ = C̄′(C̄−)′C̄−C̄Σ̄uC̄′(C̄−)′C̄−C̄ = Σ̄u,

we can show that

√
N(F̂FCA

t − G′Ft) =
√

Nūt →d N(0, G′Ω̄ICAG)

as N, T → ∞, and so the proof is complete. �

Proof of Proposition 3.

We begin by considering the PC estimator. Note that

T−1(F̂FPC)′zi = T−1(F̂FPC)′FCi + T−1(F̂FPC)′ui

= T−1H′F′FCi + T−1(F̂FPC − FH)′FCi + T−1(F̂FPC)′ui

= T−1H′F′FCi + T−1H′F′ui + T−1(F̂FPC − FH)′FCi + T−1(F̂FPC − FH)′ui

where, by Lemmas B.1 and B.2 of Bai (2003),

T−1(F̂FPC − FH)′FCi = Op

(
1
N

)
+ Op

(
1
T

)
+ Op

(
1√
NT

)
,

with T−1(F̂FPC − FH)′ui having the same order. Moreover, by using the same argument as

in the proof of Theorem 1,

(T−1(F̂FPC)′ F̂FPC)−1 − (T−1H′F′FH)−1 = Op

(
1√
NT

)
+ Op

(
1
N

)
+ Op

(
1
T

)
.
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It follows that

ĈFPC
i = ((F̂FPC)′ F̂FPC)−1(F̂FPC)′zi = H−Ci + (T−1H′F′FH)−1T−1H′F′ui

+ Op

(
1√
NT

)
+ Op

(
1
N

)
+ Op

(
1
T

)
,

which can be used, together with Proposition 2, to show that

(ĈFPC
i )′ F̂FPC

t − C′
i Ft = C′

i(H′)−(F̂FPC
t − H′Ft) + (ĈFPC

i − H−Ci)
′ F̂FPC

t

= C′
i(H′)−(F̂FPC

t − H′Ft) + (ĈFPC
i − H+Ci)

′H′Ft

+ (ĈFPC
i − H−Ci)

′(F̂FPC
t − H′Ft)

= C′
i(H′)−H′(C′C)−1C′ut + u′

iFH(H′F′FH)−1H′Ft

+ Op

(
1√
NT

)
+ Op

(
1
N

)
+ Op

(
1
T

)
= C′

i(C
′C)−1C′ut + u′

iF(F′F)−1Ft + Op

(
1√
NT

)
+ Op

(
1
N

)
+ Op

(
1
T

)
,

where the last equality uses that

u′
iFH(H′F′FH)−1H′Ft = u′

iF(H′F′F)−(H′F′F)H(H′F′FH)−1(H′F′FH)(H′F′FH)−1

× H′(F′FH)(F′FH)−Ft = u′
iF(H′F′F)−(H′F′FH)(F′FH)−Ft

= u′
iF(F′F)−1Ft.

As for the first term on the right-hand side, we have

√
NC′

i(C
′C)−1C′ut = C′

i(N−1C′C)−1N−1/2C′ut →d N(0, C′
i ΩIPCCi)

as N → ∞. Moreover, since

TE(u′
iF(F′F)−1(F′F)−1F′ui) = T

T

∑
t=1

T

∑
s=1

E(uitF′
t (F′F)−1(F′F)−1Fsu′

is)

= T
T

∑
t=1

E(F′
t (F′F)−1(F′F)−1Ft)E(uitu′

it)

= TE

[
tr

(
T

∑
s=1

FtF′
t (F′F)−1(F′F)−1

)]
Σui

= E[tr((T−1F′F)−1)]Σui → tr(Σ−1
F )Σui

as T → ∞, we get

√
Tu′

iF(F′F)−1Ft = T−1/2u′
iF(T

−1F′F)−1Ft →d N(0, F′
t Σ−1

F FtΣui).
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The fact that N−1/2C′ut and T−1/2u′
iF are based on different summations implies that their

asymptotic distributions are independent. Hence,

(N−1C′
i ΩIPCCi + T−1F′

t Σ−1
F FtΣui)

1/2((ĈFPC
i )′ F̂FPC

t − C′
i Ft) →d N(0, 1)

as N, T → ∞.

In case of the CA estimator, we simply replace H with G, giving

(ĈFCA
i )′ F̂FCA

t − C′
i Ft = C′

i(G
−)′(F̂FCA

t − G′Ft) + (ĈFCA
i − G−Ci)

′G′Ft + op(1)

= C′
i(C̄

−)′ūt + u′
iF(F′F)−1Ft + op(1)

= C′
i(C̄C̄′)−1C̄ūt + u′

iF(F′F)−1Ft + op(1),

suggesting

(N−1C′
i ΩICACi + T−1F′

t Σ−1
F FtΣui)

1/2((ĈFCA
i )′ F̂FCA

t − C′
i Ft) →d N(0, 1)

as N, T → ∞.

Proof of Proposition 4.

When analyzing the PC estimator it is convenient to redefine d = F̂FPC − FH and dt =

F̂FPC
t − H′Ft, such that

H′F′MF̂FPC FH = d′MF̂FPC d = d′d − d′F(F′F)−1F′d − d′(MF − MF̂FPC)d.

Moreover, by using the results provided in the proof of Proposition 2, we have

F̂FPC
t − H′Ft = H′(F̂IPC

t − Ft) + Op

(
1
N

)
+ Op

(
1√
NT

)
+ Op

(
1
T

)
,

where the order terms are such that they do not affect the analysis of R1 and R2. Hence, we

may use the same steps as in the proof of Theorem 1 to show that

R1 =
1√
NT

N

∑
i=1

Λi(H−)′H′F′MF̂FPC FHH−λi

=
1√
NT

N

∑
i=1

Λi(H−)′d′dH−λi + Op

(
1√
NT

)
+ Op

( √
T

N3/2

)
+ Op

(
1
N

)
,

where, by proposition 4, NT−1d′d →p H′Ω̄IPC H as T → ∞, suggesting that

1
T

N

∑
i=1

Λi(H−)′d′dH−λi →p B1IPC

31



as N, T → ∞. Hence, just as in the proof of Theorem 1,

R1 −
√

TN−1/2B1IPC = Op

(
1√
NT

)
+ Op

( √
T

N3/2

)
+ Op

(
1
N

)
.

As for R2, note that

MF − MF̂FPC = d((F̂FPC)′ F̂FPC)−1d′ + d((F̂FPC)′ F̂FPC)−1H′F′ + FH((F̂FPC)′ F̂FPC)−1d′

+ FH[((F̂FPC)′ F̂FPC)−1 − (H′F′FH)−1]H′F′,

where the second term is also the leading term. Hence, by again using the same steps as

before,

R2 = − 1√
NT

N

∑
i=1

ε′i(MF − MF̂FPC)Fλi

= − 1√
NT

N

∑
i=1

ε′id((F̂FPC)′ F̂FPC)−1H′F′Fλi + Op

(
1√
N

)
+ Op

(√
T

N

)
,

where, via Taylor expansion of the type (T−1(F̂FPC)′ F̂FPC)−1 = (T−1H′F′FH)−1 + op(1),

1
T

N

∑
i=1

ε′id(T
−1(F̂FPC)′ F̂FPC)−1T−1H′F′FHH−λi =

1
T

N

∑
i=1

ε′idH−λi + Op

(
1√
N

)
=

1
T

N

∑
i=1

T

∑
t=1

ε itd′tH
−λi + Op

(
1√
N

)
=

1
N

N

∑
j=1

N

∑
i=1

1
T

T

∑
t=1

ε itu′
jtC

′
j Ā

−1HH−λi + Op

(
1√
N

)
→p B2IPC

as N, T → ∞, suggesting

R2 +
√

TN−1/2B2IPC = Op

(
1√
N

)
+ Op

(√
T

N

)
.

Hence, so far the results are exactly the same as in Theorem 1.

Next, consider the normalized sums of x′i MF̂FPC ϵi and x′i MF̂FPC xi. The analysis of the latter

sum is unaffected by the fact that we have replaced F̂IPC by F̂FPC. However, this is not the

case for the first sum, which is now given by

1√
NT

N

∑
i=1

x′i MF̂FPC ϵi =
1√
NT

N

∑
i=1

x′i MFϵi −
1√
NT

N

∑
i=1

x′i(MF − MF̂FPC)ϵi

=
1√
NT

N

∑
i=1

x′i MFϵi

− 1√
NT

N

∑
i=1

x′i FH[((F̂FPC)′ F̂FPC)−1 − (H′F′FH)−1]H′F′ϵi

+ Op

(
1√
N

)
+ Op

(√
T

N

)
,
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where

1√
N

N

∑
i=1

T−1x′i FHT[((F̂FPC)′ F̂FPC)−1 − (H′F′FH)−1]T−1/2H′F′ϵi

≤
√

N

(
1
N

N

∑
i=1

||T−1x′i F||2
)1/2

||H||2T||((F̂FPC)′ F̂FPC)−1 − (H′F′FH)−1||

×
(

1
N

N

∑
i=1

||T−1/2F′ϵi||2
)1/2

.

By using the same argument as in the proof of Theorem 1,

T||((F̂FPC)′ F̂FPC)−1 − (H′F′FH)−1|| = Op

(
1√
NT

)
+ Op

(
1
N

)
+ Op

(
1
T

)
,

where the last order term is new. Thus, by direct substitution,

1√
NT

N

∑
i=1

x′i MF̂FPC ϵi =
1√
NT

N

∑
i=1

x′i MFϵi + Op

(
1√
N

)
+ Op

(√
T

N

)
+ Op

(√
N

T

)
,

which in turn implies

√
NT(β̂FPC − β) =

√
NT(β̂ ILS − β) + Σ̄−1

ε

√
TN−1/2(B1IPC − B2IPC) + Op

(
1√
N

)
+ Op

(
1√
T

)
+ Op

(√
T

N

)
+ Op

(√
N

T

)
.

This completes the proof for the PC estimator. The proof for the CA estimator is entirely

analogous. �
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