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CROSS-SECTIONAL AVERAGES OR PRINCIPAL
COMPONENTS?*

Joakim Westerlund* Jean-Pierre Urbain
University of Gothenburg Maastricht University
Sweden The Netherlands

November 11, 2011

Abstract

In spite of the increased use of factor-augmented regressions in recent years, little
is known regarding the relative merits of the two main approaches to estimation and
inference, namely, the cross-sectional average and principal components estimators. As

a response to this, the current paper offers an in-dept theoretical analysis of the issue.

JEL Classification: C12; C13; C33.
Keywords: Factor-augmented panel regressions; common factor models; principal com-

ponents; cross-sectional averages; cross-sectional dependence.

1 Introduction

Recently, there has been increased interest in analysis of panel data models in which the
standard assumption that the regression errors are cross-sectionally uncorrelated is violated.
When the regression errors are cross-sectionally correlated standard estimation methods do
not necessarily produce consistent estimates of the coefficients of interest, and much effort
has therefore gone into the development of robust methods. In particular, the use of factor-

augmented regressions has recently become very popular.
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The key assumption in factor-augmented regressions is that the cross-section depen-
dence can be represented by means of a small number of common factors, which can then
be included as additional regressors. For factors that are observed, such as interest rates or
oil prices, this is of course very easy. However, many factors are unobserved and lack good
proxies. The most common approach to deal with the presence of such latent factors is to use
estimates in their stead. In this paper we focus on two estimators of the factor-augmented
regression; (1) the principal components (PC) estimator considered by for example Bai (2009)
and Greenaway-McGrevy et al. (2010), and (2) the cross-sectional average (CA) estimator of
Pesaran (2006). The main reason for this is that in spite of their popularity, the relative mer-
its of these estimators are not well understood. In fact, most practitioners seem to use them
quite interchangeably, as though their properties were the same. In Pesaran (2006) the CA
estimator is termed the common correlated effects (CCE) estimator. However, since Pesaran
(2006) only proposes CCE as an estimator of the coefficient of the factor-augmented regres-
sion and not of the factors themselves, in order to keep the distinction, in this paper we use
CA to refer to the estimator based on cross-sectional averages.

Stock and Watson (2002), and Bai (2003) study the PC estimator of the factors in the
context of a conventional factor model. They show that the PC estimates are consistent
for the space spanned by the true factors instead of the factors themselves. Fortunately,
in factor-augmented regressions consistent estimation of the factors is not necessary, as the
factor estimates are there merely to control for the cross-section dependence. This has been
shown in recent works of Bai (2009) and Greenaway-McGrevy et al. (2010), who study the
theoretical properties of the estimated PC factor-augmented regression. According to their
results, in spite of the generated regressor problem caused by the use of the estimated factors,
normal inference is usually possible with the estimated coefficients converging to their true
values at the rate v/NT, where T and N denote the number of time series and cross-sectional
observations, respectively.

Pesaran (2006) is not interested in the estimation of the factors per se and only considers
the estimation of the factor-augmented regression. The CA approach consists of approxi-
mating the common component of the data by the cross-sectional averages of the dependent
and explanatory variables, and then augmenting the panel regression with these averages.
As Pesaran (2006) shows, the CA estimator of the regression coefficients is asymptotically

normal with the rate of consistency again given by v NT.



However, while the inferential theory is there, little is known regarding the relative mer-

its of the PC and CA estimators. Indeed, as Pesaran (2006, page 1001) concludes:

It is also of interest to compare the approach proposed in this paper with the
alternative procedure that proxies the unobserved common factors by principal
components (PC) of y;; and x;;. This alternative is considered in a series of Monte
Carlo experiments in Kapetanios and Pesaran (2006) and Coakley, Fuertes, and
Smith (2006). Kapetanios and Pesaran’s experiments allow for up to four regres-
sors and factors, and find that the PC procedure does not perform as well as the
CCE approach and leads to substantial size distortions even if, when using the

PC procedure, the true number of unobserved factors is assumed to be known.

As the quotation suggests the knowledge regarding the relative merits of the two esti-
mators is limited, at best, and where evidence exists is it based exclusively on Monte Carlo
simulation, which need not be informative of any theoretical differences. In Kapetanios and
Pesaran (2006, page 13) it is concluded that: “Overall, it appears that even if one knows the
factors, the small sample bias in the model selection aspect of the PC augmented procedure
is important enough to adversely affect the performance of the estimators for moderate val-
ues of T, even if one abstracts from the small sample bias in estimation of the unobserved
factors.” Thus, while the results seem to suggest that the CA estimator performs best, the
reason for this is largely unknown.

In this paper we offer a theoretical explanation for the previously obtained simulation
results. The paper is organized as follows. Section 2 introduces the model of interest, and
discusses how it relates to the models considered by Bai (2009), Greenaway-McGrevy et al.
(2010) and Pesaran (2006). Section 3 presents the asymptotic results. Since Pesaran (2006)
does not consider the estimation of the factors themselves, nothing is known regarding the
CA factor estimates. Therefore, since any differences in the regression estimates can only be
due to the augmentation, we start by studying the relative properties of the PC and CA factor
estimates. Two of the results that emerges are that (i) the PC factor estimator is relatively
more efficient, and (ii) the PC and CA estimators of the factor-augmented regression can
be biased, even asymptotically, with the size of the bias depending on the variance of the
estimated factors. Thus, given the efficiency of the PC factor estimator, one would expect
the associated PC regression estimator to perform best. However, this is not what we find.

In fact, according to our results the CA estimator generally performs best, a finding that is
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verified in small-samples in Section 4. Section 5 concludes. Proofs of important results are
provided in Appendix.

A word on notation. The symbols —; and —, will be used to signify convergence in
distribution and convergence in probability, respectively. As usual, yr = O,(T") will be
used to signify that yr is at most order T” in probability, while yr = 0,(T") will be used
in case yr is of smaller order in probability than T".! For a m x n matrix A, tr(A), rk(A),
A~ and ||A|| = /tr(A’A) will be used to denote its trace, rank, generalized inverse and

Euclidean norm, respectively.

2 Model

Consider the scalar and m-dimensional vector of observable panel data variables y;; and xj,
wherei = 1,..,N and t = 1, ..., T indexes the cross-sectional and time series dimensions,

respectively. The data generating process of the vector of stacked observations on y;;, y; =

(yi1, - yiT), is given by

vi = xip+e, (1)
e = FAi+e, (2)
where x; = (x/}, ..., x};)" stacks x, B is a m-dimensional vector of slope coefficients, F =

(F{,..,F}) is a T x r matrix of common factors with A; being the associated r-dimensional
vector of factor loadings, which is assumed to be non-random, and €; = (€, ..., €;7)" is a
T-dimensional vector of idiosyncratic errors that are independent of F and x;. Although e;
can in principle be cross-section correlated to some extent, in this paper we assume it to be
independent with mean zero and positive definite covariance matrix o2 Ir.

The above model is the prototypical pooled panel regression with a factor error structure,
in which ¢; is independent of x;. If F is also independent of x;, then (1) is nothing but a static
panel data regression with exogenous regressors, which can be estimated consistently using
least squares, although efficiency will be gained by using weighted least squares based on
the factor error structure. If, however, x; is correlated with F, then consistency will be lost.

To allow for this possibility, we assume that

xi = FAj+¢, 3)

!If y7 is deterministic, then O, (T") and 0,(T") are replaced by O(T") and o(T"), respectively.

4



where A; is a m x r loading matrix and ¢; = (€}, ..., €/7)" is a T x m matrix of idiosyncratic
errors that are independent of F. Analogous to €;, €; is assumed to be independent across i,
having zero mean and positive definite covariance matrix It ® ¥,;. The assumptions placed

on €;, ¢; and F may be summarized in the following way.

Assumption 1.
(a) €; ~iid(0,02Ir) and e; ~ iid(0, It ® L¢;) with 0% < o0 and L > 0;
(b) F; is covariance stationary such that E(||F||*) < oo and E(FF]) = X > 0;
(¢) A;jand A; are non-random such that ||A;]| < coand ||A;|| < oo;

(d) €, iy and Fy are mutually independent.

Consider the T x (m + 1) matrix z; = (y;, x;). By combining (1)-(3),
zi = FCi+u;, (4)

where C; = (A]B+ A, A)) isr x (m+1) and u; = (uly, ..., ulz) = (eifp+€i,€)is T x (m+1)
with covariance matrix

B'Zeip + ‘Tezi B'Lei

E(uitu;f) = Zui = Z ‘B Z
€1 €1

Thus, (1)—=(3) can be rewritten equivalently as a static factor model for z;. At times it will be
useful to write this model in matrix notation. Let us therefore introduce the T x N(m + 1)
matrixz = ((2};, ..., 25)'s s (2 7/ s Zyp)’)" With a similar definition of 1, and the N (m +1) x

r matrix C = (Cy,...,Cn)’. In this notation, (4) becomes
z = FC' +u.

Define A; = C,C/, B; = C;%,;C/ and D; = 02%;, and let A denote the cross-sectional
average of A; with a similar definition of B, C, D, ¥, and ¥,. In what follows the rank of
the limits of these quantities is going to be important, and we therefore make the following

assumption.

Assumption 2.
(a) A, B, and ¥ are positive definite for all N, including N — oo;
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(b) tk(C) =r < m+1forall N, including N — oo.

Remarks.

1. Many of the conditions stated in Assumption 1 are not strictly necessary, but are re-
tained in order to simplify the comparison between the two estimators. The assump-
tion that €; and ¢; are iid across i can, for example, be relaxed in the usual manner,
by simply replacing all contemporaneous variances with their corresponding long-
run variances. Thus, in case of u;, X,; = E(ujul},) is replaced by Yoo _, E(ujul, ).
In case of the PC estimator we can also relax the assumption that €; and ¢; are iid
across i, but then at the cost of some extra moment conditions, see Bai (2009, Section 4)
and Greenaway-McGrevy et al. (2010, Assumption A). The assumption that the cross-
section dependence of x; has a common factor structure is similarly not necessary, at
least not for the PC estimator, see remark 5 to Theorem 1. Again depending on the es-
timator used, the requirement that y; and x; are stationarity can similarly be relaxed in
various ways, see for example Bai et al. (2009) in case of the PC estimator and Kapetan-
ios et al. (2010) in case of the CA estimator. Finally, while we only consider non-random
loadings, the results of Section 3 still hold when A; and A; are random, provided that

they are independent of €;;, €;; and F;, and satisfies some moment conditions.

2. Assumption 2 (a) ensures that A, B and X are invertible, which in turn implies that D

and %, are invertible. To appreciate this, note that C; = (A;, A})P’, where

1 g
P =
[ 0 I, ]
has rank m + 1. Thus, since £,; = P diag(c2, Z)P’ and & is of full rank, %, must be

of full rank too. Finally, D and % are full rank by Assumption 1. Assumption 2 (b)

ensures that the r x r matrix CC’ is invertible.

3. The assumption that ¢; and x; depend on the same set of factors is not a restriction.
Suppose for example that the factors to ¢; and x; do not have any elements in common.
In order to capture this we introduce the r x r orthogonal matrix | = (J,, J+), which is
such that '] = JJ' = I,. The component matrices ], and J,, which are of dimension

r x teand r X (r — r,), respectively, are such that J,J, = 0, J/A; = 0 and JLA; = 0. The



matrix J allows us to rotate F as F] = (FJ,, F]y) = (F,, Fy). Thus, defining JIA; = A
and JiA; = Ayi, we have ¢; = FA;+¢€; = FJ]'A; + €; = FA,i + €; and similarly x; =
F Ay + €.

3 Asymptotic results

Asusual, B, A;, F, €;, Aj and ¢; are treated as unknown, and the interest lies with the estima-
tion of B, A;, A; and F. Initially, however, we will assume that C; is known, which allows us

to focus on the estimation on F, and then we show how to proceed in the more general case.

3.1 C; known

The first estimator of F; that we consider is the infeasible PC (IPC) estimator, which in the

current setting is given by

- N 1N
FtIP = Z CZC{ Z Cizit
i=1 i=1

In order to obtain the limiting distribution of this estimator, and also that of the infeasible
CA (ICA) estimator, we make use of Assumptions 1 and 2, which ensure that a law of large

numbers and a central limit theorem for heterogeneous processes apply. It follows that

-1
. 1Y 1 ¥
\/N(FtIPC_Ft) = (N ZC1C1/> NZCZ it —7d N 0, QIPC) (5)
i=1 1:1
as N — oo, where
Q[pc = lim Q[pc = l1m A—lBA—l
N—o0 —00

The second estimator the we consider, the ICA estimator, is defined as

where Z; is the cross-sectional average of z;;. The asymptotic distribution of v/N(F/¢4 — F)

is also normal, but the covariance matrix is now given by
QICA = lim QICA = lim (CC”)*lC’iuC’(CC”)’l
N—oo N—co

The purpose of the current paper is to analyze the relative efficiency of the PC and CA

estimators, and also that of the associated factor augmented estimators of . Foreshadowing
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this analysis, it is useful to view F/’C and F/* as instrumental variables estimators, having
the general form ( fil ZiC} )_1 Zfil Zizit, with Z; being the instrument. The choice Z; = C;
leads to the PC estimator, while Z; = C leads to the CA estimator. Intuitively, since C; is
independent of u;;, the PC estimator should be more efficient. The next proposition shows

that this is indeed the case.
Proposition 1. Under Assumptions 1 and 2, Qjca — Qrpc > 0.

Thus, the PC estimator is generally superior in terms of efficiency. The only exception is
when X;;, A; and A; are equal across i, in which case the two estimators are equally efficient.
Note also that Proposition 1 implies Q;c4 — Qrpc > 0.

The next step in our analysis is to make use of Proposition 1 when analyzing the effi-

ciency of estimators of B. In so doing, it is convenient to define the factor projection matrix
M = Iy — F(F'F)'F,

suggesting that the infeasible LS (ILS) estimator of S can be written as

X N 1N
Bis = | Y xiMpxi | ) xiMpy;
j i=1

The asymptotic distribution of this estimator can be readily deduced by noting that Mrx; =

Mre;, suggesting

1
. 1 Y 1 Y
VNT —B) = | —=) &Mre; —— Y &Mre; —; N(0,Q 6
(BiLs — B) _Zl FEi m;l r€i —q N(0,Qyrs) (6)
as N, T — oo, where

Qs = I\l}im Z;lngl

Hence, B1 is not only v/ NT-consistent for 8 but also asymptotically normal.?

%In this paper we focus on the comparison between the CA and PC estimators, and do not spend time on
issues such as implementation and inference, for which there are results available already (see for example
Pesaran, 2004; Bai, 2009). However, it should be mentioned that in order to make inference based on the asymp-
totic normality results provided herein, typically all that is needed is an estimator of the asymptotic variance.
For example, in order to make inference using B 1Ls an estimator of () is needed, which can be obtained by
simply replacing ¥; and D; in ¥, and D with %x:Mﬁlpri and %(yi —x;Bris — F'PCA) (y; — x;Brrs — ETPCN,),

respectively. The alternative would be to use £/4 instead of FIPC.



Let us now consider replacing the true factors by their IPC and ICA estimators. In the
next theorem we report asymptotic distributions of the resulting ILS estimators of 8, hence-
forth denoted B rpc and B ica, respectively. Note that the ICA estimator can be seen as an

infeasible version of the CCE estimator of Pesaran (2006).
Theorem 1. Under Assumptions 1 and 2, as N, T — oo with g — 0,

VNT(Bipc — Birs) = Z VTN V2(Bype — Barpe) + 0p(1),
VNTBica — Bris) = Z'VTNV2(Biica — Barca) +o0,(1),

where
Biipc = 1\1]1350*2/\ Qipchi,
Bupc = lim NZza (BB + L) A; + BADATIA,,
Biica = 1\1]1310*21\ Qicati,
Baica = 21 (BB + Lu)A + BA")(CC') A
Remarks.

1. The fact that the estimators are biased in the current setup might come as a surprise.
Indeed, since C; is known, it should be possible to just add it as a regressor when
estimating B. Since the regressors in a regression of y; on x; and C; are exogenous, there
should not be any bias. However, this is not how the estimation is carried out here. In
particular, since the data are projected upon the estimated factors, the knowledge of
C; is not really used in this step of the estimation procedure, and it is this practice that
leads to bias. The reason for doing the estimation in this way is that it works also when

C; is unknown.

2. Consider the IPC estimator. According to Theorem 1,

VNT(Bipc —B) = VNT(Bis—B) + VNT(Birc — Pirs)
= VNT(Biis — B) + Z 'WTN V2 (Bypc — Barpc) + 0p(1),



suggesting that if we assume that &, — X, % — 17> 0and g —0as N, T — oo,
VNT(Bipc — B) —a N(0,Qq1s) + 2 *v/T(Biipc — Barpc).

A similar result applies to the ICA estimator. Thus, if T > 0, while consistent, be-
cause of the correlation between e; and x;, the asymptotic distributions of the estima-
tors are biased. On the other hand, if T = 0, then the bias is negligible and therefore
VNT(Bipc — Bica) = 0,(1). Another possibility is if A; = 0, in which case the correla-

tion between e; and x; is zero and therefore the bias disappears.

. The bias in the case when & — T > 0 depends critically on the choice of estimator of
F;. Unfortunately, in general one cannot say anything about the size and direction of
this bias. However, suppose that m = r = 1, and that Z,; = X, A; = Aand A; = A.
Then the difference in absolute bias of the ICA and IPC estimators is given by

2. 'VT(|Bica — Barcal — |Bipc — Barpc|) = Z.'WTIA[A](Qica — Qupe) = 0,

where the last equality follows from the fact that Qjc4 = Qjpc whenever %;, A; and
A; are equal across i. In this case it is therefore clear that the two estimators as equally

biased.

. Proposition 1 and Theorem 1 make use of Assumption 2 requiring that A, B, D, £, and
%, all have full rank and that rk(C) = r. However, careful inspection of the results of
these propositions reveal that the two estimators are actually based on different mo-
ment conditions, and that it is only when taken together that Assumption 2 is required.
For example, consider Proposition 1. While the result for the PC estimator requires that
A, B and D have full rank, the corresponding result for the CA estimator requires that

D and %, have full rank and that rk(C) = r.

. In this paper F is estimated from z;. This is not necessary. Bai (2009) considers a similar
model, but where F is estimated by applying PC to y; — x;A.s, where B is obtained
by applying LS to (1). This estimator can then be used in a second step to obtain the
associated IPC estimator of . These steps can then be repeated until convergence. Bai
(2009, Corollary 1) shows that in the special case when 02 = 07 for all i, the resulting

iterated IPC estimator of 8 is v/ NT-consistent and asymptotically normalas N, T — oo
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with & — 0.2 The variance is in our notation given by 02D, !, where

. 1 N / N / / N / -
DO = N/l]lql’iloo m 1:21 xiMFxl' - ]Z; xiMFx]')\i ]Zl )\l)\l )\] ’

which under (3) reduces to
N
= i —— ! .= lim ¥
Do = fim | NT;‘SZMFEZ im 2

Thus, since Q15 = (fgzz\llim ¥ ! in this case, we have that under the additional require-
— 0

ment that g — 0 the PC and CA estimators considered here have the same asymptotic

distributions as the one considered by Bai (2009). Another possibility is to estimate F

from (3). However, in this case there must be no factors that are unique to e;.

6. One advantage of using the approach of Bai (2009) is that the cross-section dependence
in x; does not need to have a factor structure. In fact, the only necessary requirement
in this case is that x; is independent of €;, see Bai (2009, Assumption D). However, it is
important to note that if x; does not have a factor structure, then the above results are
no longer valid. Specifically, since in this case x;Mrx; # €;MFre;, %; should be replaced
by var(x/MFx;), which is then assumed to be nonsingular, see Bai (2009, Assumption

A) and Greenaway-McGrevy et al. (2010, Assumption B).4

7. Bai (2009) and Greenaway-McGrevy et al. (2010) relax the common factor assumption
for x;. However, since no alternative structure is assumed, the results for their PC
estimators are not as clear as ours with the limiting distributions being expressed in
terms of the parameters of the model.> They are also not as clear as ours when it comes
to the restrictions placed on the relative expansion rate of N and T. For example, while
Bai (2009, Theorem 3) only assumes that % — T > 0, as Theorem 1 makes clear, in order
to ensure that the various sample moments converge to their population counterparts,

T

we also need % — 0. Thus, as always, there is a trade-off here between generality

and clearness of results.

3Thus, while the first-step LS estimator of § is inconsistent, the iterated estimator is not.

4But while quite general when it comes to the allowable cross-sectional dependencies in x;, the Bai (2009)
approach also has some drawbacks. One drawback is that because y; — x; ,B Ls is used in place of ¢; to estimate F,
the second-step estimator may not be able to identify § (Greenaway-McGrevy et al., 2010). This can for example
happen when there are common factors that are unique to x;.

SCompare to Bai (2009, Theorem 3) and Greenaway-McGrevy et al. (2010, Theorem 1).
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8. Pesaran (2006) relaxes Assumption 2.° However, this greater generality comes at the
expense of additional assumptions regarding B and <;, which then have to admit a
random coefficient representation. To illustrate this suppose that instead of (1) we have
yi = xipi + e;, where B; = B+ v;, v; ~ iid(0,%;) and X, > 0. A similar assumption
is assumed to hold for A;. Specifically, we assume that A; = A 4 w;, where w; is again
iid with mean zero and positive definite covariance matrix. v; and w; are mutually

independent. It can be shown that
. 1 - Al
\/N(,BICA - ﬁ) = NT Z x;MﬁlCAxi — Z X;Mﬁch\ (xivi + FA; + ei)
i=1 ‘

-1
1 N
- (NT Zx{-MﬁmAxi> VNT = Zx Mpica(xi0i + FAi) 4 0p(1).
i=1

If Assumption 2 holds, then one can replace Mpca with M, and therefore it is not

difficult to see that

-1
N 1 Y 1 Y
vV'N — = — Y e Mrpe; ——— Y & Mrev; +0,(1
(ﬁICA ﬁ) NTZ 1 F \/NT; 1 F P( )

1/2
I .
—4 <l1m zQNZZEiZUZSiZS 1) N(0, I,)
i=1

as T — oo and then N — co. Thus, in this case the normality assumption is a direct
consequence of the assumed randomness of B;. A similar result applies in case As-
sumption 2 fails but then the normality stems from the assumed randomness of both
Bi and A;. Thus, while Assumption 2 can be relaxed, this does not come free of charge,
and, depending on the application, it is unclear which assumption is most restrictive.

Note also that if §; is allowed to vary, the rate of convergence is reduced, from v NT to

V/N.

3.2 C; unknown

Relaxing the assumption of known C; has at least two important consequences. First, since F;

and C; are no longer separately identifiable, F; can only be estimated up to a matrix rotation.

®More precisely, Pesaran (2006) relaxes the assumption that the limit of the cross-sectional average of (A;, Al)
hasrankr <m + 1.
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Hence, instead of estimating F; as in the previous section, now the best that we can hope for
is consistent estimation of the space spanned by F;. Second, the number of common factors,
7, is unknown.

The feasible PC (FPC) estimator of F, denoted FEPC is /T times the matrix consisting
of the eigenvectors corresponding to the k largest eigenvalues of the T x T matrix zz'. The
feasible CA (FCA) estimator is just the cross-sectional average of z;, that is, ﬁf €A =z, To
capture the fact that F;, F"C and FF4 may be of different dimension, we introduce the r x k
matrix H = gzC'CF'FFPCV~1 and the r x (m + 1) matrix G = C, where V is a k x k diagonal
matrix containing the k largest eigenvalues of grzz’ in descending order. These matrices
will be use to rotate F, suggesting that something has to be assumed regarding their rank.
Given Assumption 2 (b) the rank of G is clearly » < m + 1. As for H, we make the following

assumption.
Assumption 3. rk(H) =r < k.

The asymptotic distributions of the feasible factor estimators are given in Proposition 2.
Proposition 2. Under Assumptions 1-3,as N, T — oo with @ — 0,

\/ﬁ( AtFPC — H/Ft) —d N(O, Qppc),
VN(EF4 —G'R) —4 N(0,Qrca),

where

Qppc = NI%IBOOH,QIPCHI
Qrca = Nl%rgw G'QicaG.

As expected, we see that the Qrpc and Qrca depend on the rotation matrices H and
G, thus making it impossible to compare the relative variance of the estimators. However,
while C/ and F; are not identifiable, their product is. Proposition 3 therefore provides the
limiting distributions of the PC and CA estimators of the common component, CZ( F.. The
PC and CA estimators of C; are obtained from a LS regression of z;; onto the corresponding

factor estimate.
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Proposition 3. Under Assumptions 1-3,as N, T — oo,

(N7ICIOQpcCi+ TR RE,,) V2 ((CFPOY BEPC — CIR)  —4 N(0,1),
(N7ICIOcaCi+ TUFE RE, ) V2 ((CECAYEFCA — CIR)  —4 N(O,1).

In contrast to Proposition 2, Proposition 3 holds regardless of the relative expansion rate
of N and T. However, the results simplify if either % — Qor % — 0. On the one hand, if

% — 0, then

(NICIOQpcCi + T X RE,,) T2 ((CFPO)Y BEPC — CIF)
= (ClQupcCi + NTF R, Y2V N((CFPCY EFPC — ClRy)
= (CJQupcCi) V2V N((CFPC)Y EFPC — CIF) + 0, (1).

suggesting that (CFPC)'FFPC is v/N-consistent for C/F; and that the asymptotic variance is
given by C/Q1pcC;. The rate of consistency for (C’ZF CAYEFCA is the same. However, since the
variance of this estimator is given by C:Q;c4C;, the relative efficiency depends on the choice
of estimator of F;. In particular, since C/Q;caC; — C/QpcCi = CH(Qica — Qipc)Ci > 0, the
PC estimator of the common component is as least as efficient as the CA estimator. On the

other hand, if % — 0, then
(NICIOpcCi + T E A RE,) V2 ((CFPCY BEPC — CIFy)
= (FZp'FXy) VAVT((CFPOYEPC — CIF) +0,(1).

The same result applies (CF¢4) FFCA. Hence, in contrast to the case when % — 0, since the

variances are now the same, in this case the two estimators are equally efficient.

Proposition 4 provides the relevant asymptotic theory for the feasible estimators of .
Proposition 4. Under Assumptions 1-3,as N, T — oo with g — 0and @ — 0,

VNT(Bepc — Birs) = VNT(Bipc — Birs) +0p(1),
\/W(BFCA - 3[5) = \/W(BICA - BILS) + Op(l)'

Remarks.
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1. Proposition 4 requires that g and @ should both go to zero, which is satisfied if
VT < N < T2. The asymptotic distributions of v/ NT(Brpc — B) and vVNT(Brca — B)
in this case can be deduced in the same way as in remark 1 to Theorem 1. They are
normal with variance ;5. To also ensure that the mean is zero we need % — 0, which
together with the requirement that g — 0 implies that for valid inference based on

the FPC and FCA estimators of B weneed T < N < T2.

2. As already mentioned the FPC and FCA estimators of the common component are
equally efficient if £ — 0. Coincidentally, this is also the requirement for v/ NT( Brpc —
B) and vNT(Brca — B) to be asymptotically unbiased.

3. The fact that the FPC estimator is biased when % — T > 0is in agreement with the
results reported by Bai (2009, Theorem 3) for his residual-based PC estimator, and as
such it is not that surprising. The fact that also the FCA estimator is biased is, on the
other hand, new to this paper. Proposition 4 can therefore be seen as a generalization

of the results of Pesaran (2004) to the case when the assumption that % — 01is violated.

4. An obvious solution to the problem with bias in case 4; — T > 0 is to use bias correc-
tion. In case of PC estimation, this means using ﬁ FPC — %2; 1 (Bl e — Bog pc) in place of
Bppc, where 28 = ﬁ Zzl\il X;Mlsppcxi and Bl[pc and Bz[pc are Bljpc and BZ[PC, respec-
tively, with B, 2,; and (7621. replaced by ﬁ FPC, Sei = %fo precX; and ‘Afezz' = %(yi — xi,B FPC —
£FPC ;\iFPC)/(yi —x ,BPPC _ fFPC }LfPC)

and A;, respectively, are obtained by simply picking the appropriate elements in

, respectively. The estimators /A\ZF PC and /A\lF PCof A;
AFPC
Ci.

5. Assumptions 2 (a) and 3 clarify an often overlooked fact in applied work, namely, that
the problem of selecting k in PC estimation is the same as the problem of selecting m + 1
in CA estimation. According to these assumptions the assumed number of common
factors must be at least as large as the true number, r. In case of the PC estimator this
means that one has to put k large enough in the estimation of the factors, whereas in
case of the CA estimator it means that the number of regressors must be large enough.
Thus, the results reported in Propositions 2—4 for the PC estimator only require r < k
and the results for the CA estimator only require r < m + 1. Kapetanios and Pesaran
(2006) claim that unlike the CA approach the implementation of the PC procedure re-

quires the determination of the number of factors. But this ignores the fact that the
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implementation of the CA approach requires setting m = r — 1, which is just as prob-
lematic as trying to set k = r. In fact, to the extent that more factors also require more

regressors, one can even claim that the CA method is more demanding than PC.

4 Monte Carlo simulations

A small-scale simulation study was conducted to assess the accuracy of our theoretical re-
sults in small samples. The data generating process is a restricted version of the one given
in (4), and sets m = 1, r = 2, B = 1 and (F, e, e;) ~ N(0,diag(l, 02, Z¢)). Also,
e ~ a+bU(0,1), where we use a and b to control the level and heterogeneity of X.;. To
ensure that C; is positive definite, we further set A; = A = (0,1) and use ¢ to determine the
heterogeneity of A; ~ (1,1)" 4+ cU(0,1). The data are generated for 3,000 panels with either
N=TorN=T*3and T = 25, 50, 100, 200. If N = T, the CA and PC estimators should be
biased, whereas if N = T%/3, they should be asymptotically unbiased.

We focus on the estimation of . Specifically, in order to verify Theorem 1 and Proposition
5, we report the mean and standard deviation of VNT (,BICA — ,BILS)/ VNT (,BIPC - BILS)r
VNT (ﬁpc A— ,3 is) and vNT (ﬁ FPC — B iLs). The theoretical bias obtained from evaluating
the formula given in Theorem 1 is also reported. As a measure of the relevance of these
results for inference, we also report the size of a double-sided t-test for the null hypothesis
of B = 1 when the 5% critical value of 1.96 is used. The feasible estimators are implemented
using the true number of factors and their standard errors are computed using the standard
LS formula.

The results reported in Tables 1 and 2 are generally in agreement with theory and can be

summarized as follows:

e While the estimators are on average equally biased when b = ¢ = 0 such that Z; = X
and A; = A, this is not the case when b and c are set differently. In particular, based
on the results reported here, the two CA estimators consistently outperform their PC
counterparts. To take an extreme example, consider the case when N = T, 2 = 3 and
¢ = 4, in which the theoretical PC bias according to Theorem 1 is roughly —1.5.7 As
the table makes clear, this is a very accurate prediction of the empirical IPC and FPC

bias. The CA, on the other hand, seems to perform very well with a bias close to zero.

’The bias results in this case is of similar magnitude as the ones reported by Greenaway-McGrevy et al. (2010).
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e The bias is generally very close to what is predicted by our asymptotic theory. The
only exception is for the FPC estimator, which tends to be more biased than expected,
especially when b = ¢ = 0. However, the discrepancy vanishes quickly as T increases,
suggesting that the bias in this case is merely a small-sample effect. We also see that
the extent of this effect depends on 4 and Ug, which determine the variance of the
idiosyncratic component relative to that of the common component. As expected, the

bias is increasing in 4 and ¢?.

e The size of the bias depend on whether N = T or N = T#/3. If N = T, except possibly
for FPC estimator when b = ¢ = 0, we see that the bias is flat in T. By contrast, if
N = T%3, then the bias is clearly decreasing in T. This is in agreement with Theorem
1 showing that the bias is O(v/T/N ), which is O(1) when N = T and O(T /%) when
N = T*/3. The effect is especially pronounced for the PC estimators being severely

biased in the case when N = T.

e As expected, regardless of whether N = T or N = T*/3, the standard deviation of the
simulated bias is decreasing in T. We also see that the rate at which the bias vanishes

is roughly of the theoretically predicted rate of .

o The size of the t-tests depend critically on the extent of bias. In particular, we see that
there is a clear tendency for the size distortions to increase with the size of the bias.
The PC estimators are much more biased than the CA estimators, which translates into
relatively large size distortions. In fact, based on the results reported here, it is not
unusual for these tests to have sizes that are in excess of 50% when they should be 5%.
However, as expected the size distortions are substantially reduced when N = T*#/3

and as T increases.

5 Conclusions and implications for empirical work

The results obtained here are interesting in their own right but also because of the implica-
tions they have for applied work. The fact that the CA estimator of the factor-augmented
regression, which is the CCE of Pesaran (2006), is in general less biased than PC is, for ex-
ample, very useful. Specifically, since the variances of the two estimators are the same, it

means that in practice one is unlikely to do better than when using the relatively simple CA
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approach.

In this paper we have assumed that the true number of factors, r, is known, which is not
the case in practice. However, it is reasonable to assume that r is bounded by a sufficiently
large integer value, r,,,x say. One way to implement the CA and PC estimators is to simply
set 7max = k = m + 1, thereby allowing true number of factors to be anything between zero
and 7,,,c. Thus, in this case we are not interested in the number of factors but just want to
make sure that the effect of the cross-section dependence has been accounted for. Of course,
with 7y, large, for the CA estimator this approach is not really feasible. As an alternative
in such cases one may chose r using some model selection criteria, such as an information
criterion. This approach has been shown to work in the context of a conventional common
factor model (Bai and Ng, 2002) and it is expected to work well also in the current regression
setting. Note also that all results reported in this paper are based on the assumption that r <
m + 1 in case of the CA estimator and r < k in case of the PC estimator. If these assumptions
are violated, which in practice means setting 7,4« too low, then the results reported here are
no longer valid.

Chudik et al. (2010) introduce the notions of weak, semi-strong and strong factor struc-
tures and prove that these do not affect the consistency of the FCA estimator, a result that
is partly confirmed by our simulations. The FPC estimator, on the other hand, seems to be
severely small-sample biased even if the cross-section dependence is absent. The implication
is that if the objective is just to mop up the effect of a relatively weak common component,
then the FCA estimator seems like the best choice.

The relative magnitude of N and T has important implications for performance, not only
in small samples but also asymptotically. Thus, given the size of the potential bias, unless
N > T, some kind of bias-correction might be appropriate (see Bai, 2009). A natural can-
didate towards this end consists of subtracting from FCA and FPC an estimator of the bias
given in Theorem 1. For example, instead of BFCA we use ,BFCA — N7 '&Y(Bi1ca — Baica),
where the unknown coefficients in ¥, Byjca and Byjca should be replaced by estimates. In
case of the FPC estimator, given its small-sample bias, this is probably not enough. Similarly,
even if N > T, for the FPC estimator to work properly one also needs N and T relatively

large.
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Appendix: Proofs

Proof of Proposition 1.
Define the N(m + 1) x N(m + 1) covariance matrix ¥, = diag(X,i, ..., Z,n). Thus, letting
] = inN @ Ly41, where 1y = (1,...,1)" is a N-dimensional vector of ones, A, B, C and £, can

be rewritten as

oS
I

Q
e

In this notation,
Qe = N[Oz, c(Cco)l,
Qica = N(CJrC)'cyreagyecyre)

We now show that Q)jc4 — Qjpc is positive semidefinite, which holds if R = ()ﬁ}c — 05}1

is positive semidefinite. Thus, letting

vV = CC,
= C'%,C,
W = c'(cc)Jr(cc)c,
we have
VWSWV = (C'C) (C’(CC’)_]]/(CC’)_C) (C'z,C) (C’(CC’)_]]’(CC’)_C) (C'C)
= (C'O)c'(CC) JI'EJ)'(CC)~C(C'C) = C'TJ'=T'C,

VWV = (C'0)(C/(CC) I (CC’)C) (C'C) = CJJC,

which in turn implies

_ 1 _ 1 _
R = S(COCEL)HCC) = LCIC(CTIE I C)ICTC
= %VS*V - %VWV(VWSWV)*WWV.
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Moreover, since C'%,,C is positive definite, there exists a nonsingular (m + 1) x (m + 1) ma-
trix L such that (C'S,C)~! = L'L. Let H = LV and Mg = I,41 — G(G'G)"'G/, where
G = (L')"'WV. It follows that

_ 1 1
R = VLLV— SVWV(VWLT(L)WY) v wy
1 1
= —HH- _HG(G'G)"'G'H = H'MgH.
N SH'G(G'G)'G'H = H'MgH

But Mg is symmetric and idempotent, as M; = Mg and MgM¢g = Mg, suggesting that for

any (m + 1)-dimensional vector v,
Rv = vHMcHv = w'Mgw > 0,
where w = Ho and the inequality holds because M is positive semidefinite. Therefore, R is

positive semidefinite. [

Proof of Theorem 1.

We begin by considering the PC estimator. Write

Yi = xi,B—f-ﬁIPC)\i—d/\i—f-ei,

where d = FIPC — F. The least squares estimator of § is given by
A N N
Pirc = 2 le‘MﬁlPCxi Z X;Mﬁmcyi,
i=1 i=1
suggesting that
-1
VNT(B B) < ! ix’M x> ! %x/M €
IPC — = T pIpc X e fIpc€
NT 5™ NT S

1 N / 1 N 1 N
—— VY ¥Mepedr; = —— Y XMppcFA; = —— Y A;F' M FA;
\/ﬁi;l e NTZ-:Z{’ e NT; TR
1 Y,
+ —NTi:ZIsiMﬁIPCFA,- = Ry + Ry,



with Ry and R, implicitly defined.

Consider Ry, where F' Mppc F can be expanded as
F/MIE*]PCF — d,Mﬁ]PCd — d,MFd —d/(MF — Mﬁ]pc)d
From the definitions of M and Mgiec,

d' (Mg — Mgipc)d = d’d((?lpc)/ﬁlpc)’ld’d + d’d((ﬁIPC)’ﬁIPC)*lp/d
+ d’F((I:"IPC)’ﬁIPC)*ld’d_Fd/p[((ﬁlpc)/ﬁfpc)*1 _ (F’F)’l]F’d.

Write
((ﬁlPC)/ﬁIPC)fl o (F/F)fl — ((ﬁIPC)/ﬁIPC)fl((ﬁIPC)/IﬁIPC _ F/F)(F/F)fl
((ﬁIPC)/ﬁIPC)fl(d/IEIPC —I—F/d)(F’F)*l,
where
VN I 1 N T B
VNTV2Fd = “= Y Fd} = — FuyCIA™! = 0,(1),
\/T ; t NTIZZU:Z] it“i P
with d; = ﬁtlp C_F. Similarly, since
1 NN T
WZ%Z;;CZL‘””#C] —p B
i=1j=1t=
as T — oo, we have
s VNI AP TR T
VNT 124/ pIPC _ 7Tzdt(FtIPC)/ — A1 NTZZCi”if(FtIPC>/
t=1 i=1t=1
N T N N T
= A*lLZchu,tFHA*l 3i Y ) ) Cup,CA™
NT i=1t=1 N / \/T1:1]:1 t=1
i 1 NI T - .
= A—lW YN CunF + QA‘lBA‘l +0,(1)
i=1t=1
VT

Hence,

T||((IEIPC)/151PC)—1 o (F/F)—lH < |](T‘l(ﬁ“jc)/ﬁlpc)_lHT‘lHd/ﬁIPC+F/d||

)
o (wz) + o)
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But we also have

-1 4/ N L ! ——11 MY 1 L I~ -1 A—1p a—1 ~
as T — oo, from which it follows that
T~ (Mg — Mpie)d|| < |[T~' || [|[(T~H(B™C) B 7Y ||| T d'd)|
+ HT’ld’dHH(T POYRPE) T IT |
+ (| TF||[|[(T (FIPC) POTT ]|
+ (T F||TI (B EPE) = — (F'F) M| || T Fd||
1 1
- o)+ ()
Hence,
H FzAd' Me = Mpnc)dn | < VIT|IT 4 (M5 — Mol ZHAHHMI

VT 1
= o5on) +o (w)
Moreover, since d’ Mrd = d'd — d'F(F'F)~'F'd with

1 N
—— VY AdF(F'F 1F’d/\~| < NT Y24 F|| |(T1FF)!
| AT LAEERRA| < Y HiTEE) )
1
x |IWVNTY2F'd Al||IA; —o( )
1 || ZII [ 1A JNT
we obtain
Ry = LiAd’M dAr—LiA'd’(M — Mpipc )dA;
1 = \/ﬁi:1 i FUq \/mi:1 i F FIPC i
1 X VT 1
1 N 1 VT 1
= — Y Add) S v — .
ﬁNTZ; j ,+Op( 'NT>+O”<N3/2)+O"’<N>

As for the first term on the right-hand side, we have

N N
%ZAid,d)\i Z NT 1dd Ai —7p Biipc

as N, T — oo, where

Biipc = hirlo N Z AiQjpchi,
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which in turn suggests

1 VT 1
. -1/2 — —
VTN V2B 1pc = op<m>+op<N3/z)+op<N>.

Next, consider R;. Clearly,

1 N
R2 = _\/ﬁ ZEi(M MFIPC)F)\
i=1
1 Y ¢ d((EIPCY PIPCY—1 g/ al pIPCYFIPC) 1
i=1 i=1
R R — N _
o NTZE;’F((FIPC)/FIPC) 1d/F/\1‘— E FIPC PIPC) (F/F) 1]F/PA1'.
\ i=1 \/ i=1
Since d}((F'PC) FIPC)~1d; is a scalar, the order of the first term can be inferred as follows:
al ((BIPCY PIPC) 11 1 N & o AIPCYAIPCY -1 N g
—_— ((F 'F d'FA; = ——— eid; ((F F - dsF.A;
FZZ ) 1 NT;; it t(( ) ) 5221351
— JT= 1 i id/(Tfl(ﬁIPC)/ﬁIPC)fld 1 is'tF//\'
= t S 1 1
rE4 VN&Z 7
1 T
< ﬁfZHdtH [[(T~H(BTPCY EPE) |

ith/ A

X
3|
MH

) ool

Similarly, since F/((FPC)'FIPC)~14'FA, is scalar, the third term can be written as

1 XN . R N T
€F FIPC /FIPC 1d/F)\' — F FIPC FIPC 1d/F)\'
T (T FIE) HE —Fzz \AaEA,
1 1< .
— = N E/(TY(EIPCYRIPCY -1 /NT 1/2dF Ag;
\/NTE t( ( ) ) Z it
R O e 2
< — =Y URIF) (T Y EPCYEFO) ] |VNT 24 F)|
W(thl
1/2
S = — ) Mg =0
(Tt; N e > ()
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The corresponding result for the fourth term is given by

1 Y PO
- ZT 1/2 /FT[((FIPC)/FIPC)_l _ (FIP)_l]T_lF/F)LZ‘
i=1
— VT ZF’ [((ETPC)FIPEY=L —(F'F)~1 TP F— ZAs,t
1 T 1/2
< (Tzw) TII((BPCYEPE) T (FR) | IT T E

X
VR
|-
||[\1~1

)=o) o)

As for the second term, by using Taylor expansion of (T~ (FIPC) FIPC)~1 around (T~1F'F)~!

Sl -
o

Il
—_

. . 1N 1
-1 IPC IPC\—1p-1
ehd(T Y (FIPCYEIPO)TITIPEN; = Ti§:1e;dAi+op<m>.

Moreover, since E(e;t1!,) = Lei (B, In) and (B, L) C! = (BB’ + Ln) Ai + BA}), we obtain

1

T

1
Y endihi = —
:18” N ¢

1
T

=z
M=
1=

I~ a—1
eituthjA )\1’ —>p BZIPC

=
Mz
h’)
’~]\H
™=z

N
Il
—_
-
I
—_
-
-.
Il
—_
Il
—_
-
Il
—

as N, T — oo, where
Boipc = lim szgl (BB + Ln)A; + BA)ATTAL,

suggesting

B 1 VT
o e 0 (3) 0, ()

Thus, by adding the results,

N
Ri+Ro — VTN V3(Biipc — Borpe) = ——— Z X!MpicdA; — VTN Y2(Bypc — Barpc)

Next, consider

1 N N N
\/ﬁ 2x§Mﬁ1Pc€i = == Z X{Mre; — —— 2 xXi(Mp — Mpirc)e;
i=1 '
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where

N
I o (Mr =

i=1

FIPC)ei

_|_

_|_

x;d((ﬁIPC)/ﬁIPC>fld/€i

xgd((pIPC)/ﬁIPC)—lFlei

ng((pIPC)/ﬁIPC)fld/ei
X{F[((FIPCY EIPC) !

— (F'FE) 7 '|Fe;

The order of these terms can be obtained by using the same steps as when analyzing R,. The

order of the first term is given by

7 L

Similarly,

1 X . ALPC—
— Ex;d((PIPC)/FIPC) 1F/€i
\% 1=

/d FIPC FIPC) 1d/€i

IN

X

1 S ) PIPCVIAIPCY -1
VNT 55 =
1 L IP 1P al
VT )2 ) di(TH(EIPOY ) szteis
t=1s=1 =1
1 L AIPC IPC\—-1
VTF LIl P (T (B PT
=1
1/2
1 T 1Y 2 VT
— ) Xj€ = Op< >
1 %i IPC IPC 12
— xud ((F77C)'F Fse;
VNT i=1t=1 l s=1 N

FIPC FIPC

\/— ZZ; SZ: Fsxjreis

/2
!Idt|\2> (T (BPE) BP) |

o\ 1/2
)" o)

\/— Z Z stztezs
i=1s=

with the third term being of the same order. The order of the fourth term is given by

\/72T 1x/FT FIPC)/ﬁIPC)fl
< m(
p

o

N

)3

i=1

o)

Z\H

1/2
. . 1N
I7- 1x’FH2> T(|((FPCY P~ — (F'F) 7| (N X HTl/zF'eiW)
i=1

— (F'F)"YT712F¢;

1/2
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It follows that
N

H\lﬁ ; xX;(MF — Mg )€;

which in turn implies

1 Y, 1 Y VT 1 1
Y XMppce; = —— Y x|Mre; + O ()+o (>+o ()
\/NTi;l Fres NTZ;l TN PNVN) T TP\VT

Next, consider

1

1 N
NT Ex ijpcxl = NT ZX MFxl T ZX:(MF — Mﬁ]pc)xl'

i=1
We have NT1||d||? = O, (1), implying vVNT~1/2||d|| = O,(1). Similarly, since T~!||F||> =
T-'Y1, ||E||? = Op(1), we have T~/2||F|| = O,(1). Hence,

IMp = Mpee|| = TH|d[P[|(TH (B EPE) 7Y 27 Jd] [ | FI [[(TH(BPC)BPE) 7|

A A 1
+ T—l )a ZT FIPC /FIPC -1 _ F/F -1 =0 < )/
[EIFTII((F=)'F5) " = (F'F) | AW

implying

1 Y ) 1
E < — M — ; = — .
HNT X FIPC)x > HMF MFIPCHNT;HxZH OP(\/N)

Therefore,

1 Y 1
NT Zx MF,pch = m ZX;MFXi + OP <N) .

By adding all the results,

-1
A 1 N 1 N
VNT — = 72 X Mpipe X; 72 X:Mpipc€;
(ﬁIPC IB) NT = itVAFIPC AL NT = PHVAFIPCEL

1 T X
— m Z X;Mﬁjpcxi W Zx;MﬁIPCd/\i

1
1 N 1 X
= ( xl{Min> WZJCZMPGA—Z WTN~Y2(Byipc — Barpc)
j i=1

= o(5) o (G5) o ()

)



which completes the proof for the PC estimator. The proof for the CA estimator is almost
identical, and the details are therefore omitted. The only difference is the bias terms, Bypc
and Byrpc. Indeed, redefining d = Fca — F, we have

) 1
im

N N
B = 1 VY ANT YDA = lim =Y AQpca;.
1ICA N, Tsoo0 N 1221 l( ) i Nlirlo N Z iSAJCAN

Similarly, since (B, I,)C" = ((BB' + L,)A + BA'), we obtain

1N/ 1NT / 1NT Nl alalAt!
T zgid/\i =7 Z EEitdt)\i =7 ZsltutC (CC") A
i=1 i=1t=1 i=1t=1
1 N 1 L ! A AAN—1
= N ZZf Y ey, C'(CC) '\ =, Barca

as N, T — oo, where
o . l N ) / Iy AN(AEA—1 .
Baca = lim — Y %i((BB' + Ln) A+ BA")(CC') 1A,
N—oo N -1

This establishes the proof. [

Proof of Proposition 2.

We begin by considering the PC estimator. As in Bai (2003, page 158), if we denote by V
the k x k diagonal matrix consisting of the first k eigenvalues of {72z in descending order,
then, by the definition of eigenvalues and eigenvectors, FI'*¢ = L-zz/ FFPCY 1. Thus, letting

H = g;C'CF'FFPCV—1, we have

R 1 A 1 .
FFPC _ FH — - /FFPCVfl _ 71: / F/FFPCVfl
NT NT ccC
1 .
= gz —FCCP)Frevt
1 A
= ﬁ(uu’ + uCF + FC'u')FFPCy -1,

or, in vector notation,

. 1 g
FIPC—H'R = 2V (FFPC) (uu + FC'uy + uCF).

Now, by using Lemma A.2 of Bai (2003),

1 AFPCN ., l l
NT(P Yuuy = O, N + Oy 7
1 rEPCY/ _ l 1



Hence, since V = O,(1),

VNP~ HE) = NV (FFPCYECu, 40, <\/1N> Lo, (\/1?) ‘o, (\/TN)

- e eua ) o) o (%)
—p N(0,QFpc)

as N, T — oo with @ — 0, where the second equality holds because, via the definition of

H, 4V 1(FFPCYF = H'(C'C) L.

Let us now consider the CA estimator, in which case ﬁtF CA — 7,  Because G = C, we have

that z; = C'F; + i1y = G'F; + ;. Hence, since

we can show that
\/N( AtFCA — G/Ft) = \/Nb_lt —d N(O, G/Q[CAG)

as N, T — oo, and so the proof is complete. u

Proof of Proposition 3.
We begin by considering the PC estimator. Note that
Tfl (ﬁFPC)/Zi — Tfl (ﬁFPC)/FCi + Tfl (ﬁFPC)/ui
= T 'H'FFC+ T '(FFPC = FH)'FCi+ T 1 (F"C) u;

= T 'H'FFC + T 'H'Fu; + T Y(FFPC — FH)'FC; + T }(FF’C — FH) u;

where, by Lemmas B.1 and B.2 of Bai (2003),

. 1 1 1
TN (FPC —FH)'FCi = Op (= ) +0p (= ) +Op [ ——=
( VEG =0\ PAT P\VNT)’

with T~1(FFPC — FH)'u; having the same order. Moreover, by using the same argument as

in the proof of Theorem 1,

(T-H(EFPCYEFPO) " —(T'H'F'FH) ! = op<\/11\[7T> +op<;]> +op<;>.
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It follows that

CiFPC _ ((ﬁFPC)/ﬁFPC)—l(ﬁFPC)/Zi _ H‘Ci—l-(T_lH'P/FH)_lT_lH'F’ui
1 1 1
i OP(WT) +OP<N> +O’”<T)’
which can be used, together with Proposition 2, to show that
(CIPCYEPC —ClF = Cl(H')™(Ff"C = H'F) + (C[PC — H™G) Ef™C
= C/(H')” (Ef"® — H'F) + (CF’¢ —H'C,)H'F,
(G~ HGY (T - HE)
C/(H')"H'(C'C)"'C'u; + ulFH(H'F'FH) 'H'F,
1 1 1
Oy — | +0,( = | +0,| =
() o) +or ()
1 1
_ Nala S Yal ! /y—1 -
= CI(C C) CuH—ulF(F F) Ft+0p<m> +OP<N>
1
+ o,,(T>,

where the last equality uses that

_|_

W FH(H'F'FH) 'H'F, = uF(H'F'F)"(H'F'F)H(H'F'FH) '(H'F'FH)(H'F'FH)!

X

H'(F'FH)(FFH)"F = u.F(H'F'F)" (H'F'FH)(F'FH) F
= ulF(F'F)"'F.

As for the first term on the right-hand side, we have
VNCHC'C)"ICuy = CU(N"IC'C)IN"Y2C'u; —4 N(0,C)QupcC))

as N — oco. Moreover, since

T T
TE(u;F(F'F)"Y(F'F)'Fu;) = TY_Y E(uyF/(FF)"(F'F)'Fuj,)
t=1s=1

T
= TY E(F(FF) " (F'F)'F)E(uyu})
t=1

= TE [tr (Z FF/(F'F)~ (F’F)1>] i
= E[r((T'FF) DTy — (T,
as T — oo, we get
VTu{F(F'F)"'F, = T V2ulF(T'F'F)™'F —4 N(O, F{Z;'FLy).
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The fact that N~Y2C"u; and TV 2ugF are based on different summations implies that their

asymptotic distributions are independent. Hence,
(N7ICIOpcCi + T ERE, ) V2 ((CFPOY BFPC — CIF) —4 N(0,1)

as N, T — oo.

In case of the CA estimator, we simply replace H with G, giving

(CFNYEFY —CiR = CH(GT) (BF“" = G'R) + (Cf“" = GCi)/G'Fi +0,(1)

1

= C/(C™) '+ ujF(F'F)"'F +0,(1)

1

= C/(CC")'Cuy +uiF(F'F) 'F +0,(1),
suggesting
(NICIOcACi 4+ T YRR, ) V2 ((CFCAY EFCA — CIF) —4 N(0,1)

as N, T — oo.

Proof of Proposition 4.

When analyzing the PC estimator it is convenient to redefine d = FF’C — FH and d; =

I:’fpc — H'F;, such that
H'F'Mgeec FH = d'Mgeped = d'd — d'F(F'F) " 'F'd — d' (Mg — Mpeec )d.
Moreover, by using the results provided in the proof of Proposition 2, we have

A A 1 1 1
FPC _ ry/ _ 1(£IPC -
E H'F, = H'(F Pt)+op<N>+op(m>+op<T>,

where the order terms are such that they do not affect the analysis of Ry and R;. Hence, we

may use the same steps as in the proof of Theorem 1 to show that

M=

Il
—_

R, = Ai(H™)'H'F'Mgroc FHH™ A

- _ 1 VT 1

where, by proposition 4, NT~'d'd —, H'QpcH as T — oo, suggesting that

™=

Il
_

~l =
o

Il
—_

Ai(H_),d/dH_)Li —p B1iipc
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as N, T — co. Hence, just as in the proof of Theorem 1,

— VIN"Y2Byjpe = 0, (\/11\]7T> + O, (Z\\éi) + Oy <11]>
As for R,, note that
MF—MﬁFPC — d((ﬁFPC)/[jFPC)—ld/+d((ﬁ~FPC)/ﬁFPC)—1H/FI_|_FH((1’;‘~FPC)/I§FPC)—1d/
+ FH[((FFPC)FFPE)"1 — (H'F'FH)'|H'F,

where the second term is also the leading term. Hence, by again using the same steps as

before,
1 N
R2 = _ﬁ ESi(M MFFPC)F/\
i=1
1 X, . 1 VT
mizzlsl (( ) ) l+ p \/N + p N
where, via Taylor expansion of the type (T~ 1(FFPC)FFPC)~1 = (T"1H'F'FH) ! + 0,(1),
N 1
Y d(T Y EFPCY FFPOYITIH'FFHH A = =Y edH A +0 ()
Z ! T;l t p \/N
1 N T . 1
— TE e a0, )
T;g itht 1 p \/N
1 Y1 & _ 1
= NZZ?Zsitu;tC]{Ai HHAl—I—Op(\/N) —p Boipc

Il
—_

t

-
Il

—_
-
Il

—_

as N, T — oo, suggesting

1 \/T
-1/2
Ry + VTN V2Bypc = op<m>+op< N )

Hence, so far the results are exactly the same as in Theorem 1.
Next, consider the normalized sums of x!Mgrrce; and x; MprpcX;. The analysis of the latter

sum is unaffected by the fact that we have replaced F!/’C by FFPC. However, this is not the

case for the first sum, which is now given by

1 Y, N
—_— Zx-Mprcei = Zx Mre; — — Z (Mp — Mprc)f—Zi
VNT 5 VN i=1
1 Y, . .
- 'PH[((FFPC)/FFPC)_l o (H/P/FH)—I]HIF/ei
\/NTl; l

+
o
2

()~ (%)
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where

N
T Z -1 /FHT FFPC)/ﬁFPC)—l _ (H,P/PH)_l]T_1/2H/FI€i
i=1

1/2
1 . AEPC\/ pFPC — .
< \/N(NZIIT 1X§FH2> IHIPTI((FFCYEFE) ™ — (H'F'FH) |
i=1

i=1

1 N 1/2
" <ND|T“2F'<-:I-H2> .

By using the same argument as in the proof of Theorem 1,

TIIERey eyt = (P EH) | = 0y( =) +0( ) +0(7),

where the last order term is new. Thus, by direct substitution,

1 Y 1 Y 1 VT VN
7%NTZJC:-MI§FPC€{ = %NT;JC;MFGi—}—Op(\/N) +OP(N) —|—Op(T)/

i=1

which in turn implies
V NT(BFPC — ’B) = NT(BILS — ﬁ) + z;lﬁN*1/2<B11PC — szpc) + Op<

o)) a5

This completes the proof for the PC estimator. The proof for the CA estimator is entirely

analogous. [
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