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LM-TYPE TESTS FOR IDIOSYNCRATIC AND COMMON UNIT

ROOTS IN THE EXACT FACTOR MODEL WITH AR(1)
DYNAMICS

Martin Solberger and Xingwu Zhou
Uppsala University¶

Abstract

Recent developments within the panel unit-root literature have illustrated how the
exact factor model serves as a parsimonious framework and allows for consistent maxi-
mum likelihood inference even when it is misspecified contra the more general approx-
imate factor model. In this paper we consider an exact factor model with AR(1) dynam-
ics and propose LM-type tests for idiosyncratic and common unit roots. We derive the
asymptotic distributions and carry out simulations to investigate size and power of the
tests in finite samples, as well as compare the performance with some existing tests.

JEL: C12, C23
Keywords: Panel unit root, Dynamic factors, Maximum likelihood, Lagrange multiplier

1 Introduction

For panel unit root tests there has lately been a great deal of focus on factor models. The rea-
son for this is that they provide at least two important properties; (i) they have an economic
rationale, in the sense that economic theory may predict that shocks to a system will affect
its individuals (e.g. countries) proportionally and that a relatively small set of shocks may
drive a large system (see e.g. Breitung and Eickmeier, 2006, for an overview); and (ii) they
implicitly control for a cross-sectional dependence. It is fair to say that the latter has been
the main motivation for the so called second generation panel unit root tests, such as Phillips
and Sul (2003), Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007).

Suppose we have the following panel model with N individuals and T time periods:

xi,t = µi + λ′ift + ui,t, i = 1, 2, . . . , N; t = 1, 2, . . . , T, (1)

where µi is an individual-specific constant, ft = ( f1,t, f2,t, . . . , fr,t)
′ is an r × 1 vector of un-

observable dynamic factors, λi = (λi,1, λi,2, . . . , λi,r)
′ is an r× 1 vector of factor loadings and
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ui,t is a dynamic idiosyncratic component. The exact factor model, which assumes cross-
sectionally independent idiosyncratic terms, was given some attention in the early model-
ing with dynamic factor models in small samples (e.g. Sargent and Sims, 1977; Engle and
Watson, 1981; Stock and Watson, 1989). This was later considered to be too strict for most
economic time series, and the approximate factor model of Chamberlain and Rothschild
(1983), allowing for moderate idiosyncratic cross-sectional dependencies, has become popu-
lar (e.g. Stock and Watson, 2002; Bai and Ng, 2004). The standard tool for these models are
principal components, while maximum likelihood has generally been regarded as compu-
tationally infeasible due to the large number of parameters. Recently, however, Bai and Li
(2012a) (see also Doz, Giannone, and Reichlin, 2012) have considered quasi-maximum likeli-
hood estimation in a misspecified exact factor model when the true model is an approximate
factor model, and shown that the quasi-MLEs are still consistent. This suggests that the ex-
act factor model is attractive for large panels as a parsimonious representation allowing for
consistent likelihood-based inference also under misspecification.

In this paper we consider the exact factor model under AR(1) dynamics, but assume that
it is correctly specified, and propose three LM-type tests for unit roots in the idiosyncratic
and common components. The null hypothesis is specified as ”nonstationary factors and
nonstationary idiosyncratic components”, which is tested versus ”stationary idiosyncratic
components”, ”stationary factors”, and ”stationary factors and/or stationary idiosyncratic
components”. We perform a simulation study to investigate the size and power of the pro-
posed statistics, and compare their performance with the PANIC (Panel Analysis of Nonsta-
tionarity in Idiosyncratic and Common components) framework of Bai and Ng (2004). The
simulation results suggest that the likelihood approach is more powerful than PANIC. Also,
when testing for the number of stochastic trends among the factors, PANIC has virtually
no power when the factors are locally stationary. Though it will be necessary to extend our
model to allow for more general dynamics, the present framework constitutes an important
special case and the results should contribute to the development of likelihood based unit
root tests in dynamic factor models.

The rest of the paper is organized as follows: Section 2 describes the general framework.
Section 3 derives the LM-type statistics and their limiting distributions. Section 4 evaluates
the size and power of the tests in finite samples through Monte Carlo simulations and Section
5 concludes. All lengthy mathematical derivations are placed in appendices; Appendix A
derives the score and information matrix and proofs are in Appendix B.

Notation: For a matrix A ∈ Rn×n, ϕ1(A) ≥ ϕ2(A) ≥ · · · ≥ ϕn(A) denote the eigen-
values. For a matrix A ∈ Rn×m, ||A|| = [tr(AA′)]1/2 denotes the Frobenius norm and
Av = vec(A) is the vectorization operator which stacks the columns in an nm × 1 vector.
Unless specified differently,

[
ai,j
]

n×m is an n× m matrix with element ai,j corresponding to
the ith row and jth column, diag (a1, a2, . . . , an) is an n × n diagonal matrix with entries
a1, a2, . . . , an and In is the n× n identity matrix. For limits, T → denotes limit taken over T
with N fixed and (T, N)s → denotes sequential limit with limit taken over T followed by

limit taken over N.
p→ (

d→) denotes convergence in probability (distribution).
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2 The framework

We consider the panel model (1), which for convenience is restated here. In vector notation
we have

xt = (x1,t, x2,t, . . . , xN,t)
′ = µ + Λft + ut, (2)

where µ = (µ1, µ2, . . . , µN)
′ are the constants, ft = ( f1,t, f2,t, . . . , fr,t)

′ are the unobservable
dynamic factors, ut = (u1,t, u2,t, . . . , uN,t)

′ are the dynamic idiosyncratic components and
Λ =

[
λi,j
]

N×r is the matrix of factor loadings. The contemporaneous covariances are then
Σx = ΛΣ f Λ′ + Σu, where Σ f = Var(ft) and Σu = Var(ut). If the largest eigenvalue of Σu is
bounded and the eigenvalues of ΛΣ f Λ′ are not bounded, then we have the approximate fac-
tor model by Chamberlain and Rothschild (1983). Further, if Σu is restricted to be diagonal,
then we have the exact factor model, which is the direct dynamic generalization of the clas-
sical factor model. Note then that the exact factor model is nested within the approximate
factor model. We impose the following restrictions, admitting the exact factor model:

Assumption 1 The idiosyncratic components are AR(1) processes, ui,t = ρiui,t−1 + ε i,t, where
ρi ∈ (−1, 1], ε i,t ∼ N (0, σ2

ε,i) are independent and identically distributed (iid) over time with
σ2

ε,i < ∞, and E(ε i,tε l,s) = 0 for all i 6= l (i, l = 1, 2, . . . , N) and all t, s = 1, 2, . . . , T.
Assumption 2 The factors are AR(1) processes, f j,t = αj f j,t−1 + vj,t, where αj ∈ (−1, 1], vj,t

are iid N (0, 1), and E(vj,tvq,s) = 0 for all j 6= q (j, q = 1, 2, . . . , r) and all t, s = 1, 2, . . . , T.
Assumption 3 The factor loadings are non-random with ||λi|| < ∞, and 1

N ∑N
i=1 λiλ

′
i con-

verges to some positive definite matrix ΣΛ.
Assumption 4 The processes vj,t and ε i,t are independently distributed.
Assumption 5 For stationary processes the starting values f j,0 and ui,0 come from the sta-
tionary distributions, and for nonstationary processes they are Op(1).

Assumptions 1 and 2 imply that the idiosyncratic components are cross-sectionally inde-
pendent, so that we have the exact factor model, and likewise that the factors are mutually
independent. The assumption of normally distributed errors will allow us to obtain the like-
lihood of the factor model, where the assumption of unit variance in the factor errors can be
made without loss of generality, because, unless we impose further restrictions, the factors
and the factor loadings are not separately identified. Assumption 3 implies that the eigen-
values of ΛΛ′ are O(N), which together with Assumption 4 allows us to identify the factor
structure. These assumptions are standard in factor models (see e.g. Bai and Ng, 2002; Bai,
2003; Bai and Ng, 2004, and references therein). Assumption 5 ensures us that the stochastic
processes are well-behaved with respect to their initial values. Together, we may summarize
these assumptions as the exact factor model with Gaussian AR(1) dynamics.

Because the panel data is allowed to be nonstationary, we will proceed by taking first
differences. For notational convenience, let T∗ = T − 1, and let also D = [Dτ,t]T∗×T be a
first-difference matrix, i.e. Dτ,t = −1 if τ = t, Dτ,t = 1 if τ = t − 1, and zero otherwise.
Consider the ith idiosyncratic component and let ui = (ui,1, ui,2, . . . , ui,T)

′. If ui is stationary,
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then ui ∼ NT(0, σ2
ε,iΠ(ρi)), where Π(ρi) = [Πi

k,m]T×T is an autocovariance matrix, with

Πi
k,m =


1

1−ρ2
i

for k = m
ρ
|k−s|
i

1−ρ2
i

for k 6= m
,

which can be found from e.g. van der Leeuw (1994). The autocovariance matrix has the use-
ful property that the nonstationary point exists after taking first-differences. It is straightfor-
ward to show that Dui ∼ NT∗(0, σ2

ε,iΨ(ρi)), where Ψ(ρi) = [Ψi
k,m]T∗×T∗ , with

Ψi
k,m =


2

1+ρi
for k = m

− ρ
||k−s|−1|
i (1−ρi)

1+ρi
for k 6= m

. (3)

Here Ψ is twice continuously differentiable around the nonstationary point Ψ(1) = IT∗ .
Also, the nonstationary point is correctly defined, because if there is a unit root in ui, then
Dui ∼ NT∗(0, σ2

ε,iI). The matrix Ψ is therefore well-defined for constructing likelihood-based
statistics for a unit root hypothesis. Similarly, for the jth factor, let fj = ( f j,1, f j,2, . . . , f j,T)

′. If
there is a unit root in f j,t, then, from Assumption 2, Dfj ∼ NT∗ (0, I), while for the stationary
case Dfj ∼ NT∗(0, Ψ(αj)), where Ψ(αj) is a matrix with elements analogous to (3).

Assumption 6 The idiosyncratic components and the factors are separate homogenous groups.
That is, ρi = ρ for all i, and αj = α for all j.
Assumption 7 The idiosyncratic components are cross-sectionally homoscedastic. That is,
for all i, σ2

ε,i = σ2
ε .

Assumptions 6 and 7, which may be relaxed, simplify the analysis, and will allow us to
use explicit maximum likelihood estimators. Assumption 6 is not particularly restrictive, at
least not from a statistical point of view, because we expect homogenous tests to have power
also against a heterogenous alternative. Assumption 7 is restrictive and was documented by
Zhou and Solberger (2012) to give size distortions if violated. Relaxing the latter assumption
will prompt us to use numerical maximum likelihood, say using the EM-algorithm. Some
consistency results were recently derived by Bai and Li (2012b), but this is not pursued here.
Instead we maintain these assumptions through out the paper to be able to rely on explicit
MLEs. The results are nevertheless important, because relaxing Assumption 7 is likely to re-
sult in test-statistics with similar asymptotic distributions. The null hypothesis of interest
here is

H0 : ρ = 1, α = 1,

which, under Assumptions 1-7, may be equivalently stated as

H0 : ft ∼ I(1), ut ∼ I(1). (4)

Let Y = XD′, where X = (x1, x2, . . . , xT) is the N × T matrix of observed panel data and
let M = ΛΛ′. The differenced and stacked panel data, Yv = vec (Y) = (y′2, y′3, . . . , y′T)

′,
has covariance matrix Σ = E (YvY′v) = [Ψ (α)⊗M] + σ2

ε [Ψ (ρ)⊗ IN ] where ⊗ denotes the
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Kronecker product. Under the null hypothesis ρ = α = 1 we have that

Σ = (IT∗ ⊗M) + σ2
ε INT∗ =

[
IT∗ ⊗

(
M + σ2

ε IN
)]

= (IT∗ ⊗Ω) , (5)

where Ω =
(
M + σ2

ε IN
)
, implying for yt = ∆xt = (∆x1t, ∆x2t, . . . , ∆xNt)

′ that

E
(
yty′s

)
=

{
Ω if s = t
0 if s 6= t

. (6)

In this case we have an explicit MLE of Ω. Use a reduced singular value decomposition of
Λ and factorize as ΛΛ′ = AHA′, where H = diag [ϕ1(Λ

′Λ), ϕ2(Λ′Λ), . . . , ϕr(Λ′Λ)] has the
non-zero eigenvalues of ΛΛ′ and A is semi-orthogonal such that A′A = Ir.1 It is well-known
(see e.g. Stoica and Jansson, 2009) that the maximum likelihood estimator of A is the set of
eigenvectors of S = 1

T∗YY′ associated with the r largest eigenvalues ϕ̂1(S) ≥ ϕ̂2(S) ≥ · · · ≥
ϕ̂r(S), and that the MLEs of H and σ2

ε are σ̂2
ε =

1
(N−r) ∑N

i=r+1 ϕ̂i (S) and Ĥ = Φ̂− σ̂2
ε Ir, where

Φ̂ = diag [ϕ̂1(S), ϕ̂2(S), . . . , ϕ̂r(S)]. From this we define the MLE of Ω,

S01 = Ω̂ = M̂ + σ̂2
ε IN , (7)

where M̂ = ÂĤÂ′.
The sample covariances, YvY′v, consist of T∗2 blocks, St,s = yty′s for t, s = 2, 3, . . . , T, each

block of size N × N. For these blocks we define, for future reference,

S0 =
T

∑
t=2

St,t =
T

∑
t=2

yty′t = YY′, (8)

S00 =
T

∑
t=2

T

∑
s=2

St,s =
T

∑
t=2

T

∑
s=2

yty′s =

(
T

∑
t=2

yt

)(
T

∑
t=2

yt

)′
. (9)

3 The LM-type statistics

Let θ = (Λ′v, σ2
ε , α, ρ)′ be the parameter vector holding K = Nr + 3 parameters. Assuming

normality, the log-likelihood with respect to the differenced and stacked data is

l (θ) = −NT∗

2
log 2π − 1

2
log |Σ| − 1

2
Y′vΣ−1Yv. (10)

Based on (10) we derive three LM-type tests with three different alternative hypotheses. Let
θ̃ be the restricted maximum likelihood estimator underH0. The LM-statistic is defined as

LM = V(θ)′J(θ)−1V(θ)
∣∣∣
θ=θ̃

, (11)

where V(θ) ≡ ∂l (θ) /∂θ is the score vector and J(θ) ≡ [Jθkθq ]K×K is the information matrix,
where Jθkθq = −E

(
∂2l(θ)/∂θk∂θq

)
for k, q = 1, 2, . . . , K. Also, define for any subsets ω, ν ⊆ θ

with Kω and Kν parameters respectively, V(ω) ≡ ∂l (θ) /∂ω and Jων′ ≡ [Jωkνq ]Kω×Kν for

1To clarify: Let Λ (N× r) have SVD UΣV′ where U is N× N, Σ is N× r and V is r× r. Because N > r, Σ has
r singular values and N − r zero-rows, i.e. Σ = [Σ+, 0]′. Let correspondingly U = [U+, U0], where U′+U+ = Ir,
but U+U′+ 6= IN . Then U+Σ+V′ is the reduced SVD such that ΛΛ′ = U+Σ2

+U′+, where Σ2
+ has the eigenvalues

of Λ′Λ = VΣ2
+V′, corresponding to the non-zero eigenvalues of ΛΛ′.
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integers k = 1, 2, . . . , Kω and q = 1, 2, . . . , Kν (see Appendix A for specific derivations of the
score and the information). Now, let the parameter vector be partitioned as θ = (θ′1, θ′2)

′

where θ2 = (α, ρ)′ is the vector subject to restrictions. Because under restricted maximum
likelihood estimation we have that V(θ) =

[
0, (∂l (θ) /∂θ2)

′]′, the information matrix may
be partitioned into the relevant blocks,

J =

(
J11 J12

J21 J22

)
,

where J22 = −E
(

∂2l(θ)
∂θ2∂θ′2

)
. If we define the inverse as

J−1 =

(
J11 J12

J21 J22

)
,

then the LM-statistic (11) becomes

LM =

(
∂l (θ)
∂θ2

)′
J22
(

∂l (θ)
∂θ2

)∣∣∣∣∣
θ=θ̃

. (12)

If the information matrix is block-diagonal in the specific way that J21 = J′12 = 0, then we
simply have that J22 = J−1

22 . When the information matrix is not block-diagonal in a suitable
way, we may still rely on some asymptotic results (see Solo, 1984). For notational simplicity,
let J̃ = J|θ=θ̃. Suppose there exist a sequence of matrices of constants Ci,NT → ∞ for i = 1, 2
such that the following block-diagonal condition holds:

C−1
1,NT J̃11C−′1,NT

p→ π11; C−1
1,NT J̃12C−′2,NT

p→ 0;

C−1
2,NT J̃21C−′1,NT

p→ 0; C−1
2,NT J̃22C−′2,NT

p→ π22,

where C−′ = (C−1)′, and π11 and π22 are full rank matrices. Then we have that

J̃22 = (J̃22 − J̃21J̃−1
11 J̃12)

−1 = C−′2,NT

[
C−1

2,NT J̃22C−′2,NT−(
C−1

2,NT J̃21C−′1,NT

) (
C−1

1,NT J̃11C−′1,NT

)−1 (
C−1

1,NT J̃12C−′2,NT

)]−1

C−1
2,NT

p→ J̃−1
22 .

Thus, letting Ṽ = V|θ=θ̃, Equation (12) can be written as

LM = Ṽ(θ2)
′ J̃22Ṽ(θ2) ' LM∗ = Ṽ(θ2)

′ J̃−1
22 Ṽ(θ2), (13)

in probability as Ci,NT → ∞, in the sense that |LM− LM∗| = op(1). In the following sections
we will make use of this property.

For the null hypothesis (4) we postulate three alternative hypotheses:

H1a : ft ∼ I(1), ut ∼ I(0),

H1b : ft ∼ I(0), ut ∼ I(1),

H1c : ¬(ft ∼ I(1), ut ∼ I(1)),
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where ¬ denotes the logical complement ”not”. The first two hypotheses are also considered
by Breitung and Das (2008), but as null hypotheses. They conclude that treatingH1a as a null
hypothesis is especially difficult, because OLS and GLS based statistics as considered by
Phillips and Sul (2003), Moon and Perron (2004) and Breitung and Das (2005) are no longer
valid. Here the tests are reversed, in the sense that we consider these cases as alternative
hypotheses. Our simulation results in Section 4 indicate that the size and power of the test-
statistic for H0 vs H1a is asymptotically independent of the conditioning on I(1)-factors,
and, similarly, that the size and power of the test-statistic for H0 vs H1b is asymptotically
independent of the conditioning of I(1)-idiosyncratic components. Although we do not
provide a formal proof, we conjecture this to be true. For the third alternative hypothesis,
rejection should be regarded as ”at least one of ft and ut are stationary”. To our knowledge,
no one has proposed a similar test before.

Before we go in to the specific cases, we introduce the following important lemma.

Lemma 1 Under Assumptions 1-7, for i, l = 1, 2, . . . , N and j, q = 1, 2, . . . , r, the following terms
are Op(1) :

(i)
J̃λi,jλl,q

N2T∗
; (ii)

J̃λi,jσ2
ε

NT∗
; (iii)

J̃λi,jα

NT∗
; (iv)

J̃λi,jρ

NT∗
; (v)

J̃
σ2

ε σ2
ε

NT∗
;

(vi)
J̃ασ2

ε

T∗
; (vii)

J̃ρσ2
ε

NT∗
; (viii)

J̃αα

T∗2
; (ix)

J̃αρ

T∗2
; (x)

J̃ρρ

NT∗2
.

3.1 Case A, alternative hypothesis with ut ∼ I(0)

For case A we condition on integrated factors by keeping α = 1 fixed. Thus, the parameter
vector may be effectively partitioned as θ1,a = (Λ′v, σ2

ε )
′ and θ2,a = ρ. We then consider the

”square-root” LM-statistic

ϑa =
∂l
∂ρ

√
J22

∣∣∣∣
θ=θ̃

, (14)

to test the hypotheses

H0 : ρ = 1|α = 1,

H1 : ρ < 1|α = 1.

Zhou and Solberger (2012) show that for any fixed N > r we have the relation J22 =

J−1
22

(
1− 1

T∗
)
, and that the LM-type statistic (14) is

ϑa =
T∗ tr

(
S−1

01

)
− 2 tr

(
S−1

01 S0S−1
01

)
+ tr

(
S−1

01 S00S−1
01

)
√

2T∗ (T∗ − 1) tr
(

S−1
01 S−1

01

) , (15)

where S01, S0 and S00 are given by (7), (8) and (9) respectively. Let ηi = φi(Λ
′Λ) denote

the ordered eigenvalues of Λ′Λ, η1 ≥ η2 ≥ · · · ≥ ηr > 0, corresponding to the r non-zero
eigenvalues of ΛΛ′. For any fixed N, the statistic (15) converges as T → ∞ to a weighted
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χ2-distribution,

ϑa
d→ 1√

2 ∑N
i=1 w2

i

(
N

∑
i=1

wiχ
2
1,i −

N

∑
i=1

wi

)
, (16)

where χ2
1,i (Chi-square with one degree of freedom) are independent over i = 1, 2, . . . , N

with weights wi = σ2
ε /(ηi + σ2

ε ) for 1 ≤ i ≤ r and wi = 1 for r < i ≤ N.2 This distribution is
non-standard, but there exist many relatively precise approximations (see e.g. Liu, Tang, and
Zhang, 2009). Especially, it can be suitably approximated by (see Proposition 1 in Section 3.2
or Zhou and Solberger, 2012)

ϑa
app.∼ 1√

2u

(
χ2

u − u
)

,

with u =
[
tr(Ω−1)

]2 / tr(Ω−1Ω−1), where Ω is the contemporaneous covariance matrix in
(6). In a simulation study, this approximation is demonstrated by Zhou and Solberger (2012)
to fit very well as long as T is large enough, say T > 25, but also for smaller T as long as N
is equally small. For large both N and T, the approximation is not necessary as the limiting
distribution is standard normal,

ϑa
d→ N (0, 1) , as (T, N)s → ∞.

We may also consider another approach where we impose the property of a block-diagonal
information matrix. Here the information matrix has the decomposition

J11,a =

(
JΛvΛ′v

JΛvσ2
ε

Jσ2
ε Λ′v

Jσ2
ε σ2

ε

)
; J21,a = J′12,a =

(
JρΛ′v

Jρσ2
ε

)
; J22,a = Jρρ. (17)

So if we let C1,NT∗,a = diag(N
√

T∗INr,
√

NT∗) and C2,NT∗,a = T∗
√

N, then by applying
Lemma 1 it is easily established that the block-diagonal condition holds for any fixed N as
T → ∞. Let C = diag(C1,NT∗,a, C2,NT∗,a). Then

C−1J̃(θ)C−′ =


Op(1) Op

(
1√
N

)
Op

(
1√

NT∗

)
Op

(
1√
N

)
Op(1) Op

(
1√
T∗

)
Op

(
1√

NT∗

)
Op

(
1√
T∗

)
Op(1)

 ,

where O denotes a matrix and O denotes a scalar. That is; corresponding to the lower right
scalar, C−1

2,NT,a J̃22,aC−′2,NT,a = Op(1); corresponding to the upper left (Nr + 1) × (Nr + 1)

block, C−1
1,NT,a J̃11,aC−′1,NT,a =

{[
Op(1), Op

(
1√
N

)]′
,
[
Op

(
1√
N

)
,Op(1)

]′}
; and correspond-

ing to the lower left 1 × (Nr + 1) block (with the transpose corresponding to the upper

right (Nr + 1) × 1 block), C−1
2,NT,a J̃21,aC−′1,NT,a =

[
Op

(
1√

NT∗

)
,Op

(
1√
T∗

)]′
. Hence, J̃(θ) is

2We assume here, in convention with most of the literature, that the number of factors is known. Typically
we can use the criteria in Bai and Ng (2002) to consistently estimate the number of factors.
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block-diagonal in probability for any fixed N as T tends to infinity, because as T → ∞,
C−1

2,NT,a J̃22,aC−′2,NT,a
p→ π22,a for some scalar π22,a, C−1

1,NT,a J̃11,aC−′1,NT,a
p→ π11,a for some matrix

π11,a, C−1
1,NT,a J̃12,aC−′2,NT,a

p→ 0, and C−1
2,NT,a J̃21,aC−′1,NT,a

p→ 0. Here we do not need find the
exact form of π11,a, because asymptotically this part will not enter the test-statistic. Without
loss of generality we may assume that π11,a is some full rank matrix.3 Also, from the proof
of Lemma 1 (x) (see Appendix B), it follows that π22,a = 1

8N ∑N
i=1 w2

i →
1
8 as (T, N)s → ∞,

where wi are the weights in (16).
Imposing a block-diagonal information matrix, and using the results from Appendix A,

it is straightforward to construct the block-diagonal analogue of (14) as

ϑa ' ϑ∗a = Ṽ(ρ)
√

J̃−1
ρρ =

T∗ tr
(

S−1
01

)
− 2 tr

(
S−1

01 S0S−1
01

)
+ tr

(
S−1

01 S00S−1
01

)
√

2T∗2 tr
(

S−1
01 S−1

01

) ,

where Ṽ(ρ) and J̃ρρ denote V(ρ)|θ=θ̃ and Jρρ

∣∣
θ=θ̃

respectively. Clearly, ϑ∗a and ϑa in (15) have
the same asymptotic distribution as T → ∞ and as (T, N)s → ∞.

3.2 Case B, alternative hypothesis with ft ∼ I(0)

For Case B we condition on integrated idiosyncratic components by keeping ρ = 1 fixed,
and consider the hypotheses

H0 : α = 1|ρ = 1,

H1 : α < 1|ρ = 1.

We can then partition the parameter vector such that θ1,b = (Λ′v, σ2
ε )’ and θ2,b = α, and where

the information matrix has the decomposition

J11,b =

(
JΛvΛ′v

JΛvσ2
ε

Jσ2
ε Λ′v

Jσ2
ε σ2

ε

)
; J21,b = J′12,b =

(
JαΛ′v

Jασ2
ε

)
; J22,b = Jαα. (18)

Again, we consider the ”square-root” LM-statistic,

ϑb =
∂l
∂α

√
J22

∣∣∣∣
θ=θ̃

.

Let C = diag(C1,NT,b, C2,NT,b), where C1,NT,b = diag(N
√

T∗INr,
√

NT∗) and C2,NT,b = T∗.
From Lemma 1 it is straightforward to show that

C−1J̃(θ)C−′ =


Op(1) Op

(
1√
N

)
Op

(
1√
T∗

)
Op

(
1√
N

)
Op(1) Op

(
1√

NT∗

)
Op

(
1√
T∗

)
Op

(
1√

NT∗

)
Op(1)

 ,

3Even if π11,a does not have full rank, we may simply assume that any linearly dependent, and therefore
redundant, rows or columns have been removed such that π11,a is invertible.
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such that

ϑb ' ϑ∗b = Ṽ(α)

√
J̃−1
αα =

T∗ tr
(

M̂S−1
01

)
− 2 tr

(
M̂S−1

01 S0S−1
01

)
+ tr

(
M̂S−1

01 S00S−1
01

)
√

2T∗2 tr
(

M̂S−1
01 M̂S−1

01

) , (19)

where Ṽ(α) = V(α)|θ=θ̃ and J̃αα = Jαα|θ=θ̃ are found in Appendix A, and M̂ = ÂĤÂ
′

was
defined in Section 2.4 Similar as with Case A, the asymptotic distribution as T → ∞ is a
weighted sum of χ2

1-variables as stated in Theorem 1.

Theorem 1 For 1 ≤ r < N, and ηj = ϕj(Λ
′Λ), where η1 ≥ η2 ≥ · · · ≥ ηr > 0, the asymp-

totic distribution of the LM-type statistic (19) as T → ∞ is

ϑ∗b
d→ 1√

2 ∑r
j=1 w2

j

(
r

∑
j=1

wjχ
2
1,j −

r

∑
j=1

wj

)
, (20)

where χ2
1,j are independent over j = 1, 2, . . . , r and where wj =

ηj

σ2
ε +ηj

, and the asymptotic distribution
as (T, N)s → ∞ is

ϑ∗b
d→ 1√

2r

(
χ2

r − r
)

. (21)

Note that for the weights wj in (20) and the corresponding weights wi in (16), we have the
relation wj +wi = 1 for j, i = 1, 2, . . . , r. Because ηi = O(N), implying wj → 1 and wi → 0 for
j, i = 1, 2, . . . , r as N → ∞, the limiting distribution (21) follows as (T, N)s → ∞, and likewise
the standard normal distribution for (16). For small N we follow Zhou and Solberger (2012)
and consider an approximation due to Satterthwaite (1946). Let ν1 = ∑r

j=1 wj such that
∑r

j=1 wjχ
2
1,j = ν1 ∑r

j=1 ajχ
2
1,j, where aj = wj/ν1 and ∑r

j=1 aj = 1. Then, for some u, we have
approximately that

r

∑
j=1

ajχ
2
1,j

app.∼ 1
u χ2

u, (22)

in the sense of fitting first and second moments of the left and right side. The solution for u
with respect to the statistic (19) is given by the following proposition:

Proposition 1 Let ϑ∗b have the weighted χ2-distribution (20). Matching first and second moments
of (22) yields

ϑ∗b
app.∼ 1√

2ub

(
χ2

ub
− ub

)
,

where ub =
[tr(MΩ−1)]

2

tr(MΩ−1MΩ−1)
.

4From the proof of Lemma 1 (viii) in Appendix B it follows that, as T → ∞, C−1
2,NT,b J̃22,bC−′2,NT,b

p→ π22,b =
1
8 ∑r

j=1 w2
j , where wj = 1− wj for j = 1, 2, . . . , r, and where = π22,b → r

8 as (T, N)s → ∞.

10



3.3 Case C, alternative hypothesis with ft ∼ I(0) and/or ut ∼ I(0)

For Case C we only keep restrictions under the null hypothesis, and consider the hypotheses

H0 : α = 1, ρ = 1,

H1 : α < 1 and/or ρ < 1.

We may then partition the parameter vector such that θ1,c = (Λ′v, σ2
ε )
′ and θ2,c = (α, ρ)′, and

decompose the information matrix as

J11,c =

(
JΛvΛ′v

J
Λvσ2

ε

J
σ2

ε Λ′v
J
σ2

ε σ2
ε

)
; J21,c = J′12,c =

(
JαΛ′v

J
ασ2

ε

JρΛ′v
J
ρσ2

ε

)
; J22,c =

(
Jαα Jαρ

Jρα Jρρ

)
. (23)

If we define C = diag(C1,NT∗,c, C2,NT∗,c), where C1,NT,c = diag(N
√

T∗INr,
√

NT∗) and C2,NT,c =

diag(T∗, T∗
√

N), then, using Lemma 1, we have that

C−1J̃(θ)C−′ =


Op(1) Op

(
1√
N

)
Op

(
1√
T∗

)
Op

(
1√

NT∗

)
Op

(
1√
N

)
Op(1) Op

(
1√

NT∗

)
Op

(
1√
T∗

)
Op

(
1√
T∗

)
Op

(
1√

NT∗

)
Op(1) Op

(
1√
N

)
Op

(
1√

NT∗

)
Op

(
1√
T∗

)
Op

(
1√
N

)
Op(1)

 . (24)

Hence, as T → ∞, J̃(θ) is block-diagonal in probability. Also, corresponding to the lower
right 2× 2 block of (24), we have that, as (T, N)s → ∞,

C−1
2,NT,c J̃22,cC−′2,NT,c =

[(
Op(1),Op

(
1√
N

))′
,
(
Op

(
1√
N

)
,Op(1)

)′] p→ diag
( r

8 , 1
8

)
,

where we have used the results in proof of Lemma 1 (viii) and (x) in Appendix B.
Here we consider an LM-type test where the right score vector of (13) is replaced with

V∗ = 1
2
√

2
(
√

2T∗, T∗
√

N)′;

ϑ∗c = V(θ2)
′J−1

22 V∗
∣∣∣
θ=θ̃

=

T∗
{

Ṽ(α)

(
J̃ρρ −

√
N
2 J̃αρ

)
+ Ṽ(ρ)

(√
N
2 J̃αα − J̃αρ

)}
2
(

J̃αα J̃ρρ − J̃2
αρ

) , (25)

where, from Appendix A,

Ṽ(α) = 1
4 tr
(

M̂S−1
01 S00S−1

01

)
− 1

2 tr
(

M̂S−1
01 S0S−1

01

)
+ T∗

4 tr
(

M̂S−1
01

)
,

Ṽ(ρ) = σ̂2
ε

[
1
4 tr
(

S−1
01 S00S−1

01

)
− 1

2 tr
(

S−1
01 S0S−1

01

)
+ T∗

4 tr
(

S−1
01

)]
,

J̃αα = T∗2
8 tr

(
M̂S−1

01 M̂S−1
01

)
,

J̃ρρ = T∗2σ̂4
ε

8 tr
(

S−1
01 S−1

01

)
,

J̃αρ = T∗2σ̂2
ε

8 tr
(

M̂S−1
01 S−1

01

)
,

where S01, S0, S00, M̂ and σ̂2
ε were all defined before. The limiting distribution of the statistic
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Table 1. Critical values for Case C

No. of factors (r) for ϑ∗c No. of factors (r) for ϑ∗∗c

sig. 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1% -2.96 -2.82 -2.73 -2.67 -2.62 -2.59 -2.56 -2.73 -2.82 -2.87 -2.91 -2.93 -2.96 -2.98

5% -2.22 -2.07 -1.98 -1.92 -1.88 -1.85 -1.83 -2.00 -2.07 -2.11 -2.13 -2.15 -2.16 -2.17

10% -1.82 -1.66 -1.57 -1.52 -1.48 -1.46 -1.44 -1.61 -1.66 -1.69 -1.70 -1.72 -1.73 -1.73

(25) is given by Theorem 2.

Theorem 2 As (T, N)s → ∞, the asymptotic distribution of the LM-type statistic (25) is

ϑ∗c
d→
( 1

rV1 − 1
)
+ V2,

where V1 ∼ χ2(r) and V2 ∼ N (0, 1) are independent.

Another interesting case is found by letting V∗ = 1
2
√

2
(T∗
√

r, T∗
√

N)′, such that

ϑ∗∗c = V(θ2)
′J−1

22 V∗
∣∣∣
θ=θ̃

=

T∗
{

Ṽ(α)

(
J̃ρρ −

√
N
r J̃αρ

)
+ Ṽ(ρ)

(√
N
r J̃αα − J̃αρ

)}
√

8
r

(
J̃αα J̃ρρ − J̃2

αρ

) . (26)

The limiting distribution for this statistic is given by Theorem 3. In essence, the statistics ϑ∗c
and ϑ∗∗c are combinations of Case A and Case B. When r = 2 they are the same statistic, but
when r > 2, ϑ∗∗c will put more weight than ϑ∗c on the information coming from the factors,
while vice versa if r = 1. Thus, if r > 2 we expect ϑ∗∗c to be more sensitive to stationarity in
the factors, and ϑ∗c to be more sensitive to stationarity in the idiosyncratic components, and
vice versa if r = 1. The critical values for ϑ∗c and ϑ∗∗c are found in Table 1.

Theorem 3 As (T, N)s → ∞, the asymptotic distribution of the LM-type statistic (26) is

ϑ∗∗c
d→ Z1 +Z2,

where Z1 ∼ 1√
2r

(
χ2

r − r
)

and Z2 ∼ N (0, 1) are independent.

4 Monte Carlo simulations

In this section we evaluate size and power of the proposed LM-type statistics, and compare
the performance with the PANIC framework of Bai and Ng (2004).

Equation (2) may be written in panel notation as

xi,t = µi +
r

∑
j=1

λi,j f j,t + ui,t, i = 1, 2, . . . , N; t = 1, 2, . . . , T.

12



Here we generate data with

µi = 0, (27)

f j,t = αj f j,t−1 + vj,t, vj,t ∼ N (0, 1), f j,−49 = 0, (28)

ui,t = ρiui,t−1 + ε i,t, ε i,t ∼ N (0, σ2
ε ), ui,−49 = 0, (29)

λi,j ∼ N (1, σ2
λ), (30)

where the first 50 observations are discarded to ridden the impact of the initial values when
the processes f j,t and ui,t are stationary. We consider the following DGPs:

DGP A : Data is generated from (27− 30) with αj = α = 1 and ρi ≤ 1,

DGP B : Data is generated from (27− 30) with αj ≤ 1 and ρi = ρ = 1,

DGP C : Data is generated from (27− 30) with αj ≤ 1 and ρi ≤ 1.

That is, DGP A corresponds to the null and alternative for Case A, DGP B corresponds to the
null and alternative for Case B, and DGP C corresponds to the null and alternative for Case
C. For all DGPs we set σ2

λ = σ2
ε = 1, and choose nominal significance level 5%.

Table 2 shows the result for DGPs A-C under homogeneity, i.e. αj = α for all j and
ρi = ρ for all i. The panel dimensions are N = 25 and T = 100, and the number of factors
are r = 1, 3, 5. Table 3 shows the results under the same settings, but for the larger sample
sizes N = 50 and T = 200. Consider first the statistic ϑ∗a . As expected this statistic has the
highest power of the proposed statistics under DGP A, because ϑ∗a is derived conditional
on I(1)-factors. Note, however, that under DGP B the size-adjusted power of ϑ∗a is close
to nominal size, indicating that the test-statistic is robust to the conditioning on integrated
factors. This result is strengthened when we consider the larger sample sizes reported in
Table 3. For the statistic ϑ∗b the pattern is reversed. That is, under DGP B ϑ∗b has the highest
power, which is expected because the statistic is derived conditional on I(1)-idiosyncratic
components. In general the power is quite low, but increases when the number of factors
increases. However, as we will illustrate later, ϑ∗b still has higher local power than PANIC.
Note that, analogously, under DGP A the size-adjusted power of ϑ∗b is close to nominal size
for all choices of ρ, which indicates that the test-statistic is robust to the conditioning on
integrated idiosyncratic components. Again, this result is strengthened when we consider
the larger sample sizes in Table 3.

The benefit of using the joint statistics ϑ∗c and ϑ∗∗c can be seen under DGP C. For instance,
in Table 2, when r = 5 and α = ρ = 0.99, the powers of ϑ∗c and ϑ∗∗c are about 54%, while the
powers of ϑ∗a and ϑ∗b are about 43% and 15% respectively. Table 2 and Table 3 also show that,
as expected, ϑ∗∗c is more sensitive than ϑ∗c to stationary idiosyncratic components if r = 1,
and vice versa if r > 2, which is seen under DGP A. Conversely, ϑ∗c is more sensitive than
ϑ∗∗c to stationary factors if r = 1, and vice versa if r > 2, which is seen under DGP B.

Because, at least to our knowledge, the statistics of the type ϑ∗c and ϑ∗∗c have not been
considered before in the literature, in a strict sense we have no other tests to compare with.
Here we compare size and power with PANIC, where we look at DGP A and DGP B sep-
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Table 2. Empirical size-adjusted power of test-statistics (%) under homogeneity for N = 25, T = 100

r = 1 r = 3 r = 5
α ρ ϑ∗a ϑ∗b ϑ∗c ϑ∗∗c ϑ∗a ϑ∗b ϑ∗c ϑ∗∗c ϑ∗a ϑ∗b ϑ∗c ϑ∗∗c

DGP A 1 0.99 54.3 4.6 41.7 45.0 50.1 5.0 37.0 35.2 43.7 5.7 35.4 30.6
1 0.95 100 4.5 80.1 86.9 100 5.3 84.0 79.3 99.7 5.9 87.1 74.8
1 0.9 100 4.5 84.7 90.8 100 5.4 89.8 85.3 100 6.2 93.0 82.3
1 0.8 100 4.8 86.4 92.1 100 5.6 91.9 87.7 100 6.3 94.6 85.4
1 0.5 100 4.7 87.4 93.0 100 5.9 92.9 89.1 100 6.5 95.3 87.1
1 0 100 4.7 88.0 93.4 100 6.0 93.2 89.8 100 7.1 95.5 87.9

DGP B 0.99 1 4.9 6.9 6.2 6.3 4.6 10.7 6.7 7.3 4.5 13.4 7.8 9.6
0.95 1 4.7 10.0 8.6 8.3 4.4 33.8 11.9 13.9 4.2 54.3 14.0 19.4
0.9 1 4.6 13.2 9.9 9.3 4.4 57.4 14.5 16.8 4.1 82.4 16.3 24.4
0.8 1 4.6 17.0 10.6 9.9 4.3 77.9 15.6 18.6 3.9 95.7 17.7 26.7
0.5 1 4.6 22.8 11.6 10.4 4.3 93.1 16.6 19.8 3.9 99.7 18.5 27.8

0 1 4.6 28.2 11.8 10.8 4.4 99.0 16.7 20.0 3.8 100 18.5 28.4

DGP C 1 1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0.99 0.99 54.5 6.4 50.0 53.5 50.0 11.0 52.2 51.9 43.4 14.9 53.7 53.8
0.95 0.95 100 10.5 99.3 99.8 100 40.1 100 100 100 65.3 100 100
0.8 0.5 100 21.7 100 100 100 94.3 100 100 100 100 100 100
0.5 0.8 100 31.0 100 100 100 99.9 100 100 100 100 100 100

0 0.9 100 41.5 100 100 100 100 100 100 100 100 100 100
0.9 0 100 15.6 100 100 100 74.4 100 100 100 97.4 100 100

Note: The data is generated as f j,t = α f j,t−1 + vj,t, vj,t ∼ N (0, 1), ui,t = ρui,t−1 + εi,t, εi,t ∼ N (0, σ2
ε ), λi ∼ Nr(1, σ2

λI). The loadings
are generated once and then kept fixed. The replication number is 5,000.

arately. Evaluating ϑ∗c and ϑ∗∗c under these DGPs will then show, in comparison to PANIC,
how they respond to stationarity in the idiosyncratic components and stationarity in the fac-
tors separately. Under DGP A we compare size and local power with the Fisher-type test in
Bai and Ng (2004),

Pc
û =
−2 ∑N

i=1 log pc
û(i)− 2N√

4N
,

where pc
û(i) are p-values of idiosyncratic augmented Dickey-Fuller (ADF) tests. The id-

iosyncratic components are found by first taking first-differences on the panel (2), and then
applying principal components to estimate the factors in first differences, ∆̂ft, and the asso-
ciate factor loading, Λ̂, such that the idiosyncratic components, in first differences, are left as
residuals, ∆̂ui,t = ∆xi,t − λ̂

′
i∆̂ft. The estimated idiosyncratic components in levels are then

found by re-accumulating, ûi,t = ∑t
s=2 ∆̂ui,s. As N → ∞ we have that Pc

û
d→ N (0, 1) by the

central limit theorem. As suggested by Bai and Ng (2004, p. 1148), before pooling we first
locate the p-values of the individual Dickey-Fuller tests for finite T in a simulation of 10, 000
replications.5

5Because we consider AR(1) processes, to be fair we add no lags in the Dickey-Fuller tests. The criteria
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Table 3. Empirical size-adjusted power of test-statistics (%) under homogeneity for N = 50, T = 200

r = 1 r = 3 r = 5

α ρ ϑ∗a ϑ∗b ϑ∗c ϑ∗∗c ϑ∗a ϑ∗b ϑ∗c ϑ∗∗c ϑ∗a ϑ∗b ϑ∗c ϑ∗∗c

DGP A 1 0.99 100 5.2 83.7 88.9 100 5.3 91.0 86.0 99.9 5.3 94.2 84.1

1 0.95 100 5.1 93.1 96.7 100 5.5 98.5 96.9 100 5.4 99.6 96.8

1 0.9 100 4.9 94.0 97.3 100 5.6 98.8 97.5 100 5.5 99.7 97.7

1 0.8 100 4.8 94.3 97.6 100 5.6 99.1 97.9 100 5.7 99.7 98.0

1 0.5 100 4.9 94.6 97.7 100 5.7 99.2 98.1 100 5.9 99.7 98.2

1 0 100 5.0 94.7 97.8 100 5.8 99.2 98.1 100 6.1 99.7 98.4

DGP B 0.99 1 4.8 7.3 6.8 6.5 4.6 18.8 10.2 10.9 4.6 28.7 11.5 14.2

0.95 1 4.9 13.9 9.6 8.9 4.5 62.8 14.9 16.7 4.2 90.2 16.6 23.3

0.9 1 4.9 18.9 10.5 9.5 4.4 86.3 15.9 17.8 4.2 99.1 17.7 26.0

0.8 1 4.9 23.1 10.7 9.7 4.5 96.5 16.5 18.8 4.1 100 18.4 27.4

0.5 1 5.0 32.7 11.0 9.8 4.6 99.8 16.8 19.3 4.1 100 18.8 28.0

0 1 4.9 42.2 11.2 9.9 4.5 100 16.9 19.5 4.1 100 18.9 28.3

DGP C 1 1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

0.99 0.99 100 7.7 97.5 98.8 100 19.5 99.8 99.6 99.9 30.4 100 99.7

0.95 0.95 100 15.0 100 100 100 70.0 100 100 100 95.2 100 100

0.8 0.5 100 28.8 100 100 100 99.9 100 100 100 100 100 100

0.5 0.8 100 45.7 100 100 100 100 100 100 100 100 100 100

0 0.9 100 59.6 100 100 100 100 100 100 100 100 100 100

0.9 0 100 20.8 100 100 100 94.4 100 100 100 100 100 100

Note: The data is generated as f j,t = α f j,t−1 + vj,t, vj,t ∼ N (0, 1), ui,t = ρui,t−1 + εi,t, εi,t ∼ N (0, σ2
ε ), λi ∼ Nr(1, σ2

λI). The loadings
are generated once and then kept fixed. The replication number is 5,000.

Table 4 shows the result under DGP A for r = 1, 2, 3, where we have also imposed local
heterogeneity by letting

ρi = 1− ci

T
√

N
, ci ∼ U(1, 10).

The statistic ϑ∗a has satisfactory size properties and quite substantially higher local power
than Pc

û (denoted BN in Table 4) for all dimensions considered here, which was already found
for the similar statistic ϑa in Zhou and Solberger (2012). The statistics ϑ∗c and ϑ∗∗c tend to be
undersized for finite N and T, but in general they still have higher local power than Pc

û. For
example, when N = 60 and T = 100, and for one factor, the local power of ϑ∗c , ϑ∗∗c and Pc

û
are 51%, 54% and 37% respectively. The differences in power are enlarged when considering
size-adjusted power. The results also show that even though the tests derived in this paper
are homogenous they still have power against a local heterogenous alternative.

To test for non-stationarity in the common component the literature offers only a handful

suggested by Bai and Ng, k = 4[min(N, T)/100]1/4, would indeed tend to overestimate the number of lags, and
have a negative impact on power.
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Table 4. Empirical size and local power (%) under DGP A with heterogenous idiosyncratic components

Size Local power Size-adj. local power

N T ϑ∗a ϑ∗c ϑ∗∗c BN ϑ∗a ϑ∗c ϑ∗∗c BN ϑ∗a ϑ∗c ϑ∗∗c BN

r = 1 30 50 4.4 3.2 3.0 7.2 47.5 32.6 33.5 33.6 49.8 38.7 40.9 26.5

100 5.0 4.1 3.9 5.5 58.2 40.9 43.1 32.6 58.2 44.8 47.5 30.5

200 5.3 4.3 3.9 6.3 70.3 47.8 50.8 41.6 69.4 50.6 55.1 36.9

60 100 4.4 3.8 3.6 4.8 70.7 51.2 54.1 36.7 73.3 55.7 59.6 37.2

200 5.5 3.8 3.9 6.0 80.4 58.0 62.7 46.0 79.0 61.3 66.3 42.1

r = 2 40 50 4.8 3.3 3.3 7.8 40.2 33.3 33.3 33.5 49.3 42.3 42.3 25.4

100 4.5 3.5 3.5 5.3 62.8 44.8 44.8 34.3 64.9 50.8 50.8 33.2

200 4.8 4.1 4.1 5.9 75.5 52.7 52.7 42.7 76.2 56.5 56.5 39.2

80 100 4.8 3.6 3.6 5.2 69.8 52.0 52.0 34.4 70.4 57.2 57.2 33.4

200 5.0 4.4 4.4 6.0 79.5 59.2 59.2 44.3 79.5 61.6 61.6 38.8

r = 3 50 50 4.9 2.9 2.9 8.1 47.9 34.5 32.0 33.2 48.0 42.8 40.3 23.2

100 4.4 3.8 3.8 5.5 64.7 47.7 44.6 34.0 66.6 53.9 50.3 32.5

200 5.1 4.2 4.3 6.3 76.7 55.8 52.4 44.6 76.2 59.1 55.0 39.9

100 100 5.0 3.5 3.3 4.7 70.1 53.6 49.6 33.8 70.2 59.3 55.9 34.8

200 5.6 4.0 4.1 6.2 79.6 61.3 56.7 43.3 77.9 65.0 60.2 39.2

Note: The data is generated as f j,t = f j,t−1 + vj,t, vj,t ∼ N (0, 1), ui,t = ρiui,t−1 + εi,t, εi,t ∼ N (0, σ2
ε ), ρi = 1 − ci

T
√

N
,

ci ∼ U(1, 10), λi ∼ Nr(1, σ2
λI). The loadings and the drift terms ci are generated once and then kept fixed. The replication

number is 5,000.

of methods. Bai (2004) and Peña and Poncela (2006) derive tests for the number of nonsta-
tionary factors when the idiosyncratic components are I(0). Hence these tests are not ap-
plicable here. In case of several factors, the PANIC procedure of Bai and Ng (2004) offers
sequential tests for the number of stochastic trends among the factors based on Stock and
Watson (1988). In case of a single factor they propose an ADF test on the estimated factor.
For r > 1 we consider the statistic MQc

c (Bai and Ng, 2004, p. 1133). This statistic is cal-
culated as follows: Start with the hypothesis H0 : r1 = m = r, where r1 is the number of

stochastic trends and r is the number of factors. Demean the estimated factors as f̂c
t = f̂t− f̂t,

where f̂t = (T − 1)−1 ∑T
t f̂t, and let B̂c

t = β̂
′
⊥ f̂c

t , where β̂⊥ are the m eigenvectors associated
with the m largest eigenvalues of T−2 ∑T

t=2 f̂c
t f̂c′

t . Next, let ξ̂
c
t be the residuals from estimating

a VAR(1) model for B̂c
t , and calculate

Σ̂c
1 =

J

∑
j=1

K(j)

(
T−1

T

∑
t=2

ξ̂
c
t−jξ̂

c′
t

)
,

where, for j = 0, 1, . . . , J, K(j) = 1− j/(J + 1) are truncated Bartlett Kernel weights. Here
we set J = 4 ceil[min(N, T)/100]1/4 as suggested by Bai and Ng (2004, p. 1150). Finally, let
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Table 5. Empirical size and local power (%) under DGP B with homogeneous factors

Size Local power Size-adj. local power
N T ϑ∗b ϑ∗c ϑ∗∗c BN ϑ∗b ϑ∗c ϑ∗∗c BN ϑ∗b ϑ∗c ϑ∗∗c BN

r = 1 10 50 5.5 3.3 3.0 6.4 7.7 5.0 4.2 9.4 7.1 7.0 7.0 7.8
100 5.3 3.0 2.6 5.7 8.8 4.7 4.1 8.8 8.1 7.2 7.2 7.6
200 5.4 3.7 3.3 5.1 9.4 5.1 4.5 8.0 8.6 7.6 7.4 7.8

50 100 5.0 4.2 4.0 5.6 7.2 5.3 4.9 6.6 7.2 6.2 6.3 6.1
200 5.1 4.4 4.1 5.6 8.1 5.8 5.6 6.0 7.9 6.7 6.4 5.4

100 200 5.0 4.2 4.2 5.6 7.5 5.8 5.4 5.6 7.5 6.9 6.4 5.0

r = 3 10 50 4.9 4.5 4.7 1.5 14.8 10.0 10.6 1.9 15.2 10.7 11.4 6.6
100 4.2 4.7 5.0 3.1 15.6 10.4 11.5 4.4 18.8 11.0 11.5 6.6
200 5.2 4.3 4.6 4.1 18.7 11.2 12.4 5.9 18.4 12.8 14.0 6.8

50 100 4.5 4.2 4.2 3.3 12.5 7.4 7.7 3.8 13.2 8.7 8.8 5.6
200 5.1 4.1 4.2 3.8 14.3 7.9 8.4 4.2 14.1 9.6 9.7 5.5

100 200 5.0 4.3 4.2 3.7 11.3 7.0 7.3 3.9 11.3 8.5 8.7 5.6

r = 5 10 50 4.3 5.8 6.0 0.3 22.2 14.9 17.8 0.4 25.9 12.8 15.2 5.3
100 4.4 6.6 6.9 1.8 24.8 16.4 20.3 2.7 28.1 13.1 15.8 6.4
200 4.7 5.8 6.6 3.7 28.6 18.0 22.5 4.6 30.0 15.5 19.1 5.9

50 100 4.6 4.2 4.3 1.7 18.5 8.0 9.7 2.4 20.1 9.3 11.0 5.4
200 5.1 4.1 4.3 3.6 21.4 9.1 11.0 4.2 21.0 10.7 12.8 5.8

100 200 4.9 4.1 4.0 4.0 16.8 7.2 8.5 3.9 16.9 8.9 10.6 5.1

Note: The data is generated as ui,t = ui,t−1 + εi,t, εi,t ∼ N (0, σ2
ε ), f j,t = α f j,t−1 + vj,t, vj,t ∼ N (0, 1), α = 1 − 5

T
√

N
,

λi ∼ Nr(1, σ2
λI). The loadings are generated once and then kept fixed. The replication number is 5,000.

vc
c(m) be the smallest eigenvalue of

Φ̂c
c(m) =

1
2

[
T

∑
t=2

(
B̂c

t B̂c′
t−1 + B̂c

t−1B̂c′
t

)
− T

(
Σ̂c

1 + Σ̂c′
1

)]( T

∑
t=2

B̂c
t−1B̂c′

t−1

)−1

,

and calculate the test-statistic MQc
c(m) = T [vc

c(m)− 1]. The critical values are found from
Bai and Ng (2004, Table 1, p. 1136). IfH0 : r1 = m is rejected, then repeat forH0 : r1 = m− 1
until the number of stochastic trends is decided. Here we are not concerned with the specific
number of stochastic trends that the sequential procedure will decide. Instead, we consider
DGP B with only stationary factors and compare rejection rates for the statistics ϑ∗b , ϑ∗c and
ϑ∗∗c with the number of times MQc

c rejects the null H0 : r1 = r, i.e. concluding correctly that
”the number of stochastic trends among the factors is less than the number of factors”. As
before, the number of factors is treated as known.

Table 5 shows the result under DGP B for r = 1, 3, 5, where we have imposed local
homogeneity by letting

α = 1− c
T
√

N
, c = 5.
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Here BN denotes the ADF test when r = 1 and MQc
c when r > 1. The simulations reveal

some interesting results. First, for r = 1 all tests have very low local power, but they are
more or less equivalent in terms of size-adjusted local power. Also, here ϑ∗c and ϑ∗∗c are
undersized in such a manner that the local power is sometimes under nominal size. When
we increase the number of factors, the local power and the size-adjusted local power increase
for the proposed statistics ϑ∗b , ϑ∗c and ϑ∗∗c . However, for MQc

c, as we increase the number of
factors, the size-adjusted local power remains roughly constant (or even decreases), and it is
very low. This indicates that the statistic has a hard time rejecting the null of ”the number
of stochastic trends equals the number of factors” when the factors are close to having unit
roots. Also, MQc

c is at times severely undersized with the result that it too has local power
below nominal size. This seems to be especially true when N is not large enough relative the
number of factors.

5 Conclusions

The exact factor model has recently been proposed as a parsimonious representation of the
static factor model allowing for consistent likelihood based inference also when the true
model is the approximate factor model. In this paper we extend the results of Zhou and
Solberger (2012) who derived the limiting distribution of an LM-type test for idiosyncratic
unit roots in the exact static factor model conditional on I(1) factors. We derive the limiting
distribution of an LM-type test for unit roots in the factors conditional on I(1) idiosyncratic
components, and two additional LM-type tests, which test jointly for unit roots in the factors
and the idiosyncratic components. In a simulation study we investigate the size and power
properties of the proposed statistics, and compare the performance with the PANIC proce-
dure of Bai and Ng (2004). The simulations suggest that; (i) the proposed test-statistics are
robust to the conditioning on, respectively, I(1) factors and I(1) idiosyncratic components if
the panel dimensions are large enough, which may then be seen as a misspecification lead-
ing to correct inference for large panels; (ii) the likelihood based statistics have higher local
power than the PANIC procedure which is based on principal components; and (iii) PANIC
has virtually no power against locally stationary factors. The results in this paper are derived
under the important AR(1) case, which should contribute to the development of likelihood
based unit root tests in dynamic factor models with more general dynamic properties than
considered here.
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Appendix A Score and information

Let l be the log-likelihood (10) with Σ = E (YvY′v), and let θ̃ = (Λ̂′v, σ̂2, 1, 1)′ be the restricted MLE
where Λ̂ and σ̂2 are MLEs and α = ρ = 1 is the restriction under the null hypothesis. Also, for the
matrices Σ(θ) and Ω(θ), let Σ̃ and Ω̃ denote Σ(θ̃) and Ω(θ̃), where Σ̃−1 = (IT∗ ⊗ Ω̃−1). Similarly, for
any subsets ω, ν ⊆ θ, let Ṽ(ω) and J̃ων′ denote V(ω)|θ=θ̃ and Jων′ |θ=θ̃ respectively. By definition,
the full score vector evaluated at θ = θ̃ is for the three cases respectively;

Ṽ(θ) =

[(
∂l

∂vecΛ

)′
, ∂l

∂σ2
ε

, ∂l
∂α , ∂l

∂ρ

]′
θ=θ̃

=
[
0, Ṽ(α), Ṽ(ρ)

]′
, for Case C;

Ṽ(θ) =

[(
∂l

∂vecΛ

)′
, ∂l

∂σ2
ε

, ∂l
∂α

]′
θ=θ̃

=
[
0, Ṽ(α)

]′
, for Case B;

Ṽ(θ) =

[(
∂l

∂vecΛ

)′
, ∂l

∂σ2
ε

, ∂l
∂ρ

]′
θ=θ̃

=
[
0, Ṽ(ρ)

]′
, for Case A.

Using a standard result (see e.g. Hartley and Rao, 1967) we have that

Ṽ(α) =
∂l
∂α

∣∣∣∣
θ=θ̃

= −1
2

tr
(

∂Σ

∂α

∣∣∣∣
θ=θ̃

Σ̃−1
)
+

1
2

tr
(

∂Σ

∂α

∣∣∣∣
θ=θ̃

Σ̃−1YvY′vΣ̃−1
)

, (A1)

where ∂Σ
∂α

∣∣∣
θ=θ̃

=
(

∂Ψ
∂α

∣∣∣
θ=θ̃
⊗ M̂

)
, and where straightforward derivations will show that

∂Ψ

∂α

∣∣∣∣
θ=θ̃

=


− 1

2
1
2 · · · 1

2

1
2 − 1

2
. . .

...
...

. . . . . . 1
2

1
2 · · · 1

2 − 1
2

 = 1
2 11′ − IT∗ .

The first part of (A1) is, using well-known results for the trace and the inverse of Kronecker products
(see e.g. Magnus and Neudecker, 2001, pp. 28-31),

−1
2

tr
(

∂Σ

∂α

∣∣∣∣
θ=θ̃

Σ̃−1
)
= −1

2
tr
[(

1
2 11′ − IT∗

)
⊗ M̂Ω̃−1

]
=

T∗

4
tr
(

M̂Ω̃−1
)

.

Similarly, the second part of (A1) is

1
2

tr
(

∂Σ

∂α

∣∣∣∣
θ=θ̃

Σ̃−1YvY′vΣ̃−1
)
=

1
2

tr
{[(

1
2 11′ − IT∗

)
⊗ M̂Ω̃−1

]
YvY′v

(
IT∗ ⊗ Ω̃−1

)}
=

1
4

tr
[(

11′ ⊗ IN
) (

IT∗ ⊗ M̂Ω̃−1
)

YvY′v
(

IT∗ ⊗ Ω̃−1
)]

− 1
2

tr
[(

IT∗ ⊗ M̂Ω̃−1
)

YvY′v
(

IT∗ ⊗ Ω̃−1
)]

,

where

(
IT∗ ⊗ M̂Ω̃−1

)
YvY′v

(
IT∗ ⊗ Ω̃−1

)
=

 M̂Ω̃−1S22Ω̃−1 · · · M̂Ω̃−1S2TΩ̃−1

...
. . .

...
M̂Ω̃−1ST2Ω̃−1 · · · M̂Ω̃−1STTΩ̃−1

 .

Thus it follows that

1
2

tr
(

∂Σ

∂α

∣∣∣∣
θ=θ̃

Σ̃−1YvY′vΣ̃−1
)
=

1
4

tr

(
M̂Ω̃−1

T

∑
t=2

T

∑
s=2

St,sΩ̃−1

)
− 1

2
tr

(
M̂Ω̃−1

T

∑
t=2

St,tΩ̃
−1

)
,
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and, put together,

Ṽ(α) =
1
4

tr
(

M̂Ω̃−1S00Ω̃−1
)
− 1

2
tr
(

M̂Ω̃−1S0Ω̃−1
)
+

T∗

4
tr
(

M̂Ω̃−1
)

. (A2)

Because ∂Σ
∂ρ

∣∣∣
θ=θ̃

= σ̂2
ε

(
∂Ψ
∂ρ

∣∣∣
θ=θ̃
⊗ IN

)
, where ∂Ψ(ρ)

∂ρ

∣∣∣
θ=θ̃

= 1
2 11′ − IT∗ , similar derivations will show

that (see also Zhou and Solberger, 2012)

Ṽ(ρ) =
∂l
∂ρ

∣∣∣∣
θ=θ̃

= σ̂2
ε

[
1
4

tr
(

Ω̃−1S00Ω̃−1
)
− 1

2
tr
(

Ω̃−1S0Ω̃−1
)
+

T∗

4
tr
(

Ω̃−1
)]

. (A3)

Let the information matrices for Case A, Case B and Case C be partitioned as in (17), (18) and (23)
respectively. Using another standard result (see e.g. Harville, 1977) we have that

J̃αα = −E
(

∂2l
∂α∂α

∣∣∣∣
θ=θ̃

)
=

1
2

tr
(

∂Σ

∂α

∣∣∣∣
θ=θ̃

Σ̃−1 ∂Σ

∂α

∣∣∣∣
θ=θ̃

Σ̃−1
)

(A4)

=
1
2

tr
[(

1
2 11′ − IT∗

)2
⊗
(

M̂Ω̃−1
)2
]

=
T∗2

8
tr
(

M̂Ω̃−1M̂Ω̃−1
)

.

Analogous derivations using the relation (A4) will show that

J̃αρ = J̃ρα =
T∗2σ̂2

ε

8
tr
(

M̂Ω̃−1Ω̃−1
)

, (A5)

J̃ρρ =
T∗2σ̂4

ε

8
tr
(

Ω̃−1Ω̃−1
)

, (A6)

and, because ∂Σ
∂σ2

∣∣∣
θ=θ̃

= INT∗ , we have that

J̃σ2
ε σ2

ε
=

T∗

2
tr
(

Ω̃−1Ω̃−1
)

, (A7)

J̃ασ2
ε
= J̃σ2

ε α = −T∗

4
tr
(

Ω̃−1M̂Ω̃−1
)

, (A8)

J̃ρσ2
ε
= J̃σ2

ε ρ = − σ̂2
ε T∗

4
tr
(

Ω̃−1Ω̃−1
)

. (A9)

For the remaining parts of the information matrix, let λi,j (1 ≤ i ≤ N, 1 ≤ j ≤ r) denote the ith
parameter in λj = (λ1,j, λ2,j, . . . , λN,j)

′, the jth column vector of Λ = (λ1, λ2, . . . , λr), and let Γi,j =
∂ΛΛ′
∂λi,j

= λje′i + eiλ
′
j, where ei is an N × 1 vector for which the ith element equals 1 and all other

elements equal 0. Then ∂Σ
∂λi,j

=
(
Ψ⊗ Γi,j

)
, where, because Ψ(1) = IT∗ , we have that ∂Σ

∂λi,j

∣∣∣
θ=θ̃

=

(IT∗ ⊗ Γ̃i,j). It then follows, using analogously the relation (A4), that for 1 ≤ i, l ≤ N and 1 ≤ j, q ≤ r,

J̃λi,jλl,q = J̃λl,qλi,j =
T∗

2
tr
(

Γ̃i,jΩ̃
−1Γ̃l,qΩ̃−1

)
, (A10)

J̃λi,jσ
2
ε
= J̃σ2

ε λi,j
=

T∗

2
tr
(

Γ̃i,jΩ̃
−1Ω̃−1

)
, (A11)

J̃λi,jα = J̃αλi,j = −
T∗

4
tr
(

Γ̃i,jΩ̃
−1M̂Ω̃−1

)
, (A12)

J̃λi,jρ = J̃ρλi,j = −
T∗σ2

ε

4
tr
(

Γ̃i,jΩ̃
−1Ω̃−1

)
. (A13)
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Appendix B Proofs

Before we go in to the proofs we present some general results. Under Assumptions 1-7, and under the
null hypothesis, the maximum likelihood estimators are consistent for fixed N, implying, as T → ∞,

ÂĤÂ
′ p→ ΛΛ′, (B1)

σ̂2
ε

p→ σ2
ε , (B2)

S01
p→ Ω. (B3)

Also, because under the null hypothesis E (Stt) = Ω for all t, we have that, by the weak law of large
numbers,

1
T∗

T

∑
t=2

St,t =
1

T∗
S0

p→ Ω, as T → ∞, (B4)

and by the central limit theorem

1√
T∗

Ω−
1
2

(
∑T

t=2 yt − 0
)

d→ Z ∼ NN(0, I), as T → ∞. (B5)

Further, let ψi = ϕi(Ω) denote the eigenvalues of Ω, where ψ1 ≥ ψ2 ≥ · · · ≥ ψN ≥ 0, and let
ηi = ϕi (Λ

′Λ) denote the non-zero eigenvalues of ΛΛ′, where η1 ≥ η2 ≥ · · · ≥ ηr > 0. Then the
eigenvalues of Ω are ψ1 = η1 + σ2

ε , . . . , ψr = ηr + σ2
ε , ψr+1 = · · · = ψN = σ2

ε , so that

tr
(

Ω−k
)
= ∑N

i=1
1

ψk
i
=

1
σ2k

ε

N

∑
i=1

wk
i , (B6)

where wi =

{
σ2

ε

ηi+σ2
ε

for 1 ≤ i ≤ r

1 for r < i ≤ N
was defined in Section 3.1. It then follows that

tr
(

ΛΛ′Ω−1
)
= tr

[(
Ω− σ2

ε IN

)
Ω−1

]
= tr

(
IN − σ2

ε Ω−1
)
= ∑N

i=1 (1− wi) = ∑r
j=1 wj, (B7)

where wj =
ηj

ηj+σ2
ε

was defined in Section 3.2. Likewise we have that

tr
(

ΛΛ′Ω−1ΛΛ′Ω−1
)
= tr

[(
IN − σ2

ε Ω−1
) (

IN − σ2
ε Ω−1

)]
= tr

[
IN − 2σ2

ε Ω−1 + σ4
ε Ω−1Ω−1

]
= ∑N

i=1 (1− wi)
2 = ∑r

j=1 w2
j . (B8)

Also, Assumption 3 implies that the eigenvalues of Λ′Λ (likewise the non-zero eigenvalues of ΛΛ′)
are O(N). Hence, as N → ∞ the smallest non-zero eigenvalue of ΛΛ′ diverges, ηr = min(ηj) → ∞,

such that for all k ∈ R, lim
ηr→∞

(
ηi

σ2
ε +ηi

)k
= 1, and for all k > 0, lim

ηr→∞

(
σ2

ε

σ2
ε +ηi

)k
= 0, implying for

j = 1, 2, . . . , r and i = 1, 2, . . . , N that {
∀j|wj → 1

}
as N → ∞, (B9)

{∀i ≤ r|wi → 0} as N → ∞. (B10)

Because for all i > r, wi = 1, it follows that for all k ≥ 0,

N

∑
i=1

wk
i = O(N)⇒ tr

(
Ω−k

)
= O(N). (B11)
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Proof of Lemma 1. We will make repeated use of the Cauchy-Schwarz trace-inequality; tr (AB) ≤
||A|| · ||B|| for A, B ∈ Rn×n.

(i) Because Γi,j = λje′i + eiλ
′
j is symmetric we have that tr(Γ2

i,j) = 2λ2
i,j + 2 ∑N

i=1 λ2
i,j = O(N). Us-

ing this result, the Cauchy-Schwarz trace-inequality, and the results (A10) and (B11), we have that,
for i, l = 1, 2, . . . , N and j, q = 1, 2, . . . , r,
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2N2 tr

(
Γi,jΩ
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)
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2N2 ||Γi,jΩ
−1|| · ||Γl,qΩ−1||

≤ 1
2N2 ||Γi,j|| · ||Γl,q|| · ||Ω−1|| · ||Ω−1||

=
1

2N2

√
tr
(

Γ2
i,j

)√
tr
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l,q

)
tr
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Ω−2
)
= O(1).

(ii) Similar as in (i); using the result (A11), for i = 1, 2, . . . , N and j = 1, 2, . . . , r,
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(iii) It follows from (i) and (ii) that tr
(
Γi,jΩ

−1) and tr
(
Γi,jΩ

−1Ω−1) are both O(N). Thus, using
(A12), we have that, for i = 1, 2, . . . , N and j = 1, 2, . . . , r,∣∣∣∣∣ Jλi,jα

NT∗

∣∣∣∣∣ = 1
4N

tr
(

ΛΛ′Ω−1Γi,jΩ
−1
)
=

1
4N

tr
[(

ΛΛ′ + σ2
ε IN

)
Ω−1Γi,jΩ

−1 − σ2
ε Ω−1Γi,jΩ

−1
]

=
1

4N
tr
(

Γi,jΩ
−1 − σ2

ε Ω−1Γi,jΩ
−1
)
= O(1).

(iv) Similar as in (ii); using the result (A13), for i = 1, 2, . . . , N and j = 1, 2, . . . , r,

Jλi,jρ

NT∗
=

σ2
ε

4N
tr
(

Γi,jΩ
−1Ω−1

)
= O(1).

(v) Using (A7) and (B11),
J
σ2

ε σ2
ε

NT∗ = 1
2N tr

(
Ω−1Ω−1) = O(1).

(vi) Using (A8) and (B6),∣∣∣∣ Jσ2
ε α

T∗

∣∣∣∣ = 1
4

tr(Ω−1ΛΛ′Ω−1) =
1
4

tr
[
Ω−1

(
ΛΛ′ + σ2

ε IN

)
Ω−1 − σ2

ε Ω−1Ω−1
]

=
1
4

[
tr
(

Ω−1
)
− σ2

ε tr
(

Ω−1Ω−1
)]

=
1

4σ2
ε

(
N

∑
i=1

wi −
N

∑
i=1

w2
i

)
= O(1).

(vii) Using (A9) and (B11),
∣∣∣∣ J

σ2
ε ρ

NT∗

∣∣∣∣ = σ2
ε

4N tr
(
Ω−1Ω−1) = O(1).

(viii) Using (A4) and (B8), Jαα

T∗2 = 1
8 ∑r

j=1 w2
j ≤ r

8 , where, using (B9), lim
N→∞

1
8 ∑r

j=1 w2
j =

r
8 .

(ix) Similar as for (vi); using (A5), Jαρ

T∗2 = σ2
ε
8 tr

(
Ω−1ΛΛ′Ω−1) = O(1).

(x) Using (A6) and (B6), Jρρ

NT∗2 = 1
8N ∑N

i=1 w2
i ≤

1
8 , where, using (B10), lim

N→∞
1

8N ∑N
i=1 w2

i = 1
8 .

Replacing the elements J with their constrained counterparts J̃ = J|θ=θ̃ will shift O into Op.
This completes the proof of Lemma 1.
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Proof of Theorem 1. Decompose the statistic (19) as ϑ∗b = (I1 + I2 + I3) /
√
I4, where

I1 =
1

T∗
tr
(

M̂S−1
01 S00S−1

01

)
, I2 = − 1

T∗
2 tr
(

M̂S−1
01 S0S−1

01

)
,

I3 = tr
(

M̂S−1
01

)
, I4 = 2 tr

(
M̂S−1

01 M̂S−1
01

)
.

Let Ω have spectral decomposition Ω = QΞQ′, where the eigenvalues Ξ = diag [ψ1, ψ2, . . . , ψN ]

have the properties leading up to (B6). Then Z2 = Q′Z1 is an orthogonal transformation such that
Z2 ∼ Z1. Using this and the results (B1 - B6), we have that, as T → ∞,

I1 = tr

[
M̂S−1/2

01 S−1/2
01

1√
T∗

(
T

∑
t=2

yt

)
1√
T∗

(
T

∑
t=2

yt

)′
S−1/2

01 S−1/2
01

]
d→ tr

(
ΛΛ′Ω−1/2ZZ′Ω−1/2

)
= tr

[(
ΛΛ′ + σ2

ε IN

)
Ω−1/2ZZ′Ω−1/2 − σ2

ε Ω−1/2ZZ′Ω−1/2
]

∼ tr
(
ZZ′

)
− σ2

ε tr
(

Z′Ξ−1Z
)

=

(
N

∑
i=1

Z2
i −

N

∑
i=1

σ2
ε

ψi
Z2

i

)
=

r

∑
j=1

(
1− wj

)
Z2

j =
r

∑
j=1

wjZ2
j ≡

r

∑
j=1

wjχ
2
1,j.

Further, as T → ∞ we have that, using (B1 - B4) and (B7),

I2 + I3 = −2 tr
(

M̂S−1
01

1
T∗ S0S−1

01

)
+ tr

(
M̂S−1

01

) p→ − tr
(

ΛΛ′Ω−1
)
= −

r

∑
j=1

wj.

Finally, for the denominator we have that, as T → ∞, using (B1 - B4) and (B8),

I4 = 2 tr
(

M̂S−1
01 M̂S−1

01

) p→ 2 tr
(

ΛΛ′Ω−1ΛΛ′Ω−1
)
= ∑r

j=1 w2
j ,

where from the continuous mapping theorem, I−1/2
4

p→
(

∑r
j=1 w2

j

)−1/2
. Put together and using

Slutsky’s theorem the result (20) immediately follows, and using (B9) the result (21) follows;

ϑ∗b
d→ 1√

2r

(
r

∑
j=1

χ2
1,j − r

)
=

1√
2r

(
χ2

r − r
)

, as (T, N)s → ∞.

This completes the proof of Theorem 1.

Proof of Proposition 1. Let for 1 ≤ j ≤ r, Zj ∼ N (0, 1), ν1 = ∑r
j=1 wj and ν2 = ∑r

j=1 w2
j ,

and rewrite the weighted sum of χ2
1-variables in (20) as ∑r

j=1 wjZ2
j = ν1 ∑r

j=1 ajZ2
j , where aj =

wj
ν1

such that ∑r
j=1 aj = 1. We seek an u such that ∑r

j=1 ajZ2
j and u−1χ2

u have equivalent first and second

moments. For the first moments we have that ∑r
j=1 ajE(Z2

j ) = u−1E(χ2
u) = 1 for any u. For the

second moments we have that E(∑r
j=1 ajZ2

j )
2 = 2 ∑r

j=1 a2
j + 1, and E(χ2

u/u)2 = 2/u + 1. Hence, for
both first and second moments to be equal we need that

u =
(
∑r

j=1 a2
j

)−1
= ν2

1

(
∑r

j=1 w2
j

)−1
=

ν2
1

ν2
=

[tr(ΛΛ′Ω−1)]2

tr(ΛΛ′Ω−1ΛΛ′Ω−1)
,
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where we have used (B7-B8). Thus, because
r
∑

j=1
wjχ

2
1,j = ν1 ∑r

j=1 ajχ
2
1,j

app.∼ ν1χ2
u/u,

ϑ∗b
app.∼

ν1

(
χ2

u
u − 1

)
√

2ν2
=

√
u√
2

(
χ2

u
u
− 1
)
=

1√
2u

(
χ2

u − u
)

,

as claimed in Proposition 1.

Proof of Theorem 2. Let z = diag
(

T∗, T∗
√

N
)

. The statistic ϑ∗c may be decomposed as

ϑ∗c =
(

Ṽ(α) Ṽ(ρ)
)
z−1

[
z−1

(
J̃αα J̃αρ

J̃αρ J̃ρρ

)
z−1

]−1

z−1V∗

=
(

Ṽ(α)
T

Ṽ(ρ)
N1/2T

) J̃αα

T2
J̃αρ

N1/2T2

J̃ρα

N1/2T2
J̃ρρ

NT2

−1(
1
2
1

2
√

2

)
,

where it follows from the proof of Lemma 1 (viii), (ix) and (x) respectively that, as (T, N)s → ∞,
1

T∗2 J̃αα
p→ r

8 , 1√
NT∗2

J̃αρ
p→ 0 and 1

NT∗2 J̃ρρ
p→ 1

8 . Let as before Ω have spectral decomposition Ω =

QΞQ′, where Ξ = diag [ψ1, ψ2, . . . , ψN ]. The scores w.r.t. α and ρ are given by (A2) and (A3) respec-
tively. Analogous derivations to the proof of Theorem 1 yields, as T → ∞,

1
T∗

Ṽ(α) =
1
4

tr
[

M̂S−1
01

1√
T∗

(
∑T

t=2 yt

)
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2
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(
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1
T∗ S0S−1

01
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+

1
4
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(
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(
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− 1

4
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(
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4
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− σ2

ε

4
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(
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− 1
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1
4

(
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r

∑
j=1

wj

)
=W1,

and

1
T∗
√

N
Ṽ(ρ) =

σ̂2
ε√
N
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1
4

tr
(

Ω̃−1 1
T∗ S00Ω̃−1

)
− 1

2
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(

Ω̃−1 1
T∗ S0Ω̃−1

)
+

1
4

tr
(
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)]

d→ σ2
ε√
N

[
1
4

tr
(

Z′Ω−1Z
)
− 1

4
tr
(
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∼ 1
4
√

N

[
σ2

ε tr
(
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)
−

N
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]
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1
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√

N

(
N
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wiZ2
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N

∑
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Using (B9) it follows that W1
d→ 1

4 (∑
r
j=1 Z2

j − r) ≡ 1
4
(
χ2

r − r
)

as N → ∞, and using (B10) it fol-

lows that W2 = 1
4
√

N
(∑N

i=r+1 wiZ2
i − ∑N

i=r+1 wi) + o(1) = 1
4
√

N
[χ2

(N−r) − (N − r)] + o(1). Because

4
√

N√
2(N−r)

W2 = 1√
2(N−r)

[χ2
(N−r) − (N − r)] + o(1) d→ N (0, 1) as N → ∞ by the central limit theorem,

it follows thatW2 → 1
2
√

2
N (0, 1) as N → ∞. SinceW1 is strictly a function of Z1, Z2, . . . , Zr, andW2

is asymptotically only a function of Zr+1, Zr+2, . . . , ZN , 1
T∗ Ṽ(α) and 1

T∗
√

N
Ṽ(ρ) are asymptotically

independent as (T, N)s → ∞.
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Put together, we have that

ϑ∗c
d→ 1

4

(
χ2

r − r
) 8

r
1
2
+

1
2
√

2
N (0, 1)

8
2
√

2
=

χ2
r

r
− 1 +N (0, 1),

as claimed in Theorem 2.

The Proof of Theorem 3 is analogous to the proof of Theorem 2.
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