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The sympathetic nervous system is involved in the control of energy metabolism and expenditure. Diet-induced thermogenesis is mediated partly by the ß-

adrenergic component of this system. The aim of the present study was to investigate the role of genetic variation in the ß2-adrenoceptor in diet-induced

thermogenesis. Data from twenty-four subjects (fourteen men and ten women; BMI 26·7(SEM 0·8) kg/m2; age 45·2(SEM1·4) years) with different polymorph-

isms of the ß2-adrenoceptor at codon 16 (Gly16Gly, Gly16Arg or Arg16Arg) were recruited for this study. Subjects were given a high-carbohydrate liquid

meal, and the energy expenditure, respiratory exchange ratio, and plasma concentrations of NEFA, glycerol, glucose, insulin and catecholamines were

measured before and over 4 h after the meal. The AUC of energy expenditure (diet-induced thermogenesis) was not significantly different between poly-

morphism groups, nor was the response of any of the other measured variables to the meal. In a multiple regression model, the only variable that explained a

significant proportion (32 %) of the variation in diet-induced thermogenesis was the increase in plasma adrenaline in response to the meal (P,0·05). The ß2-

adrenoceptor codon16 polymorphisms did not contribute significantly. In conclusion, an independent contribution of the codon 16 polymorphism of the ß2-

adrenoceptor gene to the variation in thermogenic response to a high-carbohydrate meal could not be demonstrated. The interindividual variation in thermo-

genic response to the meal was correlated with variations in the plasma adrenaline response to the meal.

ß2-Adrenoceptor polymorphisms: Diet-induced thermogenesis: Catecholamines

Energy expenditure (EE) is an important factor in body-weight

regulation. Diet-induced thermogenesis (DIT) is the EE associ-

ated with ingestion, absorption and storage of food and accounts

for 10–15 % to the total daily EE. DIT shows considerable inter-

individual variation (Donahoo et al. 2004), and it can be hypoth-

esised that a low DIT contributes to weight gain. Many studies

have investigated DIT in obese and lean subjects, but these

studies show equivocal results (de Jonge & Bray, 1997, 2002;

Granata & Brandon, 2002). Nevertheless, when multiple interfer-

ing factors are taken into account simultaneously, the evidence for

a reduction in DIT in obesity becomes stronger (de Jonge & Bray,

2002). In addition, several studies show no change in DIT after

weight reduction, suggesting that a reduced DIT in obesity is

not the consequence of the obese state per se (Bessard et al.

1983; Schutz et al. 1984).

In response to feeding, especially to carbohydrate intake, sym-

pathetic nervous system activity increases (Schwartz et al. 1999;

Tappy, 2004). The sympathetic nervous system-mediated thermo-

genic response is also referred to as facultative thermogenesis

(Tappy, 2004). The sympathetic nervous system response is

biphasic, with an initial increase in noradrenaline and a delayed

adrenaline response (Astrup et al. 1986, 1989). The sympathetic

nervous system-mediated component of DIT can be blocked by

ß-adrenoceptor antagonists (Astrup et al. 1989; Tappy, 1996),

demonstrating the involvement of the ß-adrenergic system.

ß-Adrenoceptor genes are suggested to be ‘candidate genes’ for

the development of obesity (Chagnon et al. 2003). Several studies

(Echwald et al. 1998; Hellstrom et al. 1999; Kortner et al. 1999;

Meirhaeghe et al. 1999; Ukkola et al. 2001; van Rossum et al.

2002; Garenc et al. 2003; Gonzalez Sanchez et al. 2003) have

shown an association between polymorphisms at codons 16

and/or 27 of the ß2-adrenoceptor gene and weight gain, obesity

or obesity-related phenotypes.

Functional consequences of these polymorphisms with respect

to adipocyte lipolysis have also been reported (Large et al.

1997; Eriksson et al. 2004). Large et al. (1997) demonstrated

that isolated abdominal subcutaneous fat cells from women

homozygous for the arginine 16 (Arg16) polymorphism of the

ß2-adrenoceptor gene had a 5-fold lower sensitivity for lipolysis

induced by the ß2-adrenoceptor agonist terbutaline than did fat

cells from women who were heterozygous or homozygous for

glycine 16 (Gly16), independent of body fat. Eriksson et al.

(2004) showed that homozygous haplotypes of the ß2-adrenocep-

tor gene differed about 250-fold in their sensitivity to terbutaline-

induced lipolysis, the least sensitive haplotype being homozygous

for the arginine variant at codon 16. In addition, we have recently
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reported that the thermogenic response to infusion of the ß2-adre-

noceptor agonist salbutamol was blunted in carriers of the

Arg16Arg variant of the ß2-adrenoceptor gene compared with

Gly16 carriers (Oomen et al. 2005).

We therefore hypothesised that carriers of the Arg16Arg var-

iant of the ß2-adrenoceptor gene might also have a reduced DIT

in response to a high-carbohydrate meal compared with carriers

of the Gly16 variant. This might, at least in part, explain the

association between this polymorphism and obesity. The present

study was designed to test this hypothesis.

Methods

Subjects

Twenty-five volunteers (fourteen men and eleven women) partici-

pated in the study. They were recruited from an existing cohort in

the Maastricht area in The Netherlands that has previously been

described (van Rossum et al. 2002). The age of the subjects

ranged between 32 and 55 years. They did not use medication

at the time of the study or the week before. The study protocol

was reviewed and approved by the Ethics Committee of Maas-

tricht University, and all subjects gave written informed consent

before participating.

Genotyping of the codon 16 polymorphism of the ß2-adrenoceptor

gene

To genotype the codon 16 polymorphism of the ß2-adrenoceptor

gene, genomic DNA was extracted from leucocytes from each

individual by digestion with proteinase K followed by phenol–

chloroform extraction. Determination of the polymorphism was

performed using a PCR–restriction fragment length polymorph-

ism analysis as described before (Large et al. 1997).

Experimental design

The day preceding the experimental day, subjects consumed a

fixed diet provided by the researchers. This diet (energy content

10·8(SEM 0·3) MJ/d) consisted of 50 % energy from carbohydrates,

15 % from protein and 35 % from fat, which corresponds to the

average macronutrient composition of the Dutch diet. The total

amount of energy that each subject received was based on an esti-

mation of resting EE by the Harris–Benedict equation (Harris &

Benedict, 1919) multiplied by an estimation of the subjects’

activity level. The activity level was estimated using a short ques-

tionnaire. For most subjects, the activity level was set at 1·4,

except when subjects reported to be at least moderately active

for more than 3 h/week, for which a figure of 1·6 was used. Sub-

jects were asked to refrain from unusual or strenuous exercise

during the day before the experimental day.

On the experimental day, subjects came to the laboratory in the

morning after an overnight fast. They came by car or by bus in

order to limit their physical activity before the measurements.

Subjects were weighed, and body composition was determined

by bio-impedance. Thereafter, a venous catheter was inserted

into an antecubital vein for blood sampling. Subjects were then

positioned under a ventilated hood in a recumbent position for

indirect calorimetry. The indirect calorimetry measurements con-

tinued throughout the whole experiment and were interrupted

only for the consumption of the meal. Subjects were instructed

to limit their movements as much as possible and not to speak

during the experiment. They could watch television or a video.

After 30 min rest, baseline measurements were performed: EE

was measured over 30 min, and a baseline blood sample was col-

lected at the end. Subjects then received an energy bolus provid-

ing 35 % of the energy they had consumed the preceding day

(3·71(SEM 0·12) MJ). This test meal consisted of two liquid for-

mulas (total volume 593(SEM 19) ml; Meritene Polvo, Novartis

Nutrition and Isostar Long Energy; Novartis Nutrition, Beda,

The Netherlands). The macronutrient composition of the test

meal was 84 % from carbohydrate, 13 % from protein and 3 %

from fat. A high-carbohydrate and high-protein meal is known

to stimulate sympathetic nervous system activity (Schwartz et al.

1999). The test meal was consumed within 5 min, and measure-

ments were continued for another 4 h. At 10, 30, 60, 120, 180

and 240 min after the meal, a blood sample was drawn.

Anthropometry and body composition

Weight was measured to the nearest 100 g with a digital scale (Seca

Delta, Almere, The Netherlands), the subjects wearing clothes but

without shoes. Height was known, since it had been measured

before in the cohort study (van Rossum et al. 2002). Total body

water was measured by single-frequency bioimpedance at 50 kHz,

using a Xitron 400B bioimpedance analyser (Xitron Technologies

Inc., San Diego, CA, USA; van Marken Lichtenbelt et al. 1994).

Fat-free mass (FFM) was calculated from weight and total body

water using a prediction equation (Lukaski et al. 1986).

Energy expenditure, respiratory exchange ratio

VO2
and CO2 production were determined using an open-circuit

ventilated-hood system (Omnical, Maastricht, The Netherlands).

This system is based on the analysis system for respiration

chambers, which has previously been described (Schoffelen

et al. 1997). EE was calculated from VO2
and CO2 production

according to the Weir formula (Weir, 1949). Respiratory

exchange ratio is the ratio of CO2 production to VO2
.

Analysis of blood samples

Blood samples for the determination of plasma NEFA, glycerol,

glucose and insulin concentrations were collected in sodium

EDTA tubes, and samples for plasma noradrenaline and adrenaline

concentrations in tubes containing heparin and glutathione (1·5 %

w/v). Blood samples were immediately centrifuged for 10 min at

800 g at 48C. Plasma was transferred into test tubes, rapidly frozen

in liquid N and stored at 2808C until further analysis.

Glucose (UniKit III, cat. no. 07367204; Roche, Basel, Switzer-

land) and NEFA (Wako NEFA-C test kit; Wako Chemicals,

Neuss, Germany) were analysed with a COBAS FARA semi-

automated analyser (Roche Diagnostica, Basel, Switzerland).

Plasma catecholamine levels (time points 0, 120 and 240 min

only) were determined by HPLC according to the method of

Alberts et al. (1992) using a ClinPrep kit (Recipe, Munich,

Germany). The plasma insulin level was determined with a

double antibody RIA (Insulin RIA 100; Linco Research, St

Charles, MO, USA). The homeostasis model assessment index,

a measure of insulin sensitivity, was calculated according to Mat-

thews et al. (1985) using baseline plasma glucose and insulin

levels.
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Statistical methods

Data are presented as means with their standard errors. For

between-group comparisons, EE was adjusted for FFM. Besides

absolute values of EE adjusted for FFM, the change in EE from

baseline was also expressed as the change relative to the baseline

(relative EE ¼ EE/baseline EE). DIT was calculated as the AUC

of relative and absolute EE over the 4 h post-meal period and

expressed as the relative DIT (relDIT) and absolute DIT

(absDIT). Areas under the curve of post-meal changes from base-

line were also calculated for glucose, insulin, NEFA, glycerol,

noradrenaline and adrenaline concentrations. Changes over time

were analysed for the whole group by repeated-measures

ANOVA. ANOVA and independent sample t tests were used

for comparisons between groups.

Simple regression analysis (Pearson’s correlation) was per-

formed with absDIT as the dependent variable and different par-

ameters as the independent variable (energy content of the meal,

AUC for glucose, insulin, NEFA, glycerol, noradrenaline and

adrenaline, baseline plasma noradrenaline and adrenaline, and

homeostasis model assessment index). Multiple stepwise

regression analysis, with variables of the simple regression anal-

ysis with a value of P,0·2 and polymorphism groups as

dummy variables, was conducted to estimate the independent con-

tributions of these variables to absDIT. P,0·05 was considered to

be statistically significant, and all tests were performed as two-

tailed tests. Statistical analyses were performed with the SPSS

11.0 statistical package (SPSS Inc. Chicago, IL, USA).

Results

Responses to the meal in the whole group

One subject could only consume half of the test meal and was

therefore excluded from the analysis. Data on twenty-four sub-

jects are reported. Their characteristics are shown in Table 1.

After the test meal, EE increased significantly in the whole

group. After 120 min, EE was significantly higher than baseline

EE (5·61 (SEM 0·10) kJ/min adjusted for FFM v. 4·63 (SEM

0·08) kJ/min adjusted for FFM, respectively; P,0·001) (Fig. 1).

After 240 min, EE was lower (5·34 (SEM 0·09) kJ/min) than at

120 min (P,0·01), but it was still significantly higher than the

baseline EE (P,0·001) (Fig 1). The respiratory exchange ratio

increased after the meal and remained elevated over the 4 h

post-meal period (t ¼ 0 v. t ¼ 240 min, P,0·001) (Fig. 2).

Changes in plasma concentrations of metabolites and insulin

are shown in Fig. 3. Plasma glycerol and NEFA levels were sig-

nificantly lowered over the whole post-meal period (t ¼ 0 v.

t ¼ 240 min, P,0·001). Plasma glucose concentration was sig-

nificantly increased at 60 min compared with the baseline level

(P,0·001) and was still higher at 240 min compared with base-

line (P,0·05). Plasma insulin levels were significantly increased

at 60 min (P,0·001). The insulin concentration increased after

the meal and started to decrease 120 min after the meal but was

still higher than baseline at 240 min (P,0·001).

Plasma noradrenaline levels (Fig. 4) were significantly elevated

at 120 min and 240 min after the meal compared with baseline

levels (P,0·05). Plasma adrenaline levels (Fig. 4) were not sig-

nificantly different from baseline at 120 min (P¼0·08). At

240 min, however, plasma adrenaline levels were significantly

higher than at 120 min (P,0·01).

Baseline values and responses to the meal in the ß2-adrenoceptor

codon 16 polymorphism groups

Baseline EE was similar in all polymorphism groups (4·75 (SEM

0·11), 4·55 (SEM 0·10) and 4·42 (SEM 0·21(kJ/min adjusted for

FFM, for Gly16Gly, Gly16Arg and Arg16Arg respectively; NS).

There was no significant difference in absDIT (P¼0·125; Fig. 1)

or relDIT (P¼0·131) between groups (Table 2). In addition, we

compared glycine polymorphism carriers (Gly16Arg and

Gly16Gly) with Arg16Arg individuals and found a trend

(P¼0·06) towards Arg16Arg having a higher absDIT and a statisti-

cally higher relDIT (P¼0·048) compared with Gly polymorphism

carriers. None of the other parameters differed statistically signifi-

cantly between the three groups, either at baseline or with respect

to meal-induced changes (Figs. 2–4).

Explanation of energy expenditure response to the meal

Of all tested variables, the change in EE after the meal (absDIT) was

significantly correlated with the change in adrenaline concentration

(AUC adrenaline;P¼0·003) and with the energy content of the meal

(P¼0·024; Table 3). In a multiple-regression model, only the AUC

of plasma adrenaline level contributed significantly to absDIT

Table 1. Subject characteristics, for the total group and the b2-adrenoceptor codon 16 variants Gly16Gly, Gly16Arg and Arg16Arg.

(Values are means with their standard errors)

All Gly16Gly Gly16Arg Arg16Arg

Mean SEM Mean SEM Mean SEM Mean SEM

Sex (M/F)

Males (n) 14 7 3 4

Females (n) 10 6 3 1

Estimated energy intake (MJ/d) 10·76 0·30 10·79 0·41 10·36 0·19 11·17 0·83

Energy content test meal (MJ) 3·76 0·11 3·7 0·14 3·62 0·19 3·92 0·29

Height (m) 1·75 0·02 1·76 0·03 1·71 0·03 1·75 0·05

Weight (kg) 81·70 3·00 81·40 4·10 80·50 3·80 84·10 9·80

Age (years) 45·20 1·40 44·00 2·10 49·50 1·50 43·30 2·40

BMI (kg/m2) 26·70 0·80 26·10 1·10 27·70 1·30 27·00 2·10

Body fat (%) 28·90 2·00 30·70 2·70 29·60 5·10 23·40 2·20

Fat-free mass (kg) 58·30 2·90 58·30 2·90 57·10 5·80 64·30 7·60

Resting energy expenditure (kJ/min) 4·63 0·08 4·75 0·11 4·55 0·10 4·42 0·21

ß2-Adrenoceptor polymorphisms and thermogenesis 649



(P¼0·003, adjusted r 2 0·323). When the polymorphism groups

were entered into the regression model, the dummy variables did

not contribute significantly to absDIT (P.0·20). Similar results

were found for relDIT.

Discussion

The aim of the present study was to investigate the influence of the

codon 16 variants of the ß2-adrenoceptor gene on the thermogenic

response to a meal. We hypothesised that subjects with the

Arg16Arg polymorphism of the ß2-adrenoceptor would have a

lower DIT after the meal than subjects with the Arg16Gly or

Gly16Gly polymorphism. Our data do not support this hypothesis.

In contrast, there was a higher relDIT and a trend towards a

higher absDIT in the Arg16Arg carriers compared with the Gly

polymorphism carriers. absDIT was most strongly associated with

the adrenaline response to the meal, and an additional independent

contribution of the polymorphism could not be demonstrated.

Fig. 2. Respiratory exchange ratio (RER) for the three genetic variations in the b2-adrenoceptor (–�–, Gly16Gly; –j– Gly16Arg; –P–, Arg16Arg) before (t= 0)

and after (30 min intervals) a high carbohydrate meal. Values are means with their standard errors represented by vertical bars. The inset shows the results for

the whole group.

Fig. 1. Energy expenditure (EE) adjusted for fat free mass (FFM; kg/min per kg FFM) for the three genetic variations in the b2- adrenoceptor (–�–, Gly16Gly;

–j–, Gly16Arg; –P–, Arg16Arg) before (t= 0) and after (30 min intervals), a high carbohydrate meal. The meal was given directly after t=0. Values are means

with their standard errors represented by vertical bars. The inset shows the results for the whole group.
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Fig. 3. Plasma glucose, insulin, glycerol and NEFA for the three genetic variations in the b2-adrenoceptor (–�–, Gly16Gly; –j–, Gly16Arg; –P–, Arg16Arg),

before (t = 0) and after (10, 30, 60, 120, 180 and 240 min) a high carbohydrate meal. Values are means with their standard errors represented by vertical bars.

Fig. 4. Plasma nonadrenaline and adrenaline levels for the three genetic variations in the b2-adrenoceptor (–�–, Gly16Gly; –j–, Gly16Arg; –P–, Arg16Arg),

before (t = o) and after (120 min intervals) a high carbohydrate meal. Values are means with their standard errors represented by vertical bars. The insets shows

the results for each whole group.

ß2-Adrenoceptor polymorphisms and thermogenesis 651



Meal-induced thermogenesis is partly mediated by increased

sympathoadrenal activity (Valensi et al. 1998; Camastra et al.

1999; Schwartz et al. 1999; Lowell & Bachman, 2003). ß-Adreno-

ceptor blockade blunts meal-induced thermogenesis, especially

between 2 and 4 h after the meal (Astrup et al. 1989), indicating

that the ß-adrenergic branch of the sympathoadrenal system is

involved in this response during this period. In particular, the ß2-

adrenoceptor seems to be important in catecholamine-induced ther-

mogenesis (Nagase et al. 2001). The magnitude of the meal-induced

stimulation of the sympathoadrenal system is mainly determined by

the size of the meal and its carbohydrate and protein content

(Schwartz et al. 1999). Because we wanted to study differences in

response to meal-induced stimulation of the ß2-adrenoceptors

between subjects with different variants of the ß2-adrenoceptor

gene, we tried to optimise the meal-induced ß-adrenergic stimu-

lation by giving a large meal with a high carbohydrate content.

Over the 4 h post-meal period, the expected increases in EE,

respiratory exchange ratio, and glucose and insulin concentrations

were found, accompanied by reductions in plasma NEFA and gly-

cerol concentrations (Welle & Campbell, 1983b; Astrup et al.

1987). Differences in insulin sensitivity have been shown to

affect DIT (Camastra et al. 1999). In the present study, however,

the homeostasis model assessment index, as a measure of insulin

sensitivity, was not correlated with absDIT. This could be due to

the fact that the variation in homeostasis model assessment index

in our study was relatively small. DIT has also been shown to be

impaired in obese compared with lean individuals, although

results are not consistent (de Jonge & Bray, 2002). We did not

find a significant correlation between percentage fat and absDIT

(r20·272, P¼0·199), or between BMI and absDIT (r 0·141,

P¼0·512), but the ranges of percentage fat and BMI in our

group were relatively small.

The plasma noradrenaline concentration was increased at 2 and

4 h after the meal, the plasma adrenaline level only at 4 h. This

early response in plasma noradrenaline level and delayed response

in plasma adrenaline level has been shown before (Welle & Camp-

bell 1983a; Astrup et al. 1987). Astrup et al. (1986) suggested that

the delayed increase in plasma adrenaline was elicited by the

decrease in plasma glucose during this period. The AUC of the

post-meal changes in plasma adrenaline was the only parameter

that contributed significantly to the variation in DIT (r 2 0·32).

Because adrenaline has a higher affinity for ß2-adrenoceptors than

ß1- or ß3-adrenoceptors (Hoffmann et al. 2004), the metabolic

effects of adrenaline are predominantly mediated by ß2-adrenocep-

tors. Our data do not support a modulation of the adrenaline-induced

thermogenic effect by the codon 16 polymorphism of the ß2-adreno-

ceptor gene, as hypothesised. There was no evidence for a blunted

absDIT in subjects with the Arg16Arg variant of the gene compared

with Gly16 polymorphism carriers. Instead, we found a trend

towards an increased absDIT in the Arg16Arg group compared

with the glycine carriers, and relDIT was significantly higher in

the Arg16Arg group. Based on the results of the multiple regression

analysis, this difference in DIT was partly explained by a variation

in adrenaline response, although we were unable to demonstrate

statistically significant differences in adrenaline response between

the groups.

Our initial hypothesis of a reduced DIT in Arg16Arg homozy-

gotes was based on several previous findings. The Arg16Arg poly-

morphism has been associated with a reduced sensitivity to ß2-

adrenoceptor agonist-induced lipolysis in isolated human fat cells

(Large et al. 1997; Eriksson et al. 2004). Moreover, in a previous

study, we showed that individuals with the Arg16Arg genotype

had a blunted thermogenic response to stimulation with the ß2-adre-

noceptor agonist salbutamol compared with Gly16 carriers (Oomen

et al. 2005). Both factors might contribute to an increased suscepti-

bility to weight gain and obesity in Arg16Arg carriers. The Arg16

polymorphism has indeed been associated with obesity or obesity-

related phenotypes in many studies (Echwald et al. 1998; Hellstrom

et al.1999; Kortner et al. 1999; Meirhaeghe et al. 1999; Ukkola et al.

2001; van Rossum et al. 2002; Garenc et al. 2003; Gonzalez San-

chez et al. 2003), although there are also studies that do not find

this association (Ishiyama-Shigemoto et al. 1999; Hayakawa et al.

2000). The results of this study, however, suggest that even

though the Arg16 variant of the ß2-adrenoceptor may be less sensi-

tive to direct ß2-adrenoceptor stimulation in vitro and in vivo, the

thermogenic response to a meal is increased rather than reduced

in Arg16 homozygotes compared with Gly16 carriers.

Whether the lower sensitivity of the Arg16Arg ß2-adrenoceptor

is compensated by a higher level of sympathetic stimulation, or

whether a higher level of stimulation induces a reduced respon-

siveness of the ß2-adrenoceptor, cannot be derived from our

data. The latter mechanism seems unlikely in view of the fact

that, in vitro, an enhanced agonist-promoted downregulation of

the Gly16 receptor compared with the Arg16 receptor is well

established (Liggett, 1997). However, the opposite has been

demonstrated in vivo for isoprenaline-induced venodilatation,

which was insensitive to downregulation in Gly16 homozygotes,

whereas those homozygous for Arg16 showed significant downre-

gulation during the 2 h isoprenaline infusion (Dishy et al. 2001).

How a reduced sensitivity of the ß2-adrenoceptor could lead to an

increased activation of the sympathoadrenal system is not clear from

Table 2. Absolute diet-induced thermogenesis (absDIT) and relative diet-

induce thermogenesis (relDIT) in the polymorphism groups, Gly16Gly,

Gly16Arg and Arg16Arg

(Values are means with their standard errors)

Gly16Gly

n 13

Gly16Arg

n 6

Arg16Arg

n 5

Mean SEM Mean SEM Mean SEM

Abs DIT (kJ/4 h) 175·1 14·6 147·5 10·8 232·2 14·3

Rel DIT (%/4 h) 15·5 1·5 13·5 1·1 22·7 6·4

Table 3. Pearson correlations (r) of different variables with absolute

diet-induced thermogenesis (absDIT), and corresponding P values.

r P value

Energy content test meal 0·459 0·024*

AUC glucose 0·116 0·606

AUC insulin 0·292 0·177

AUC NEFA 0·182 0·442

AUC glycerol 20·142 0·528

Baseline plasma noradrenaline 0·395 0·056

Baseline plasma adrenaline 0·096 0·656

AUC noradrenaline 0·109 0·620

AUC adrenaline 0·595 0·003*

HOMA index 0·260 0·220

Fat percentage 20·272† 0·199†

BMI 0·141 0·512

AUC, area under the curve; HOMA, homeostasis model assessment.

*P,0·05;†P,0·2.
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our data, but assuming that the adrenaline response is indeed linked

to changes in plasma glucose (Astrup et al. 1986), it is conceivable

that a reduced glucose output by the liver to compensate for the fall

in blood glucose late after the meal would induce a higher adrenaline

response. Glucose output by the liver could be compromised by less

responsive ß2-adrenoceptors involved in liver glycogenolysis or in

reduced gluconeogenesis from glycerol owing to compromised

ß2-adrenoceptor-mediated lipolysis.

In conclusion, the present study shows that there is no indepen-

dent contribution of the codon 16 variant of the ß2-adrenoceptor

gene to the thermogenic response after a high-carbohydrate

meal, but that this response is positively correlated with the

plasma adrenaline response to the meal.
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