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Abstract  
 

Aim/hypothesis: Obesity is associated with increased triacylglycerol (TAG) storage in 

adipose tissue and insulin resistance. The mobilization of stored TAG is mediated by 

HSL and the recently discovered ATGL. The aim of the present study was to examine 5 

whether ATGL and HSL mRNA and protein expression are altered in insulin resistant 

conditions. In addition, we investigated whether a possible impaired expression could 

be reversed by a period of weight reduction.  

Methods: Adipose tissue biopsies were taken from obese subjects (n=44) with a wide 

range of insulin resistance, before and just after a 10-week hypocaloric diet. ATGL 10 

and HSL protein, and mRNA expression was determined by Western blot and RT-

qPCR, respectively. Results: Fasting insulin levels and the degree of insulin resistance 

(HOMAir) were negatively correlated with ATGL and HSL protein expression; 

independent of age, gender, fat cell size and body composition. Both mRNA and 

protein levels of ATGL and HSL were reduced in insulin resistant compared to 15 

insulin sensitive subjects (P<0.05). Weight reduction significantly decreased ATGL 

and HSL mRNA and protein expression. A positive correlation between the decrease 

in leptin and the decrease in ATGL protein level after weight reduction was observed.  

Finally, ATGL and HSL mRNA and protein levels seem to be highly correlated, 

indicating a tight coregulation and transcriptional control.  20 

Conclusions: In obese subjects insulin resistance and hyperinsulinemia are strongly 

associated with ATGL and HSL mRNA and protein expression independent of fat 

mass. Data on weight reduction indicated that also other factors (e.g. leptin) relate to 

ATGL and HSL protein expression. 

 25 
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Introduction 

 

Obesity is characterized by increased triacylglycerol (TAG) storage in adipose tissue 

and insulin resistance. The mobilization of stored TAG (lipolysis) is mediated by 

hormone-sensitive lipase (HSL). For more than 30 years, the paradigm has been that 5 

HSL is the rate-limiting enzyme responsible for TAG breakdown. Studies in HSL 

knockout mice (1-6) raised doubt on the rate-limiting role of HSL in TAG metabolism 

and suggested that at least one additional lipase in adipose tissue should be active that 

preferentially hydrolyzes the first ester bond of the TAG molecule. Recently, a new 

TAG lipase that belongs to a gene family characterized by the presence of a patatin-10 

domain was identified (7-9). Zimmermann et al. termed this new non-HSL lipase: 

adipose triglyceride lipase (ATGL), being predominantly expressed in adipose tissue 

(9). 

An impaired catecholamine-induced lipolysis and a reduced HSL expression in 

preadipocytes and differentiated adipocytes is observed in obesity (10-12). This 15 

blunted catecholamine-induced lipolysis has been proposed to be a cause of excessive 

accumulation of body fat. Indeed, studies in first-degree relatives of obese subjects 

demonstrate an impaired catecholamine-mediated lipolysis (13). Furthermore, the 

impaired catecholamine-induced lipolysis did not improve after weight loss, 

indicating that it may be an early factor in the development or maintenance of 20 

increased fat stores (14-17). A plausible other interpretation is that this reduced 

lipolytic response is an appropriate downregulation of lipolysis per unit fat mass to 

prevent an excessive fatty acid outflow from the expanded fat mass and to prevent 

worsening of the insulin resistant state. In line, fasting insulin concentrations have 

been shown to be inversely related to fatty acid efflux from adipose tissue (18). 25 
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Moreover, insulin downregulates ATGL and HSL mRNA expression in 3T3-L1 

adipocytes and HSL mRNA expression is increased in adipocytes from insulin-

deficient animals (19-22). In addition, ATGL is downregulated in animal models for 

insulin resistance (ob/ob and db/db) and HSL knockout animals show signs of 

impaired insulin sensitivity in adipose tissue and skeletal muscle (4, 7). Thus, there 5 

seems to be a negative relationship between insulin, ATGL and HSL expression.  

The aim of the present study was to investigate whether the degree of insulin 

resistance and hyperinsulinemia are, independently of fat mass, related to an impaired 

ATGL and HSL protein expression in a group of overweight-obese subjects with a 

wide range of insulin resistance, selected from an existing cohort. In addition, we 10 

investigated the impact of weight loss by means of a hypocaloric diet (low-fat vs. 

medium-fat diet) on adipose tissue ATGL and HSL protein levels. To the best of our 

knowledge this is the first time that ATGL protein levels are measured in human 

adipose tissue.  

 15 
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Material and Methods 

 

Subjects  

This study is part of the European multicentre study NUGENOB (NUtrient-GENe 

Interactions in human OBesity), which is described in detail elsewhere (23-25). Only 5 

the overweight-obese subjects from the Maastricht centre participated in this part of 

the study. The basic selection criteria for overweight-obese subjects were age 20-50y 

and BMI≥26kg/m2. Exclusion criteria were: weight change > 3kg within the 3 months 

prior to the study start; drug treated hypertension, diabetes or hyperlipidemia; thyroid 

disease; surgically treated obesity; pregnancy, alcohol or drug abuse and participation 10 

in other simultaneous ongoing trials. All subjects were recruited by means of an 

advertisement in a local newspaper, informed in detail about the investigation and 

their consent was obtained before participating in the study. From the 116 participants 

at the Maastricht centre, a selection of 22 insulin sensitive (IS) and 22 insulin resistant 

(IR) subjects was made. Insulin sensitivity was assessed by the HOMA (homeostasis 15 

model assessment) index for insulin resistance (HOMAir) calculated from fasting 

glucose and insulin according to the equation of Matthews (26). The median for 

HOMAir in the total Maastricht cohort was 2.19 (range: 0.4 - 9.9). Subjects above the 

50th percentile of HOMAir were assigned as IR and subjects below the 50th percentile 

as IS. Before entering the study, all subjects were in good health as assessed by 20 

medical history and physical examination. The Medical Ethical Review Committee of 

Maastricht University approved the study protocol and the clinical investigations were 

performed according to the Declaration of Helsinki. 
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Study design 

A clinical investigation day took place before and just after a 10-week dietary 

intervention with either low-fat or medium-fat diets (see dietary intervention).  

Subjects arrived at the clinical research centre at 8:00 a.m. after a 12 hours overnight 

fast and a 3-day run in period, in which they had to avoid excessive physical activity 5 

and alcohol consumption, described previously in detail (23). During this day the 

subjects underwent anthropometric measurements (see below) and an adipose tissue 

biopsy was taken (see adipose tissue biopsy). In addition, a venous basal blood 

sample was drawn for further analysis (see biochemical analysis).  

 10 

Dietary intervention 

Subjects followed one of two energy-restricted diets: a medium-fat (n=23) or a low-

fat (n=21) diet. Data on the different diets and how the diet was controlled are 

published elsewhere (23). The target macronutrient composition of the two diets was 

as follows: low-fat diet, 20–25% of total energy was provided by fat; the 15 

corresponding figure for the medium-fat diet was 40–45%. Both diets derived 15% of 

total energy from protein and the remainder (60–65% and 40–45% for the low-fat and 

medium-fat diets, respectively) from carbohydrates. Both diets were designed to 

provide 600 kcal/day less than the individual estimated energy expenditure based on 

resting metabolic rate, measured using a ventilated hood system, expressed in 20 

kcal/day and multiplied by 1.3. 

 

Anthropometric measurements 

After subjects voided their bladder body weight was determined on a calibrated 

electronic scale, accurate to 0.1 kg. Waist and hip circumference measurements to the 25 
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nearest 1 cm were made midway between the lower rib and iliac crest with the 

participant standing upright. Height was measured using a wall-mounted stadiometer. 

BMI was calculated as body weight in kilograms divided by squared height in meters. 

Fat mass (FM) and fat free mass (FFM) were assessed using multifrequency 

bioimpedance (QuadScan 4000; Bodystat, Douglas, Isle of Man, British Isles). The 5 

percentage body fat (%BF) was calculated from total fat mass (kg) and body weight. 

 

Adipose tissue biopsy 

A subcutaneous adipose tissue biopsy was taken from the abdominal region early in 

the morning after an overnight fast. The second biopsy was taken in week 10 of the 10 

dietary intervention. Biopsies were performed under local anesthesia (Xylocaine  

0,5%,  Lidocaine 0,5%; AstraZeneca BV, Zoetermeer, The Netherlands) on the left or 

right side of the abdomen about 5 cm lateral from the umbilicus using a Hepafix-

luerlock syringe (Braun Medical) and a 146x3 1/5” (2,10x80 mm) Braun-Sterican 

needle. The biopsy was washed in physiological saline and stored in a sterile 15 

polypropylene tube at -80°C until further analysis. 

 

Biochemical analysis 

Plasma glucose concentrations (ABX Diagnostics, Montpellier, France) were 

measured on a COBAS MIRA automated spectrophotometer (Roche Diagnostica, 20 

Basal, Switzerland). Triacylglycerol (TAG) (Sigma, St Louis, USA), free fatty acids 

(FFA) (NEFA C kit, Wako Chemicals, Neuss, Germany) and glycerol (Boehringer 

Mannheim, Germany) were measured on a COBAS FARA centrifugal 

spectrophotometer (Roche Diagnostica, Basal, Switzerland). Standard samples with 

known concentrations were included in each run for quality control. Plasma insulin 25 
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and serum leptin were measured with a double antibody radioimmunoassay (Insulin 

RIA 100, Kabi-Pharmacia, Uppsala, Sweden; Human leptin RIA kit, Linco research, 

Inc, St.Charles, Missouri, USA).  

 

Fat cell volume (FCV) and fat cell weight (FCW) 5 

Fat cell characteristics were determined in a subset of the same cohort (n=39; 

19IS/20IR; HOMAir: 1.4±0.1 vs. 4.7±0.5, P<0.01). Weight loss after diet was the 

same among these subjects as in the whole cohort (data not shown). Also, with respect 

to other metabolic parameters this subgroup was comparable to the group in which 

ATGL and HSL protein and mRNA expression was determined (see under results). 10 

Adipose tissue was subjected to collagenase treatment, and the mean volume and 

weight of the isolated fat cells were determined as previously described (27).  

 

Sample preparation 

About 200 mg adipose tissue was ground to a fine powder under liquid nitrogen and 15 

homogenized in 200 µl of ice-cold buffer: 8M urea, 2% 3-[(3-

cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS, Sigma C9426), 

65 mM dithiotreitol (DTT, Bio-Rad 161-0611), protease inhibitor (Sigma P8340) and 

phosphatase inhibitor cocktail (Sigma P5726). The homogenate was vortexed for 5 

min and centrifuged at 20000 × g for 30 minutes at 4°C. The supernatant was 20 

carefully collected and aliquots were stored at -80°C. The protein concentration was 

determined by Bradford based protein assay (Bio-Rad 500-0006). 

 



 9 

Western blot analysis 

Ten µg of protein were separated using 10% SDS-PAGE and then transferred to a 

nitocellulose membrane. An affinity purified polyclonal antibody was raised in rabbit 

against a 15 amino-acid peptide (amino-acids 386-400, GRHLPSRLPEQVERL) of 

human ATGL (Eurogentec, Seraing, Belgium). In Western blot analysis a single band 5 

at 56kDa was detected which disappeared after preincubation of the antibody with the 

peptide. This band corresponds to the predicted molecular mass of the human ATGL 

protein (9). In addition, when COS cells were transfected with cDNA coding for 

human ATGL, also a single band of 56kDa was observed following western blot of 

extracted cellular protein. HSL was detected using a rabbit polyclonal antibody, raised 10 

and purified against recombinant human HSL. The HSL antibody has been previously 

validated (28). The secondary antibody was a horseradish peroxidase-conjugated anti-

rabbit immunoglobin (DAKO, Glostrup, Denmark). Antigen–antibody complexes 

were visualized using enhanced chemiluminescence (ECL+, Amersham Biosciences, 

UK) and a Kodak Image Station (Kodak, Glostrup, Denmark). Quantification of 15 

antigen–antibody complexes was performed using Quantity One® 1-D analysis 

software (Bio-Rad).  Optical density units are expressed as adjusted volume (Adj. 

Vol. OD, sum of pixels inside the volume boundary x area of a single pixel (in mm2) 

minus the background volume). Differences in loading were adjusted to β-actin 

protein levels and an isolated mature adipocyte lysate was included as positive 20 

control.  

 

Adipose tissue mRNA analysis  

ATGL and HSL mRNA expression was determined in a subset of adipose tissue 

samples of 26 subjects (13IS/13IR; 14F/12M) before and after the diet. Total RNA was 25 
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extracted from adipose tissue using the RNeasy mini kit (Qiagen, Hilden, Germany). 

The RNA concentration and purity were assessed spectrophotometrically. An Agilent 

2100 bioanalyser (Agilent Technologies, Massy, France) was used to confirm the 

integrity of the RNA. From each sample, 1 µg of total RNA was reverse-transcribed to 

cDNA using Superscript II Revserse Transcriptase (InVitroGen, Cergy Pontoise, 5 

France) and random hexamer primers (Invitrogen). HSL and ATGL mRNAs were 

quantified using pre-made gene expression assays (Applied Biosystems). 18S 

ribosomal RNA was used as control to normalize gene expression.  

 

Statistics 10 

All variables were checked for normal distribution and variables with a skewed 

distribution were ln-transformed to satisfy conditions of normality.  

First, univariate regression analysis was performed to identify variables that 

contribute to ATGL and HSL protein expression and to changes in protein expression 

induced by weight loss. Subsequently, a multivariate regression analyses was 15 

performed with ATGL or HSL protein levels as dependent variables and age, gender, 

FM, FFM, waist circumference, circulating insulin and leptin levels as independent 

variables (model 1). The same model was repeated with HOMAir as independent 

instead of insulin (model 2). To study the impact of weight reduction, changes in 

ATGL or HSL protein level were entered as dependent variable in the multivariate 20 

regression model with age, gender, change in fat mass, fat free mass, circulating 

insulin and leptin as independents. ATGL and HSL mRNA and protein levels were 

compared between insulin sensitive (IS) and insulin resistant (IR) subjects using 

Student’s unpaired t-test. Antropometric and metabolic parameters, HSL and ATGL 

mRNA and protein levels were compared before and after the diets using Student’s 25 

paired t-test. The differential effect of the diets was assessed with analysis of 
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covariance using diet as fixed factor. To avoid multicollinearity in the regression 

model independent variables with a correlation >0.8 were not simultaneously included 

in the model. The impact of the independent variables is described as unstandardized 

beta or regression coefficients. A P-value less then or equal to 0.05 was considered 

statistically significant. All analyses were performed using SPSS for Mac Os X 5 

version 11.0 (SPSS, Chicago, IL, USA). 
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Results 

 

Characteristics of the study subjects 

Anthropometric and metabolic characteristics of the study subjects before and after a 

10-week hypocaloric diet are displayed in table 1. Extensive data on the effects of the 5 

hypocaloric diet in the total NUGENOB cohort were reported previously (23). The 

diet resulted in significant loss of body weight (before vs. after: 98.7±3.2 vs. 90.0±3.3 

kg, P<0.001), fat mass (37.4±1.6 vs. 30.7±1.5 kg, P<0.001) and a significantly 

decreased BMI (34.1±0.7 vs. 31.3±0.7 kg/m2, P<0.001). In addition circulating fatty 

acids (506±24 vs. 418±22 µM.L-1, P=0.016), glycerol (105±11 vs. 83±8 µM.L-1, 10 

P=0.003) and leptin (24.7±2.3 vs. 14.5±1.5 ng/ml, P<0.001) decreased. There were no 

significant differences in fasting glucose, insulin and HOMAir.  As reported 

previously, the low-fat and medium-fat diet resulted in similar changes in 

anthropometric and metabolic parameters (23, 25). 

 15 

Relationship between the degree of insulin resistance and adipose tissue ATGL and 

HSL protein levels 

Univariate regression analysis, indicated a negative correlation between HOMAir, 

fasting insulin and ATGL or HSL protein levels (all P<0.05), whilst age, gender, body 

composition (waist, FM, FFM) and levels of circulating leptin were not significantly 20 

related to ATGL or HSL protein levels (all P>0.10). Multivariate regression analysis, 

shown in table 2, indicated the same negative correlation between HOMAir (ATGL 

beta-coefficient: -1.33, P=0.045; HSL beta-coefficient: -0.965, P=0.039; see table 2) 

fasting insulin (ATGL beta-coefficient: -1.41, P=0.048; HSL beta-coefficient: -1.07, 

P=0.032; see table 2) and ATGL or HSL protein levels. These data indicate that the 25 
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insulin resistant state rather than fat mass per se causes the decrease in adipose tissue 

ATGL and HSL protein levels. 

To illustrate the impact of insulin resistance on ATGL and HSL protein levels, 

subjects were assigned as insulin sensitive (IS) or insulin resistant (IR) based on 

HOMAir (see Material & Methods, Subjects). Anthropometric and metabolic 5 

characteristics of IS and IR subjects are displayed in table 1. Adipose tissue ATGL 

and HSL protein levels were found to be dramatically reduced in IR compared to IS 

obese subjects. ATGL protein levels were decreased by 72% in IR compared to IS 

obese subjects (IR vs. IS: 2.6±1.3 vs. 9.3±3.6 Adj.Vol.OD, P=0.025; see figure 1B), 

whereas the corresponding figure for HSL was 57% (6.6±2.3 vs. 15.4±3.0 10 

Adj.Vol.OD, P=0.001; see figure 1B). ATGL and HSL protein levels were highly 

correlated (beta-coefficient: 1.05, r=0.568, P=0.0001; see figure 2), indicating that 

ATGL and HSL protein levels might be tightly coregulated in adipose tissue of obese 

subjects.  

As indicated in the methods section, FCV and FCW were determined in a subset of 15 

insulin sensitive (n=19) and insulin resistant (n=20) subjects from the same cohort 

with similar characteristics with respect to HOMAir (1.5±0.1 vs. 4.7±0.5; P<0.01), 

body fat % (42.5±1.1 vs. 42.8±2.0; P=0.742) and waist (108±2 vs. 114±2; P=0.031) 

and similar diet–induced changes. Fat cell volume (FCV) and fat cell weight (FCW) 

were significantly higher (12%; P=0.039) in IR compared with IS subjects and 20 

decreased significantly after weight loss (P<0.01), see table 1. When ATGL and HSL 

protein expression was corrected for mean FCV or FCW the difference between 

groups remained significant (for ATGL, IR vs. IS: 2.6±0.6 vs. 3.9±0.5, P<0.01; for 

HSL, IR vs. IS: 9.2±1.5 vs. 13.4±1.6. P<0.01). 

 25 
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ATGL and HSL mRNA expression in insulin sensitive versus insulin resistant subjects 

Additionally, ATGL and HSL mRNA expression was determined in a subset of 

adipose tissue samples of 26 subjects. In agreement with the protein expression data, 

ATGL and HSL mRNA expression were significantly lower in IR (n=13) compared 

to IS (n=13) obese subjects (P=0.006 and P=0.057, respectively; see figure 1A). Also, 5 

a positive correlation was found for ATGL and HSL mRNA expression (beta-

coefficient: 0.531, r= 0.253, P=0.005), suggesting that the two enzymes belong to a 

common regulatory network with tight transcriptional control. 

 

Effect of weight reduction on adipose tissue ATGL and HSL protein levels 10 

A 10-week hypocaloric diet resulted in a decreased adipose tissue ATGL (before vs. 

after 5.7±1.8 vs. 1.4±0.4 Adj.Vol.OD, P=0.04; see figure 3B) and HSL (before vs. 

after: 10.8±1.9 vs. 5.9±1.3 Adj.Vol.OD, P=0.023; see figure 3B) protein level. When 

ATGL and HSL protein expression was corrected for mean FCV or FCW the 

difference remained significant (for ATGL, before vs. after: 3.2±0.5 vs. 2.1±0.4, 15 

P=0.02; for HSL: before vs. after: 11.1±1.8 vs. 7.5±1.4, P<0.01). Low-fat and 

medium-fat diets resulted in similar changes in ATGL and HSL protein levels. To 

find out the effect of changes in anthropometric and metabolic parameters on ATGL 

and HSL protein levels univariate and multivariate regression analysis was applied 

(see table 3). Univariate regression analysis, indicated a positive correlation between 20 

the decrease in leptin and the decrease in ATGL protein level after weight reduction 

(P<0.05) whilst age, gender, changes in body composition (FM, FFM) and insulin 

were not significantly related to changes in ATGL protein level (all P>0.10). 

Multivariate regression analysis (see table 3) indicated the same positive correlation 

between the decrease in leptin and the decrease in ATGL protein level after weight 25 
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reduction (beta-coefficient: 6.05E-02, P=0.023; see table 3). In addition, univariate 

regression analysis indicated a positive correlation between the decrease in FFM and 

the decrease in HSL protein level after weight reduction (P<0.05) whilst age, gender, 

changes in fat mass, circulating levels of insulin and leptin were not significantly 

related to changes in HSL protein level (all P>0.10). Multivariate regression analysis 5 

(see table 3) indicated the same positive correlation between the decrease in FFM and 

decrease in HSL protein level after weight reduction (beta-coefficient: 0.67, P=0.020; 

see table 3).  

Finally, the correlation between ATGL and HSL protein levels found during habitual 

dietary conditions was also observed after a 10-week hypocaloric diet (beta-10 

coefficient: 0.99, r=0.484, P<0.0001). Also, changes in ATGL and HSL induced by 

weight loss highly correlated to each other (beta-coefficient: 1.01, r=0.503, P=0.004; 

see figure 4). This coordinated variation in ATGL and HSL expression during various 

dietary conditions suggests that the two enzymes share a common regulatory network. 

 15 

ATGL and HSL mRNA expression after the diet 

In line with the protein expression data a 10-week hypocaloric diet significantly 

lowered adipose tissue ATGL (P=0.001) and HSL (P=0.007) mRNA expression, see 

figure 3A. Low-fat and medium-fat diets resulted in similar changes in ATGL and 

HSL mRNA expression. A strong positive correlation was found between ATGL and 20 

HSL mRNA expression after the diet (beta-coefficient: 0.761, r=0.578, P<0.0001). 

The changes in ATGL and HSL mRNA expression induced by weight loss tended to 

correlate positively (P=0.135). 
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Discussion  

 

Our study, for the first time, examined the relationship between adipose tissue ATGL 

and HSL mRNA and protein expression, and whole-body insulin sensitivity in a 

group of obese subjects. The major finding of the present study is that a reduced 5 

ATGL and HSL mRNA and protein expression is associated with insulin resistance 

independent of fat mass. Weight reduction decreased, rather than increased ATGL 

and HSL mRNA and protein expression. When ATGL and HSL protein expression 

was corrected for mean FCV or FCW the differences between groups remained 

significant. In addition, ATGL and HSL mRNA and protein expression seem to be 10 

tightly coregulated in adipose tissue, suggesting that they belong to a common 

regulatory network. 

Our data indicate that the degree of insulin resistance and hyperinsulinemia in obesity 

rather than the increase in fat mass and body fat distribution per se is associated with a 

reduced ATGL and HSL protein and mRNA level.  Since we only studied expression 15 

in abdominal subcutaneous fat we cannot rule out depot-specific differences in ATGL 

and HSL expression. For instance, it has been shown that HSL mRNA expression is 

significantly different in subcutaneous and visceral adipose tissue, a finding that could 

not be confirmed for ATGL mRNA expression (29). There is accumulating evidence 

from in vitro and animals studies that insulin reduces HSL and ATGL expression. It is 20 

documented that insulin downregulates ATGL and HSL mRNA levels in 3T3-L1 

adipocytes in a dose dependent manner (19, 21, 22). More interestingly, ATGL is 

downregulated in a mouse model for insulin resistance by 50% (7). In accordance, our 

data indicate a 72% reduction in adipose tissue ATGL protein levels of insulin 

resistant compared to insulin sensitive obese subjects. Moreover, HSL mRNA levels 25 
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are increased in adipocytes from insulin-deficient streptozotocin-treated rats as 

compared to controls suggesting a negative effect of insulin on HSL expression (20).  

Weight reduction decreased, rather than increased ATGL and HSL protein and 

mRNA expression levels with no effect of diet composition and independent of 

changes in fat mass. This seems consistent with Viguerie et al. reporting a similar 5 

decrease in HSL mRNA for the low-fat and medium-fat diet (25). This 

downregulation of key enzymes for triglyceride breakdown and the increase in 

lipoprotein lipase mRNA level after weight loss (30), potentially enhances lipid 

storage and making further weight loss more difficult. In contrast, Mairal et al. 

showed that adipose tissue ATGL mRNA expression was unchanged and HSL mRNA 10 

expression increased after long-term weight reduction in obese subjects (29). It should 

be mentioned that in this study the second biopsy was taken 2-4 years after surgery. A 

factor explaining the inconsistent findings may be that different conditions are 

compared. In the present study subjects were investigated while still on the energy-

restricted diet (second biopsy taken just at the end of the diet). The negative energy 15 

balance produced by the energy-restricted diet is known to profoundly modify 

adipocyte metabolism, particular the lipolytic pathway, making it impossible to 

differentiate between the chronic effect of weight reduction per se and the acute effect 

of energy restriction. Interestingly, the decrease in leptin correlated positively with the 

decrease in ATGL expression after energy restriction, independent of changes in fat 20 

mass, fat free mass and circulating insulin levels. Flier et al. advocate that this 

decrease in leptin concentration serves as an important signal from fat to the brain that 

the body is starving (31). In addition, it has been proposed that an important function 

of leptin is to confine storage of triglycerides to adipocytes (i.e. to affect adipose 
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tissue lipolysis) and to prevent triglyceride storage in non-adipocytes (e.g. myocytes), 

protecting them from lipotoxicity (32).  

In obese subjects we observed no strict relationship between fat mass and ATGL or 

HSL expression, and fat cell size per se was not important for our findings. When the 

obese state has already developed insulin resistance and hyperinsulinemia seem to be 5 

the major determinants for ATGL and HSL protein expression. This seems in line 

with the observation of a negative correlation between fasting insulin and in vivo fatty 

acid outflow per unit of adipose tissue in insulin resistant conditions (18), suggesting 

that a reduced expression of ATGL and HSL may be a secondary phenomenon to 

insulin resistance. It can be speculated that hyperinsulinemia may downregulate 10 

adipose tissue lipolysis and thereby prevent worsening of the insulin resistant state 

(33, 34). In the present study weight loss had no significant effect on insulin 

sensitivity. To fully elucidate the effect of insulin resistance on ATGL and HSL 

expression an intervention should be performed which significantly improves insulin 

sensitivity (e.g. exercise training or treatment with a PPAR- {gamma} agonist). It has 15 

been shown that ATGL is subject to transcriptional control by PPAR- {gamma} 

mediated signals (22). In addition, Festuccia et al. recently showed that treatment of 

mice with the PPAR- {gamma} agonist rosiglitazone significantly increased ATGL 

and HSL mRNA expression (35), indicating that an improved insulin sensitivity 

increases adipose tissue ATGL and HSL expression. Finally, we cannot rule out that a 20 

decreased ATGL and HSL expression is a primary defect in obesity. Interestingly, 

ATGL-deficient mice have an increased fat storage in adipose and non-adipose tissues 

(36). Further, studies in first-degree relatives of obese subjects have demonstrated an 

impaired lipolytic function of adipocytes, suggesting that also primary adipocyte 

lipolysis defects are present in obesity (13). Expression of HSL is markedly decreased 25 
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in subcutaneous adipocytes and differentiated preadipocytes from obese subjects, 

suggesting a decreased HSL expression to be a primary defect in obesity {Large, 1999 

#244; Lofgren, 2002 #263; Viguerie, 2005 #259; Reynisdottir, 1994 #234}. Also 

several studies suggest that genetic variation in the HSL and ATGL gene are 

associated with obesity and type 2 diabetes mellitus (37, 38). Further research is 5 

needed to elucidate the exact order of events. 

The coregulation between ATGL and HSL protein levels or mRNA expression (39) 

during different dietary conditions suggests that the two enzymes belong to a common 

regulatory network with tight transcriptional control. A recent study indicated that 

HSL is the major lipase catalyzing the rate-limiting step in stimulated lipolysis, 10 

whereas ATGL participates in basal lipolysis (39). Insufficient time has passed since 

the discovery of ATGL to understand the nature of its regulation. However from the 

limited data available, it appears that in comparison to HSL, ATGL is not a direct 

target for protein kinase A (PKA)-mediated phosphorylation and is localized on the 

lipid droplet in the basal and hormone-stimulated state of the cell (9). These 15 

observations suggest that ATGL is not activated by phosphorylation and translocation 

to the lipid droplet as demonstrated for HSL. Instead, an activator protein regulates 

ATGL activity: CGI-58 (comparative gene identification 58) (40) (41). It will be 

important to establish whether the decreased HSL and ATGL protein and mRNA 

expression observed in insulin resistant subjects is also accompanied by a decreased 20 

activity of both enzymes. 

In conclusion, ATGL and HSL expression are decreased in the obese insulin resistant 

state. When the obese state has already developed insulin resistance or 

hyperinsulinemia seem to be the major determinant of ATGL and HSL protein 

expression independent of fat mass. On the other hand, there are also indications that 25 
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a reduced ATGL and HSL protein expression is a primary defect in obesity. Weight 

reduction decreased ATGL and HSL expression, independent of circulating insulin 

and FM, indicating that also other factors (e.g. leptin) relate to ATGL and HSL 

protein expression in obese subjects. 

5 
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