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Abstract

We consider a stochastic scheduling problem in which there is uncertainty about parame-
ters of the probability distribution of the processing times. We restrict ourselves to the setting
in which there are two different classes of jobs. The processing times of the jobs are assumed
to be exponentially distributed with parameters ϑ and µ, depending on the class of the job.
We consider a Bayesian framework in which µ is assumed to be known, whereas the value
of ϑ is unknown. However, the scheduler has certain beliefs about this parameter and by
processing jobs from this class, the scheduler can update his beliefs about ϑ.

For the traditional stochastic scheduling variant, in which the parameters are known, of
the problem under consideration, the policy that always processes a job with shortest expected
processing time (SEPT) is an optimal policy. However, it has been shown that in the Bayesian
framework, it is not an optimal policy. Therefore, we analyze the quality of SEPT. We show
that SEPT is at most a factor 5/4 worse than an optimal policy and that it is asymptotically
optimal.

1 Introduction

Over the last few decades a vast amount of research has focused on stochastic scheduling problems,
see, e. g., [17]. A full range of articles is concerned with criteria that guarantee the optimality of
simple policies for special scheduling problems or the quality of non-optimal policies. All these
papers have in common that the processing times of the jobs are random variables of which
the parameters like expected value are known for certain. In this paper, we deviate from this
assumption. That is, we study a stochastic scheduling problem in which also the parameters of
the processing time distributions are uncertain. By adopting a Bayesian methodology, we can
learn about these parameters by processing jobs and observing their processing times. We study a
policy that is optimal for the classical stochastic scheduling problem, but is not necessarily optimal
in the Bayesian framework. We show that this policy is only a constant factor away from optimal
and is even asymptotically optimal.

Problem definition. Given is a set of jobs each of which needs to be scheduled on a single
machine. This machine can process at most one job at a time and once a job has been started it
must remain on the machine until completion, i. e., preemption of jobs is not allowed. Moreover,
the machine and all jobs are available for processing from the beginning. The processing time
of a job is a random variable. The goal is to minimize the total completion time,

∑
j Cj , in

expectation. In traditional stochastic scheduling, we assume that the parameters of the processing
time distributions are known. In this paper, we deviate from this assumption by assuming that
these parameters are not known. However, we do have prior beliefs on their values which will be
updated over time when new jobs are being processed.

The solution to a stochastic scheduling problem is not a simple schedule, but a so-called schedul-
ing policy. We follow the notion of scheduling policies as proposed by Möhring, Radermacher, and
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Weiss [14, 15]. Roughly spoken, a scheduling policy makes scheduling decisions at certain decision
time points, and these decisions are based on information on the observed past, as well as the
a priori knowledge of the input data of the problem. The policy, however, must not anticipate
information about the future, such as the actual realizations of the processing times of jobs that
have not yet been completed.

Whenever the parameters of the random variables are known, then an optimal policy for
the problem under consideration is the Shortest Expected Processing Time policy (SEPT) [19]: as
soon as the machine is idle, start processing the uncompleted job with shortest expected processing
time. However, from [9] it follows that whenever these parameters are uncertain, SEPT is not
necessarily optimal.

In this paper, we consider only two job classes JA and JB , a setting that has been previously
studied by Burnetas and Katehakis [1] and Hamada and Glazebrook [9]. Classes JA and JB

consist of nA respectively nB independent jobs. The processing time of a job in class JA is a
random variable, which is exponentially distributed with parameter ϑ. Here, ϑ is assumed to
be unknown but fixed. In this way, the problem distinguishes itself from traditional stochastic
scheduling problems. The processing time of a job in class JB is a random variable which is
exponentially distributed with known parameter µ. Let X and Y represent two generic random
variables for the processing times of a job of class JA and JB , respectively. Note that E [Y ] = 1

µ .

Furthermore, let random variable Xj denote the processing time of the jth job of class JA.
Bayesian methodology offers a method to formally recognize the uncertainty regarding ϑ. For

some θ > 0, let g(θ) := Pr [ϑ = θ] denote a probability density function expressing how strongly
we believe that the value of ϑ equals θ. g(θ) is also referred to by prior, since it encapsulates
all our knowledge regarding ϑ prior to seeing any realization of processing times of jobs of class
JA. In this paper, we assume g(θ) to be a gamma distribution with parameters ω > 0 and
α > 1. Furthermore, let g(θ|x1, . . . , xn) := Pr [ϑ = θ|X1 = x1, . . . , Xn = xn] be a probability
density function expressing our beliefs regarding the value of ϑ, once n jobs of class JA have been
completed with processing time realizations x1 up to xn. g(θ|x1, . . . , xn) is a gamma distribution
with parameters ωn := ω +

∑n
i=1 xi and αn := α + n, since the gamma and exponential are

conjugate distributions. This result was already mentioned in Section 9.4 of [3] and is also trivially
derived from Bayes’ theorem for probability density functions.

These updates of beliefs regarding the unknown value of ϑ enable us to update our beliefs
towards the processing time of the next job of class JA as well. The probability density function
expressing these beliefs after having completed n jobs of class JA is denoted by f(xn+1) :=
Pr [Xn+1 = xn+1|X1 = x1, . . . , Xn = xn], which is equal to

f(xn+1) =

∫ ∞
0

f(xn+1|θ)g(θ|x1, . . . , xn)∂θ

=

∫ ∞
0

θe−θxn+1
ωαnn

Γ(αn)
θαn−1e−θωn∂θ =

αnω
αn
n

(ωn + xn+1)αn+1
.

Furthermore, straightforward integration yields the first moment of Xn+1

E [Xn+1|x1, . . . , xn] =

∫ ∞
0

xn+1 f(xn+1)∂xn+1 =
wn

αn − 1
.

In traditional stochastic scheduling an optimal policy is one that minimizes the total completion
time in expectation. In the Bayesian framework, an optimal policy also minimizes the total
completion time in expectation, but also underlies the uncertainty about the parameter ϑ, i. e.,

E [OPT] = inf
Π

Eg

∑
j

CΠ
j

 ,
where E [OPT] denotes the expected sum of completion times for the optimal policy OPT and CΠ

j

denotes the random variable of the completion time of job j under policy Π.
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In terms of decision making, SEPT and OPT could be interpreted as having a short-term and
long-term view, respectively. SEPT only processes a job of class JA in case the expected processing
time of this job is minimal. OPT, however, might choose to process a job of class JA for which
the expected processing time is not necessarily minimal. As a trade-off, OPT benefits from the
additional information which is acquired regarding the uncertain parameter ϑ. This information
could then lead to better future decision making and a lower sum of expected completion times.
From the above reasoning, one might expect SEPT to perform suboptimal. On the other hand, it
is well-known that SEPT is optimal for stochastic single machine scheduling, see [19]. This raises
the question how effective SEPT is within a Bayesian framework. A conclusive answer is presented
in this paper.

Related work. Stochastic scheduling has been an active field of research for more than 40 years.
In stochastic scheduling, the processing times of jobs are random variables for which the parameters
of the underlying distribution are known. Rothkopf [19] shows that WSEPT (Weighted Shortest
Expected Processing Time) is an optimal policy for the stochastic single machine scheduling
problem, where the objective is to minimize the sum of weighted expected completion times in the
absence of preemption. Sevcik [21] and Weiss [25] present an optimal policy for the same problem
when preemption is allowed. Pinedo [16] considers the problem with due dates and release dates.

Weiss [23, 24] analyzes the performance of WSEPT for the stochastic parallel machine schedul-
ing problem. His bounds yield asymptotic optimality of WSEPT for a certain class of pro-
cessing time distributions. The first guarantee on the quality of an approximative policy was
given by Möhring, Schulz, and Uetz [13]. Other approximative policies have been considered
in [22, 11, 20, 12, 2].

The scheduling problem studied in this paper is a Bayesian version of the problem discussed
in [19]. To the best of our knowledge, there are only few other papers that also apply Bayesian
methodology to stochastic scheduling problems. The pioneering paper of Gittins and Glaze-
brook [6] considers the problem of allocating processing time among jobs at every decision point.
The processing time of each job is a random variable with probability density function depending
on the same unknown parameter. The beliefs over this parameter are updated every time a job
is completed or preempted. The optimal schedule is obtained by calculating appropriate dynamic
allocation indices, which were first proposed by [7].

There are several other papers with results based on dynamic allocation indices. In Hamada
and Glazebrook [9], optimal policies are obtained for a similar problem setting as discussed in
this paper. They consider the problem with multiple job classes instead of two. Furthermore,
they assign a weight to each job of a certain class. After formulating the problem as a dynamic
program, optimal policies are derived using dynamic allocation indices which are similar to the
ones constructed in [4, 5]. Although they present the relevant indices for small instances, it is
hard to retrieve them for large values of α or nA, since the calculations require solving non-linear
equations recursively.

Burnetas and Katehakis [1] also study a problem setting with two job classes, similar to the
one discussed in this paper. Their analysis does neither limit the processing time of a job to be
exponentially distributed nor the unknown parameter to be drawn from a gamma distribution. For
this problem, they derive dynamic programming optimality conditions and show that an optimal
policy does not depend on nB . This simplifies the optimality conditions allowing for the problem
to be modeled as a stopping problem. Thereafter, they obtain characterizations concerning the
structure and properties of the optimal sequential allocation policies, for the case with processing
times belonging to an exponential family with a single parameter. Finally, a policy is stated that
approximates the decisions made by an optimal policy, in case of nA approaching infinity.

Rieder and Weishaupt [18] study the problem of a single server that has to schedule two classes
of jobs with linear waiting costs. Probabilities are assigned to each job indicating whether the job
leaves or stays in the system and thereby changes its class. A Bayesian approach is taken with
respect to the unknown probabilities. The objective is to minimize the expected total cost over a
finite planning horizon.
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Glazebrook and Owen [8] seek to quantify the difference between using scheduling policies
based on Bayesian methodology and classical stochastic scheduling policies on a single machine.
This difference is called the Value of an Adaptive Solution, because classical stochastic scheduling
policies do not adapt their believes on the probability distributions. For a certain class of Bayesian
scheduling problems, upper bounds on this difference are computed.

The first paper to provide an extension to multiple machines is Hamada and Tamaki [10].
They study the problem of assigning jobs of two classes, equivalent to those in this paper, to two
identical machines. The problem is modeled as a dynamic program. For the special cases with
either nA = 1 or nB = 1, explicit formulas for the sum of expected completion times are derived.
Additionally, an optimal policy is claimed based on the ideas of dynamic allocation indices, for
the case when nA = 1.

Our contribution. Whereas Glazebrook and Owen [8] try to bound the performance of policies
that do not learn about jobs of class JA in terms of an optimal policy, we study the policy SEPT
that adapts its beliefs about the mean processing time of class JA jobs. In this paper, we give a
worst-case performance guarantee on the quality of SEPT. That is, we give an upper bound on
the ratio E [SEPT] /E [OPT], where E [SEPT] and E [OPT] denote the expected sum of completion
times for SEPT and OPT. We will give two bounds on the performance guarantee of SEPT for the
case that there is only one job in class JB . This first bound shows that SEPT is asymptotically
optimal, whereas the second bound gives a performance guarantee of 5/4 also for few jobs of class
JA. Finally, we remark that due to Theorem 3.4 and Remark 3.5 of Burnetas and Katehakis [1]
we conjecture that our results can be extended to the general case of arbitrary nB ≥ 0.

The remainder of this paper is organized as follows. In Section 2, we discuss a dynamic program
that provides an optimal policy from [9] as well as a few more preliminary results and notation.
The asymptotical optimality of SEPT is shown in Section 3 and in Section 4 we give a better
bound whenever there are only few class JA jobs.

2 Dynamic programming formulation

In this section, some results and notation are stated that are used throughout the remainder of
the paper. First, we formulate this problem at hand as a dynamic program, adopting the notation
of [9].

Let (nA, nB , ω, α) ∈ Z+ × Z+ × R>0 × R>1 be a state vector encompassing all relevant in-
formation of the state the system is in. It consists of the number of jobs in class JA and JB

as well as the parameters for the prior of the current belief for ϑ. Note that we do not include
the parameter µ of distribution for the jobs in class JB in this state as this parameter does not
change during the process. If in state (nA, nB , ω, α), a job of class JA is processed and completed
having realization x, then the state changes to (nA − 1, nB , ω + x, α + 1). On the other hand,
if in state (nA, nB , ω, α) a job of class JB is processed and completed, then the state changes to
(nA, nB − 1, ω, α). Let E [SEPT(nA, nB , ω, α)] and E [OPT(nA, nB , ω, α)] be the expected sum
of completion times when, respectively, SEPT and OPT are adopted from state (nA, nB , ω, α)
onwards. Further, let FA(nA, nB , ω, α) denote the sum of the expected completion times of a
policy which first processes a job of class JA (assuming nA ≥ 1) and follows an optimal policy
afterwards. Similarly for FB(nA, nB , ω, α).

Hamada and Glazebrook [9] gave the following dynamic program to compute the optimal
policy.

E [OPT(nA, nB , ω, α)] = min
{
FA(nA, nB , ω, α);FB(nA, nB , ω, α)

}
∀ nA, nB ≥ 1
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with

E [OPT(nA, 0, ω, α)] = FA(nA, 0, ω, α) =
ω

α− 1

nA∑
i=1

i ∀ nA ≥ 0,

E [OPT(0, nB , ω, α)] = FB(0, nB , ω, α) =
1

µ

nB∑
i=1

i ∀ nB ≥ 0.

As the length of the first job to be processed by a policy influences the completion time of all jobs,
straightforward calculations show that

FA(nA, nB , ω, α) = (nA + nB)
ω

α− 1
+

∫
x

E [OPT(nA − 1, nB , ω + x, α+ 1)] f(x)∂x ∀ nA ≥ 1,

FB(nA, nB , ω, α) = (nA + nB)
1

µ
+ E [OPT(nA, nB − 1, ω, α)] ∀ nB ≥ 1,

where f(x) is the probability density function of the processing time of a job of class JA.
In the following lemma, we show that if SEPT starts processing a job of class JA, then OPT

will do so too.

Lemma 1. Suppose the system is in state (nA, 1, ω, α). If SEPT starts processing a job of class
JA, then OPT starts processing a job of class JA.

Proof. By the dynamic programming formulation, OPT starts processing a job of class JA if
FA(nA, 1, ω, α) ≤ FB(nA, 1, ω, α). SEPT starts processing a job of class JA, so 1

µ ≤
ω
α−1 . We

have,

FB(nA, 1, ω, α) =
nA + 1

µ
+ E [OPT(nA, 0, ω, α)] =

nA + 1

µ
+

ω

α− 1

nA∑
i=1

i.

Further,

FA(nA, 1, ω, α) = (nA + 1)
ω

α− 1
+

∫
x

E [OPT(nA − 1, 1, ω + x, α+ 1)] f(x)∂x

≤ (nA + 1)
ω

α− 1
+

∫
x

FB(nA − 1, 1, ω + x, α+ 1)f(x)∂x

= (nA + 1)
ω

α− 1
+

∫
x

(
nA
µ

+
ω + x

α

nA−1∑
i=1

i

)
f(x)∂x =

nA
µ

+
ω

α− 1

(
1 +

nA∑
i=1

i

)
.

Combining both expressions, we find

FA(nA, 1, ω, α)− FB(nA, 1, ω, α)

≤

(
nA
µ

+
ω

α− 1

(
1 +

nA∑
i=1

i

))
−

(
nA + 1

µ
+

ω

α− 1

nA∑
i=1

i

)
=

ω

α− 1
− 1

µ
≤ 0.

3 Asymptotic optimality of SEPT

In this section, we show that whenever the number of jobs of class JA tends to infinity, the ratio
E [SEPT] /E [OPT] tends to 1. Before we prove this, we first provide the following lemmas.

Lemma 2. For nA ≥ 2,∫
x

E [OPT(nA, 1, ω + x, α+ 1)] f(x)∂x >
1

µ
+

ω

α− 1

nA∑
i=1

i.
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Proof. First, we prove the statement for nA = 2.∫
x

E [OPT(2, 1, ω + x, α+ 1)] f(x)∂x

=

∫
x

min

{
3

1

µ
+ 3

ω + x

α
; 3
ω + x

α
+

∫
x2

E [OPT(1, 1, ω + x+ x2, α+ 2)] f(x2)∂x2

}
f(x)∂x

>

∫
x

(
1

µ
+ 3

ω + x

α

)
f(x)∂x =

1

µ
+ 3

ω

α− 1
=

1

µ
+

ω

α− 1

2∑
i=1

i.

Next, assume that, given some k ≥ 2, the statement is correct for all nA ≤ k . We will show that
it is also valid for nA = k + 1.∫
x

E [OPT(k + 1, 1, ω + x, α+ 1)] f(x)∂x

=

∫
x

min

{
k + 2

µ
+
ω + x

α

k+1∑
i=1

i; (k + 2)
ω + x

α
+

∫
x2

E [OPT(k, 1, ω + x+ x2, α+ 2)] f(x2)∂x2

}
f(x)∂x

>

∫
x

min

(
k + 2

µ
+
ω + x

α

k+1∑
i=1

i; (k + 2)
ω + x

α
+

1

µ
+
ω + x

α

k∑
i=1

i

)
f(x)∂x

>

∫
x

{
1

µ
+
ω + x

α

k+1∑
i=1

i

}
f(x)∂x =

1

µ
+

ω

α− 1

k+1∑
i=1

i,

where the first inequality follows from the induction step.

Lemma 3. For all nA ≥ 3, if FA(nA, 1, ω, α) ≤ FB(nA, 1, ω, α), then

E [OPT(nA, 1, ω, α)] >
1

µ
+

ω

α− 1

(
1 +

nA∑
i=1

i

)

Proof. If FA(nA, 1, ω, α) ≤ FB(nA, 1, ω, α), then

E [OPT(nA, 1, ω, α)] = FA(nA, 1, ω, α)

= (nA + 1)
ω

α− 1
+

∫
x

E [OPT(nA − 1, 1, ω + x, α+ 1)] f(x)∂x

> (nA + 1)
ω

α− 1
+

1

µ
+

ω

α− 1

nA−1∑
i=1

i =
1

µ
+

ω

α− 1

(
1 +

nA∑
i=1

i

)
,

where the inequality follows from Lemma 2.

Lemma 4. For all nA ≥ 1,

E [SEPT(nA, 1, ω, α)] <
1

µ
+

ω

α− 1

nA+1∑
i=1

i.

Proof. First, we prove the statement for nA = 1. If 1
µ ≤

ω
α−1 , then E [SEPT(1, 1, ω, α)] = 2

µ +
ω
α−1 ≤

1
µ + 2 ω

α−1 . Otherwise, E [SEPT(1, 1, ω, α)] = 2 ω
α−1 + 1

µ . Therefore,

E [SEPT(1, 1, ω, α)] ≤ 1

µ
+ 2

ω

α− 1
<

1

µ
+

ω

α− 1

2∑
i=1

i.
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Next, assume that, given some k ≥ 1, the statement holds for all nA ≤ k. We will show it also
holds for nA = k + 1. If 1

µ ≤
ω
α−1 , then

E [SEPT(k + 1, 1, ω, α)] =
k + 2

µ
+

ω

α− 1

k+1∑
i=1

i <
1

µ
+

ω

α− 1

k+2∑
i=1

i.

Otherwise,

E [SEPT(k + 1, 1, ω, α)] = (k + 2)
ω

α− 1
+

∫
x

E [SEPT(k, 1, ω + x, α+ 1)] f(x)∂x

< (k + 2)
ω

α− 1
+

∫
x

(
1

µ
+
ω + x

α

k+1∑
i=1

i

)
f(x)∂x =

1

µ
+

ω

α− 1

k+2∑
i=1

i,

where the inequality follows from the induction step. Hence,

E [SEPT(k + 1, 1, ω, α)] <
1

µ
+

ω

α− 1

k+2∑
i=1

i.

Using these lemmas, we can prove the following theorem

Theorem 1. For all nA ≥ 3,

E [SEPT(nA, 1, ω, α)] <
nA + 3

nA + 1
E [OPT(nA, 1, ω, α)] .

Proof. First, consider the case where FB(nA, 1, ω, α) < FA(nA, 1, ω, α). From Lemma 1, we know
that it cannot occur that OPT starts processing a job of class JB , while SEPT starts processing
a job of class JA. Therefore, if OPT starts processing a job of class JB , then SEPT will do so
too. Since there is only a single job of class JB , SEPT and OPT yield the same schedule and it
follows that E [SEPT(nA, 1, ω, α)] = E [OPT(nA, 1, ω, α)].

Next, consider the case FA(nA, 1, ω, α) ≤ FB(nA, 1, ω, α). Then, by Lemmas 3 and 4, we can
bound the value of SEPT by

E [SEPT(nA, 1, ω, α)] <
1

µ
+

ω

α− 1

nA+1∑
i=1

i

< E [OPT(nA, 1, ω, α)] + nA
ω

α− 1

< E [OPT(nA, 1, ω, α)] + nA
E [OPT(nA, 1, ω, α)]∑nA

i=1 i

<

(
1 +

2

nA + 1

)
E [OPT(nA, 1, ω, α)] =

nA + 3

nA + 1
E [OPT(nA, 1, ω, α)] ,

where the third inequality follows from Lemma 3, since

E [OPT(nA, 1, ω, α)] >
1

µ
+

ω

α− 1

(
1 +

nA∑
i=1

i

)
>

ω

α− 1

nA∑
i=1

i.

Corollary 1.

lim
nA→∞

E [SEPT(nA, 1, ω, α)]

E [OPT(nA, 1, ω, α)]
= 1.
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4 Performance guarantee for SEPT

From Theorem 1 it follows that if there are only three jobs of class JA, the performance guarantee
is bounded by 3/2. Similarly, Theorem 1 yields a performance guarantee exceeding 5/4 if the
number of jobs of class JA is less than seven. In this section, we show an improved performance
guarantee of SEPT which is at most 5/4, for any arbitrary number of jobs of class JA and a single
job of class JB .

4.1 Performance guarantee when in state (2, 1, ω, α)

In this subsection, we provide a performance guarantee of 6/5 for SEPT when there are only two
jobs of class JA. First, we state some preliminary results.

Lemma 5.

FA(2, 1, ω, α) =

{
5ω
α−1 −

(
µω
α

)α 1
µ(α−1) + 1

µ if α ≥ ωµ
4ω
α−1 + 2

µ if α < ωµ

FB(2, 1, ω, α) =
3

µ
+

3ω

α− 1

Proof. The value for FB(2, 1, ω, α) follows immediately from the fact that once the single job of
class JB has been processed, only jobs of class JA are left to be processed.

To see the value for FA(2, 1, ω, α), recall that the probability density function of the processing
time of a job of class JA is f(x) := αωα

(ω+x)α+1 . Then,

FA(2, 1, ω, α) = 3
ω

α− 1
+

∫ ∞
0

min

{
2

µ
+
ω + x

α
;

1

µ
+ 2

ω + x

α

}
f(x)∂x

We distinguish between two cases. If α ≤ ωµ, then

FA(2, 1, ω, α) = 3
ω

α− 1
+

∫ ∞
0

{
2

µ
+
ω + x

α

}
f(x)∂x =

2

µ
+ 4

ω + x

α
.

Next, if α > ωµ, then

FA(2, 1, ω, α) = 3
ω

α− 1
+

∫ α
µ−ω

0

{
1

µ
+ 2

ω + x

α

}
f(x)∂x+

∫ ∞
α
µ−ω

{
2

µ
+
ω + x

α

}
f(x)∂x

=
5ω

α− 1
+

1

µ
− 1

µ(α− 1)

(µω
α

)α
,

where the last equality follows straightforwardly from integration and rearrangement of the terms.

Lemma 6. If the first job to be processed by SEPT is of the same class as the first job to be
processed by OPT, then E [SEPT(2, 1, ω, α)] = E [OPT(2, 1, ω, α)].

Proof. If both SEPT and OPT start processing the job of class JB , then after finishing this job,
only jobs of class JA are left to be processed. Therefore, both OPT and SEPT behave the same.

On the other hand, if both SEPT and OPT start processing a job of class JA, then after
completion of this job, there is one job of class JA and one job of class JB left to be processed.
Processing this single job of class JA reveals information regarding the unknown parameter ϑ.
However, as afterwards no more jobs of class JA are to be processed, this additional piece of
information is of no value. Hence, OPT will follow SEPT.
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The lemma above implies that when both SEPT and OPT start processing a job of the same
class, the performance guarantee equals 1. Consequently, and due to Lemma 1, we can hereafter
focus on the case where SEPT starts processing a job of class JB , whereas OPT starts processing
a job of class JA. Then, 1

µ ≤
ω
α−1 and FA(2, 1, ω, α) < FB(2, 1, ω, α). The following lemma shows

that when these inequalities are valid, also α > ωµ needs to hold .

Lemma 7. If 1
µ ≤

ω
α−1 and FA(2, 1, ω, α) < FB(2, 1, ω, α), then α > ωµ.

Proof. We provide a proof by contradiction. Assume that α < ωµ. Then, 1
µ < ω

α < ω
α−1 .

Consequently, FB(2, 1, ω, α) = 3
µ + 3ω

α−1 <
2
µ + 4ω

α−1 = FA(2, 1, ω, α), yielding a contradiction.

To prove the bound on the performance guarantee for the state (2, 1, ω, α), we need to compute
the limit in the following proposition.

Proposition 1.

lim
β↓1

1

β

(
β − 1

β

)β−1

= 1

Proof. Let v(β) = β lnβ = lnβ/(1/β). It follows trivially from l’Hôpital’s rule that

lim
β↓0

v(β) = 0. (1)

Further, let w(β) = 1
β

(
β−1
β

)β−1

. Then,

lnw(β) = ln
1

β

(
β − 1

β

)β−1

= ln
(β − 1)β−1

ββ

= (β − 1) ln(β − 1)− β lnβ

and
lim
β↓1

lnw(β) = lim
β↓1
{(β − 1) ln(β − 1)− β lnβ} = 0,

where the last equality follows from (1). Since u = exp(lnu), this brings us to

lim
β↓1

w(β) = lim
β↓1

exp(lnw(β)) = exp(0) = 1,

which concludes the proof.

Theorem 2.

E [SEPT(2, 1, ω, α)] <
6

5
E [OPT(2, 1, ω, α)]

.

Proof. By Lemmas 1 and 6, we only need to consider the case in which SEPT starts processing
a job of class JB , whereas OPT first processes a job of class JA. By Lemma 7, we know that in
this case α ≥ ωµ. Moreover, as the first job to be processed by SEPT is a job of class JB , we also
have that 1

µ ≤
ω
α−1 . Hence, α− 1 ≤ ωµ ≤ α. Furthermore, it follows from Lemma 5 that

E [SEPT(2, 1, ω, α)] =
3

µ
+

3ω

α− 1
,

E [OPT(2, 1, ω, α)] =
5ω

α− 1
−
(ωµ
α

)α 1

µ(α− 1)
+

1

µ
.
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Let ξ be defined by ξ := ωµ− (α− 1). From the above considerations, we know that ξ ∈ [0, 1].
The difference between the sums of expected completion times of SEPT and OPT can be written
in terms of α and ξ as follows

∆(α, ξ) = E [SEPT(2, 1, ω, α)]− E [OPT(2, 1, ω, α)] =
2

µ
− 2ω

α− 1
+
(ωµ
α

)α 1

µ(α− 1)

=
2

µ
− 2(ξ + α− 1)

µ(α− 1)
+

(
ξ + α− 1

α

)α
1

µ(α− 1)
. (2)

Standard calculus techniques show that ∆(α, ξ) is decreasing in ξ on the interval ξ ∈ [0, 1] for
any α > 1 and any µ > 0. Moreover, it can be shown that ∆(α, 0) is decreasing in α for α > 1.
Therefore, we can bound (2) by

∆(α, ξ) ≤ ∆(α, 0) ≤ lim
α↓1

∆(α, 0) = lim
α↓1

1

µ(α− 1)

(
α− 1

α

)α
=

1

µ
, (3)

by Proposition 1.
Next, we rewrite the sum of expected completion times of OPT in terms of α and ξ

E [OPT(2, 1, ω, α)] =
5ω

α− 1
−
(ωµ
α

)α 1

µ(α− 1)
+

1

µ

=
5(ξ + α− 1)

µ(α− 1)
−
(
ξ + α− 1

α

)α
1

µ(α− 1)
+

1

µ
.

Standard calculus techniques show that this value is increasing in ξ on ξ ∈ [0, 1]. Therefore,

E [OPT(2, 1, ω, α)] >
6

µ
−
(
α− 1

α

)α
1

µ(α− 1)
>

5

µ
, (4)

where the last inequality is due to the fact that
(
α−1
α

)α 1
α−1 is decreasing in α for α > 1 and, by

Proposition 1, we know that this value tends to 1 when α tends to 1.
Finally, combining (2), (3), and (4) yields the desired result

E [SEPT(2, 1, ω, α)] = E [OPT(2, 1, ω, α)] + ∆(α, ξ) ≤ E [OPT(2, 1, ω, α)] +
1

µ

<
6

5
E [OPT(2, 1, ω, α)] .

The bound in the above theorem is tight. For ε > 0, let α = 1 + ε, ω = 1 and µ = ε.
Then, 1

µ = ω
α−1 and we assume that SEPT in this case processes a job of class JB . Hence,

E [SEPT(2, 1, ω, α)] = 6
ε , whereas E [OPT(2, 1, ω, α)] = 6

ε −
1
ε2

(
ε

1+ε

)1+ε

, which gives

lim
ε→0

E [SEPT(2, 1, ω, α)]

E [OPT(2, 1, ω, α)]
= lim
ε→0

6

6− 1
ε

(
ε

1+ε

)1+ε =
6

5

4.2 Performance guarantee when in state (nA, 1, ω, α)

Theorem 3.

E [SEPT(nA, 1, ω, α)] <
5

4
E [OPT(nA, 1, ω, α)] .
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Proof. We claim that if SEPT and OPT start with different jobs, then for all nA ≥ 3

E [OPT(nA, 1, ω, α)] ≥ 4

5
E [SEPT(nA, 1, ω, α)] .

Note that if SEPT and OPT start processing a job of the same class, then either they have the
same sum of expected completion times, in case they both start processing the job of class JB , or
when they both start processing a job of class JA, inductively from the claim or Theorem 2, we
have that E [SEPT(nA, 1, ω, α)] < 5

4E [OPT(nA, 1, ω, α)].
As SEPT and OPT start processing jobs of different classes, we know by Lemma 1 that OPT

will first process a job of class JA, and the first job to be processed by SEPT is a job of class JB .
Then, it follows that 1

µ ≤
ω
α−1 . Moreover, the value of SEPT is given by

E [SEPT(nA, 1, ω, α)] =
nA + 1

µ
+

ω

α− 1

nA∑
i=1

i =
nA + 1

µ
+
nA(nA + 1)

2

ω

α− 1
,

and the optimal solution value equals

E [OPT(nA, 1, ω, α)] = (nA + 1)
ω

α− 1
+

∫
x

E [OPT(nA − 1, 1, ω + x, α+ 1)] f(x)∂x.

By Lemma 2, we can bound this by

E [OPT(nA, 1, ω, α)] > (nA + 1)
ω

α− 1
+

1

µ
+

ω

α− 1

nA−1∑
i=1

i

= (nA + 1)
ω

α− 1
+

1

µ
+
nA(nA − 1)

2

ω

α− 1

Finally, since 1
µ ≤

ω
α−1 , we have

E [OPT(nA, 1, ω, α)] ≥ 4(nA + 1)

5µ
+

(
5n2

A − 3nA + 12

10

ω

α− 1

)
≥ 4

5

(
nA + 1

µ
+
nA(nA + 1)

2

ω

α− 1

)
=

4

5
E [SEPT(k + 1, 1, ω, α)] .

5 Concluding remarks

Theorem 1 establishes that SEPT is asymptotically optimal when the number of jobs of class JA

tends to infinity. Intuitively the result is explained as follows. When processing and completing
a job of class JA, additional information is gained regarding the unknown parameter ϑ. This
information will lead to better decision making in the future. In case the expected processing time
of a job of class JA is not minimal a trade-off arises. For small nA, the extra information to be
gained might still justify scheduling a job of class JA. However, for large nA, the marginal effect
of this additional piece of information to our beliefs regarding ϑ is minor, as these are already
based on a large number of observations. Consequently, the scheduling decisions made by SEPT
almost always coincide with those made by OPT, when nA is large.

All obtained results are for two job classes JA and JB with nB = 1. Burnetas and Katehakis
[1] study the same problem with arbitrary nB ≥ 0. From Theorem 3.4 and Remark 3.5 of their
paper, it follows that in any optimal policy all jobs of class JB are processed consecutively. As
processing a job of class JB reveals no information regarding ϑ, SEPT processes all jobs of class
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JB consecutively as well. Therefore, we believe our results can be generalized without major
modifications: every time we consider a single job of class JB , a block of all jobs in class JB could
be considered instead. Finally, we expect to be able to extend our analysis to multiple job classes
as well, using results and insights from Hamada and Glazebrook [9]. They consider multiple job
classes, where the processing time of a job of each class depends on a single unknown parameter.
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