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Risk allocation games are cooperative games that are used to attribute the risk of a financial entity to its
divisions. In this paper, we extend the literature on risk allocation games by incorporating liquidity con-
siderations. A liquidity policy specifies state-dependent liquidity requirements that a portfolio should
obey. To comply with the liquidity policy, a financial entity may have to liquidate part of its assets, which
is costly.

The definition of a risk allocation game under liquidity constraints is not straightforward, since the
presence of a liquidity policy leads to externalities. We argue that the standard worst case approach
should not be used here and present an alternative definition. We show that the resulting class of trans-
ferable utility games coincides with the class of totally balanced games. It follows from our results that
also when taking liquidity considerations into account there is always a stable way to allocate risk.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction game, the cooperative game where a player is a portfolio and the
If a financial enterprise (bank, insurance company, investment
fund, etc.) consists of several divisions (individuals, products, sub-
portfolios, risk factors, etc.), not only is it important to measure the
risk of the entire financial enterprise properly, but also to allocate
this risk to the divisions using a proper risk allocation method.

Risk allocation has many applications: the division of capital
reserves among business units by financial institutions; strategic
decision making regarding new business lines; product pricing;
performance measurement; the formation of risk limits; see
Denault (2001), Kalkbrener (2005), Buch and Dorfleitner (2008),
Homburg and Scherpereel (2008), Kim and Hardy (2009), Csóka
et al. (2009) and Menchero and Davis (2011).

The various applications have the following question in com-
mon: how to allocate the risk of the financial enterprise over its
constituents? A natural approach to answer this question comes
from cooperative game theory. First, one defines a risk allocation
payoffs of a coalition are negatively related to the risk of the coali-
tion’s portfolio.

Next, the risk of a portfolio is measured by an appropriate
method. In particular, we advocate to use coherent measures of
risk (Artzner et al., 1999), which are defined by four axioms: mono-
tonicity, subadditivity, positive homogeneity, and translation
invariance. Csóka et al. (2007) show that these axioms are sup-
ported by a natural general equilibrium approach to measure risk.
Of these axioms, subadditivity is the most essential one, and cap-
tures the notion that the risk of the financial enterprise is at most
as large as the sum of the risks of its divisions.

Finally, one can use one of the point-valued solution concepts in
cooperative game theory like the Shapley value (Shapley, 1953) or
the nucleolus (Schmeidler, 1969) to attribute risk to the players, or
one of the set-valued solution concepts like the core (Gillies, 1959)
to determine stable allocations of risk.

Liquidity is a major concern in financial markets. This is most
certainly the case in times of liquidity crises (Brunnermeier and
Pedersen (2008) list the Black Monday in 1987, the U.S.-Iraq war
in 1990, the fall of LTCM in 1998, and the subprime crisis in
2007), but also in normal times the liquidity of an asset is of tre-
mendous importance. In recognition of this fact, MSCI has recently
introduced LiquidityMetrics, whereby the liquidity is estimated for
a large range of assets (Acerbi and Szekeres, 2013).
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Acerbi and Scandolo (2008) extend the axioms of coherent risk
measures to incorporate two types of liquidity considerations.
First, requirements on the composition of the portfolio, captured
by the so-called liquidity policy and, second, the liquidity of asset
markets as expressed by marginal demand curves, corresponding
to the order books of the assets at a given future point in time.

In this paper, we incorporate liquidity considerations in risk
allocation. Doing so is not straightforward, since the imposition of
a liquidity policy generates strong externalities among the divisions
of a financial enterprise. Indeed, any division of the enterprise can
liquidate some of its assets in order to satisfy the liquidity policy,
and the more assets one division liquidates, the less assets have
to be liquidated by other divisions. The standard approaches to
define a game in characteristic function form in the presence of
externalities are a-effectiveness and b-effectiveness as suggested
by Aumann (1961), thereby generalizing the two-player case trea-
ted by von Neumann and Morgenstern (1944) to the case with an
arbitrary number of players.

The notion of a-effectiveness defines the payoff of a coalition
as the payoff it can achieve irrespective of the actions taken by
its complement. In a sense, the coalition acts first in anticipation
of the worst actions its complement can take. The notion of b-
effectiveness is less stringent and defines the payoff of a coali-
tion as what it can achieve for sure given the worst actions of
its complement, so now the complementary coalition acts first.
We will argue that as soon as the liquidity considerations are
non-trivial, the two standard approaches should not be applied.
We also argue that the approach where the portfolio of the coa-
lition’s complement is ignored, or equivalently, put equal to zero,
is not satisfactory.

Rather than taking a worst-case approach for the behavior of
the complementary coalition, we will fix the portfolio holdings of
the players outside the coalition to their initial values, thereby
placing the burden of satisfying the liquidity policy entirely on
the coalition itself, but not putting an extra burden because of
adversary behavior of the coalition’s complement. The resulting
cooperative games with transferable utility are called risk alloca-
tion games with liquidity constraints where, as we demonstrate
in an example, adding liquidity considerations can lead to a strik-
ingly different risk allocation.

Our main theorem claims that the class of risk allocation
games with liquidity constraints is totally balanced, thereby gen-
eralizing the result for risk allocation games without liquidity
constraints in Csóka et al. (2009). A direct consequence of this
result is that risk allocation games with liquidity constraints
have a non-empty core. Thus it follows that even when taking
liquidity considerations into account, there is always a stable
way to allocate risk.

It has been shown in Csóka et al. (2009) that any totally bal-
anced game is generated by some risk allocation game without
liquidity constraints. Since a risk allocation game without liquidity
considerations results as a special case when the liquidity policy is
trivial and assets are perfectly liquid, it holds that any totally bal-
anced game is generated by some risk allocation game with liquid-
ity constraints. We therefore obtain an equivalence between the
class of risk allocation games with liquidity constraints and the
class of totally balanced games.

The structure of the paper is as follows. In Section 2 we set up risk
environments with liquidity considerations and in Section 3 we
define risk allocation games with liquidity constraints. Section 4
contains our main theorem and Section 5 concludes.

2. Risk environments with liquidity considerations

Acerbi and Scandolo (2008) study coherent measures of risk in a
framework where portfolios are subject to liquidity considerations.
Csóka et al. (2009) study risk allocation games that are generated
by coherent measures of risk in a set-up where liquidity consider-
ations are absent. In this section we extend the analysis of Csóka
et al. (2009) and we define risk environments that take liquidity
considerations into account. We denote such risk environments
by ðN; J; S;p; h;m; L;qÞ.

The group of players in a risk environment is denoted by N, it
consists of the n divisions of a financial enterprise, and it is referred
to as the firm. Each division holds cash as well as assets belonging
to a set J. The initial portfolio hi ¼ ðhi

0; h
i
JÞ 2 R� RJ of division i 2 N

shows the amounts of cash and assets held initially by division i.
The initial portfolio of the firm is given by the aggregate portfolio
hðNÞ ¼

P
i2Nhi. We denote the space of portfolios by P ¼ R� RJ .

Cash has a number of special properties which we explain in the
sequel. The addition of an amount of cash a 2 R to a portfolio
p 2 P is denoted by p� a and results in the portfolio q 2 P defined
by q0 ¼ p0 þ a and qj ¼ pj; j 2 J. The tuple of the initial portfolios of
the various divisions is denoted by h ¼ ðhiÞi2N .

The future value of the initial portfolio is subject to uncertainty.
One out of a set S of possible states of nature materializes in the
future, where state of nature s 2 S occurs with probability ps > 0.
Clearly, it holds that

P
s2Sps ¼ 1. The value of the initial portfolio

in state s depends on the order books for the various assets and
the liquidity policy of the firm, both of which are allowed to be
state dependent. We follow Çetin et al. (2004) and Jarrow and
Protter (2005) in modeling the order book for asset j in state s by
a marginal demand curve ms

j . A function is càdlàg if it is right con-
tinuous with left limits and làdcàg if it is left continuous with right
limits.

Definition 2.1. The marginal demand curve (MDC) for asset j 2 J in
state s 2 S is given by the map ms

j : R n f0g# R satisfying

(i) ms
j ðxÞP ms

j ðx0Þ if x < x0;
(ii) ms

j is càdlàg at x < 0 and làdcàg at x > 0.

The amount ms
j ðxÞ for x > 0 expresses the marginal bids that

have been made to buy an amount x of asset j. Similarly, ms
j ðxÞ

for x < 0 represents the marginal asks that have been made for
an amount x of asset j to be sold. We call ms

j ð0
þÞ the best bid and

ms
j ð0
�Þ the best ask price of asset j.

The part of the MDC corresponding to negative (positive) values
of x corresponds to the demand (supply) of the asset by others.
MDCs can therefore be used to represent both demand and supply
side constraints in liquidity. Note that the MDC is not defined at
zero, and continuity with left/right limits allows for jumps to arbi-
trarily low numbers for positive values of x and to arbitrarily high
numbers for negative values of x.

So far the issue of liquidity has not been considered at all in risk
allocation games. Implicitly, it has been assumed that the MDCs
are all flat, corresponding to perfectly liquid asset markets.

Definition 2.2. Asset j 2 J is perfectly liquid if for every s 2 S, there
is c 2 R such that for all x 2 R n f0g; ms

j ðxÞ ¼ c.

Since the constant c is allowed to depend on s, the price against
which an asset can be bought or sold is allowed to be stochastic,
even when the asset market is perfectly liquid.

The MDC can be used to calculate the liquidation value of a
portfolio.

Definition 2.3. The liquidation mark-to-market value of a portfolio
p 2 P in state s 2 S is defined by

‘sðpÞ ¼ p0 þ
X
j2J

Z pj

0
ms

j ðxÞdx: ð1Þ
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The liquidation mark-to-market value of a portfolio equals the
portfolio’s amount of cash plus the proceeds of selling all long posi-
tions minus the payments needed to close short positions. Acerbi
and Scandolo (2008) prove the following result.
Proposition 2.4. For every s 2 S, the function ‘s : P # R is continuous
and concave.

The set of portfolios attainable from some given portfolio p 2 P
in state s 2 S is given by

AsðpÞ ¼ fq 2 Pjq0 ¼ ‘sðp0;pJ � qJÞg:

The portfolio q 2 AsðpÞ is obtained by liquidating the amounts
pJ � qJ of assets in J and adding the proceeds to p0.

Proposition 2.5. For every s 2 S, for every p 2 P, the set AsðpÞ is
closed.
Proof. Let ðqrÞr2N be a sequence in AsðpÞ with limit �q 2 P. We have
to show that �q 2 AsðpÞ. For every r 2 N, it holds that
qr

0 ¼ ‘
sðp0; pJ � qr

J Þ. By Proposition 2.4 it holds that ‘s is continuous,
so

�q0 ¼ ‘sðp0;pJ � �qJÞ:

It now follows from the definition that �q 2 AsðpÞ. h

The liquidity policy (Acerbi and Scandolo, 2008) incorporates
the requirements imposed by a regulator or the contractual obliga-
tions that have to be met, and specifies that the portfolio of the
firm should belong to the set Ls � P in state of nature s 2 S. We
denote L ¼ ðLsÞs2S. The state dependence of the liquidity policy
enables us to model regulatory risk as well as short sale constraints
which depend on market conditions as expressed in the prevailing
MDC.

The literature on risk allocation games has so far ignored liquid-
ity policies.

Definition 2.6. The liquidity policy is trivial if for every s 2 S it
holds that Ls ¼ P. Throughout the paper we make the following
assumption on L.
Assumption 2.7. For every s 2 S, it holds that

(i) Ls is closed and convex;
(ii) for every p 2 Ls, for every a > 0; p� a 2 Ls;

(iii) AsðhðNÞÞ \ Ls – ;.

The first two items in Assumption 2.7 are inherited from Acerbi
and Scandolo (2008). Closedness as required in Assumption 2.7. (i)
is a standard technical assumption. Convexity means that if two
portfolios are acceptable, then so is their weighted average.
Assumption 2.7. (ii) implies that it is always acceptable to have
more cash. Assumption 2.7. (iii) guarantees that in every state
there is a feasible choice to meet the requirements of the liquidity
policy. Assumption 2.7 is clearly satisfied if the liquidity policy is
trivial.

In case all assets are perfectly liquid, the liquidity policy is irrel-
evant. This is the case which has been studied in the existing liter-
ature on risk allocation games. Even if the liquidity policy is trivial,
the liquidity of assets can matter if there is a bid-ask spread.

For a portfolio p 2 P, we denote the assets hold long by JþðpÞ ¼
fj 2 J j pj > 0g and the assets hold short by J�ðpÞ ¼ fj 2 J j pj < 0g.

Definition 2.8. The uppermost mark-to-market value of a portfolio
p 2 P in state s 2 S is defined by
usðpÞ ¼ p0 þ
X

j2JþðpÞ

ms
j ð0
þÞpj þ

X
j2J�ðpÞ

ms
j ð0
�Þpj: ð2Þ

The uppermost mark-to-market value of a portfolio can be
interpreted as the value of a portfolio in the long run. Long posi-
tions are valued using the best bid prices and short positions using
the best ask prices. In case all asset markets are perfectly liquid, the
uppermost mark-to-market value of a portfolio is equal to its liqui-
dation mark-to-market value. Acerbi and Scandolo (2008) prove
the following result.
Proposition 2.9. For every s 2 S, the function us : P # R is contin-
uous, concave, and positive homogeneous of degree one.

Two portfolios p; q 2 P are said to be concordant if pjqj P 0 for
all j 2 J. Two portfolios are concordant if there is no asset which
is held long in one portfolio and short in the other. It is easily ver-
ified that us is additive for concordant portfolios. The concavity and
positive homogeneity of us imply that us is superadditive on P,i.e.
usðpÞ þ usðqÞ 6 usðpþ qÞ for all p; q 2 P.

Corollary 2.10. For every s 2 S, the function us is superadditive on P
and additive for concordant portfolios.

Given some state s 2 S, the firm might have to liquidate part of
its assets to obtain a portfolio in Ls. The initial portfolio’s value in
state s is given by the highest attainable uppermost mark-to-mar-
ket value satisfying the liquidity policy. These considerations lead
us to the following definition.

Definition 2.11. The realization vector XðNÞ 2 RS for the firm is
equal to

XsðNÞ ¼ supfusðqÞjq 2 AsðhðNÞÞ \ Lsg; s 2 S: ð3Þ

Since AsðhðNÞÞ \ Ls – ; by Assumption 2.7, it follows that XsðNÞ
is not equal to �1. We will show in Proposition 3.5 that XsðNÞ is
bounded from above by usðhðNÞÞ, so XsðNÞ is finite.

The following example shows why in Eq. (3) we need a supre-
mum rather than a maximum.

Example 2.12. Consider the case where hðNÞ ¼ ðh0ðNÞ; hJðNÞÞ 2 R3,
so we have two assets, called 1 and 2, and cash. There is no
uncertainty, so the cardinality of S is one. The liquidity policy L
specifies that the asset portfolio qJ should satisfy qJ P ð�1;�1Þ and
ðq1 þ 1Þðq2 þ 1ÞP 1. Moreover, for simplicity assume there are no
constraints on cash holdings. We assume the initial asset portfolio
to be hðNÞ ¼ ð0;�1;�1Þ and we assume asset 2 to be perfectly liquid.

Trading in asset 1 involves liquidity costs. For instance, consider
the case where there is a simple bid-ask spread, so for some
c > 0;m1ðxÞ ¼ 1þ c if x < 0 and m1ðxÞ ¼ 1 if x > 0. Since we have to
go to a portfolio of assets where holdings of both assets strictly
exceed �1, we would like to buy e > 0 of asset 1, buy 1=e of asset 2,
and go short in cash, resulting in a portfolio qðeÞ ¼
ð�ð1þ cÞe�m2ð0�Þ=e;�1þ e;�1þ 1=eÞ. It is straightforward to
verify that uðqðeÞÞ ¼ uðhðNÞÞ � ce. The uppermost mark-to-market
value would be maximized, and liquidity costs would be minimized,
by taking the smallest positive e,something which clearly does not
exist, so we need a supremum rather than a maximum in Eq. (3).

We will show in Proposition 3.6 that optimal portfolios exist
under the mild and reasonable additional assumption that going
infinitely short or long involves liquidity costs. Under such an addi-
tional assumption, one can use a maximum in Eq. (3).

Artzner et al. (1999) have introduced coherent measures of risk.
A measure of risk is a function q : RS ! R measuring the risk
of a realization vector from the perspective of the present. It
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corresponds to the minimal amount of cash the regulated agent
has to add to his portfolio, and to invest in a reference instrument
today, such that the risk involved in the portfolio is acceptable to
the regulator. We assume that the reference instrument has payoff
1 in each state of nature at t ¼ 1, thus its realization vector is
1S ¼ ð1; . . . ;1Þ. It is most natural to think of it as a zero coupon
bond. The price of the reference instrument can be thought of as
the discount factor and is denoted by d.

Definition 2.13. A function q : RS ! R is a coherent measure of risk
if it satisfies the following axioms.

1. Monotonicity: for all X;Y 2 RS such that Y P X, we have
qðYÞ 6 qðXÞ.

2. Subadditivity: for all X;Y 2 RS, we have qðX þ YÞ 6 qðXÞ þ qðYÞ.
3. Positive homogeneity: for all X 2 RS and h 2 Rþ, we have

qðhXÞ ¼ hqðXÞ.
4. Translation invariance: for all X 2 RS and a 2 R, we have

qðX þ a1SÞ ¼ qðXÞ � da.

This completes the definition of a risk environment with liquidity
considerations
ðN; J; S;p; h;m; L;qÞ.

3. Risk allocation games with liquidity constraints

A cooperative game with transferable utility consists of a set of
players N and a value function v : 2N ! R, which assigns to every
coalition C 2 2N of players a worth vðCÞ 2 R. By assumption it
holds that vð;Þ ¼ 0. An allocation is a vector y 2 Rn, where yi is
the payoff of player i 2 N. An allocation y yields payoff
yðCÞ ¼

P
i2Cyi to the members of coalition C.An allocation y 2 Rn

is called efficient if yðNÞ ¼ vðNÞ, individually rational if yi P vðfigÞ
for all i 2 N, and coalitionally rational if yðCÞP vðCÞ for all C 2 2N .
The core is the set of efficient and coalitionally rational allocations.

Denault (2001) introduces risk capital allocation problems in order
to study how the risk of the firm as measured by a coherent measure
of risk has to be attributed to its divisions. The risk allocated to a coa-
lition of divisions C 2 2N should be stable, meaning that it does not
exceed the risk of the aggregate portfolio of coalition C.

Denault (2001) abstracts both from MDCs and liquidity policies,
and thereby implicitly assumes that all assets are perfectly liquid
and the liquidity policy is trivial. Under perfect liquidity of all
assets and a trivial liquidity policy, we can define the realization
vector of division i 2 N by XsðfigÞ ¼ usðhiÞ; s 2 S. A coalition of divi-
sions C 2 2N has the realization vector XðCÞ ¼

P
i2CXðfigÞ. Finally,

the worth of coalition C is defined by vðCÞ ¼ �qðXðCÞÞ. In this
way we have obtained a cooperative game with transferable utility
ðN; vÞ. Standard solution concepts from cooperative game theory
can now be applied to ðN;vÞ to solve the risk allocation problem.
A stable risk allocation corresponds to a core allocation.

When we incorporate liquidity constraints, we face an external-
ity problem, as any division of the firm can liquidate some of its
assets in order to satisfy the liquidity policy, and the more assets
one division liquidates, the less assets have to be liquidated by
other divisions. The standard approaches to define a game in char-
acteristic function form in the presence of externalities are a-effec-
tiveness and b-effectiveness as suggested by Aumann (1961),
thereby generalizing the two-player case treated by von
Neumann and Morgenstern (1944) to the case with an arbitrary
number of players. The notion of a-effectiveness defines the payoff
of a coalition as the payoff it can achieve irrespective of the actions
taken by its complement. The next example illustrates why a-
effectiveness is not useful to study risk allocation in the presence
of liquidity constraints.
Example 3.1. Consider the case where we have one asset, J ¼ f1g,
and no uncertainty. The liquidity policy L specifies that the firm’s
portfolio q should satisfy q1 P �1. The firm has two divisions,
N ¼ f1;2g, with identical initial portfolios given by h1 ¼ ð1;�1Þ
and h2 ¼ ð1;�1Þ. Consider the case where there is a simple bid-ask
spread, so for some c > 0, we have m1ðxÞ ¼ 1þ c if x < 0 and
m1ðxÞ ¼ 1 if x > 0. Under a-effectiveness, division 1’s realization is
equal to

Xðf1gÞ ¼ supfu 2 Rj 9q1 2 Aðh1Þ;8q2 2 Aðh2Þ; q1 þ q2

2 L and uðq1ÞP ug:
For i ¼ 1;2, we have that qi 2 AðhiÞ if and only if

qi
1 P�1 and qi

0¼1�ðqi
1þ1Þð1þcÞ

� �
or ½qi

16�1 and qi
0¼�qi

1�:

Since for any choice of q1 2 Aðh1Þ there is q2 2 Aðh2Þ such that
q1 þ q2 R L, in fact any q2 such that q2

1 < �q1
1 � 1 would do, we find

that Xðf1gÞ ¼ �1. Notice that the same conclusion would follow
even in the absence of a bid-ask spread.

The notion of b-effectiveness is less stringent and defines the
payoff of a coalition as what it can achieve for sure given the worst
actions of its complement, so now the complementary coalition
acts first. We continue Example 3.1 by demonstrating that also
b-effectiveness leads to undesirable consequences.

Example 3.2. Consider the primitives of Example 3.1. Under b-
effectiveness, division 1’s realization is equal to

Xðf1gÞ ¼ supfu 2 Rj8q2 2 Aðh2Þ; 9q1 2 Aðh1Þ; q1 þ q2

2 L and uðq1ÞP ug:

Consider some q2 2 Aðh2Þ with q2
1 6 �1. To satisfy q1 þ q2 2 L, it

should hold that q1
1 P �q2

1 � 1 and therefore that q1
1 P 0. It can eas-

ily be computed that

uðq1Þ ¼ �c� cq1
1 6 �cþ cðq2

1 þ 1Þ ¼ cq2
1:

Since q2
1 can be chosen arbitrarily negative, we find that

Xðf1gÞ ¼ �1.

Both a-effectiveness and b-effectiveness lead to undesirable
properties of the value function, even in the simplest of examples.
Both approaches share the feature that the complement of a coali-
tion C is supposed to take the worst possible action. Rather than
making such an extreme assumption, we will instead assume that
the complement of coalition C remains inactive, so the burden of
satisfying the liquidity policy will be put entirely on coalition
C.The portfolios which are attainable for coalition C in state s 2 S
are given by AsðhðCÞÞ, where hðCÞ ¼

P
i2Chi. Inactivity of the com-

plementary coalition means that those divisions stick to their ini-
tial portfolio, which equals hðN n CÞ in the aggregate.

Definition 3.3. Given a risk environment with liquidity consider-
ations ðN; J; S;p; h;m; L;qÞ and a coalition of divisions C 2 2N , the
realization vector XðCÞ of coalition C is defined by

XsðCÞ ¼ supfusðqÞjq 2 AsðhðCÞÞ and qþ hðN n CÞ 2 Lsg; s 2 S:

When calculating XsðCÞ, we take the portfolios of the divisions
outside the coalition as fixed, and liquidate the portfolios of the
divisions in C in such a way that the resulting portfolio of the firm
is attainable and satisfies the liquidity policy. Applying Definition
3.3 for the grand coalition Nresults in

XsðNÞ ¼ supfusðqÞjq 2 AsðhðNÞÞ \ Lsg;

which is in accordance with Eq. (3).
The next result is useful in simplifying our expression for the

realization vector of a coalition.
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Proposition 3.4. For every s 2 S, for every C 2 2N, it holds that
q 2 AsðhðCÞÞ if and only if qþ hðN n CÞ 2 AsðhðNÞÞ.
Proof. The result follows from the observation that

q 2 AsðhðCÞÞ

if and only if

q0 ¼ ‘sðh0ðCÞ; hJðCÞ � qJÞ ¼ h0ðCÞ þ ‘sð0; hJðCÞ � qJÞ

if and only if

q0 þ h0ðN n CÞ ¼ h0ðCÞ þ ‘sð0; hJðCÞ � qJÞ þ h0ðN n CÞ
¼ ‘sðh0ðNÞ; hJðNÞ � qJ � hJðN n CÞÞ

if and only if

qþ hðN n CÞ 2 AsðhðNÞÞ: �

Proposition 3.4 shows that we can compute the realization vec-
tor of coalition C as

XsðCÞ ¼ supfusðqÞjqþ hðN n CÞ 2 AsðhðNÞÞ \ Lsg; s 2 S: ð4Þ

The next result provides bounds on the value of XsðCÞ, implying that
this value is not equal to �1 or þ1.

Proposition 3.5. For every s 2 S, for every q 2 AsðhðNÞÞ \ Ls, it holds
that

usðq� hðN n CÞÞ 6 XsðCÞ 6 usðhðCÞÞ; C 2 2N :
Proof. Consider some q 2 AsðhðNÞÞ \ Ls, where the latter set is non-
empty by Assumption 2.7. Using (4), it follows that
usðq� hðN n CÞÞ 6 XsðCÞ. Next, consider some q 2 AsðhðCÞÞ. It holds
that

q0 ¼ ‘sðh0ðCÞ; hJðCÞ � qJÞ ¼ h0ðCÞ þ
X
j2J

Z hjðCÞ�qj

0
ms

j ðxÞdx:

It follows that

usðqÞ¼ h0ðCÞþ
X
j2J

Z hjðCÞ�qj

0
ms

j ðxÞdxþ
X

j2JþðqÞ

ms
j ð0
þÞqjþ

X
j2J�ðqÞ

ms
j ð0
�Þqj

¼ h0ðCÞþ
X

j2JþðqÞ

Z hjðCÞ�qj

0
ms

j ðxÞdxþms
j ð0
þÞqj

� �

þ
X

j2J�ðqÞ

Z hjðCÞ�qj

0
ms

j ðxÞdxþms
j ð0
�Þqj

� �
:

Notice that irrespective of the sign of hjðCÞ � qj it holds thatZ hjðCÞ�qj

0
ms

j ðxÞdx 6 ms
j ð0
�ÞðhjðCÞ � qjÞ and

Z hjðCÞ�qj

0
ms

j ðxÞdx

6 ms
j ð0
þÞðhjðCÞ � qjÞ:

Consider some j 2 JþðqÞ. If hjðCÞ > 0, thenZ hjðCÞ�qj

0
ms

j ðxÞdxþms
j ð0
þÞqj 6 ms

j ð0
þÞðhjðCÞ � qjÞ þms

j ð0
þÞqj

¼ ms
j ð0
þÞðhjðCÞÞ:

If hjðCÞ < 0, thenZ hjðCÞ�qj

0
ms

j ðxÞdxþms
j ð0
þÞqj 6 ms

j ð0
�ÞðhjðCÞ � qjÞ þms

j ð0
�Þqj

¼ ms
j ð0
�ÞðhjðCÞÞ:

Consider some j 2 J�ðqÞ. If hjðCÞ > 0, then
Z hjðCÞ�qj

0
ms

j ðxÞdxþms
j ð0
�Þqj 6 ms

j ð0
þÞðhjðCÞ � qjÞ þms

j ð0
þÞqj

¼ ms
j ð0
þÞðhjðCÞÞ:

If hjðCÞ < 0, thenZ hjðCÞ�qj

0
ms

j ðxÞdxþms
j ð0
�Þqj 6 ms

j ð0
�ÞðhjðCÞ � qjÞ þms

j ð0
�Þqj

¼ ms
j ð0
�ÞðhjðCÞÞ:

We therefore find that

usðqÞ 6 h0ðCÞ þ
X

j2JþðhðCÞÞ

ms
j ð0
þÞhjðCÞ þ

X
j2J�ðhðCÞÞ

ms
j ð0
�ÞhjðCÞ ¼ usðhðCÞÞ;

which completes the proof. h

If the liquidity policy is trivial, then it holds that
hðNÞ 2 AsðhðNÞÞ \ Ls, so Proposition 3.5 gives XsðCÞ ¼ usðhðCÞÞ. If,
moreover, there are no bid-ask spreads, it holds that
XsðCÞ ¼

P
i2CXsðfigÞ, the case which has been studied in the litera-

ture so far. In case the liquidity policy is trivial, but assets are not
perfectly liquid and there is a bid-ask spread, it is still the case that
the realization of division i 2 N in state s is given by XsðfigÞ ¼ usðhiÞ,
but it is no longer necessarily the case that the realization vector of
a coalition of divisions C 2 2N is given by XðCÞ ¼

P
i2CXðfigÞ as now

coalitions can save on costs related to bid-ask spreads by combin-
ing their portfolios.

We show next that the supremum in Eq. (4) can be replaced by
a maximum under the mild condition that going infinitely short or
long in an asset involves liquidity costs.

Proposition 3.6. Assume that for every s 2 S, for every j 2 J, there is
x� such that ms

j ðx�Þ > ms
j ð0
þÞ and there is xþ such that

ms
j ðxþÞ < ms

j ð0
�Þ. Then for every C 2 2N it holds that

XsðCÞ ¼maxfusðqÞjqþ hðN n CÞ 2 AsðhðNÞÞ \ Lsg; s 2 S:
Proof. Consider some s 2 S and let ðqrÞr2N be a sequence such that
ðqrÞr2N þ hðN n CÞ 2 AsðhðNÞÞ \ Ls and usðqrÞ converges to XsðCÞ.

Suppose there is an asset j0 2 J such that for some appropriately
chosen subsequence, limr!1ðqr

j0 Þr2N ¼ �1. We will derive a con-

tradiction. By repeating the steps in the proof of Proposition 3.5,
we derive that

usðqrÞ 6 h0ðCÞ þ
X

j2JþðhðCÞÞ

ms
j ð0
þÞhjðCÞ þ

X
j2J�ðhðCÞÞnfj0g

ms
j ð0
�ÞhjðCÞ

þ
Z hj0 ðCÞ�qr

j0

0
ms

j0 ðxÞdxþms
j0 ð0

�Þqr
j0

6 h0ðCÞ þ
X

j2JþðhðCÞÞ

ms
j ð0
þÞhjðCÞ þ

X
j2J�ðhðCÞÞnfj0g

ms
j ð0
�ÞhjðCÞ

þms
j0 ðx

þÞhj0 ðCÞ þ ðms
j0 ð0

�Þ �ms
j0 ðx

þÞÞqr
j0 ;

where the right-hand side tends to �1 if r !1 since
ms

j0 ð0
�Þ > ms

j0 ðx
þÞ. This contradicts the conclusion of Proposition

3.5, which establishes that XsðCÞ is bounded from below.
We have shown that for every j 2 J there is no subsequence of

ðqrÞr2N such that limr!1ðqr
j Þr2N ¼ �1. By the straightforward

analogous argument, we can show that for every j 2 J there is no
subsequence of ðqrÞr2N such that limr!1ðqr

j Þr2N ¼ 1. It follows that

the sequence ðqr
J Þr2N is bounded. By continuity of ‘s on P as asserted

in Proposition 2.4, it follows that the sequence ðqr
0Þr2N is bounded.

Without loss of generality, the sequence ðqrÞr2N can be assumed to
converge to some �q 2 P. The set AsðhðNÞÞ \ Ls is closed as the
intersection of two sets which are closed by Proposition 2.5 and
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Assumption 2.7. It follows that �qþ hðN n CÞ 2 AsðhðNÞÞ \ Ls. By
Proposition 2.9 it holds that us is continuous, so XsðCÞ ¼ usð�qÞ.

Since the existing literature on risk allocation assumes perfect
liquidity, and we would like to incorporate perfect liquidity as a
special case, we refrain from assumptions additional to Assump-
tion 2.7, and continue with the formulation of Eq. (4) involving a
supremum.

Definition 3.7. Given a risk environment with liquidity consider-
ations ðN; J; S;p; h;m; L;qÞ, the risk allocation game with liquidity
constraints is the game ðN; vÞ, where the value function v : 2N ! R

is defined by

vðCÞ ¼ �qðXðCÞÞ; C 2 2N : ð5Þ

Let Crl denote the family of risk allocation games with liquidity
constraints with set of players N.In such a game, according to Eq.
(5), the larger the risk of any subset of portfolios, the lower its
worth.
Table 1
A risk allocation game with liquidity constraints.

State/X(C) X({1}) X({2}) X({1,2})

s = 1 �10 �9 �19
s = 2 �31 �33 �61

q(X(C)) 31 33 61
v(C) �31 �33 �61
Example 3.8. Consider a firm with n ¼ 2 divisions, where each
division has invested into one asset and cash, J ¼ f1g. The
portfolios of the divisions are h1 ¼ ð20;�6Þ and h2 ¼ ð26;�7Þ, so
both divisions have short positions in the risky asset. We assume
S ¼ f1;2g with both states having equal probability of occurrence.

In state 1 the MDC of the risky asset is given by

m1
1ðxÞ ¼

5 if x < 0;
4 if x > 0:

�

In state 2 the MDC of the risky asset is given by

m2
1ðxÞ ¼

10 if x < �2;
9 if � 2 6 x < �1;
8 if � 1 6 x < 0;
7 if 0 < x 6 1;
6 if 1 < x:

8>>>>>><
>>>>>>:

We consider the deterministic liquidity policy specified by

L1 ¼ L2 ¼ fp 2 Pjp1 P �10g:

In both states the liquidity policy of the firm does not allow to short
the risky asset by more than 10 units. According to the initial port-
folios, the two divisions together are 6 + 7 = 13 units short in the
risky asset. We set d ¼ 1 and take the maximum loss as the coherent
measure of risk, so qðXÞ ¼maxs2S � Xs.

First, let us consider state 1. This element of the realization
vector of division 1 is calculated as follows. Looking at the MDC of
the risky asset in state 1, we see that the firm can buy the risky
asset for a price of 5, and it can sell more risky assets for a price of
4. Since currently the two divisions together are shorting 13 units
from the risky asset and the liquidity policy allows to short at most
10 units, at least 3 units should be bought. If 3 units are bought for
a price of 5� 3 ¼ 15, division 1 ends up with the portfolio
q1ðf1gÞ ¼ ð5;�3Þ in state 1 by trading t1ðf1gÞ ¼ ð�15;3Þ. The
uppermost mark-to-market value of q1ðf1gÞ is u1ðq1ðf1gÞÞ ¼
5� 3� 5 ¼ �10. It is easy to check that we get the same value if
division 1 buys anywhere between 3 to 6 units from the risky asset.
Due to the bid-ask spread, buying back more than 6 units would
result in a loss of 1 for each additional unit, since long positions
would be valued at 4 per unit. It follows that the realization vector
of division 1 in state 1 is X1ðf1gÞ ¼ �10. Similarly, the realization
vector of division 2 in state 1 is X1ðf2gÞ ¼ �9. For the firm itself, we
have h1 þ h2 ¼ ð46;�13Þ, and an optimal portfolio q1ðf1;2gÞ satis-
fying the liquidity constraint is any convex combination of the
portfolios ð31;�10Þ and ð�19;0Þ, resulting in X1ðf1;2gÞ ¼ �19.
Next, let us analyze state 2. Again, division 1 should buy at least
3 units of the risky asset to satisfy the liquidity policy. Buying 3
units and trading t2ðf1gÞ¼ ð�27;3Þwill result in q2ðf1gÞ¼ ð�7;�3Þ
and u2ðq2ðf1gÞÞ¼�7�3�8¼�31. Buying more than 3 units
would be costly. For instance, buying 4 units by trading �t2ðf1gÞ¼
ð�37;4Þ would result in �q2ðf1gÞ¼ ð�17;�2Þ and u2ð�q2ðf1gÞÞ¼
�17�2�8¼�33, hence division 1 will only buy 3 units. The
remaining short position will be valued at the best ask price, and

X2ðf2gÞ¼�31. Similarly, the realization vector of division 2 in

state 2 is X2ðf2gÞ¼�33. For the firm itself, since h1þh2¼
ð46;�13Þ, the optimal trade is t2ðf1;2gÞ¼ ð�27;3Þ, leading to

q2ðf1;2gÞ¼ ð19;�10Þ and X2ðf1;2gÞ¼u2ðq2ðf1;2gÞÞ¼19�10�
8¼�61. The calculations and the resulting cooperative game are
summarized in Table 1.

Note that in state 1 the realization vector of coalition f1;2g is
additive over its members’ realization vectors, which is due to the
flat MDCs and the concordant portfolios. In state 2 coalition f1;2g
gains since it only has to buy back once 3 units of the risky asset at
a higher price. Also note that if the original portfolio of the grand
coalition satisfies the liquidity policy and the portfolios of the
divisions are concordant, then we get additivity for the realization
vector. On the other hand, if for the same asset with a positive bid-
ask spread some divisions have had long positions and some other
divisions have had short positions, then we would get
superadditivity.

For two-player games, most single-valued solution concepts,
and in particular the Shapley value and the nucleolus, would share
the surplus of the grand coalition over the individual worths
equally over the players. In this example, this would result in the
allocation ð�29:5;�31:5Þ. The firms should add 61 units of cash to
its portfolio to make it acceptable to the regulator, and the risk
allocation over the divisions corresponds to 29.5 units of cash for
division 1 and 31.5 units of cash for division 2.

Rather than assuming the worst-case for the behavior of the
opponents, we have utilized the fact that in a risk environment
with liquidity considerations, divisions have initial portfolios,
which means that it is meaningful to speak about inaction of
a division. We have calculated the realization vector of a coali-
tion by assuming inactivity of the complementary coalition.

Another alternative which comes to mind when defining the
realization vector of a coalition, is to assume that the complemen-
tary coalition is going to hold the 0 portfolio. Alternatively, one
could think of this assumption as ignoring the complementary coa-
lition. It is not hard to see that this is not an attractive alternative.
Consider for instance the risk environment with liquidity consider-
ations of Example 3.8. When the complementary coalition holds the
0 portfolio, it is easy to calculate that vðf1gÞ ¼ �28;vðf2gÞ ¼ �30,
and vðf1;2gÞ ¼ �61. The resulting risk allocation game with liquid-
ity constraints is not superadditive. The reason is that in this exam-
ple, it is easier for a single division to satisfy the short-sales
constraint of 10 units than it is for the entire firm. Failure of super-
additivity is not natural for the problem under consideration, as the
entire firm has more actions at its disposal to satisfy the liquidity
policy than a single division.

The next example demonstrates how important it is to take
liquidity considerations into account in risk allocation.
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Example 3.9. Consider a firm with n ¼ 2 divisions, where we have
cash and two risky assets, J ¼ f1;2g. The portfolios of the divisions
are h1 ¼ ð�16;5; 0Þ and h2 ¼ ð�14;0;5Þ, so the divisions have long
positions in different assets. We assume S ¼ f1;2gwith both states
having equal probability of occurrence.

In state 1 the MDCs of the risky assets are given by

m1
1ðxÞ ¼

4:4 if x < 0;
3:4 if x > 0;

�

m1
2ðxÞ ¼

3:6 if x < 0;
2:6 if x > 0:

�

Except for the bid-ask spread, both assets are liquid. In state 2 the
MDCs of the risky assets coincide and they are less liquid,

m2
1ðxÞ ¼ m2

2ðxÞ ¼
4 if x < 0;
3 if 0 < x 6 1;
2 if 1 < x:

8><
>:

We consider the deterministic liquidity policy specified by

L1 ¼ L2 ¼ fp 2 Pjp0 P �23g:

Since h1 þ h2 ¼ ð�30;5;5Þ, to fulfill the liquidity policy of the firm, 7
units of cash should be generated in both states. As before, we com-
pute the realization vector for every coalition. We set d ¼ 1 and take
the maximum loss as the coherent measure of risk, so
qðXÞ ¼maxs2S � Xs. The realization vectors and the resulting coop-
erative game are displayed in Table 2.

Again, for two-player games, most single-valued solution
concepts, and in particular the Shapley value and the nucleolus,
would share the surplus of the grand coalition over the individual
worths equally over the players. In this example, this would result
in the allocation ð�2;0Þ. The firm should add 2 units of cash to its
portfolio to make it acceptable to the regulator, and the risk
allocation over the divisions corresponds to 2 units of cash for
division 1 and 0 units of cash for division 2. The risk equal to 2
units is fully allocated to division 1.

The analysis without liquidity considerations would pretend
that all assets are perfectly liquid. The MDCs of the risky assets are
now given by

m1
1ðxÞ ¼ 3:4; x 2 R n f0g;

m1
2ðxÞ ¼ 2:6; x 2 R n f0g;

m1
1ðxÞ ¼ 3; x 2 R n f0g;

m1
1ðxÞ ¼ 3; x 2 R n f0g:

The realization vectors and the resulting cooperative game are dis-
played in Table 3.

In this case the allocation would be strikingly different, ð0;0Þ.
The firm does not have to add any cash to its portfolio to make it
acceptable to the regulator. Both divisions are now treated
symmetrically.
4. Total balancedness

This section is devoted to the question whether it is always pos-
sible to allocate risk in a stable way, which is equivalent to the
Table 2
The risk allocation game when taking liquidity into account.

State/X(C) X({1}) X({2}) X({1,2})

s = 1 1 �1 0
s = 2 �3 �1 �2

q(X(C)) 3 1 2
v(C) �3 �1 �2
question whether the core of the risk allocation game with liquid-
ity constraints is non-empty.

For each C 2 2N , let aðCÞ 2 Rn be the membership vector,
aiðCÞ ¼ 1 for i 2 C and aiðCÞ ¼ 0 otherwise.

Definition 4.1. A balanced vector of weights is a vector

ðkCÞC22N 2 R2N

þ such that
P

C22N kCaðCÞ ¼ aðNÞ. A game ðN;vÞ is

balanced if
P

C22N kCvðCÞ 6 vðNÞ for all balanced vectors of weights.

A well-known interpretation of balancedness is that the players
can distribute one unit of working time to any coalition and if each
coalition is active during a fraction kC of a unit of time, then the
players cannot generate more value than vðNÞ, the value of the
grand coalition. Balancedness is a necessary and sufficient condi-
tion for non-emptiness of the core in a transferable utility game
(Bondareva, 1963; Shapley, 1967). See Predtetchinski and Herings
(2004) for an extension of the concept of balancedness to be nec-
essary and sufficient for non-emptiness of the core in non-transfer-
able utility games.

For a game ðN;vÞ and a coalition C 2 2N , a subgame ðC; vCÞ is
obtained by restricting v to subsets of C.

Definition 4.2. A game ðN;vÞ is totally balanced if for every D 2 2N

its subgame ðD;vDÞ is balanced, that is, if for all D 2 2N and for all

vectors ðkCÞC22D 2 R2D

þ satisfying
P

C22D kCaðCÞ ¼ aðDÞ, we haveP
C22D kCvðCÞ 6 vðDÞ.

In a totally balanced game, every subgame has a non-empty
core. Let Ctb denote the family of totally balanced games with n
players.

The next proposition claims that any risk allocation game
with liquidity constraints is totally balanced. It follows that risk
allocation games with liquidity constraints, as well as subgames
of risk allocation games with liquidity constraints, have a non-
empty core and that risk can always be allocated in a stable
way.

Proposition 4.3. All games ðN;vÞ 2 Crl are totally balanced,
Crl � Ctb.
Proof. Consider a risk environment with liquidity considerations
ðN; J; S;p; h;m; L;qÞ inducing the risk allocation game ðN;vÞ. We
show that for any non-empty D 2 2N , the subgame ðD;vDÞ is bal-
anced. We define D ¼ 2D n f;g. Take any ðkCÞC2D 2 RDþ such thatP

C2Dk
CaðCÞ ¼ aðDÞ.

Take e > 0. For s 2 S and C 2 D, let qsðCÞ 2 P be such that
qsðCÞ þ hðN n CÞ 2 AsðhðNÞÞ \ Ls and

usðqsðCÞÞP XsðCÞ � e: ð6Þ

The vector of actual trades is given by

tsðCÞ ¼ qsðCÞ � hðCÞ: ð7Þ

First, we present eight lines containing equalities and inequalities
proving the proposition, then we explain why each step is true.
Table 3
A risk allocation game without taking liquidity into account.

State/X(C) X({1}) X({2}) X({1,2})

s = 1 1 �1 0
s = 2 �1 1 0

q(X(C)) 1 1 0
v(C) �1 �1 0
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It holds thatX
C2D

kCvDðCÞ ¼ �
X
C2D

kCqðXðCÞÞ ð8Þ

¼ �
X
C2D

qðkCXðCÞÞ ð9Þ

6 �q
X
C2D
ðkCXðCÞÞ

 !
ð10Þ

6 �q
X
C2D

kCððusðqsðCÞÞ þ eÞs2SÞ
� � !

ð11Þ

6 �q usð
X
C2D

kCqsðCÞÞ
s2S

 !
þ
X
C2D

kCe1S

 !
ð12Þ

¼ �q usð
X
C2D

kCqsðCÞÞ
s2S

 ! !
þ de

X
C2D

kC ð13Þ

6 �qðXðDÞ þ de
X
C2D

kC ð14Þ

¼ vDðDÞ þ de
X
C2D

kC : ð15Þ

Since
P

C2Dk
C
6 n, we have that de

P
C2Dk

C tends to zero as e tends to
zero. Therefore, when taking the limit as e # 0, the chain of equali-
ties and inequalities (8)–(15) imply thatX
C2D

kCvDðCÞ 6 vDðDÞ;

so the game ðD; vDÞ is balanced.
Eq. (8) follows from Eqs. (5) and (9) follows from the positive

homogeneity of q. Inequality (10) is due to the subadditivity of q.
Eq. (11) plugs in Eq. (6). Inequality (12) is true because of the
positive homogeneity and superadditivity of u (following from
Proposition 2.9), and the monotonicity of q. Eq. (13) makes use of
the fact that q satisfies translation invariance. Due to the mono-
tonicity of q, Inequality (14) is true if we can prove that for each
s 2 S it holds that

us
X
C2D

kCqsðCÞ
 !

6 XsðDÞ: ð16Þ

Consider any s 2 S. Take any i 2 D, define Ci ¼ fC 2 2D j i 2 Cg and
Di ¼ D n Ci. We have thatX

C2D
kCusðqsðCÞÞ ¼

X
C2Ci k

SusðqsðCÞÞ þ
X
C2Di

kCusðqsðCÞÞ

6

X
C2Ci

kCusðqsðCÞÞ þ
X
C2Di

kCusðhðCÞÞ

6 us
X
C2Ci

kCqsðCÞ þ
X
C2Di

kChðCÞ
 !

¼ us
X
C2Ci

kCðtsðCÞ þ hðCÞÞ þ
X
C2Di

kChðCÞ
 !

¼ us hðDÞ þ
X
C2Ci

kCtsðCÞ
 !

¼ us
X
C2Ci

kCðhðDÞ þ tsðCÞÞ
 !

;

where the first inequality follows from Proposition 3.5 and the sec-
ond inequality from Corollary 2.10.

We define psðDÞ ¼
P

C2Ci kCðhðDÞ þ tsðCÞÞ and show that
psðDÞ þ hðN n DÞ 2 Ls. For every C 2 Ci it holds that qsðCÞ þ
hðN n CÞ 2 Ls. Therefore, it holds that

hðDÞ þ tsðCÞ þ hðN n DÞ ¼ qsðCÞ þ hðD n CÞ þ hðN n DÞ
¼ qsðCÞ þ hðN n CÞ 2 Ls:
Since
P

C2Ci kC ¼ 1 and Ls is convex, we have that psðDÞ þ
hðN n DÞ 2 Ls. Finally, we define qsðDÞ 2 P by qs

J ðDÞ ¼ ps
J ðDÞ and

qs
0ðDÞ ¼ ‘

sðh0ðDÞ;
X
C2Ci

kCts
J ðCÞÞ:

Since ‘s is concave, we have

qs
0ðDÞP

X
C2Ci

kC‘sðh0ðDÞ; ts
J ðCÞÞ ¼ h0ðDÞ �

X
C2Ci

kCts
0ðCÞ ¼ ps

0ðDÞ;

so usðqsðDÞÞP usðpsðDÞÞ. By definition, it holds that qsðDÞ 2 AsðhðDÞÞ.
Assumption 2.7. (ii) implies that qsðDÞ þ hðN n DÞ 2 Ls. It follows thatX
C2D

kCusðqsðCÞÞ 6 usðpsðDÞÞ 6 usðqsðDÞÞ 6 XsðDÞ: �

Note that all the axioms of coherent measures of risk were used
in the proof of Proposition 4.3.

Not only is it true that all risk allocation games with liquidity
constraints are totally balanced. It also holds that any totally bal-
anced game can be generated by a risk allocation game with liquid-
ity constraints. It suffices to take one perfectly liquid asset with a
trivial liquidity policy and apply the construction of Csóka et al.
(2009)[Proposition 3.2]. Thus we have the following theorem.

Theorem 4.4. The class of risk allocation games with liquidity
constraints coincides with the class of totally balanced games,
Crl ¼ Ctb.
5. Conclusion

Liquidity is of crucial importance when assessing the risk
involved in an asset portfolio. Nevertheless, the literature on risk
allocation games has so far ignored this important aspect. When
we add a liquidity policy to a risk environment, we obtain an envi-
ronment that is characterized by pervasive externalities. Indeed,
when attributing the risk of a firm to its divisions, the question
whether a single division satisfies the liquidity policy cannot be
answered without making assumptions about the behavior of the
complementary divisions.

We argue that the standard ways to deal with externalities, a-
effectiveness and b-effectiveness are not appropriate here, and that
it is also not possible to simply ignore the complementary divi-
sions. Since in our framework the property rights of divisions are
well-defined, it is meaningful to speak about inactivity of a coali-
tion. We then say that a coalition of divisions satisfies the liquidity
policy if it does so when the complementary coalition is inactive.

Our main result demonstrates that this approach leads to risk
allocation games that are totally balanced. It is therefore possible
to attribute the risk of a firm to its divisions in a stable way, since
the core of a totally balanced game is evidently non-empty. In fact,
the core of any subgame of a totally balanced game is non-empty
as well, so the risk of any division can also be attributed in a stable
way to its subdivisions too.
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