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Summary

Spontaneous network activity constitutes a central theme
during the development of neuronal circuitry [1, 2]. Before

the onset of vision, retinal neurons generate waves of spon-
taneous activity that are relayed along the ascending visual

pathway [3, 4] and shape activity patterns in these regions
[5, 6]. The spatiotemporal nature of retinal waves is required

to establish precise functional maps in higher visual areas,
and their disruption results in enlarged axonal projection

areas (e.g., [7–10]). However, how retinal inputs shape
network dynamics in the visual cortex on the cellular level

is unknown. Using in vivo two-photon calcium imaging, we
identified two independently occurring patterns of network

activity in the mouse primary visual cortex (V1) before and
at the onset of vision. Acute manipulations of spontaneous

retinal activity revealed that one type of network activity

largely originated in the retina and was characterized by
low synchronicity (L-) events. In addition, we identified

a type of high synchronicity (H-) events that required gap
junction signaling but were independent of retinal input.

Moreover, the patterns differed in wave progression and
developmental profile. Our data suggest that different

activity patterns have complementary functions during the
formation of synaptic circuits in the developing visual

cortex.

Results

The Developing Cortex Generates Spontaneous

Activity Patterns
In vivo two-photon calcium imaging after bolus loading [11] in
the visual cortex of anesthetized neonatal mice before eye
opening (P8–P10) revealed synchronous network events in
the somata and neuropil of layer 2/3 (Figures 1A and 1B; see
also Movie S1 available online). Although individual cortical
cells were active during only a proportion of network events,
nearly all cells showed spontaneous activation over the course
of the experiment.

To examine the effects of anesthesia, we studied cortical
network activity at various isoflurane concentrations (low
isoflurane: 0.7%–1%; high isoflurane: 1.5%) as well as in
5Present address: Deutsches Zentrum für Neurodegenerative Erkran-

kungen, 53175 Bonn, Germany

*Correspondence: c.lohmann@nin.knaw.nl
unanesthetized animals. Consistent with previous observa-
tions [12, 13], the frequency of spontaneous network events
decreased with increasing levels of isoflurane (Figure 1C).
However, other key parameters were unaffected by anesthesia
(0.7%–1% isoflurane) compared to unanesthetized animals.
The percentage of coactive cells per network event (participa-
tion rate) did not differ between anesthetized (62% 6 4%) and
unanesthetized animals (57% 6 4%; n = 4 animals; p > 0.05;
see also Figure 1D). Furthermore, neither the mean amplitude
of the cellular calcium signal (Figure 1E) nor the variation in
onset of activation in individual cells (jitter, Figure 1F) was
affected by low isoflurane levels. Therefore, all subsequent
recordings were performed under light anesthesia (0.7%–1%).

Manipulation of Retinal Inputs Affects Specifically Low,

But Not High, Participation Rate Network Events
To investigate the origin of cortical network events, we manip-
ulated peripheral activity arising from the retina and studied
the effects on activity patterns in the visual cortex. First, we
removed all retinal inputs by means of acute binocular enucle-
ation and monitored the same population of cortical cells
before and after enucleation (Figure S1A). The frequency of
cortical network events decreased significantly after binocular
enucleation (baseline: 1.66 0.3 events/min; enucleation: 1.06
0.2 events/min; n = 6 animals; p < 0.05; Figure S1B), and the re-
maining network events were characterized by significantly
higher participation rates than during baseline recordings
(baseline: 62% 6 3%; enucleation: 73% 6 4%; n = 6 animals;
p < 0.05). More specifically, the frequency of network events
with low to medium participation rates (20%–80%) was signif-
icantly reduced (Figures 2A and 2B); however, the remaining
low to medium participation rate events did not differ in ampli-
tude (baseline: 1.13 6 0.03 F/F0; enucleation: 1.15 6 0.01 F/
F0), jitter (baseline: 0.5 6 0.1 s; enucleation: 0.5 6 0.1 s) or
participation rate (baseline: 47% 6 1%; enucleation: 49% 6
3%; n = 6 animals). Interestingly, the frequency of high partic-
ipation rate events (>80%) was unaffected by enucleation.
Next we augmented retinal activity pharmacologically by

acute binocular injections of the water-soluble forskolin
analog NKH477 [3]. This drug increases the activity of the
enzyme adenylyl cyclase, which in turn elevates cyclic AMP
levels [14] and increases the frequency of stage II retinal waves
[15, 16]. After recording baseline activity, NKH477 (10 mM) or
a control solution (0.9% saline) was injected into both eyes
(w0.75 ml). After NKH477 application, the frequency of cortical
network events increased significantly (baseline: 0.9 6 0.1
events/min; NKH477: 1.4 6 0.3 events/min; n = 11 animals;
p < 0.05; Figure 2C; Figures S1C and S1D). The effect of
NKH477 injections on cortical network dynamics was age-
dependent because it affected P8 and P9, but not P10 animals
(Figure 2D). This was most likely due to the specific action of
NKH477 on cholinergic (stage II) retinal waves, which are
less pronounced in older animals when glutamate signaling
is required [16]. Therefore, we confined further analyses to
P8 and P9 animals. Whereas the overall frequency of network
events increased after NKH477 injections, the mean participa-
tion rate dropped (control: 65% 6 5%; NKH477: 54% 6 5%;
n = 7 animals; p < 0.05). Specifically, the frequency of events
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http://dx.doi.org/10.1016/j.cub.2011.12.026
mailto:c.lohmann@nin.knaw.nl


BA

50 µm 

V1

12

34
5

6

1

2

3

C

Isoflurane (%)

0

1

2

4

Ev
en

ts
 / 

m
in

1.5 

3

5

0

D F

0

0.4

0.6

Ji
tte

r (
s)

0.2

Isoflurane

Unanesth.

E

0

0.5

1.5

1.0

Isoflurane

Unanesth.

Am
pl

itu
de

 (F
/F

0)

0.7-1.0

*

*

50%
F/F0

50 s

1
2
3
4
5
6

1

2

3

Neuropil

Neurons

20 40 60 80 100

Fraction of active cells (%)

6
0

1.0

0.5

2.0

Ev
en

ts
 / 

m
in 1.5

Isoflurane
Unanesthetized

Figure 1. Network Events in the Developing Visual Cortex Show Similar Properties in Anesthetized and Unanesthetized Mice before Eye Opening

(A) Top shows schematic of the neonatal mouse and location of the primary visual cortex (V1). Bottom shows layer 2/3 cells in the visual cortex of a P10

animal labeled with OGB-1 (green). Astrocytes were specifically labeled by SR101 (red).

(B) Example traces of spontaneous network dynamics in the neuropil (gray traces) and in neurons (black traces) numbered in (A).

(C) Effects of isoflurane levels on the frequency of spontaneous network events (white bar: unanesthetized; black bars: anesthetized; *p < 0.05).

(D) Occurrence of network events with different participation rates (fraction of active cells) in isoflurane anesthetized (black bars) and unanesthetized

animals (white bars).

(E and F) Basic characteristics of cortical network activity such as amplitude (E) and jitter (F) were not changed by isoflurane anesthesia. In (C), (E), and (F),

data are represented as mean +SEM.
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with low to medium participation increased after NKH477
application, whereas the frequency of events with high partic-
ipation remained unchanged (Figures 2C and 2D). Saline injec-
tions affected neither frequency (baseline: 1.386 0.25 events/
min; saline: 1.186 0.26 events/min; n = 5 animals; p > 0.05) nor
participation rate (62%6 5%; saline: 65%6 4%; n = 5 animals;
p > 0.05) of network events.

Taken together, the manipulations of retinal inputs sug-
gested that two patterns of network activity coexisted in the
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developing visual cortex: low to intermediate participation
rate events (20%–80%, L-events), whichwere largely triggered
by retinal inputs, and high participation rate events (>80%,
H-events), which were independent of retinal inputs.

L- and H-Events Represent Two Distinct Patterns

of Spontaneous Network Activity In Vivo
We investigated the developmental profile of cortical network
events and found that the frequency of cortical network events
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Figure 2. Manipulation of Retinal Inputs Differentially

Affects Cortical Network Events

(A) Changes in participation rate after binocular enucle-

ation (6%–80% participation: gray/black bars; >80%

orange bars).

(B) Left shows that the mean frequency of cortical

network events with low to medium participation rates

(20%–80%, gray lines) was reduced after the removal of

retinal inputs. Right shows that in contrast, the frequency

of cortical events with high participation (>80%, orange

lines) was not affected by enucleation (*p < 0.05; black

lines represent means).

(C) Changes in participation rate after binocular injec-

tions of NKH477 (6%–80% participation: gray/black

bars; >80% orange bars).

(D) The mean frequency of cortical network events with

low to medium participation rates (20%–80%) was

specifically increased after binocular NKH477 injections

(gray lines), whereas the frequency of cortical events

with high participation (>80%, orange lines) was unaf-

fected by NKH477 (*p < 0.05).
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Figure 3. Characterization of Distinct Cortical Activity Patterns

(A) Frequency of spontaneous network events from P8 to P14. The frequency of L-events (20%–80%, gray bars) but not of H-events (>80%, orange bars)

increased with age.

(B) Mean cellular amplitudes of cortical network events. Upper row shows quantification of the mean amplitudes for events with various participation rates

(*p < 10238 compared to amplitudes at 20%–80%). Lower row shows scatterplot of the means of the peak cellular F/F0 signal per network event.

(C) Temporal jitter of cortical network events. Upper row shows bar graph of the mean jitter for various participation rates. Lower row shows scatterplot of

the cellular jitter for all network events (*p < 1028 compared to 20%–80%).

(D) Cluster analysis of network events grouped into 10% bins according to participation rate. The dendrogram represents Euclidian distances (y axis) in

amplitude and jitter between network events of different participation rates. The clustering divides network events into two groups: 20%–80% (L-) and

>80% (H-) events with some additional subclusters within the L-events group.

(E) Histograms of interevent intervals between events of the same type. The interevent intervals between L-events followed an exponential distribution,

whereas the distribution of the interevent intervals between H-events showed a refractory period.

(F) The gap junction blocker carbenoxolone reduced the frequency of H-events significantly. L-eventswere not affected (*p < 0.05). In (A)–(C) and (F), data are

represented as mean + SEM.
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was not changed significantly between P8 and P10 but
increased approximately 2.5-fold by the age of P14—around
the time of eye opening (P14: 3.21 6 0.41 events/min;
n = 4 animals; p < 0.05; Figure 3A) in line with a previous study
[17]. Whereas the frequency of L-events was specifically
increased during that period, the frequency of H-events was
not altered.

A detailed characterization of the two types of cortical
network events in animals before eye opening (P8–P10) re-
vealed that the mean amplitude over all coactive cells during
network events was lower in L-events than in H-events (Fig-
ure 3B). Considering that calcium transients reflect the number
of action potentials linearly [17], we estimate that firing rates
during H-events were at least twice as high as during L-events.
This suggested that individual cells get more and/or stronger
inputs during H-events. The different types of cortical network
events also differed in synchronicity: jitter, a measure for
temporal variation of individual cellular activity during network
activity, was higher (and hence synchronicity was lower) in
L-events than in H-events (Figure 3C).

We investigated whether the classification of L- and
H-events was supported independently of participation rate,
solely by the parameters amplitude and jitter. Indeed, cluster
analysis [18] based on amplitude and jitter between network
events of different participation rates (in 10% bins) revealed
the largest similarity distance between the 70%–80% and the
80%–90% bins (Figure 3D). Accordingly, the 20%–80%
(L-events) and the >80% (H-events) groups differed highly
significantly (Mann-Whitney test; p < 1026). Furthermore,
a neuronal network was trained to cluster events according
to jitter and amplitude, using the self-organizingmap algorithm
developed by Kohonen [19]. K-means clustering [20] of the
trained map showed that L- and H-events were correctly
assigned to the two different groups in 84% of the cases.
These data demonstrate that L- and H-events can be quite
cleanly (albeit not perfectly) separated by the 80% participa-
tion rate criterion.
The analysis of interevent intervals between two H-events

showed a refractory period suggesting that H-events occurred
in an oscillatory fashion (Figure 3E). In contrast, intervals
between L-events followed an exponential distribution. This
distribution pattern implies independence between two
subsequent L-events, possibly because they are triggered
independently at different sites (e.g., waves from each eye in
binocular areas). L- and H-events occurred largely indepen-
dently of each other (Figure S2).
Because H-events constituted a large proportion of all

network events early during development, but not later, we
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Figure 4. Spatiotemporal Fine Structure of Cortical Network Events

(A) Line-scan path overlay on top of OGB-1 labeled neurons.

(B) Line-scan across the entire line shown in (A) during one network event.

(C) Crop from (B) showing individual cells (bright lines).

(D) Traces of fluorescence changes in individual cells marked in (C).

(E) Sequential activation of individual neurons during a network event with

intermediate participation (59%, L-event). The arrow indicates the direction

and velocity of this wave (circle: 0.25 mm/s; M, medial; C, caudal; L, lateral;

R, rostral). Individual cells are marked with colors, which denote the relative

time points of their activation after the onset of activity in the first neuron

(latency). Black dots mark neurons that are inactive during this event.

(F) Example of a network event with high participation rate (84%, H-event).

(G) The progression speed was faster in H- than in L-events. Data are repre-

sented as mean + SEM (*p < 0.001).

(H) Distribution of travel directions in L- (left) and H-events (right). H-events

preferentially travel from caudal to rostral. The fraction of events in each

direction is normalized to the fraction of shuffled events assigned to the

same direction (the inner dashed circle is at 1).
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investigated whether gap junctional coupling, which is re-
quired for early cortical network activity [21–23], may underlie
H-event signaling. In fact, the acute cortical administration of
the unspecific gap junction blocker carbenoxolone reduced
the frequency of H-events significantly, but did not affect
L-events (Figure 3F).

Finally, we studied the spatiotemporal patterns of network
activation using line scans over many neurons with high
temporal resolution (Figures 4A–4D, n = 6 animals). Many
network events, independently of their participation rates,
spread like waves across the cortex (Figures 4E and 4F; Fig-
ure S3). Although both L- and H-events progressed in waves,
their progression velocity differed and was higher in H-events
(Figures 4E–4G). In addition, the travel direction of waves
differed between both patterns (chi-square test, p < 0.05; Fig-
ure 4H): L-events traveled more or less equally in all directions
(chi-square test, p = 0.6), and H-events progressed preferen-
tially from caudal to rostral (chi-square test, p < 0.05).

In summary, we find two distinct types of network activity
that occur largely independently from each other. First,
L-events recruit low to intermediate numbers of neurons and
are generated largely in the retina, and their frequency
increases with age. Second, H-events with high participation
and synchronization are characterized by high amplitudes in
all cells and fast wave kinetics. They are centrally generated,
largely mediated by gap-junctional coupling, and constitute
a major component of overall spontaneous activity in younger
networks (P8–P10) but only a small fraction at later stages,
around eye opening (P14).

Discussion

Spontaneous cortical network activity has been observed
during the first 2 weeks of life in mice and rats. Field potential
recordings revealed spindle bursts in the rat visual cortex
before eye opening that occur at similar rates as the L-events
described here (approximately three events per minute in
unanesthetized animals), correlate with retinal waves and are
strongly affected by manipulations of retinal activity [3]. This
suggests that spindle bursts and L-events represent the
same phenomenon. Previous in vivo calcium imaging studies
revealed periodic network events that recruited many neurons
in the visual and somatosensory cortex of neonatal mice
[13, 17]. The frequency of these events increases strongly
between P8–P10 and P14. Our analyses demonstrate that
this increase in event frequency is entirely supported by
L-events because the frequency of H-events showed a trend
toward decreasing with age. Therefore, the differential devel-
opment of both types of events will lead to an overall sparsifi-
cation of network events, which has been observed for
spontaneous activity in the developing cortex [13, 17].
By manipulating spontaneous retinal activity and recording

cortical activity, we discovered that L- and H-events are trig-
gered by different brain regions. The frequency of L-events is
reduced after enucleation and strongly enhanced after stimu-
lation of retinal waves with the forskolin analog NKH477, indi-
cating that a significant proportion of L-events are triggered by
retinal waves. This conclusion is further supported by the simi-
larities in duration and frequency between L-events (duration:
1.66 1.1 s, frequency: 2.46 0.6 events/min) and retinal waves
(duration: approximately 2 s; frequency 0.5–3 per minute;
[24, 25]). However, after binocular enucleation, a proportion
of L-events remain and exhibit identical participation rates,
amplitude, and jitter values. This observation is reminiscent
of previous studies in which spindle burst activity in sensory
cortices persisted at reduced frequencies after deafferentia-
tion [3, 26]. We consider it improbable that activity in the lateral
geniculate nucleus (LGN) accounts for the L-events remaining
after enucleation, because, in the ferret, deafferentiation of the
thalamus from its retinal inputs causes the complete loss of
activity in the LGN, which recovers only after about 50 min
[6, 27]. A more likely possibility is that these L-events arise
from nonvisual inputs to the visual cortex. For example, func-
tional connections between cortical areas of different modali-
ties [28, 29] may facilitate spread of network activity from other
sensory systems into the visual cortex to elicit L-events inde-
pendently of retinal inputs.
In contrast to L-events, H-events were unaffected bymanip-

ulations of retinal activity, demonstrating that they are inde-
pendent of inputs from the peripheral visual system. Again,
because retinal deafferentiation during development leaves
the LGN essentially silent [6, 27], the thalamus is an unlikely
source for H-events. In rat horizontal slices covering the entire
rostrocaudal extension of the cortex, peripheral inputs are
naturally absent and thus spontaneous activity, which travels
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preferentially from caudal to rostral [30], might be constituted
mostly or entirely of H-events. It has been suggested
recently that spontaneous activity in the neonatal rodent
cortex originates in the subplate [21] where neurons are highly
interconnected via gap junctions [22]. Because H-events
require gap junction signaling, they might be generated in
the subplate.

What are the possible functions of L- and H-events during
the development of the visual system? L-events increase in
frequency just before eye opening, and the cellular contribu-
tion is relatively sparse resembling the activation patterns
observed during visual stimulation after eye opening [31, 32].
Because retinal waves transmit information about the position
and function of individual ganglion cells into the brain
[25], waves could serve as ‘‘training patterns’’ that trigger
cortical network events with spatiotemporal characteristics
that enable correlation-based refinement of, for example,
bottom-up or horizontal connections in relation to position in
the visual field as well as orientation and direction tuning [33,
34]. In contrast to L-events, H-events do not show properties
that render them good candidates for the activity-dependent
refinement of connectivity. Information content is relatively
low, because during each H-event virtually all cells in one
area are coactive. Network activity, which is characterized by
a high degree of correlation across individual cells, can cause
homeostatic downregulation of synaptic weights [35]. Homeo-
static mechanisms help neurons to maintain their activity
levels in an optimal range. For example, a recent in vivo model
of synaptic plasticity proposes that homeostatic control of
synaptic strength is enforced by slow waves that occur during
sleep, a specific form of synchronous network activity [36–38].
During development, local synaptic adaptations and global
homeostasis may be interleaved: L-event activity may cause
specific increases and decreases in strength of specific
synapses, whereas H-events adapt overall synaptic strength
to maintain firing rates within a certain range.
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