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Stellingen / Statements 

Behorende bij het proefschrift / Belonging to the PhD thesis 

CYCLIC NUCLEOTIDE SIGNALING AND SYNAPTIC PLASTICITY 

EVA BOLLEN 

Maastricht, 23 december 2014 

1. Several neurodegenerative diseases are associated with aberrant cyclic nucleotide 

signaling, although it rarely represents the direct cause of the diseases. (this thesis) 

 

2. To enhance memory via cGMP-signaling, intact cAMP signaling is a necessity. (this thesis) 

 

3. Combination treatment with different types of phosphodiesterase inhibitors optimizes 

memory enhancing effects while minimizing possible side-effects. (this thesis) 

 

4. Selective agonists of the TrkB receptor represent a promising treatment strategy for 

memory enhancement (this thesis). 

 

5. The field of nootropics will keep gaining importance, as the ultimate goal of human 

beings is to outperform their own brain.  

 

6. In scientific research, an apparent contradiction exists in that if you want something 

done right you better do it yourself, but if you want to reach further, you better do it 

together. 

 

7. “Any man could, if he were so inclined, be the sculptor of his own brain.” Santiago Ramon 

Y Cajal 

 

8. “A failure is not always a mistake. It may simply be the best one can do under the 

circumstances. The real mistake is to stop trying.” Burrhus Frederic Skinner 

 

9. “The most beautiful experience we can have is the mysterious. It is the fundamental 

emotion which stands at the cradle of true art and true science.” Albert Einstein 
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General introduction 

Beyond erectile dysfunction: Understanding PDE5 activity in the central 

nervous system. 

Phosphodiesterases in neurodegenerative diseases. 

Improved long-term memory via enhancing cGMP-PKG signaling requires 

cAMP-PKA signaling.  

Object memory enhancement by combining sub-efficacious doses of specific 

phosphodiesterase inhibitors. 

7,8-Dihydroxyflavone improves memory consolidation processes in rats and 

mice. 



 

 

Dissociative effects of repeated rolipram administration in the hippocampus 

and nucleus accumbens on anhedonia in rats. 

General summary and discussion 
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Neuronen kunnen hun onderlinge connecties versterken om een verbeterde 

informatieoverdracht te bekomen. Dit kenmerk noemt men synaptische 

plasticiteit. Het is aangetoond dat synaptische plasticiteit van belang is bij 

cognitieve en affectieve processen, en in het bijzonder bij het vormen van 

geheugensporen. Deze plastische veranderingen worden bewerkstelligd 

door meerdere intracellulaire moleculaire paden die geactiveerd worden bij 

inkomende signalen in het neuron. In dit proefschrift hebben we ons gericht 

op een specifiek intracellulair pad, dat door activiteit van cyclisch nucleotiden 

wordt aangedreven. Het doel was na te gaan in welke mate verschillende 

cyclisch nucleotiden kunnen bijdragen tot gedragsveranderingen die 

synaptische plasticiteit als oorzaak hebben.  

Met gedragspharmacologische en  electrofysiologische technieken, hebben 

we aangetoond dat twee types cyclisch nucleotiden, cGMP en cAMP, 

respectievelijk enkel in vroege of late fase van geheugenconsolidatie 

betrokken zijn, en dat ze serieel geschakeld zijn. cGMP heeft in een latere 

fase cAMP-gerelateerde signalen namelijk nodig om geheugensporen te 

vormen. Verder tonen onze bevindingen aan dat verhoogde activiteit van 

hetzelfde cAMP-gerelateerde pad in verschillende hersenstructuren 

tegengestelde affectieve gedragingen tot gevolg kunnen heben. We stellen 

vervolgens ook nieuwe beloftevolle therapeutische strategiëen voor 

aandoeningen die gekarakteriseerd worden door cognitieve symptomen. 

Daarvoor hebben we ons in eerste plaats gericht op phosphodiesterase 

remmers. Deze remmen de afbraak van cyclisch nucleotiden, en resulteren 

dus direct in een verhoogde activiteit van cAMP en/of cGMP. In deze these 

hebben we aangetoond dat het combineren van lage doseringen van 

verschillende types phosphodiesterase remmers mogelijk een interessant 

alternatief biedt om geheugenvorming te verbeteren. Tenslotte hebben we 

ook gekeken naar BDNF, een molecule waarvan de intracellulaire niveaus 

door activatie van cAMP en cGMP verhoogd worden. Onze resultaten wijzen 

op het potentieel van een selectieve agonist van de belangrijkste receptor 

van BDNF voor geheugenverbetering. In het algemeen dragen de 

bevindingen hier beschreven bij tot een beter begrip van de onderliggende 

processen van geheugenvorming en zullen ze de ontwikkeling van 

verbeterde behandelingen voor cognitieve stoornissen faciliteren.  
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Neurons have the fascinating ability to strengthen their connections to 

achieve enhanced information transmission. This feature is known as synaptic 

plasticity. It has been demonstrated that synaptic plasticity is of vital 

importance in cognitive and affective processes, and in particular in the 

formation of memory. The synaptic changes are attained by multiple 

intracellular molecular pathways that are activated in the neuron by 

incoming signals. In this thesis we have focused on a specific intracellular 

pathway which is centered around the activity of cyclic nucleotides.  Our aim 

was to evaluate to what extent different cyclic nucleotides contribute to 

behavioral changes resulting from synaptic plasticity.  

Using behavioral and electrophysiological techniques, we demonstrated that 

two types of cyclic nucleotides, i.e. cGMP and cAMP, are involved in 

respectively the early or late phase of memory consolidation, and that they 

are act in sequence. That is, cGMP requires cAMP-related signals in a later 

phase after learning to form a stable memory trace. In addition, our findings 

show that enhancing signaling in the same cAMP-related pathway can result 

in different behavioral outcomes depending on the brain structure targeted. 

Furthermore, we have proposed novel promising therapeutic strategies for 

diseases associated with cognitive symptoms. Firstly, we have focused on 

phosphodiesterase inhibitors. These inhibit the breakdown of cyclic 

nucleotides and thus result directly in an augmentation of cAMP and/or 

cGMP. In this thesis we have demonstrated that combining low dosages of 

different types of phosphodiesterase inhibitors potentially represent an 

interesting alternative to enhance memory formation. Secondly, we have 

focused on BDNF, a neurotrophin of which the intracellular levels are 

increased in response to cyclic nucleotide signaling. Our results point to the 

potential of a selective agonist of the most important receptor of BDNF in 

cognition enhancement. In general, our findings contribute to a better 

understanding of the underlying processes of memory formation, and will 

facilitate the development of novel and improved treatments for cognitive 

dysfunctions. 
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Our brain is without any doubt the most complex organ in the human body. 

Simply speaking, the brain represents a central location where raw data 

coming from our environment via our senses is constantly processed and 

combined with current needs and acquired knowledge. As a result of this 

process, our body undertakes action via coordinated motor responses and 

via hormonal secretion to influence other organs.  The brain is mostly 

composed of two classes of cells, i.e. glia and neurons. Different types if glial 

cells are critically involved in an array of various functions, which are mostly 

supportive. However, neurons are considered the core components of the 

computational power of the brain. The billions of neurons that comprise our 

brain are all incorporated in a heavily interconnected neuronal network.  This 

network is responsible for our every action, thoughts, feelings and 

experiences of the world surrounding us.  

Cell-to-cell communication is accomplished by the unique capability of 

neurons to transfer electrical signals to other cells. The transmission of 

signals from one neuron to the next takes place in small structures called 

synapses. Many synapses have the special ability to change their strength 

according to the signals that move across them. Thus, neuronal connections 

can be dynamically modified. Learned skills, habits and memories are 

thought to arise from the shaping and reinforcement of certain patterns of 

activity in the neuronal network. 

Most connections in our brain are so-called chemical synapses. In these 

connections, signal transduction is initiated by arrival of an action potential 

at the axon terminal of the neuron. Calcium influx via voltage-gated channels 

into the terminal triggers vesicles filled with neurotransmitters to fuse with 

the cell membrane. The neurotransmitters are subsequently released into the 

synaptic cleft and activate receptors on the post-synaptic membrane of the 

receiving neuron. As a response to neurotransmitters binding to its 

receptors, the post-synapse will depolarize. This may lead again to an action 

potential which propagates the signal further through the neuron. 
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Plastic changes of synapses require the activation of a number of intracellular 

signal transduction pathways. Second messengers are critical components of 

these pathways. They are molecules that relay and integrate incoming signals 

from receptors at the cell membrane to intracellular targets. By interfering 

with second messenger function, the binding of a ligand to a single receptor 

can cause massive changes on intracellular activity. Cyclic nucleotides 

represent a major class of second messengers. The two main forms are 3’-5’-

cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine 

monophosphate (cGMP). (1). They have a nucleotide conformation including 

a sugar (ribose), a nitrogenous aromatic base (adenine and guanine) and a 

phosphate group. The phosphate group is linked to the 3’ and 5’ hydroxyl 

group of the ribose, outlining the cyclic structure. Cyclic nucleotides are 

synthesized by cyclases. The main effector proteins can be divided into ion 

channels, protein kinases and phosphodiesterases (PDEs) (2). 

The concept of second messengers was first described when the role of 

cAMP in glycogenolysis was discovered by Rall and Sutherland in 1957 (3). In 

the decennia afterwards, it became clear that cAMP is a vital component of a 

variety of functional pathways, including synaptic signal transduction. cAMP 

levels increase upon binding of a ligand to a Gs-protein coupled receptor, 

which activates the conversion of adenosine triphosphate (ATP) into cAMP 

by adenylyl cyclase. In addition to cyclic nucleotide gated ion channels and 

its specific degrading enzymes, a major target of cAMP is protein kinase A 

(PKA) (4). PKA consists of two regulatory and two catalytic subunits. When 

cAMP is bound to regulatory subunits, PKA releases the catalytic subunits. 

The released catalytic subunits can then phosphorylate serine or threonine 

residues. In this way, cAMP-PKA signaling is able to change the activity of a 

protein kinase. In contrast, cGMP, is regulated by the gasous signaling 

molecule NO, which activates guanylyl cyclase. Similar to adenylyl cyclase, 

guanylyl cyclase converts guanosine triphosphate (GTP) into cGMP. cGMP 

activates protein kinase G, which is then able to trigger phosphorylation of 

downstream effectors (5) (for more details on cAMP and cGMP function, see 

chapters 2 and 3).  
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To integrate the incoming complex signals into long-lasting changes, 

neurons show high translational activity. Activation of transcription factors 

regulate the transription of DNA into mRNA and its translation into new 

molecules that can be quickly incorporated in the cell, thus enabling the 

neuron to change its properties such as excitability and morphology. cAMP 

responsive element binding protein (CREB) is such a transcription factor that 

initiates stimulus-dependent gene transcription (6). Although multiple 

signaling pathways come together at CREB phosphorylation, cAMP-PKA 

signaling is a major mediator of CREB activation. In addition, cGMP-PKG 

signaling has shown to affect CREB phosphorylation (7). CREB can regulate 

the expression of a plethora of genes, including many crucial plasticity-

related proteins such as the neurotrophins and their receptors (8). 

Neurotrophins represent a class of molecules that are essential to the 

development, growth and survival of neurons in the central nervous system 

(CNS). One specific type type of neurotrophin, brain-derived neurotrophic 

factor (BDNF), has been attributed a major role in the regulation of synaptic 

plasticity and neuronal survival (9). BDNF binds to tyrosine kinase receptor B 

(TrkB) with high-affinity and to the aspecific neurotrophin receptor p75 with 

low affinity (10). However, when focusing on synaptic plasticity, the TrkB 

receptor is generally regarded the most important. Binding of BDNF induces 

dimerization of the TrkB receptor, leading to the autophosphorylation of 

specific tyrosine residues. TrkB-signaling includes activation of three major 

pathways i.e. the PLCγ pathway, PI3K/Akt pathway, and the ERK pathway (see 

chapter 6 for more information on BDNF signaling). Both BDNF itself and the 

TrkB receptor are direct targets of CREB-regulated gene transcription (9). 

Synaptic plasticity is mostly known for its association with learning and 

memory. Indeed, the best documented form of synaptic plasticity is long-

term potentiation (LTP), which is generally recognized as the cellular 

correlate of memory formation (11, 12). This phenomenon, in which an 

episode of strong stimulation of a neuron results in long-lasting potentiation 

of subsequent incoming signals, is extensively studied in the hippocampus. 



19 

 

cAMP-PKA and cGMP-PKG signaling are both involved in synaptic plasticity 

as is CREB phosphorylation and BDNF-TrkB signaling (9, 13, 14). 

Although the field of synaptic plasticity has been dominated by memory 

research, there is now a steep increase in evidence that links defects in 

synaptic strength to other pathologies, including various neurodegenerative 

disorders and depression.  In Alzheimer’s disease (AD) for example, synaptic 

degeneration correlates with disease progression, and synaptic plasticity is 

impaired in several animal models of AD. As early diagnosis remains an 

obstacle in the successful targeting of the pathogenesis of many 

neurodegenerative disorders, repairing lost connections and functionality 

may prove to be a realistic alternative to slow down or halt disease 

progression. In depression, there is also substantial evidence for region-

specific changes in synaptic plasticity (15). The altered plasticity is thought to 

be caused by dysregulation of, among other pathways, cAMP-PKA and NO-

cGMP signaling. Thus, cAMP and/or cGMP regulation are a new promising 

therapeutic target for a wide range of CNS disorders.
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The aim of this thesis was to assess the role of cyclic nucleotide signaling on 

behavioral processes that depend on synaptic plasticity, and to evaluate the 

efficacy of treatment aimed at enhancing cyclic nucleotide signaling and 

synaptic plasticity. 

In chapter 2 and 3 we provide a comprehensive overview on the existing 

literature regarding the role of PDEs, which regulate cAMP and/or cGMP 

concentrations, in the central nervous system. Chapter 2 deals with the 

potential use of in particular the infamous PDE5 inhibitors in disorders 

related to central nervous system. In chapter 3 we have focused particularly 

on patient data indicative of a direct involvement of PDE enzymes in general 

in neurodegenerative disorders.  

In our first experimental study, we aimed to increase understanding of the 

underlying mechanisms of PDE inhibitor induced memory improvement and 

synaptic plasticity. The study described in chapter 4 particularly assesses the 

relationship between cGMP-signaling and cAMP-signaling. In chapter 5, the 

acquired findings of the latter fundamental study were translated into a 

potential novel treatment strategy for memory decline by combining 

different sub-efficacious doses of PDE-I in rats. 

In chapter 6, the efficacy of targeting a downstream effector of cyclic 

nucleotide signaling, i.e. BDNF, on memory formation is studied. We 

administered the novel TrkB receptor agonist, 7,8-dihydroxyflavone to 

healthy rats and to mice with the Alzheimer’s disease-associated APP/PS1 

gene mutation, and assessed effects on object memory performance. 

Chapter 7 describes a study aimed at the understanding of differential 

outcomes of cyclic nucleotide signaling depending on different brain regions 

targeted in relation to depressive-like behavior. Specifically, the effects of 

enhanced cAMP signaling in the nucleus accumbens versus the 

hippocampus were studied in this respect. 

Finally, chapter 8 summarizes and discusses the main findings of this thesis. 
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Specific phosphodiesterase type 5 inhibitors (PDE5) have received an 

enormous amount of attention for the treatment of erectile dysfunction. This 

has lead to an interest in the efficacy of these cGMP-specific PDE5 inhibitors 

in other diseases. In this chapter we focus on the possible applications of 

PDE5 inhibition in disorders of the central nervous system (CNS). 
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Phosphodiesterases (PDEs) are widely-distributed enzymes in the body that 

break down cyclic adenosine monophoshate (cAMP) and cyclic guanosine 

monophosphate (cGMP) into their inactive form, 5’AMP and 5’GMP, 

respectively (1). cAMP and cGMP are cyclic nucleotides that are essential for 

signal transduction in several physiological functions. PDEs are represented 

as a superfamily, since they have been classified into 11 subtypes (PDE1-

PDE11) based largely on their sequence homology.  Most of these subtypes 

have more than one gene product (e.g., PDE4A, PDE4B, PDE4C, PDE4D). In 

addition, each gene product may have multiple splice variants or isozymes 

(e.g., PDE4D1-PDE4D9). In total there are more than 100 specific PDEs (1). 

The different subtypes are discriminated using several criteria such as 

localization, subcellular distribution, mechanism of regulation, and enzymatic 

and kinetic properties. One fundamental distinction between subfamilies 

comprises the difference in affinity for the two distinct cyclic nucleotides. A 

differentiation is possible between cAMP-specific enzymes (PDE4,7,8), cGMP-

specific enzymes (PDE5,6,9) and the so called dual substrate PDEs, that have 

affinity for both cyclic nucleotides (PDE1,2,3,10,11).  

Because of the regulatory role of PDEs in essential cyclic nucleotide 

dependent signaling in various physiological systems, they have been 

identified as interesting drug targets for treatment of a wide array of 

disorders. Bender and Beavo described a number of possible factors that 

contribute to the current interest in PDEs as a drug target (1). One factor is 

the remarkably high number of members of the PDE family. An initial 

problem of the therapeutic application of PDE inhibitors was the lack of 

specificity. Early PDE inhibitors blocked virtually all PDE activity in the body, 

which often resulted in narrow therapeutic windows for these agents, which 

limited their applicability in humans. However, the identification of different 

PDE subfamilies and isozymes allowed the development of more specific 

pharmacological agents, which can often be targeted to only one subfamily 

or isozyme. Different subtypes and isozymes are thought to be involved in 

diverse physiological functions in the body as demonstrated by their unique 

distribution and specificity. As such, specific functions can be selectively 

targeted without causing off-target side-effects. In addition, the variety of 
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PDEs and their different physiological roles promise multiple therapeutical 

purposes, which are not restricted to one particular pathology or medical 

application. 

Two additional pharmacological properties make PDEs interesting targets for 

drug development. As enzymes, they participate in the degradation process 

of their substrates cAMP and cGMP. It is known that alteration in ligand 

levels is more effective when pharmacological intervention is directed at 

degradation processes when compared to synthesis processes (1). 

Furthermore, cyclic nucleotides are only available in relatively small amounts 

in the cell (<1 to 10 µM). Therefore, PDE inhibitors have little competition in 

binding the targeted PDE enzyme. 

 The first report of clinical properties of a PDE inhibitor dates back to 1886 

when the effects of caffeine on bronchodilation were described (2). However, 

it was only discovered several years later that these effects were caused by 

the caffeine-induced inhibition of cAMP-specific PDEs. In 1970 PDEs were 

identified in rat and bovine tissue and it was demonstrated that they 

hydrolyze the phosphodiesteric bond of cGMP and cAMP (3). 

A first commercial success for the clinical application of PDE inhibitors was 

sildenafil, a selective inhibitor of PDE5. Although initially developed for the 

treatment of arterial hypertension and angina pectoris, sildenafil was 

approved by the US Food and Drug Administration (FDA) in 1998 for the 

treatment of erectile dysfunction (ED) and marketed by Pfizer under the 

name Viagra (4). 

The discovery and success of sildenafil boosted the research and 

development of several other inhibitors of PDE5. At the same time it 

stimulated researchers to explore the therapeutic potential of other classes 

of PDEs in different disorders of the body and the brain. In addition, 

previously explored PDEs, such as PDE4, were reevaluated after first being 

dismissed as putative targets due to side-effects and lack of specificity or 

efficacy. For instance, in 1984 the PDE4 inhibitor rolipram was being 

developed as a putative antidepressant, but it never made it to the market 

due to severe emetic side-effects (e.g. nausea, vomiting). At present, several 

PDE inhibitors are in different phases of development for the treatment of a 
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wide variety of pathologies. However, today only two more PDE3 inhibitors 

have been approved by the FDA for the treatment of congestive heart failure 

or intermittent claudication, respectively (2, 5, 6). At this moment 

approximately 500 clinical trials involving PDE inhibitors are listed in the 

database of the U.S. National Institutes of Health (7).  

The commercial success of the three FDA approved PDE5 inhibitors for ED 

(sildenafil as Viagra®, tadalafil as Cialis® and vardenafil as Levitra® (4, 8, 9)) 

has been enormous, with the three major players (Pfizer, Eli Lilly and Bayer, 

respectively) posting sales of US$ 3.1 billion in 2006. These compounds exert 

their effects throughout the entire body, and are therefore also considered 

for different disorders than ED. As a matter of fact, in 2005 sildenafil was 

additionally approved by the FDA under the name of Revatio® for therapy 

against pulmonary arterial hypertension (PAH), recently followed by the 

approval of tadalafil (Adcirca®) for the same purpose (10-13). 

The availability and relative safety of PDE5 inhibitors make it worthwhile to 

evaluate its effects in many different species, conditions and disorders. This 

has led to a vast amount of preclinical and clinical data on the central effects 

of these drugs. In this chapter we will consider the possibilities for 

application of PDE5 inhibitors in disorders of the central nervous system 

(CNS). Firstly the properties of PDE5 in the CNS and the forthcoming 

physiological changes by PDE5 inhibition are evaluated. Secondly, we will 

review the relevance of PDE5 inhibition treatment for CNS disorders 

gathered in preclinical and clinical studies. 

 

Figure 1: Enzymatic regulation of PDE5. [A] PDE5 consists of a C-term catalytic domain and an N-term 

regulatory domain. [B] cGMP can bind to the regulatory domain. [C] This promotes phosphorylation of 

the N-term region and subsequent binding of PKG (and to a lesser extent PKA). These changes alter the 

shape of the enzyme, and thereby enhance the enzymatic activity at the catalytic domain. Adapted from 

Omori and Kotera (15). 
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PDE5 catalyzes specifically the breakdown of cGMP to 5’GMP. PDE5 has high 

affinity binding sites for cGMP and is therefore able to hydrolyze cGMP even 

in low substrate levels. PDE5 consists of two identical monomers, which both 

consist of a C-term catalytic domain and an N-term regulatory domain (14, 

15). The catalytic domain of the enzyme is responsible for the actual 

degradation of cGMP. However, cGMP can also bind to one of the non-

catalytic allosteric domains available on the N-terminal region (16). The 

occupation of this so-called GAF-A binding site by cGMP is critical for 

specific phosphorylation of Ser-92 by cGMP-dependent protein kinase (PKG) 

(and to a lesser extent cAMP-dependent protein kinase (PKA)). When bound, 

PKG activates the degradation of the catalytic domain and increases affinity 

for cGMP (17). This negative feedback mechanism closely regulates PDE5 

activity (see Figure 1). The higher the available levels of cGMP and PKG, the 

more likely PDE5 will be activated to reduce cGMP levels. 

Thus far, a single gene, PDE5A, has been identified to produce PDE5 (18). 

PDE5A is considered a cytosolic protein, with rodent studies showing the 

highest levels of PDE5A mRNA in the kidneys, pancreas, cerebellum, lung 

and heart (19, 20). However, significant expression has also been observed in 

human vascular smooth muscle, placenta, platelets, several gastrointestinal 

tissues and the brain (18, 21, 22). When focusing on the CNS, the highest 

levels of PDE5 mRNA expression are detected in the cerebellum, with large 

quantities found in the Purkinje cells (23). Additionally, in the cortex and 

hippocampus considerable amounts of PDE5A mRNA have been detected 

(20, 24, 25). Three splice variants of the gene are known to exist (PDE5A1, 

PDE5A2 and PDE5A3) which differ in their N-terminal sequence (26). These 

variants show different localization patterns. Whereas PDE5A1 and PDE5A2 

are ubiquitous, PDE5A3 is specifically located in smooth muscle tissue (26). 

The commercially available PDE5 inhibitors compete with cGMP to bind to 

the catalytic site of PDE5 (27). Their molecular structures are therefore mostly 
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based on that of cGMP. Sildenafil and vardenafil have a similar cGMP-based 

molecular makeup, while the structure of the latest FDA approved PDE5 

inhibitor tadalafil is rather different and is derived from ß-carboline (See 

Figure 2). This structural difference has implications for the selectivity of the 

inhibitor to PDE5. Whereas vardenafil and sildenafil are selective for PDE5 

isozymes with some affinity to PDE6, tadalafil has additional affinity for 

PDE11 (28). The functional relevance of PDE11 is relatively unknown in 

contrast to PDE6, which is involved in visual processes. The differences in 

chemical makeup between the PDE5 inhibitors also have consequences for 

their pharmacokinetic properties. The half-life of sildenafil and vardenafil is 

about 3-4 h. In contrast, tadalafil has a longer half-life of about 18 h (29). 

Vardenafil has a five-time greater inhibitory potential towards PDE5 than 

sildenafil and is the most potent of the three commercially available drugs 

(27, 28). Tadalafil is a second-generation drug, which is reflected in its long 

half-life, and long-lasting effects. All three compounds are rapidly absorbed 

in the gastrointestinal tract at the level of the small intestine. They are 

predominantly metabolized in the liver by CYP3A4 (30, 31). All three 

metabolized PDE5 inhibitors are excreted via both the liver and kidneys, but 

predominatly in faeces compared to urine. 

When assessing the efficacy of PDE5 inhibitors in CNS-related disorders, an 

important issue is the ability of these compounds to cross the blood-brain 

barrier. Considering the lipophilic structure of sildenafil and vardenafil, they 

can be expected to penetrate into the brain. For both sildenafil as well as 

vardenafil this was confirmed in preclinical animal studies (32, 33). Tadalafil 

has been shown to not cross the blood brain barrier (32). 

 

 

Figure 2. Molecular structures of the FDA approved PDE5 inhibitors  
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Since the effects of PDE5 inhibition are generated through changes in cGMP 

levels, we will now focus on the functions of this cyclic nucleotide to further 

comprehend the effects of PDE5 inhibitors in the body and the brain. 

cGMP is synthesized from guanosine triphosphate (GTP) by guanylyl cyclase 

(GC) (34). The latter enzyme is an important target of nitric oxide (NO) (35). 

NO is formed of L-arginine by catalysis by nitric oxide synthase (NOS). NO 

functions as a messenger in signal transduction, most notably in retrograde 

signaling. As a gaseous molecule, NO is able to diffuse through the cell 

membrane and pass on a signal to neighboring cells, where it activates GC 

functioning thereby promoting cGMP synthesis. Downstream, cGMP 

regulates PKG, PDEs and cGMP-gated ion channels (35). All these 

downstream targets of the NO-cGMP pathway mediate activity of different 

proteins involved in cell signal transduction, which eventually leads to a 

biological system-dependent cellular and physiological response.  

NO has been studied for decades for its vasodilatory effects and its 

involvement in NMDA-mediated cell signaling in the brain (34, 36). Since 

PDE5 inhibitors and NO both increase cGMP levels, it is most likely that they 

also exert their effects by the same downstream mechanisms. As such, two 

main mechanisms are likely at the basis of the effects induced by PDE5 

inhibition: changes in blood flow or neuronal signal transduction. 

The most studied function of PDE5 is its regulatory role in hemodynamics. 

PDE5 modulates vascular smooth muscle contraction by regulation of cGMP 

levels (See Figure 3) (1). This characteristic lies at the base of the 

development of the commercially available PDE5 inhibitors. Inhibition of 

PDE5 increases levels of cGMP in the cavernosal smooth muscles, which in 

turn via PKG can act in diverse ways to promote erectile function, including 

activation of ion channels and contractile regulatory proteins that promote 

relaxation of the penile smooth muscle tissue (37). NO functions as a 

neurotransmitter, which links signals of central or peripheral sexual 

stimulation to smooth muscle relaxation, leading to penile erection (38). 
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Treatment of ED with PDE5 inhibitors still requires presence of NO-mediated 

signals, i.e. sexual stimulation, since PDE5 is downstream of NO.  

In addition to the treatment of ED, the FDA also approved sildenafil and 

tadalafil for the treatment of pulmonary hypertension (12, 13). In pulmonary 

hypertension, the small blood vessels in the lungs are more resistant to 

blood flow, causing increased stress on the right ventricle of the heart (39). 

Also in this condition, PDE5 inhibition can attenuate the stress on the heart 

by counteracting vasoconstriction and thereby lowering the resistance for 

blood flow in the lungs (40).  

PDE5 inhibition induces changes in the central vascular system by similar 

mechanisms (See Figure 3). Administration of zaprinast, an early, relatively 

non-selective PDE5 inhibitor, dilates basilar and cerebral arteries in various 

animal models (41, 42), and a temporary increase in local cerebral blood flow 

(CBF) was also found after sildenafil administration (43). In humans, sildenafil 

also enhances cerebral vascular reactivity (44).  Although PDE5 inhibitors can 

exhibit cerebrovascular effects, this effect cannot be generalized. Several 

studies could not find changes in CBF or vasodilation of cerebral arteries 

after inhibition of PDE5 (45-48). It is unclear what causes this discrepancy 

between studies, although the different techniques and dosages used, as 

well as interspecies differences may play a role.  

The NO-cGMP pathway is important in synaptic plasticity. Synaptic plasticity 

is the ability of neurons to actively enhance or depress their connectivity with 

neighboring neurons in order to induce changes in signal transduction 

efficiency. Connections between neurons can be strengthened by functional 

neuronal changes, such as enhanced neurotransmitter release and receptor 

efficacy and number, and by structural changes, such as the outgrowth of 

new synapses. Synaptic plasticity has been observed in various brain 

structures, such as the hippocampus, cerebral cortex and cerebellum. The 

most recognized form of synaptic plasticity is long-term potentiation (LTP), 

which is strongly associated with learning and memory. LTP was first 

discovered in the hippocampus, a structure renowned for its involvement in 

memory processes (49). Studies have shown that the NO-cGMP pathway is 
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Figure 3. Role of PDE5 in blood flow regulation. Nitric oxide (NO) can diffuse from both the 

endothelial cells and neurons to the smooth muscle cell layer of vessels. NO activates guanylyl 

cyclase(GC), which produces cGMP from GTP. Heightened levels of cGMP lead to relaxation of 

the smooth muscles surrounding the vessel, thereby enhancing the blood flow in that vessel. 

PDE5 opposes to this process  by degrading cGMP and thus preventing cGMP levels from rising. 

Inhibitors of PDE5 prevent the breakdown of cGMP and have therefore vasodilating properties.  

 

Figure 4. Role of PDE5 in synaptic plasticity. After the entrance of Ca
2+

 in the postsynapse, nitric 

oxide (NO) activates guanylyl cyclase either postsynaptically or presynaptically. cGMP synthesis 

is increased, which then leads to the opening of cyclic nucleotide gated channels (CNG)and to 

the activation protein kinase G (PKG). The influx of Ca
2+

 through the CNG channels further 

depolarizes the synaptic membranes. PKG acts in different ways. Presynaptically, it enhances 

neurotransmitter release into the synaptic cleft. In the postsynapse, the activation of PKG can 

lead to the insertion of functional AMPA receptors into the synapse, and to the synthesis of 

relevant proteins mediated through transcription factors, such as CREB (cAMP responsive 

element binding protein). All the changes bring about an enhanced signal transduction, and 

thus synaptic plasticity. PDE5 acts as a brake on these processes by controlling cGMP levels. 

Therefore, when inhibiting PDE5, synaptic plasticity is boosted. 
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involved in at least the NMDA-dependent form of this specific type of 

synaptic plasticity. NO is activated by influx of calcium (Ca
2+

) in the post-

synapse, following binding of glutamate to NMDA-receptors (35). Next, the 

efficiency of signal transduction can be enhanced in several ways (See Figure 

4).  

Firstly, the gaseous nature of NO allows it to act as a retrograde messenger 

from the post-synapse back to the pre-synapse. There, the NO-cGMP-PKG-

pathway is activated, which then causes increased pre-synaptic glutamate 

release following depolarization of the post-synapse (50). In addition, in the 

post-synapse, the same pathway increases the insertion of AMPA receptors 

at the synaptic membrane, and mediates the activation of transcription 

factors such as cAMP-responsive element-binding protein (CREB) (51). CREB 

facilitates the synthesis of proteins, such as membrane channels and 

transporters, other transcription factors, cytokines and structural proteins 

(35). Besides PKG, other important effectors of cGMP are the cyclic 

nucleotide-gated (CNG) channels. The influx of Ca
2+

 through CNG channels 

further depolarizes the synaptic membrane, which promotes the 

abovementioned processes in pre- and post-synaptic membranes. PDE5 acts 

as a natural brake on this system by decreasing available levels of cGMP. 

Thus, inhibition of PDE5 enhances these processes, allowing more interaction 

of cGMP with PKG and CNG channels.  
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The use of PDE5 inhibitors is recognized as a first-line therapy for men with 

ED, and is safe and effective in men with various causes of ED, including 

neurological disorders. Multiple sclerosis, systemic atrophy, Parkinson’s 

disease and spinal cord injury are disorders that have their origin in the CNS, 

but can affect erectile functioning in men. PDE5 inhibitors improve erectile 

functioning in these patients, without causing significant side-effects (52-56). 

In psychogenic ED, causes of the disorder are psychological in nature, rather 

than physical (57).  ED is often observed in men facing stress or depression. 

Although most studies find an improvement after PDE5 inhibitor treatment 

in this group of patients (57, 58), the diagnostic criteria in these clinical 

studies for labeling ED as psychogenic are mostly unclear. It is difficult for 

clinicians to extricate psychological from physiological problems in ED. One 

study that focused on a specific population of psychogenic ED patients, i.e. 

soldiers with ED caused by post-traumatic stress disorder, could not find any 

beneficial effects of PDE5 inhibitor treatment (59).  

Sildenafil has been successfully used to treat serotonin reuptake inhibitor 

(SSRI)-associated ED in men (60-62). In addition, the impact of treatment 

with sildenafil on the depressive symptoms and quality of life in male 

patients with ED who have untreated depressive symptoms, has recently 

been measured in a phase IV study (63). It was found that compared to 

placebo, sildenafil led to significant improvement in depressive symptoms. 

However, it will be difficult to disentangle whether a possible beneficial effect 

on mood is due to treatment of the sexual dysfunction or whether PDE5 

inhibition directly leads to a reduction of depressive symptoms and thereby 

attenuates the erectile/sexual dysfunction. In a six week open label study in 

patients with erectile function, an improvement in depression was observed 

without changes in sexual function, indicating that PDE5 inhibition treatment 

in men has antidepressant effects (64).  Moreover, the antidepressant 
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potential of sildenafil has recently been shown in preclinical rodent studies 

(65, 66).  

The same holds for female sexual arousal disorder (FSAD). Women who 

experience a lack of sexual arousal have been treated with PDE5 inhibitors to 

enhance sexual functioning (67-69). Again, PDE5 inhibitor treatment has 

been reported to be effective in FSAD secondary to neurological 

dysfunctions such as multiple sclerosis, spinal cord injury and SSRI-treatment 

due to major depression (70-72). Whether this improvement is due to genital 

or neurological changes remains controversial. PDE5 can be found in the 

clitoris, vagina and labia minora (73, 74). This implies that the improvement 

in sexual functioning and increase in arousal induced by PDE5 inhibition 

could be due to relaxation of vascular smooth muscles, causing enhanced 

genital blood flow, as well as of non-vascular smooth muscles, which causes 

increased genital arousal. In women however, there seems to be a 

discrepancy between genital and subjective arousal (75). Genital arousal is 

believed to have a minor influence on subjective feelings of arousal (76). 

Thus, increasing genital arousal would not, per se, stimulate feelings of 

desire or sexual pleasure (67-69). This suggests that, besides increased 

genital sensation, PDE5 inhibition induces changes in mental arousal 

processes in women.  Oxytocin might be of importance in this regard, as a 

recent study showed that vardenafil treatment enhances the expression of 

this hormone which is associated with affiliation and sexual behavior, in the 

brain of rats (77). But again, the disentanglement of bodily versus mental 

processes sets hurdles for researchers, and up until now, it remains difficult 

to estimate the contribution of the CNS in enhanced sexual functioning due 

to PDE5 inhibitor treatment. 

Preclinical research in rats has demonstrated beneficial effects of PDE5 

inhibitor treatment on functional outcome after ischemic stroke. Ischemic 

stroke is characterized by a disturbance of blood and glucose supply to 

certain regions in the brain, which leads to infarction. As mentioned before, 
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PDE5 inhibitors modulate vasorelaxation. Not only the peripheral, but most 

likely also the central vascular system is susceptible to PDE5induced changes 

in CBF. As mentioned above, PDE5 inhibitors can increase perfusion rates in 

the cerebral vessels in rats. Changes in local CBF were observed after 

sildenafil and tadalafil treatment, as well as after administration of PF-5, a 

new PDE5 inhibitor of Pfizer (78-80).  

However, it is most unlikely that PDE5 inhibitors act only as protectors 

against vascular occlusion, since administration of a PDE5 inhibitor 24h or 

more after an ischemic insult still generated beneficial effects on functional 

outcome, while at that time point the main cerebral damage has already 

occurred (80). In accordance with this, the volume of the induced infarcts did 

not change with PDE5 inhibitor treatment after an ischemic insult (80, 81). 

Moreover, considerable debate exists when it comes to CBF changes caused 

by PDE5 inhibitor treatment. For example, a recent study using a mouse 

stroke model could not find any changes in CBF after vardenafil treatment, 

which may imply that CBF effects are species-specific (46). Furthermore, in 

healthy humans, SPECT and ultrasound measures after sildenafil treatment 

also did not reveal any changes in cerebral perfusion (82). 

Several studies showed that besides CBF, PDE5 inhibitor treatment (sildenafil, 

tadalafil and zaprinast) affects angiogenesis and neurogenesis after stroke 

(80, 83-86). Thus, improved functional recovery could be caused by 

enhanced angio- and/or neurogenesis, rather than temporary changes in 

CBF. Angiogenesis is regulated in endothelial cells by vascular endothelial 

growth factor (VEFG) and angiopoietin (Ang-1) (87, 88). It is known that 

sildenafil promotes the VEGF/Ang-1 system. Blockage of VEGF disrupted 

sildenafil-induced angiogenesis (86). Moreover, PDE5 inhibitor treatment 

triggered angiogenic regulatory proteins and promoted phosphorylation of 

e-NOS and AKT (89). Also in neural progenitor cells, phosphorylation and 

activation of Akt was increased following sildenafil treatment (90). More 

specifically, activation of the PI3-K/Akt/GSK-3 pathway in response to 

elevated cGMP levels seems to underly sildenafil-induced enhancements in 

neural proliferation (90). It was recently demonstrated that sildenafil as well 

as tadalafil increased neurogenesis in the ischemic brain (79, 80). However, 

not only survival of new cells, but also structural changes in pre-existing 
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neurons can facilitate functional recovery. Experimental studies showed 

synaptic sprouting and axonal remodeling in response to PDE5 inhibition 

after embolic stroke (43, 85). Elevated levels of cGMP in neurons 

stimulatetranscription factors that produce proteins necessary for these 

structural neuronal changes.  Taken together, PDE5 inhibitors have been 

shown to enhance angiogenesis, neurogenesis and synaptogenesis after 

stroke, thereby promoting functional recovery.   

The observation that changes induced by tadalafil treatment are not only 

vascular, but also neuronal in nature is in apparent contrast to the finding 

that tadalafil is unable to cross the blood-brain barrier (32). Two possible 

explanations can be given. On the one hand, it could be that all neuronal 

changes result from an increased blood supply caused by enhanced CBF and 

angiogenesis. On the other hand, it is possible that induction of an ischemic 

insult compromises the efficacy of the blood-brain barrier. In a preclinical 

study, Ko and colleagues, demonstrated that neuronal cGMP levels were 

enhanced by tadalafil only in gerbils that underwent an ischemic insult and 

not in control animals (91). These findings are in favor of a disrupted blood-

brain barrier after vascular occlusion.  

Paradoxically, sildenafil has been associated with transient ischemic attack 

and ischemic stroke in patients with pre-existing cerebrovascular disease (92, 

93). These effects were described in case reports, but in experimental 

conditions no association between sildenafil and risk for stroke have been 

reported (94). Seemingly, it is a rather rare side-effect, which might be 

caused by an interaction of sildenafil treatment with damaged blood vessels 

due to the pre-existing cerebrovascular disease (92, 94).  

Besides stroke induced by lack of blood and glucose supply to the brain, a 

second category of stroke is due to intracranial hemorrhage. One specific 

type of hemorrhagic stroke is subarachnoid hemorrhage, in which blood 

accumulates between the arachnoid membrane and pia mater. A frequent 

complication in this type of stroke is vasospasm. The constriction of blood 

vessels can cause an ischemic insult in these patients, secondary to the initial 

hemorrhage. The spasms are likely caused by hemoglobin and its breakdown 
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products (95). Hemoglobin as well as the by-products disrupt NO-signaling, 

which can lead to decreases in cGMP and consequently to vasoconstriction. 

In an experimental model of this specific type of stroke, sildenafil prevented 

the occurrence of vasospasms (96). It seems that in this case, PDE5 inhibitors 

are very potent relaxors of the cerebral vasculature. In clinical practice, 

papaverine is often used as vasodilator for vasospasm. Although a non-

selective PDE10 inhibitor, papaverine is likely to mainly target cGMP 

breakdown. Whereas both PDE inhibitor treatments have similar 

mechanisms, inhibition of PDE5 seems to be more potent. Papaverine 

requires intra-arterially injections, whereas oral administration of PDE5 

inhibitors is at least as effective (97, 98). For this specific subtype of stroke, 

PDE5 inhibitor treatment is therefore very promising.  

Hemorrhage, and more specifically intracerebral hemorrhage, has been 

associated with use of all three commercially available PDE5 inhibitors in 

several case reports (99-104). The reason for this remains unclear, but it has 

been suggested that sildenafil redistributes CBF by dilating the cerebral 

(micro)vasculature (105). This redistribution could ultimately lead to 

intracerebral hemorrhage (99, 106). Nevertheless, this seems to be a fairly 

rare adverse effect of PDE5 inhibitor treatment. 

 

The procognitive effect of PDE5 inhibition is probably the most studied 

possible CNS application in pre-clinical research. The evidence from these 

studies in several animal models is substantial (107-110). Zaprinast was the 

first PDE5 inhibitor that was reported to enhance memory (111). Because of 

additional affinity of zaprinast for PDE9, 10 and 11, no solid conclusions 

regarding the memory-enhancing effects of PDE5  inhibitor treatment could 

be drawn, especially since PDE9 and PDE10 are also considered interesting 

targets for cognition enhancement. However, the more selective PDE5 

inhibitors sildenafil and vardenafil show similar procognitive effects in several 

learning and memory paradigms and across species (33, 108, 110, 112-115). 

Although prefrontal functions, such as executive functioning, are also 
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improved by PDE5 inhibition (108, 116), its memory enhancing effects have 

received most attention in this regard. As such, PDE5 inhibitors mediate 

memory formation in spatial, fear and object memory, during acquisition as 

well as during consolidation of the memory trace (107). These pro-cognitive 

effects have also been studied in animal deficit models, which mimic memory 

decline due to various conditions. Memory deficits caused by experimental 

models of diabetes, hyperammonemia, stroke and electroconvulsive shock 

have been reversed by PDE5 inhibitor treatment (91, 117, 118). Several 

studies have assessed the effects of PDE5 inhibitors in human subjects, but 

until now attempts to demonstrate cognition enhancing effects in humans 

were rather disappointing (119-121). However, changes in cognition-

associated event-related potentials (ERPs) suggest that PDE5 inhibitors do 

affect cognitive processes to some degree (121). Further studies with larger 

sample sizes and in patient populations are required to evaluate whether 

procognitive effects of PDE inhibitors observed in pre-clinical studies can be 

translated toward the human situation.  

It is unlikely that the procognitive effects of PDE5 inhibitor treatment are 

related to cerebrovascular changes. A preclinical study found no changes in 

blood flow or glucose utilization in cognition-related brain regions at doses 

of vardenafil that effectively enhanced memory performance in rats (47). 

Compounds that do not cross the blood-brain barrier, e.g. tadalafil, should 

therefore not affect cognition. Whereas procognitive effects of sildenafil and 

vardenafil have repeatedly been reported in preclinical studies, to our 

knowledge only one study found an increased memory performance after 

tadalafil treatment (91). In this study, tadalafil treatment reversed a memory 

deficit caused by an ischemic insult. It might be speculated that stroke 

affected the integrity of the blood-brain barrier, thus allowing tadalafil to 

expand its effects into the brain. Further research in this area is required.  

The effects of PDE inhibitors on cognition are thus most likely caused by 

increased synaptic connectivity. In the most established cellular model of 

memory, i.e. LTP, plasticity of the synapses is essential. It is theorized that the 

strengthening of the synaptic connections by facilitating signal transduction 

leads to a memory trace (122). The synaptic changes can be temporary or 

structural in nature, depending on the strength of the signal or memory. The 
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NO-cGMP pathway has an important role in this process. Firstly, cGMP has a 

role in temporarily boosting pre-synaptic release of neurotransmitters upon 

depolarization of the post-synaptic cell via the retrograde action of NO. In 

addition, cGMP promotes structural synaptic changes by activating 

transcription factors, which are responsible for the synthesis of proteins such 

as growth factors.   

It was shown that the NO-cGMP pathway is disrupted in an animal model of 

Alzheimer’s disease (123). The latter finding together with the consistency of 

the observed memory improvements increased hopes for PDE5 inhibition 

efficacy in Alzheimer’s disease. Indeed, in transgenic mice (APP/PS1) that 

have Alzheimer-like amyloid depositions, chronic treatment of sildenafil 

improved memory and synaptic function, and decreased amyloid-β load (32). 

However, a recent study revealed that the expression of PDE5 is strongly 

reduced in the brains of healthy elderly and of patients with Alzheimer’s 

disease (124), which was confirmed by a lack of efficacy of PDE5 inhibitor 

treatment in a memory paradigm in old animals (125). This suggests that 

PDE5 inhibition treatment might be less suited as a candidate for treatment 

of Alzheimer’s disease. Several other PDEs that target cGMP, including PDE1, 

PDE2, PDE9 and PDE10 are present in the brains of aged subjects and 

inhibitors of these PDEs have been shown to improve memory as well (107). 

Therefore, inhibitors of PDE 1, 2, 9 or 10 might be more successful than PDE5 

inhibitors in treating memory decline caused by Alzheimer’s disease. 

 

PDE5 inhibitors have potential for the treatment of pain as antinociceptive 

effects have been reported after local peripheral and systemic administration 

in animal models (39, 126-133). Several lines of evidence point to an 

involvement of the NO-cGMP pathway in pain perception. However, there is 

still debate ongoing about the functional role of the NO-cGMP pathway in 

nociception. This can in part be explained by the seemingly contradictory 

results of nociceptive studies with sildenafil. As such, several preclinical 
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studies have found antinociceptive effects of sildenafil, others have reported 

hyperalgesia (133, 134).  

Whether PDE5 inhibition induces analgesic or hyperalgesic effects, could be 

dependent on location of administration. In one study, intrathecal and 

intracerebroventricular administration of L-arginine, the precursor of NO, 

lead to hyperalgesic and antinoceptive effects, respectively (133). Since PDE5 

inhibitors and L-arginine both affect the NO-cGMP pathway, similar effects 

should occur when inhibiting PDE5.  Not only the administration site, but 

also the dosage of the PDE5 inhibitor applied may influence the outcome as 

cGMP-analogues produce hyperalgesia at high doses, while causing 

antinociception at low doses. Thus, the neuronal balance of cGMP 

concentrations is important for the up- or down-regulation of nociceptors 

(135). In animals models of neuropathic pain caused by sciatic nerve 

transsection, increases in neuronal NOS (nNOS) were observed (136). In 

contrast, the activity of nNOS is reduced in chronic neuropathic pain due to 

diabetes mellitus (137, 138). Therefore, the latter type of neuropathic pain 

seems to be a good candidate to be treated with PDE5 inhibitors, since it is 

likely that in this condition, cGMP levels are declined in accordance with the 

decreased nNOS activity. Indeed, sildenafil treatment had analgesic effects in 

a mouse model for diabetes (127, 131). Although the cause of pain 

symptoms in diabetic patients remains to be clarified, dysfunctional neuronal 

NO generation, and consequent decreases in cGMP levels in the dorsal root 

ganglion (DRG), have been suggested as factors involved in the pathogenesis 

of this specific type of neuropathy (138). PDE5 inhibitors increase cGMP 

levels, which leads to the activation of PKG. K+ channels are targets of PKG, 

and are known to be involved in peripheral antinociception (139, 140). 

Several lines of evidence suggest a similar involvement of K+ channels in the 

DRG (127, 141). The influx of K+ hyperpolarizes the central terminal of 

primary afferent neurons which causes antinociception (127).  

Given the above, it can be concluded that for specific types of pain, such as 

chronic neuropathy due to diabetes mellitus, PDE5 inhibition might provide a 

new therapeutic option.  
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Unwanted side-effects can severely limit the therapeutic potential of drug 

treatment candidates. The available PDE5 inhibitors are generally regarded 

as safe drugs, with some minor side-effects. Among the most commonly 

reported are headache, flushing and dyspepsia. A number of common and 

less common side-effects caused by PDE5 inhibition have a neurological 

origin. Headache or cephalgia is mostly reported as mild and transient; 

however there is also an association between PDE5 inhibitors and migraine 

(142). In general, headaches are thought to be caused by a complex 

interaction of factors, including excitatory thresholds, neurotransmitter levels 

and vascular dynamics (106).  The induction of headaches and migraine after 

PDE5 inhibition were mostly regarded as being a result of cerebral 

vasodilatation. However, recent studies showed that the migraine attacks 

induced by PDE5 inhibition are independent of CBF changes in the main 

cerebral arteries, and electrophysiological measures did not reveal increases 

of neuronal excitability (45, 82, 143). An alternative hypothesis is that an 

enhanced NO-cGMP pathway causes cortical spreading depression (CSD), in 

which a wave of hyperactivity and vasodilation in the brain is followed by a 

wave of inhibition and vasoconstriction (144). CSD has been strongly 

associated with migraine attacks preceded by an aura. PDE5 inhibition could 

be responsible for the initial increased CBF and cerebral hyperactivity, 

thereby instigating the consequent inhibition. Migraine is a risk factor for 

transient global amnesia, which also has been associated with PDE5 

inhibition treatment in two case studies (145, 146). Again, CSD could explain 

transient global amnesia by vasoconstriction of vessels in the hippocampal 

area. 

Blurred vision is another side-effect, which is reported in sildenafil and 

vardenafil treatment, but not in tadalafil treatment. The former PDE5 

inhibitors have additional affinity to PDE6 (28), which is important for visual 

signal transduction. PDE6 is mainly found in the rod and cone cells in the 

retina. Inhibition of PDE6 disturbs normal visual processing at the level of the 

retina, and thereby induces visual deficiencies. Tadalafil does not affect PDE6, 

and is therefore not associated with this side-effect.  
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Previously, we discussed the contra-indications of PDE5 inhibition in patients 

with pre-existing cerebrovascular diseases, considering the increased risk for 

stroke. Increased risk for seizures has been reported as another rare, though 

severe side-effect of PDE5 inhibition. Case reports described tonic-clonic 

seizures after intake of sildenafil and vardenafil (147, 148). Also in a seizure 

mouse model, sildenafil reduced the threshold for clonic seizures, which 

according to Riazi and colleagues was caused by hyper-excitability in the 

brain due to cGMP accumulation (149). It is known that endogenous NO is 

involved in NMDA-dependent excitatory neurotransmission. In addition, 

there are indications that the activity of GABAergic receptors is reduced by 

NO. A disturbance in the NO-cGMP pathway could in that manner lead to 

excessive glutamate neurotransmitter release and proconvulsant effects 

(150). 

PDE5 inhibition has been shown successful in treating ED and pulmonary 

hypertension. The function and widespread localization of PDE5 in the body, 

as well as relative safety and availability of its inhibitors, has attracted a lot of 

researchers in different medical fields to evaluate PDE5 as a drug target. This 

has led to the identification of a number of CNS applications in which PDE5 

inhibitors could produce beneficial effects, including stroke and cerebral 

vasospasm, specific types of neuropathy and memory decline. In ED and 

FSAD, PDE5 inhibition also effectively attenuated disease symptoms, even if 

the cause of the problem is neurological. However, for these disorders the 

actual contribution of CNS might be questioned. 

It should be noted that in the literature several interspecies differences and 

several seemingly contrasting findings were encountered. PDE5 inhibition 

can have positive as well as negative effects on pain perception, and has 

been associated with increased risk for stroke, but at the same time can 

enhance functional outcome after stroke. This clearly shows the complexity 

of the underlying mechanisms. cGMP is involved in many bodily functions, 

and it is important to keep in mind that many of these functions will be 
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affected when administering PDE5 inhibitors. Nevertheless, we believe that 

PDE5 inhibitors have potential in treating CNS-related disorders. Future 

research should aim to confirm the gathered findings in clinical studies and 

further elucidate the underlying mechanisms of action. 
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Cyclic nucleotide phosphodiesterases (PDEs) are responsible for the 

breakdown of cyclic nucleotides cAMP and cGMP. As such, they are crucial 

regulators of levels of cyclic nucleotide-mediated signaling. cAMP- as well as 

cGMP-signaling have been associated with neuroplasticity and -protection, 

and influencing their levels in the cell by inhibition of PDEs has become a 

much studied target for treatment in a wide array of disorders, including 

neurodegenerative disorders. In this review, we will focus on the involvement 

of phosphodiesterases in neurodegenerative disorders. In comparison to 

preclinical work, data on human patients are scarce. Alzheimer’s disease is 

associated with changes in PDE4, PDE7 and PDE8 expression in the brain. 

Altered functioning of PDE4 as well as PDE11 is associated with major 

depressive disorder. In multiple sclerosis, there are indications of alterations 

in expression of several PDE subtypes in the CNS, although evidence is 

indirect. In Huntington’s disease and Parkinson’s disease most research has 

focused on PDE1B and PDE10, because of their abundant presence in striatal 

neurons. In another rare, neurodegenerative striatal motor disorder, i.e. 

autosomal-dominant striatal degeneration, genetic defects in PDE8B gene 

are thought to underlie the neurodegenerative processes. Whereas the latter 

disorder has showed a causative dysfunction of PDEs, this does not hold for 

the neurodegenerative disorders discussed above, in which changes in PDE 

levels seemingly rather represent secondary changes and compensation to 

prior existing dysfunction. However, normalizing cyclic nucleotide signaling 

via PDE inhibition remains interesting for treatment of neurodegenerative 

disorders. 
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Cyclic adenosine monophosphate (cAMP) and cyclic guanosine 

monophosphate (cGMP) are both cyclic nucleotides. This nomenclature 

originates from the fact that their phosphate group is attached to two sugar 

hydroxyl groups, forming a ring or ‘cyclic’ structure. Cyclic nucleotides 

function as second messengers, which serve to relay and strongly amplify 

incoming signals at receptors on the cell surface. Cyclic nucleotides are thus 

important elements in signal transduction cascades (1). cAMP and cGMP are 

hydrophilic and therefore transmit signals within the cytosol, activating 

mainly protein kinases and ion channels. The study of cyclic nucleotide 

signaling in the last decades has revealed a stunning complexity (2). Not only 

is their effect dependent on concentration changes, there are temporary as 

well as spatial components to cyclic nucleotide signaling. Signals can vary in 

timeframe, from milliseconds to hours and often show a very strict 

compartmentalization in a specific part of the cell. This enables a wide variety 

of outcomes of cAMP and cGMP signaling, enabling the cell to react 

appropriately and nuanced on stimulation. These characteristics expose the 

requirement for a meticulous regulation of cyclic nucleotides. cAMP is 

synthesized from ATP by membrane-bound adenylyl cyclase (AC), which is 

mainly regulated in neurons by G-proteins and additionally stimulated by 

Ca
2+ 

and calmodulin. Synthesis of cGMP is regulated by guanylyl cyclase 

(GC), which converts GTP into cGMP. The key activator of the most common 

GC in neurons, i.e. soluble GC (sGC) is the gaseous signaling molecule nitric 

oxide (NO). However, the most important regulation of cyclic nucleotides is 

seemingly not achieved by its synthesis, but by the breakdown of cAMP and 

cGMP in their inactive forms, 5’AMP and 5’GMP respectively. The enzymes 

responsible for this process are phosphodiesterases (PDEs).  

The PDE superfamily consists of 11 subtypes (PDE1-PDE11) based largely on 

their sequence homology and are coded by 21 identified genes. In addition, 

each gene product may have multiple splice variants (e.g., PDE4D1-PDE4D9), 

which add up to a total of more than 100 different PDE proteins (3). 

Subtypes are differentiated based on several characteristics, such as 
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Figure 1.  Scheme representing an overview of the specificity of the different PDE subfamilies 

for cAMP and/or cGMP. 

 

localization, subcellular distribution, regulatory mechanisms, and enzymatic 

and kinetic properties. Most of these subtypes have more than one gene 

product (e.g., PDE4A, PDE4B, PDE4C, PDE4D). One fundamental distinction  

between subfamilies is made on basis of the difference in affinity for the two 

distinct cyclic nucleotides. A differentiation is possible between cAMP-

specific enzymes (PDE4,7,8), cGMP-specific enzymes (PDE5,6,9) and the so 

called dual substrate PDEs, that have affinity for both cyclic nucleotides 

(PDE1,2,3,10,11; for an overview see figure 1).  

As mentioned before, cAMP and cGMP, and concomitantly also adequate 

PDE functioning, are essential in cellular signaling and a variety of cellular 

functions. Furthermore, there are indications that they also affect neuronal 

cell survival, and when functioning incorrectly, may be involved in 

neurodegenerative processes (4). 

Multiple downstream signaling targets of cyclic nucleotide signaling may 

account for these neuroprotective effects.  

An important target of both cyclic nucleotides cAMP and cGMP in neuronal 

signaling is cAMP-responsive element binding protein (CREB) (5, 6). CREB is 
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an activity-inducible transcription factor. Crucial to activation of CREB is its 

Serine 133 region, where multiple kinases can bind, including protein kinase 

A (PKA) and MAPK. Upon phosphorylation of Ser133, transcription co-

activators CREB-binding protein and p300 bind to CREB, which offsets CRE-

mediated transcription. Studies investigating CRE-regulated gene expression 

have associated CREB with up-regulation of neurotransmitters, growth 

factors and other signaling molecules with important functions in 

neuroplasticity and neuronal survival (6). Changes in phosphodiesterase 

expression and subsequent cyclic nucleotide signaling, will therefore affect 

the level of neuroprotection via CREB (7). Furthermore, cAMP and cGMP 

trigger the signal translocation of mitogen-actived protein kinase (MAPK) to 

the nucleus, resulting in downstream activation of anti-apoptotic factors 

such as bcl-2, and conversely inactivation of pro-apoptotic Bad (8-12). In 

vitro, cAMP elevation can rapidly recruit Tyrosine-kinase B (TrkB) receptors at 

the membrane surface by translocation from intracellular stores, which are 

the main receptors of brain-derived neurotropic factor (BDNF), thereby 

enhancing responsiveness to these neurotrophic factors which are essential 

in neuronal growth and survival (13). BDNF, which activates the MAPK 

pathway, is also one of the major gene products of CREB-mediated 

transcription which will be up-regulated upon cyclic nucleotide level 

elevation. Furthermore, BDNF/TrkB signaling is also able to activate 

phosphatidylinositol-3-kinase (PI3-K)/Akt cascades, which are generally 

renowned for their beneficial effects on neuronal survival neuronal survival 

via bcl-2 activation and Bad inactivation (12). 

After acute damage to the CNS, elevation of cyclic nucleotide levels via 

inhibition of PDEs are able to ameliorate recovery processes. In various in 

vitro neurotoxicity models, including hypoxia/hypoglycemia-induced and 

glutamate-induced neurotoxicity, inhibition of PDEs shows a neuroprotective 

profile, possibly via the suppression of pro-apoptotic caspase-3 activity (14). 

Stimulation of cGMP signaling via cGMP analogues and selective inhibition 

of cGMP-specific PDE5 protects motor and non-motor neurons to acute 

reactive oxygen species (ROS)-induced neurotoxicity in vitro (15, 16). In that 

same study, no beneficial effects of other dual-substrate or cAMP-specific 

PDE inhibitors were reported. However, others have found that after spinal 

cord injury in preclinical settings, elevation of cAMP levels, e.g. via inhibition 
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of PDE4, can enhance myelination, survival and growth of axons as well as 

functional recovery (17-19). Further, it was demonstrated that in preclinical 

models of ischemia PDE3 and PDE5 inhibition increase neurogenesis (20, 21) 

and also initiate structural changes in pre-existing neurons, such as synaptic 

sprouting and axonal remodeling, to facilitate functional recovery (21-23).  

Because the importance of adequate cyclic nucleotide signaling in 

neuroplasticity and the distinct characteristics of the different PDE isoforms, 

PDE inhibition is being evaluated as a target for treatment of a broad 

spectrum of neurodegenerative disorders. However, in this review we chose 

to focus on genetic and protein expression studies on PDEs in 

neurodegeneration. Literature involving possible therapeutic effects of 

inhibition of PDEs are beyond the scope of this review (for review on PDE 

inhibition and CNS disorders see (24)). 

 

The most studied age-related neurodegenerative disorder is without any 

doubt Alzheimer’s Disease (AD). The most prominent symptoms of the 

disease are the progressive decline in cognitive functions, in particular 

memory. Underlying these symptoms, the disease is characterized by 

synaptic and neuronal loss, leading to atrophy in mainly temporal and 

parietal lobe areas. Although the precise causes of the disease are still to be 

unraveled, the presence of amyloid β plaques and neurofibrillary tangles in 

the brain are thought to be critical in these processes.  

Both cAMP and cGMP have been suggested to be affected in AD. cAMP and 

especially its main target protein kinase, PKA, are thought to play a role in 

the etiology of neurofibrillary tangles via phosphorylation of tau (25, 26). A 

down-regulation of the AC/cAMP/PKA signaling pathway has been reported 

in human Alzheimer patients (27-29). As a main activator of CREB, a decrease 
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in AC/cAMP/PKA signaling can also account for loss in synaptic plasticity and 

memory decline in AD (30).  

A number of studies have showed changes in expression of cAMP-specific 

PDEs mRNAs in AD brains. Specifically, an increase in expression of PDE4A, 

PDE4B and PDE7A are observed in early stages of AD, whereas the severest 

clinical stages are associated with an increase in PDE8B expression in the 

brain regions associated with memory such as the enthorhinal cortex (31). 

Further, a decrease of cAMP-specific PDE7A mRNA was reported in white 

matter tracts, probably representing loss of oligodendrocytes (32).  In 

addition, McLachlan and collegues examined the expression of isoforms of 

PDE4D, which in preclinical research has been suggested to be of particular 

importance for cognition, in the hippocampus of an AD patient (33, 34). 

Whereas they reported a reduction in expression of most isoforms of PDE4D 

(PDE4D3,5,6,7,8 and 9), the predominant short form of PDE4D in the human 

brain, PDE4D1, was strongly increased (33). These findings are in line with 

expectations of decreased cAMP-signaling in AD. Since activity of some 

subtypes of PDEs, such as PDE4, are regulated among other pathways by 

cAMP/PKA signaling itself (3, 35), PDE activity and expression are disturbed 

due to dysfunctional cell signaling. This implies that changes are secondary 

to the neuropathology rather than causative.  

Similar to the cAMP/PKA pathway, the NO/cGMP pathway is also thought to 

play an important role in memory processes, and is known to be altered in 

aged brains (36, 37). Therefore, in literature cGMP is suggested to be linked 

to AD (36). Just as for cAMP, the eventual downstream activation of CREB 

provides an interesting link to cognitive dysfunction and decreased synaptic 

plasticity in AD (5, 38).  Along this line, anti-apoptotic effects of NO/cGMP 

have also been attributed to upregulation of Bcl-2, an anti-apoptotic protein 

of which the expression is decreased in AD (39). However, in AD post-

mortem brains, no changes in expression of cGMP-specific PDE9 or dual-

substrate PDE2 mRNA was found in comparison to control brains (40).  
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Major depressive disorder (MDD) is generally considered a 

neurodegenerative disease, as it is thought to be associated with a decrease 

in neurogenesis in hippocampal dentate gyrus (41) and neuronal atrophy in 

the hippocampal CA3 area (42-45). 

There is ample evidence from post-mortem human brain material that 

multiple components of the cAMP signaling cascade including AC, PKA and 

CREB are down-regulated in MDD (46-49). One subtype that has been of 

particular interest in this regard is the cAMP-specific PDE4. A very recent 

study quantified in vivo the binding of 11C-(R)-rolipram, a specific PDE4 

inhibitor, using PET-scans in unmedicated MDD patients (50). MDD patients 

were reported to show a significant reduction in PDE4 levels, representing a 

compensatory mechanism in response to decreased cAMP-signaling caused 

by decreased neurotransmission (51). 

Wong and colleagues genotyped SNPs in all 21 genes coding for the 

phosphodiesterase superfamily, in a patient and control population (52). 

They found strong evidence for an association between certain 

polymorphisms in PDE9A and PDE11A and the diagnosis of MDD. In 

addition, their data are suggestive of an involvement of other PDE genes 

(PDE2A, PDE5A, PDE6C and PDE10A) in MDD (52). Furthermore, the PDE11A 

global haplotype was not only associated with the diagnosis of MDD, but 

also with response to antidepressant treatment (53), with some 

polymorphisms of PDE11A showing an significant correlation with remission 

on antidepressants.  

Multiple Sclerosis (MS) is an auto-inflammatory disease of the CNS 

characterized by white matter lesions. Although the main cause of 

dysfunctions is due to inflammatory processes in CNS, disease progression 

and especially irreversible neurological disability are associated with axonal 

loss (54). cAMP has been identified as an important player in regulatory T 

cell-mediated suppression (55). It is also known that increasing cAMP levels 
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reduces inflammatory cellullar responses (56-58). A recent study reported 

that MS patients show increased mRNA expression in peripheral blood 

lymphocytes of several cAMP-targeting PDE subfamilies, I.e. PDE2, 3, 4 and 7 

(59). Levels of expression in the brain itself are however lacking to our 

knowledge. Taken together, this suggests an important involvement of 

cAMP-signaling in neuro-inflammatory processes, possibly originating from 

changes in PDE levels. 

PDEs are also thought to play a role in the pathological mechanisms leading 

to diseases characterized by striatal degeneration, such as Huntington’s 

disease (HD) and Parkinson’s disease (PD).  

In these disorders, specific interneuron populations in the striatum show 

disturbed dopaminergic innervations (60). This causes severe motor 

dysfunction, with HD being characterized by aberrant uncontrollable 

movement, while in PD the hallmark symptoms include slowness of 

movement and tremor. With regard to striatal neurodegeneration, the most 

studied PDE in this respect is dual substrate enzyme PDE10A, since PDE10A 

mRNA is being expressed at highest levels in the striatum (61). More 

specifically, PDE10A seems to be localized at the membrane of dendrites and 

dendritic spines in the GABAergic spiny projection interneurons (62). In post-

mortem brains of patients with severe HD, decreased levels of PDE10A in 

caudate nucleus, putamen and nucleus accumbens were reported when 

compared to control subjects (63).  

Yet another dual substrate PDE, Ca
2+

/calmodulin-dependent PDE1B, is 

expressed in a similar localization pattern as PDE10A, with highest levels in 

caudate putamen and nucleus accumbens (61, 64). In general, localization of 

PDE1B coincides with brain areas rich in D1 dopamine receptors and 

dopaminergic innervation. In the striatum, PDE1B is localized in spiny 

interneurons and is this strongly suggests that PDE1B is critically involved in 

its dopaminergic signaling. The fact that PDE1B and PDE10A have opposite 

effects on motor behavior points towards a differential involvement of the 

PDE subtypes in striatal intracellular signaling cascades. That is, PDE10A is 

predominantly expressed in medial spinal neurons in the striatopallidal D2 
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indirect pathway. D2 receptors are negatively coupled to AC and their 

stimulation decreases cAMP levels leading to behavioral inhibition (65). In 

contrast, PDE1B is mainly expressed in the striatonigral D1 direct pathway. D1 

receptors enhance AC activation, leading to an increase of cAMP levels and 

behavioral activation (65).  

Beyond motor function, HD is characterized by cognitive problems which 

occur even before onset of motor symptoms (66-68). A recent study has 

reported a hippocampal hyperactivity of PKA signaling in human HD patients 

(69). This was associated with a down-regulation in the expression of a 

number of PDE4 isoforms, including PDE4D1, in hippocampal areas which 

suggests that a hyperactivity of cAMP signaling could underlie early 

cognitive problems in HD. 

A disease that is related to HD and PD is the rare Autosomal-dominant 

Striatal Degeneration (ADSD), which is characterized by dysfunction and 

morphological changes of the striatum (70). Clinical features resemble PD, 

however tremor is absent and response to L-Dopa treatment is poor. 

Recently it was shown using genetic linkage analysis of an ADSD family that 

ADSD is caused by a complex frameshift mutation in the gene coding for 

PDE8B (71). This cAMP-specific PDE8B is highly expressed throughout the 

brain, with highest levels present in the putamen (71). In ADSD, PDE8B 

proteins are severely truncated with 5 out of 6 isoforms having lost all their 

functional domains. In this light, it might be relevant to take PDE8B into 

account for other striatal motor disorders, such as PD, although it might be 

easoned that, considering the unresponsiveness to L-Dopa treatment, ADSD 

is caused by mechanisms downstream of dopaminergic striatal signaling 

whereas the cause of PD is upstream.  

Cyclic nucleotides are vital in intracellular signaling and neuroplasticity 

throughout the brain. Therefore, dysfunctional signaling can be expected to 

lead to important changes in functioning of cells and thus might lead to 

pathological outcomes. Indeed, many neurodegenerative diseases are 
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associated with aberrant cyclic nucleotide signaling related to PDE 

expression. In some cases, such as in ADSD, evidence even points towards a 

direct causative link between PDE dysfunction and the disorder. In most 

other disorders however, such a straightforward association can not be made 

and the relationship seems rather a compensatory mechanism in response to 

dysfunctional signal transduction rather than the cause of neuropathology. 

Nevertheless abnormal PDE expression and function can be linked to 

abnormal cyclic nucleotide signaling and thus cellular function possibly 

leading to neurodegenerative processes. Normalizing cyclic nucleotide levels 

therefore represents at least a symptomatic approach in the treatment of 

neurodegenerative disorders. This explains the current large interest in PDE 

inhibitors as a pharmaceutical drug target. However, given the limited 

amount of studies that examined PDE expression in human patients, more 

research should be conducted in order to obtain a better understanding of 

the relationship between PDE functioning and neuropathology.
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Memory consolidation is defined by the stabilization of a memory trace after 

acquisition, and consists of numerous molecular cascades that mediate 

synaptic plasticity. Commonly, a distinction is made between an early and a 

late consolidation phase, in which early refers to the first hours in which 

labile synaptic changes occur, whereas late consolidation relates to stable 

and long-lasting synaptic changes induced by de novo protein synthesis. 

How these phases are linked at a molecular level is not yet clear. Here we 

studied the interaction of the cyclic nucleotide-mediated pathways during 

the different phases of memory consolidation in rodents. In addition, the 

same pathways were studied in a model of neuronal plasticity, long-term 

potentiation (LTP). We demonstrated that cGMP/PKG signaling mediates 

early memory consolidation as well as early phase-LTP, while cAMP/PKA 

signaling mediates late consolidation and late-phase-like LTP. Additionally, 

we show for the first time that early-phase cGMP/PKG-signaling requires 

late-phase cAMP/PKA-signaling in both LTP and long-term memory 

formation.  
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Memory is a complex, multifaceted phenomenon, in which a differentiation is 

made between acquisition, consolidation and retrieval processes. Each of 

these processes relies on specific molecular mechanisms (1, 2). Consolidation 

is a temporally graded process, in which newly acquired information 

becomes stabilized and stored in memory traces (3). The cellular substrates 

of memory consolidation are molecular transformations at the participating 

synapses. They are labile and protein-synthesis independent during the first 

hours (< 3 h) after learning, but implement  long-lasting structural 

modifications during later phases which rely on de novo protein synthesis.  It 

has become evident that cyclic nucleotides, i.e. cyclic AMP (cAMP) and cyclic 

GMP (cGMP), play an important role in memory consolidation and in a 

specific neuroplasticity phenomenon which is generally regarded as the 

neural correlate of memory, i.e. long-term potentiation (LTP) (4-10). 

Furthermore, cyclic nucleotides have been suggested to be differentially 

involved in distinct phases of the memory consolidation process. That is, 

cGMP has been attributed a role in early consolidation, while cAMP is 

implicated in late consolidation processes (11, 12). However, how these cyclic 

nucleotide-mediated memory processes are linked to each other is not clear. 

Phosphodiesterases (PDEs) are enzymes that hydrolyze cAMP and/or cGMP, 

in the body and the brain. It has been previously shown that different 

inhibitors of PDEs enhance memory formation in rodents in a wide array of 

memory tasks (13). These studies led to the identification of a number of PDE 

subfamilies as promising targets for memory improvement, in specific the 

PDE1, PDE2, PDE4, PDE5 and PDE9 subtype. In this study we focused on 

cAMP-selective PDE4 (14-17), cGMP-selective PDE5 (18, 19), and PDE2, which 

hydrolyzes both cAMP and cGMP (11, 20). It has been suggested that the 

cognition-enhancing effects of PDE inhibitors are related to activation of 

cAMP/protein kinase A (PKA)/cAMP responsive element binding protein 

(CREB) and cGMP/protein kinase G (PKG)/CREB signaling pathways (11, 13, 

21), which are both associated with late phase LTP (L-LTP).  In contrast to the 

transient early phase of LTP (E-LTP), this long-lasting form of LTP is 

dependent on protein synthesis via CREB phosphorylation (5-7, 14). In the 
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present study, the exact role of hippocampal cyclic nucleotides in early 

versus late phases of memory consolidation in the ORT as well as in an early 

and late phase of LTP was investigated. 

We hypothesized that early consolidation of object memory is dependent on 

cGMP-PKG signaling and that late consolidation is dependent on cAMP-PKA 

signaling in the hippocampus. To investigate these mechanisms and their 

relationship in an in vivo behavioral setup, we co-administered PDE inhibitors 

peripherally and protein kinase (PK) inhibitors intra-hippocampally. We 

assessed the effect of PDE inhibition on early and late consolidation 

processes in an object recognition task (ORT) and whenever memory 

improvement was observed, we aimed to block this effect with centrally 

administered PKG and PKA inhibitors. In addition, the involvement of the two 

cyclic nucleotide-mediated pathways was evaluated in different phases of 

LTP in hippocampal slices in vitro. This study provides further evidence for 

differential time-dependent contribution of cAMP and cGMP in memory 

consolidation and synaptic plasticity, and it shows that for long-term 

memory improvement the cAMP-PKA pathway is required after cGMP 

signaling. 

All experimental procedures were approved by the local ethical committee 

for animal experiments of Maastricht University or of University of Catania, 

and were in agreement with the respective governmental guidelines. For 

behavioral experiments, 3 to 6-months old male Wistar rats (Charles River, 

Sulzfeld, Germany) were used. For electrophysiological studies C57BL/6J 

male mice, 3-months old, were obtained from a breeding colony housed in 

the animal facility of the University of Catania.  

Rats were individually housed in standard type 3 Makrolon cages on sawdust 

bedding. The animals were held in an air-conditioned room (approximately 

21 °C) and had free access to food and water. A softly playing radio provided 
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background noise. A reversed light-dark cycle was applied in the room 

(lights on between 7.00 PM and 7.00 AM) in order to test the animals during 

their naturally active period. Housing conditions of the mice were the same 

as for rats, except that they were housed socially with 5 animals per cage. 

Apparatus. Animals were subjected to the object recognition task (ORT). This 

task was performed in a circular arena with a diameter of 83 cm and walls of 

40 cm high. The backside half of the arena wall was made of grey polyvinyl 

chloride, and the front half of transparent polyvinyl chloride. The objects 

consisted of four sets including 1) a cone made of brass, 2) a transparent 

glass bottle, 3) a massive metal beam with two holes and 4) a massive 

aluminum cube with a tapered top. The animals were unable to displace the 

objects. All objects were present in three-fold and were cleaned thoroughly 

after each trial to remove all olfactory traces. 

Procedure. During the first weeks of the experiment, the animals were 

habituated to handling and observation by the experimenter. In addition, 

animals were familiarized to the environment and procedures. 

ORT procedures were adapted from previous studies (36), with modifications 

as described previously (37). During the ORT, rats were put in a circular 

arena, facing the middle of the transparent wall. In the arena, two identical 

objects were placed approximately 10 cm from the wall. The animal was 

given 3 minutes to explore the environment and objects. The time spent 

exploring the separate objects was manually scored using a personal 

computer by an experimenter that was blinded to the conditions tested. 

Exploration was defined as directing the nose to the object, with a maximal 

distance between nose and object of 2 cm. Leaning or sitting on the object 

was not considered exploratory behavior. After 24 h, the rat was put back in 

the arena. In this second trial, one of the objects from the initial trial was 

replaced by another object. Again the rat was allowed to explore the objects 

for 3 minutes and object exploration times were recorded. An increase in 

time spent exploring the new object was interpreted as recognition of the 

previously encountered objects. A relative measure of discrimination 
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between the old and new object was calculated, which was corrected for 

total exploration time. The resulting discrimination index (exploration time 

new object – exploration time old object)/(exploration time new object + 

exploration time old object) reflects recognition memory independent of 

normal exploratory behavior (38). Animals that did not show normal 

exploration (< 7 sec) were excluded from analysis. 

The test regime included two 24 h interval testing sessions a week. We opted 

for a delay interval of 24 h, at which under normal, non-treated 

circumstances, no discrimination between the objects occurs, which allows 

for an improvement of long-term memory performance following drug 

treatment. Testing was done between 9.00 AM and 17.00 PM under red light 

conditions.  

Cannula placement. To inject into the CA1 of the hippocampus, cannulae 

were implanted by means of stereotaxic surgery. Animals were fixed in a 

stereotaxic frame after induction of full anesthesia with isoflurane (induction: 

5 %; maintenance: 2 %). Cannulae were placed bilaterally in hand drilled 

holes above the CA1 region of the hippocampus at following coordinates: -

3.6 mm anterior, ±3.0 mm lateral and 3.0 mm ventral from bregma (39). 

When cannulae were in place they were fixed to the skull using acrylic dental 

cement (Paladur
®

 ) and small screws. Animals were allowed to recover from 

surgery for two weeks before the testing procedures started. In order to 

verify correct cannula location, the central infusion procedure was repeated 

at the end of the experiment injecting 1 μl 5% methylene blue/95% saline 

bilaterally. Ten minutes after the methylene blue injections, animals were 

decapitated and their brains were rapidly removed. The correct injection 

location was verified by evaluating of the methylene blue discoloration of the 

hippocampus. 

 

Treatments. We administered three selective PDE inhibitors: PDE2 inhibitor 

BAY 60-7550 (IC50 4.7 nM; kindly donated by BAYER AG, Wuppertal, 

Germany), PDE4 inhibitor rolipram (IC50 1.5 nM; Sigma Aldrich, Zwijndrecht, 
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Netherlands) and PDE5 inhibitor vardenafil (IC50 0.7 nM; kindly donated by 

BAYER AG). All three PDE inhibitors have been shown to cross the blood-

brain barrier (40-42). The PKA inhibitor Rp-8-Br-cAMPS and PKG inhibitor 

Rp-8-Br-cGMPS were obtained from Biolog (Bremen, Germany). First, rats 

were treated solely with the PDE inhibitors (combined with central vehicle 

(saline) infusion) on both time points. Whenever a PDE inhibitor significantly 

improved memory performance, we subsequently attempted to block this 

effect using co-infusion of a PKG or PKA inhibitor. Drugs were administrated 

immediately (i.e. 4-10 minutes after the start of the learning trial) or 3 h after 

the first trial. This resulted in a total of 17 treatment combinations of 

different PDE inhibitors (vehicle, PDE2, PDE4 or PDE5 inhibition) with the 

protein kinase inhibitors (vehicle, PKA or PKG inhibitor) on the different time 

points of administration (T1+ 0h or T1 +3h). All solutions were freshly 

dissolved on the day of testing. Peripheral drug administration of the PDEi 

was done either orally (BAY 60-7550 3 mg/kg and vardenafil 1 mg/kg) or 

intraperitoneally (rolipram 0.03 mg/kg). All PDE inhibitors were dissolved in 

the same vehicle (98 % methyl cellulose [tylose] solution (0.5 %) and 2 % 

tween80) and administered in a volume of 2 ml/kg. Inhibitors of protein 

kinases were administered directly into the hippocampus via the surgically 

implanted guiding cannulae. Using a micropump, 0.5 μl saline (0.9 % NaCl) or 

a saline solution containing RP-8-Br-cAMPS or RP-8-Br-cGMPS (both 2 

μg/μl) was injected bilaterally over a time period of one minute through the 

infusion cannulae which were connected to two 10 μl Hamilton syringes by 

polyethylene tubes. The injection needles were left in place for an additional 

minute to prevent reflux of infused drugs along the cannula track. Drug 

dosages and administration routes were based on previous studies (20, 43, 

44). For electrophysiological experiments, vardenafil (10 nM), rolipram 

(100nM), Rp-8-Br-cGMPS (10 μM) and Rp-8-Br-cAMPS (20 μM) were diluted 

in artificial CSF (ACSF) immediately before use, and applied in the bath 

solution at different time points before or after the induction of LTP. The 

concentrations were based on previous literature (22, 29). 

Electrophysiological recordings were performed as previously described (29). 

Briefly, transverse hippocampal slices (400 μm) were cut and transferred to a 
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recording chamber where they were maintained at 29°C and perfused with 

ACSF (flow rate 2 ml/min) continuously bubbled with 95% O2 and 5% CO2. 

The ACSF composition was composed of the following (in mM): 124.0 NaCl, 

4.4 KCl, 1.0 Na2HPO4, 25.0 NaHCO3, 2.0 CaCl2, 2.0 MgSO4, and 10.0 glucose. 

Field extracellular recordings were performed by stimulating the Schaeffer 

collateral fibers through a bipolar tungsten electrode and recording in CA1 

stratum radiatum with a glass electrode filled with ACSF. A 15 min baseline 

was recorded every minute at an intensity that evoked a response 

approximately 35% of the maximum evoked response. Early-LTP was induced 

by a weak tetanus (4 pulses at 100 Hz, with the bursts repeated at 5 Hz and 

one tetanus of 10-burst trains) (29, 45, 46). Responses were recorded for 3 h 

after tetanization and measured as field excitatory post-synaptic potentials 

(f-EPSP) slope expressed as percentage of baseline. The results were 

expressed as mean ± standard error mean. 

A one-way ANOVA was performed to investigate effects of treatment on 

discrimination index for every type of PDE inhibitor separately. In case of 

significant between group effects, we used Fischer’s LSD for post hoc 

comparisons. For LTP, statistical analysis was performed with 2-way ANOVA 

with repeated measures. For all analyses, significance level was set at 0.05. 
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Memory performance was assessed in the ORT with a 24 h interval in rats. 

Differences were found in discrimination performance for the different PDE5 

inhibition conditions (F(4,93)=3.18; p<0.05), which are summarized in figure 

1A. When compared to vehicle condition, vardenafil in combination with an 

intra-hippocampal saline injection enhanced memory when given 

immediately (T+0h) after the first trial (p<0.05), but not when administered 3 

h after the first trial (n.s.). Memory improvement after immediate vardenafil 

treatment remained when the administration of the PDE5 inhibitor was 

combined with an intra-hippocampal injection of PKA inhibitor (n.s.). 

However, when vardenafil was co-administered with PKG inhibition directly 

after learning, the memory enhancement tended to be reduced (p=0.056).  

 

Differences were found on discrimination performance for the different PDE4 

inhibition conditions (F(4,94)=2.74; p<0.05), which are summarized in figure 

1B. Rolipram improved memory when it was injected 3 h after the first trial, 

in combination with intra-hippocampal saline infusions (p<0.05). However, 

this improvement was not present when drugs were administered 

immediately after learning (n.s.). The memory enhancement after delayed 

rolipram administration (T+3h) was unaffected when RP-8-Br-cGMPS was 

intra-hippocampally co-administered (n.s.), whereas RP-8-Br-cAMPS blocked 

the improvement (p<0.05). 
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Figure 1. The effects of PDE inhibition treatment (A: PDE5 inhibition – Vardenafil 1 mg/kg, p.o., 

n=26/18/18/18/18; B: PDE4 inhibition – Rolipram 0.03 mg/kg, i.p., n=26/18/18/19/18; C: PDE2 

inhibition – BAY 60-7550 3 mg/kg, p.o., n=26/19/18/19/18/16/19) on discrimination 

performance (discrimination index; means + S.E.M.) in a 24-h-delay object recognition task. PDE 

inhibition was administered immediately after (T+0h) or 3 h (T+3h) after the first trial. When PDE 

inhibition combined with saline intra-hippocampal injections (veh) yielded significant 

improvement of discrimination, we subsequently combined PDE treatment with inhibitors of 

PKG (PKG-I; RP-8-Br-cGMPS 1 μg/kg) or PKA (PKA-I; RP-8-Br-cAMPS 1 μg/kg). Asterisks indicate 

significant differences (*p<0.05, **p<0.01) of PDE inhibition treatment from vehicle condition. 

Hashes indicate a significant reversal of PDEinduced memory improvement (
(#)

p=0.056,
#
p<0.05, 

##
p<0.01). 

 

Differences were found on discrimination performance for the different PDE2 

inhibition conditions (F(6,128)=4.53; p<0.001), which are summarized in 

figure 1C. In comparison with the vehicle condition, BAY 60-7550 enhanced 

memory after both immediate (p<0.01) and delayed administration (p<0.05). 

The immediate improvement was fully prevented by co-administration of a 

PKG inhibitor (p<0.01), but remained when PDE2 inhibition was combined 

with a PKA inhibitor (n.s.). When memory enhancement was induced by 

delayed injections of BAY 60-7550, these effects were blocked by intra-

hippocampal infusions of RP-8-Br-cAMPS (p<0.01). In this case, however, co-

administration of RP-8-Br-cGMPS could not block memory enhancement 

(n.s.).  
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Figure 2. The effects of early cGMP-targeting PDE inhibition treatment (A: PDE5 inhibition – 

Vardenafil 1 mg/kg, n=28/13/14; B: PDE2 inhibition – BAY 60-7550 3 mg/kg, n=28/12/13) in 

combination with PKA inhibition (PKA-I; RP-8-Br-cAMPS; i.h.; 1 μg/side) 3 h (T+3h) after the first 

trial on discrimination performance (discrimination index; means + S.E.M.) in a 24-h-delay object 

recognition task. Asterisks indicate significant differences (*p<0.05) of PDE inhibition treatment 

from vehicle condition. Hashes indicate a significant reversal of PDEinduced memory 

improvement (
#
p<0.05, 

##
p<0.01). 

 

To investigate whether memory improvement after immediate treatment 

with cGMP-targeting PDE inhibitors relies on cAMP-PKA signaling during late 

consolidation, immediate vardenafil and BAY 60-7550 administration were 

combined with PKA inhibition 3 hours after learning. Results are summarized 

in figure 2. For vardenafil treatment, significant changes in discrimination 

performance were found (F(2,38)=5.62; p<0.01; fig. 2A) with animals that 

received only vardenafil performing better than the vehicle group (p<0.05), 

and a reversal to vehicle levels in combined treatment with vardenafil and 

Rp-8-Br-cAMPS (p<0.01). For BAY 60-7550 treatment we found similar 

changes in memory performance (F(2,36)=3,97; p<0.05; fig. 2B). That is, BAY 

60-7550 enhanced discrimination (p<0.05), whereas combining BAY 60-7550 

with delayed PKA inhibition reversed the improvement (p<0.05). 

 

A 

 

B 
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Figure 3. The effects of cAMP-targeting PDE inhibition treatment (A: PDE4 inhibition 

– Rolipram 0.03 mg/kg, n=10/14/12; B: PDE2 inhibition – BAY 60-7550 3 mg/kg, 

n=9/10/11) administered 3 h after learning in combination with PKG inhibition (PKG-I; 

RP-8-Br-cGMPS; i.h.; 1 μg/side) immediately after the first trial on discrimination 

performance (discrimination index; means + S.E.M.) in a 24-h-delay object 

recognition task. Asterisks indicate significant differences (*p<0.05) of PDE inhibition 

treatment from vehicle condition.  

 

We evaluated the dependency of cAMP-mediated memory enhancement on 

preceding cGMP activity, by combining immediate intrahippocampal 

administration of Rp-8-Br-cGMPS with rolipram injected 3 hours after 

learning (fig. 3A). This resulted in significant changes in discrimination 

performance (F(2,33)=3.38; p<0.05). Memory improving effects of rolipram 

could not be precluded with immediate Rp-8-Br-cGMPS injections (p<0.05). 

In addition, we replicated these findings for memory enhancing effects after 

administration of BAY 60-7550 (F(2,27)=3.63; p<0.05; fig. 3B). Again, Rp-8-Br-

cGMPS could not prevent improved discrimination performance caused by 

delayed BAY 60-7550 treatment (p<0.05). 

 

 

A 

 

B 
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Electrophysiological experiments were performed by using a weak tetanus to 

produce E-LTP, i.e. a transient potentiation, at Schaffer collateral-CA1 

synapses in hippocampal slices. Similar to behavioral studies, the PDE5 

inhibitor vardenafil (10 nM) produced a longer-lasting potentiation when 

administered before (F(1,14)=10.53, p<0.01; fig. 4A), but not when 

administered 90 minutes after tetanus (F(1,13)=0.874; n.s.). The effect of 

vardenafil administration10 minutes after LTP induction did not differ from 

potentiation after vardenafil administration 10 minutes before induction 

F(1,13)=0.210; n.s.). No effects on baseline transmission were observed 

(supplementary fig. 1). The effect of vardenafil was blocked by co-perfusion 

with the PKG inhibitor Rp-8-Br-cGMPS (10 μM; F(1,14)=0.01; n.s. compared 

with vehicle; fig. 4A). The positive effect of vardenafil on LTP was also 

blocked by the PKA inhibitor Rp-8-Br-cAMPS (20 μM for 30 minutes; F(1,13)= 

0.04, n.s.; F(1,13)=8.86, p<0.05; comparing vardenafil and vardenafil+Rp-8-

Br-cAMPS before and after Rp-8-Br-cAMPS administration respectively; fig. 

4B), but only when administered 90 minutes after tetanus and not when 

administered together at time of induction (F(1,13)=0.061; n.s.; Fig. 5C).  The 

time window at 90 minutes after induction was identified by applying Rp-8-

Br-cAMPS at various time points after vardenafil facilitated LTP induction 

(supplementary fig. 2; t(8)=39.41, p<0.0001 compared to vardenafil-treated 

slices).  

We then tested whether inhibition of PDE4 affected LTP. Slices treated with 

the PDE4 inhibitor rolipram (100 nM) 90 minutes after a weak tetanus 

showed an enhancement of LTP (F(1,12)=12.91; p<0.01 compared with 

vehicle; fig. 5A). Bath application of rolipram before tetanus yielded in an 

enhanced LTP (F(1,12)=5.659; p<0.05), while 10 minutes after tetanus 

rolipram did not affect LTP (F(1,13)=0.001; n.s; fig. 5D).  The facilitation 

observed after rolipram administration at 90 minutes after tetanus could be 

blocked by co-perfusion with Rp-8-Br-cAMPS. This blockage was partial as 

LTP was still enhanced compared to vehicle which might be a matter of 

dosing of rolipram, i.e. too high, and/or Rp-8-Br-cAMPS, i.e. too low. 

Importantly, the effect of rolipram was specific to LTP because it did not 

affect basal synaptic transmission (F(2,12) = 2.49, n.s.; supplementary fig. 1).  
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Figure 4. Effects of vardenafil and PKG/PKA inhibitors on hippocampal LTP.  

A. Ten minutes perfusion of hippocampal slices with vardenafil (10 nM) before tetanus increases 

levels of potentiation when compared to vehicle treated slices (n=8/8); PKG inhibition by Rp-8-

Br-cGMPS (10 μM) reverses the vardenafil-induced LTP improvement (n=8). B. The increase of 

LTP induced by vardenafil before tetanus is blocked by a 30 minute perfusion with Rp-8-Br-

cAMPS (20 μM) administered at 90 minutes after tetanus (n=7; comparing vardenafil and 

vardenafil+Rp-8-Br-cAMPS before and after Rp-8-Br-cAMPS administration). C. Perfusion with 

Rp-8-Br-cAMPS concomitant to vardenafil ten minutes before tetanus does not affect the 

vardenafil-induced potentiation (n = 7; comparing vardenafil and vardenafil+Rp-8-Br-cAMPS 

before tetanus). D. Vardenafil increases potentiation when administered 10 minutes before or 

after tetanus (n = 7; comparing vardenafil before and after tetanus), whereas it does not have 

any effect at 90 minutes after tetanus (n = 7; comparing vardenafil and vehicle). Arrow indicates 

tetanus delivery (one 10-burst stimulation – weak tetanus) and horizontal bars indicate the 

period during which drugs were added to the bath solution. 

 



85 

 

 

 

 

Figure 5. Effects of rolipram and PKG/PKA inhibitors on hippocampal LTP. 

A. Perfusing hippocampal slices with rolipram (100 nM) 90 minutes after a weak tetanus boosts 

LTP in comparison to vehicle (n=6/8). Co-perfusion with Rp-8-Br-cAMPS (20 μM) induced a 

reduction of the effect of rolipram that, however, still shows an increased potentiation compared 

to vehicle (n=5/8). B. Brief perfusion with Rp-8-Br-cGMPS (10 μM) does not significantly 

decrease rolipram-induced improvement of LTP (n=6/6). Yet Rp-8-Br-cGMPS alone decreases 

LTP (early-phase) compared to vehicle-treated slices (n=8/8; the latter conditions are shown in 

panel A). C. Treatment with Rp-8-Br-cGMPS concomitant with rolipram 90 minutes after tetanus 

does not affect rolipram-induced LTP (n=7; comparing rolipram and rolipram + Rp-8-Br-

cGMPS). D. Rolipram increases potentiation when administered 10 minutes before tetanus (n = 

7; comparing rolipram with vehicle), whereas it does not have any effect at 10 minutes after 

tetanus (n = 7; comparing rolipram with vehicle). Arrow indicates tetanus delivery (one θ-burst 

stimulation – weak tetanus) and horizontal bars indicate the period during which drugs were 

added to the bath solution. 
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When Rp-8-Br-cGMPS (10 μM) was applied alone before tetanus it led to 

significant decrease of E-LTP when compared to vehicle-treated slices 

(F(1,14)= 12.36; p<0.01). Importantly, however, the rolipram-induced 

improvement of LTP was not significantly changed (F(1,10)= 1.43; n.s.; fig. 

5B). Application of Rp-8-Br-cGMPS together with rolipram at 90 minutes 

after induction resulted in a similar level of enhanced LTP as with rolipram 

application alone (F(1,11) = 0.317; n.s.; fig. 5C). 

The present study replicated our previous findings (11) by showing that 

inhibition of PDE2, 4 and 5 can prolong retention in an object recognition 

task, although these PDE subtypes act differentially on early and late stages 

of memory consolidation depending on their target cyclic nucleotide. That is, 

inhibition of PDE5 (by vardenafil), a cGMP-targeting PDE subtype, during 

early stages of consolidation and synaptic plasticity improved memory 

formation and as was now also shown LTP, i.e. it converted a E-LTP into a 

longer-lasting L-LTP-like signal. A cAMP-specific PDE4 inhibitor (by rolipram) 

showed a memory improving effect as well as the ability, as shown for the 

first time, to induce a longer-lasting LTP when applied during late 

consolidation and a later stage of synaptic plasticity, respectively. The fact 

that rolipram enhances synaptic plasticity when administered before, but not 

after LTP induction is line with previous literature (22), and might be 

explained by effects only on acquisition-like processes, which we also found 

to be independent of PKA signaling. Finally, inhibition of PDE2 (by BAY 60-

7550), which regulates levels of both cAMP and cGMP, effectively enhanced 

memory performance when administered directly as well as 3 h after 

learning.  

In addition, we demonstrated that it is possible to counteract the memory-

enhancing effects of PDE inhibitors by intra-hippocampal co-administration 

of an inhibitor of PKA or PKG, two important effector proteins of cAMP and 

cGMP respectively. Specifically, memory enhancement as observed after 

early treatment with PDE5 or PDE2 inhibitors was successfully blocked only 

by co-administration of the PKG inhibitor RP-8-Br-cGMPS, while memory
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Figure 6. Hypothetical scheme of cGMP and cAMP-mediated pathways in hippocampal memory 

consolidation processes. Calcium (Ca
2+

) influx through NMDA receptors activates calmodulin 

(CaM) which in an early phase mediates the activation of nitric oxide synthase and subsequent 

nitric oxide (NO). The latter binds to soluble guanylate cyclase (GC) which upon binding 

stimulates the conversion of guanosine triphosphate (GTP) to cyclic guanosine monophosphate 

(cGMP). cGMP then hydrolyzes protein kinase G (PKG). As a consequence of a persistent 

intracellular presence of Ca
2+

, adenylyl cyclase (AC) will eventually be triggered to convert 

adenosine triphosphate (ATP) into cyclic adenosine monophosphate. Consequently, cAMP will 

stimulate protein kinase A (PKA) presumably to enhance cAMP responsive element binding 

protein (CREB)-mediated transcription and in that manner promote protein synthesis. Our data 

show that upregulation of the cGMP-PKG pathway in an early consolidation phase requires 

cAMP-mediated signaling in a later phase of consolidation. How this mechanistically takes place 

is not clear. It could be argued that cGMP and/or PKG lower the stimulation threshold for Ca
2+

 

signals from other sources then through influx via the NMDA receptor, and therefore could 

enhance postsynaptic cAMP-signaling.  
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improvement remained intact when combined with the PKA inhibitor RP-8-

Br-cAMPS. PDE4 or PDE2 inhibitors improved memory when administered 

during late consolidation processes and co-administration of a PKA inhibitor 

prevented this enhancement. However, co-administration of a PKG inhibitor 

did not hinder the memory improvement induced by PDE inhibitors that 

target cAMP. These findings were again replicated for PDE4 and PDE5 

inhibition in in vitro LTP measurements in hippocampal slices. This has major 

implications for treatment with cognition enhancing drugs which improve 

specifically the cGMP and/or cAMP signaling cascades. That is, timing of 

treatment is essential to optimally influence memory consolidation processes 

after learning. 

The results of this study show that the memory-enhancing effects of cGMP- 

and cAMP-selective PDE inhibitors are mediated by cGMP-PKG and cAMP-

PKA signaling, respectively. Only a few studies have attempted to provide 

direct evidence for the contribution of these cascades in the behavioral 

effects induced by PDE inhibition. Devan and colleagues (23) blocked cGMP-

PKG signaling in vivo through upstream inhibition of NOS (nitric oxide 

synthase), and could attenuate subsequent memory impairment with a PDE5 

inhibitor. In accordance with our present findings, Kroker et al. (24) were able 

to convert E-LTP into L-LTP by increasing cGMP via a PDE9 inhibitor, which 

was blocked by co-application with a PKG inhibitor. Moreover, our results 

now show that for cAMP as well as cGMP stimulation, the subsequent 

activation of their respective protein kinases is required for the memory-

enhancing effects of PDE inhibition.  

Improved memory formation due to enhancement of cGMP- and cAMP-

signaling cascades is most likely attained through de novo protein synthesis 

caused by postsynaptic CREB-mediated transcription, although we do not 

provide direct evidence for this notion in this study.  The critical role for CREB 

phosphorylation downstream of cGMP-PKG and cAMP-PKA signaling has 

been described in LTP studies (25-27).  Furthermore, in the formation of 

several types of long-term memory, among which object recognition, the 

necessity of CRE-gene driven protein synthesis paradigms has been 

extensively reported. Previous studies demonstrated increased hippocampal 

levels of phosphorylated CREB after in vivo subchronic rolipram treatment 
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(28), as well as after in vitro bath application of sildenafil on tetanized 

hippocampal slices in APP/PS1 mice (29) and aged mice (30). Although the 

transcriptional program of CREB phosphorylation is still largely unclear, it is 

known that the target genes of CREB are functionally heterogeneous, 

including channel subunits, other transcription factors and growth factors 

(31). 

It has to be noted that vasodilation is one of the most evident effects of PDE 

inhibitors (32). The memory-enhancing effects of PDE inhibition could 

therefore also be attributed to an increased central blood flow and glucose 

metabolism. However, in a previous study we have demonstrated that the 

beneficial effects of systemically applied PDE inhibitors on memory in rats 

are independent of cerebrovascular effects (33). In addition, in the present 

study, synaptic plasticity in hippocampal slices was enhanced after in vitro 

bath application of vardenafil and rolipram. Because of this, it is rather 

implausible that changes in blood flow contribute significantly to memory 

enhancement after PDE inhibition, but is more likely attributable to 

alterations in synaptic plasticity in the hippocampus. 

This is further supported by the fact that when upregulating cyclic 

nucleotides, and thus activating their respective pathways, timing is of the 

essence: only immediate elevation of cGMP levels or increased cAMP levels 

3h after learning resulted in prolonged memory. This suggests that at times, 

despite the elevated levels of cyclic nucleotides, synaptic plasticity is not 

enhanced. Moreover, we demonstrated that the memory improvement 

caused by administration of cGMP-targeting PDE inhibitors immediately after 

learning can be blocked by infusion of a PKA inhibitor 3h after learning. This 

important finding shows that for memory improvement the enhancement of 

cGMP-PKG signaling in early consolidation phases requires PKA signaling in 

a later stage of consolidation. cAMP-PKA signaling on the other hand is not 

reliant on previous cGMP activity during consolidation. This seemingly 

contradicts earlier LTP work that suggested that cAMP-PKA and cGMP-PKG 

act in parallel to activate CREB (34). However in these studies a difference in 

time windows was not investigated, which explains the apparent discrepancy. 

A similar sequential relationship between cGMP and cAMP during long-term 

memory formation has been suggested based on work in crickets by 
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Matsumoto and colleagues (35). Strikingly, our LTP data again supports our 

behavioral data as we observed that even though early PKG inhibition 

decreased E-LTP below vehicle levels, adding rolipram 90 minutes after 

induction still brought about enhanced synaptic plasticity, irrespective of the 

initial PKG inhibition. Thus, cAMP-PKA signaling acts independently of cGMP 

signaling to improve memory formation. 

Our data indicate that cGMP and PKG may facilitate memory formation 

through mechanisms which eventually lead to reinforcement of postsynaptic 

cAMP-PKA-CREB signaling. cGMP-PKG signaling has been shown to act as an 

intrinsic modulatory system which regulates Ca
2+

 levels in the neuron, for 

example through activation of cyclic nucleotide gated channels (35) or via 

the release of Ca
2+

 from ryanodine stores (25). As such, elevated levels of 

cGMP and PKG can lower the stimulation threshold for Ca
2+

 signals from 

other sources, and therefore could enhance postsynaptic cAMP-signaling. 

Our study implies that long-term memory improvement due to cGMP-

targeting PDE inhibitors should be regarded as the result of cGMP-mediated 

modulation of cAMP pathways. The necessity of late consolidation processes 

for long-term memory consolidation corresponds to the notion that during 

the early phase of memory consolidation synaptic changes are labile and 

require stabilization later on in the memory formation process (3). See fig. 6 

for a hypothetical scheme illustrating how postsynaptic cGMP and cAMP 

signaling could be involved in memory formation. 

In the present study we demonstrated that cAMP-targeting and cGMP-

targeting PDE inhibitors improve memory through hippocampal cAMP-PKA 

signaling and cGMP-PKG signaling respectively. These signaling cascades 

take part in memory consolidation during two temporally separated phases 

after learning. cGMP-PKG signaling mediates early consolidation, while late 

consolidation requires activation of the cAMP-PKA cascade. These effects on 

memory were in line with the LTP studies, lending support to the notion that 

synaptic changes underlie the nootropic effects of PDE inhibitors.  

Importantly, we demonstrate for the first time that the early cGMP-pathway 

is unable to enhance consolidation or synaptic plasticity in absence of late 

cAMP-signaling, implying that cAMP signaling is the common pathway in 

long-term memory formation. 
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Supplementary figure S1. Neither rolipram (100 nM for 30 minutes) nor vardenafil (10 nM for 

10 minutes) affect baseline transmission (n = 5 for each condition, F(2,12) = 2.494, p = 0.124). 

Horizontal bars indicate the period during which drugs were added to the bath solution. 

 

Supplementary figure S2. RP-8-Br-cAMPS (20 μM) inhibits LTP induced by vardenafil (10 nM) 

only when administered at 90 minutes after the weak tetanus. The dashed line represents the 

level of potentiation obtained after 10 minutes perfusion with vardenafil 10 minutes before 

tetanus. N=5 for each condition. An asterisk depicts a significant difference when compared to 

vardenafil-treated slices: p<0.05 (Student t-test).
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The second messengers cGMP and cAMP have a vital role in synaptic 

plasticity and memory processes.  As such, phosphodiesterases inhibitors 

(PDEi’s), which prevent the breakdown of these cyclic nucleotides, represent 

a potential treatment strategy in memory decline. Recently it has been 

demonstrated that cGMP and cAMP signaling act in sequence during 

memory consolidation, with early cGMP signaling requiring subsequent 

cAMP signaling. Here, we sought to confirm this relationship, and to evaluate 

its therapeutic implications. Combining sub-efficacious doses of the cGMP-

specific PDE type 5 inhibitor vardenafil (0.1 mg/kg) and cAMP-specific PDE 

type 4 inhibitor rolipram (0.01 mg/kg) during the early and late memory 

consolidation phase, respectively, led to improved memory performance in a 

24h interval object recognition task. Similarly, such a sub-efficacious 

combination treatment enhanced the transition of early-phase long-term 

potentiation (LTP) to late-phase LTP in the hippocampal slices. In addition, 

object memory was improved after administration of two sub-efficacious 

doses of the dual substrate PDE type 2 inhibitor BAY60 7550 (0.3 mg/kg) at 

the early- and late consolidation phase, respectively.  Taken together, 

combinations of sub-efficacious doses of cAMP- and cGMP-specific PDEi’s 

have an additive effect on long-term memory formation and might prove a 

superior alternative to single PDEi treatment. 
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Cognitive decline is a hallmark symptom in a wide range of disorders 

including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. 

However, to date no satisfactory treatment has been found for alleviating 

this symptom in patients. Therefore, the search for more efficacious 

nootropic drugs is ever increasing. Over the last years, phopshodiesterase 

inhibitors (PDEi’s) have been repeatedly reported to demonstrate cognition 

enhancing effects in preclinical studies (1, 2). Positive effects of PDE 

inhibition were reported on memory formation, executive functioning, 

information processing and attention. Phosphodiesterases (PDE) are 

enzymes that are responsible for the breakdown of cyclic nucleotides cyclic 

adenosine monophosphate (cAMP) and cyclic guanosine monophosphate 

(cGMP) into their respective inactive forms. These cyclic nucleotides are 

ubiquitous second messenger molecules. Among other functions, they have 

a key role in relaying incoming signals at the neurons to downstream 

effectors which enhance synaptic plasticity (3-9). It has been demonstrated 

that enhancing cAMP or cGMP levels augments hippocampal long-term 

potentiation (LTP) (10-13), a physiological phenomenon which is generally 

considered to be the neuronal correlate of memory (14, 15). The importance 

of cyclic nucleotides in neuronal signaling has consequently led to an 

increasing amount of studies evaluating the cognition enhancing effects of 

inhibiting different PDEs.   

An interesting feature of the PDE family is that 11 different subfamilies 

(PDE1-PDE11) have been identified, each with their specific function, 

regulation and localization pattern (16). An important distinction can be 

made based on the target cyclic nucleotide.  PDEs are cAMP-specific, (PDEs 

4,7,8), cGMP-specific (PDEs 5,6,9) or have dual substrate properties (i.e. cAMP 

and cGMP-targeting; PDEs 1,2,3,10,11). Memory enhancing effects have been 

reported for all three types of PDEi’s (17-19). Furthermore, our group has 

recently shown that, although cGMP and cAMP signaling are both important 

for consolidation of information into long-term memory, they are involved in 

different phases of the consolidation process. cGMP signaling is important 

immediately after acquisition, while cAMP signaling is critically involved at a 
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late consolidation phase which is associated with the implementation of de 

novo transcribed proteins (10, 19). The relationship of cGMP signaling and 

cAMP signaling has shown to be sequential, with activation of the cAMP 

signaling pathway during the late consolidation phase being a prerequisite 

for cGMP-mediated cognition enhancement (10).  

Cyclic nucleotides and most PDEs are abundantly present throughout the 

body and the brain (20). Therefore, PDEi’s are likely to instigate adverse side-

effects through elevations of cyclic nucleotide levels in non-targeted areas. A 

well-known example is the prototypical cAMP-specific PDE type 4 (PDE4) 

inhibitor rolipram, which showed promising antidepressant effects in clinical 

trials, but the development was eventually stopped because of the severe 

emetic effects (21).   

Given these findings, the aim of the present study is to evaluate whether our 

knowledge regarding the sequential relationship of cGMP and cAMP 

signaling can be translated into a superior treatment option by combining 

different types of PDEi’s. Specifically, we hypothesize that a sub-efficacious 

dose of a cGMP-targeting PDEi can facilitate the effects of a sub-efficacious 

dose of cAMP-targeting PDEi. This could have a substantial advantage over 

normal singular PDE treatment as it will lead to less unwanted side-effects. In 

this study we will combine a sub-efficacious dose of rolipram (late 

consolidation phase) with the cGMP-specific PDE type 5 (PDE5) inhibitor 

vardenafil (early consolidation phase) to increase memory performance as 

measured in the object recognition task (ORT). Additionally, we assessed the 

effects of administration of two likewise temporally separated sub-efficacious 

doses of the dual substrate PDE type 2 (PDE2) inhibitor BAY 60-7550 on 

object recognition. Finally, we verified if the effects of our sub-efficacious 

treatments on memory performance can be attributed to changes in synaptic 

plasticity by measuring LTP in response to the combined PDEi’s treatment at 

sub-efficacious concentrations.  
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The experimental procedures described in this study were approved by the 

local ethical committee for animal experiments of Maastricht University or of 

the University of Catania and were in agreement with the respective 

governmental guidelines.  

For behavioral experiments, 3 to 4-months old male Wistar rats (Harlan, 

Horst, the Netherlands) were used. Rats were individually housed in standard 

type 3 Makrolon cages on sawdust bedding. The animals were held in an air-

conditioned room (approximately 21 °C) and had free access to food and 

water. A soft-playing radio provided background noise. A reversed light-dark 

cycle was applied in the room (lights on between 7.00 PM and 7.00 AM) in 

order to test the animals during their naturally active period. 

For electrophysiological studies C57BL/6J 3-months old male mice were 

obtained from a breeding colony housed in the animal facility of the 

University of Catania. Housing conditions of the mice were the same as for 

rats, except that they were housed socially with 5 animals per cage. 

 

Apparatus. Animals were subjected to the object recognition task (ORT) (10, 

22). This task was performed in a circular arena with a diameter of 83 cm and 

walls of 40 cm high. The backside half of the arena wall was made of grey 

polyvinyl chloride, and the front half of transparent polyvinyl chloride. The 

objects consisted of four sets including 1) a cone made of brass, 2) a 

transparent glass bottle, 3) a solid metal beam with two holes and 4) a 

massive aluminum cube with a tapered top. The animals were unable to 

displace the objects. All objects were present in three-fold and were cleaned 

thoroughly after each trial to remove all olfactory traces. 
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Procedure. ORT procedures were adapted from previous literature (23), with 

modifications as stated elsewhere (10, 24). During a first trial, rats were put in 

a circular apparatus, in which two identical objects were placed. 24 h later, 

the procedure was repeated with one of the objects from the initial trial 

replaced by another object. During both trials, exploration times were 

manually scored using a personal computer by the experimenter, who was 

unaware of the treatment condition tested. Exploration was defined as 

directing the nose to the object, with a maximal distance between nose and 

object of 2 cm. Leaning or sitting on the object was not considered 

exploratory behavior. A relative measure of discrimination was calculated, 

which was corrected for total exploration time. The resulting discrimination 

index (exploration time new object – exploration time old 

object)/(exploration time new object + exploration time old object) reflects 

recognition memory independent of normal exploratory behavior (22). In 

addition, total time spent exploring objects during trial 1 and 2 (e1 and e2 

respectively) was calculated to ascertain that treatment did not affect 

exploration in general. Animals that did not show normal exploration (T1 < 6 

sec or T2 <9 sec) were excluded from analysis. Testing sessions were 

between 9.00 AM and 17.00 PM, and were performed under red light 

conditions while the test room was dimly lit by a lamp (25 W), located in the 

corner of the room. 

 

PDE2i BAY 60-7550 (kindly donated by BAYER AG, Wuppertal, Germany), the 

PDE4i rolipram (Sigma Aldrich, Zwijndrecht, Netherlands) and the PDE5i 

vardenafil (kindly donated by BAYER AG) were freshly dissolved on the day of 

testing. Drug administration of the PDEi’s was done either orally (BAY 60-

7550 0.3 mg/kg and vardenafil 0.1 mg/kg) or intraperitoneally (rolipram 0.01 

mg/kg). All PDEi’s were dissolved in the same vehicle (98 % methyl cellulose 

[tylose] solution (0.5 %) and 2 % Tween80) and administered in a volume of 2 

ml/kg. To target early and late phases of memory consolidation, the drugs 

were administrated immediately (T1+0h) or 3 h after the learning trial 

(T1+3h). Of note, all treatments were based on previously established sub-

efficacious doses and concentrations (10, 19, 25). 
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Electrophysiological recordings were performed as previously described [11]. 

Briefly, transverse hippocampal slices (400 μm) were cut and transferred to a 

recording chamber where they were maintained at 29°C and perfused with 

ACSF continuously bubbled with 95% O2 and 5% CO2. The ACSF 

composition was composed of the following (in mM): 124.0 NaCl, 4.4 KCl, 1.0 

Na2HPO4, 25.0 NaHCO3, 2.0 CaCl2, 2.0 MgCl2, and 10.0 glucose. Field 

extracellular recordings were performed by stimulating the Schaeffer 

collateral fibers through a bipolar tungsten electrode and recording in CA1 

stratum radiatum with a glass electrode filled with ACSF. A 15 min baseline 

was recorded at an intensity that evoked a response approximately 35% of 

the maximum evoked response. LTP was induced using one 10-burst train 

(weak tetanus). Responses were recorded for 3 h after tetanization and 

measured as field excitatory post-synaptic potentials (f-EPSP) slope 

expressed as percentage of baseline. For electrophysiological experiments, 

vardenafil (0.3 nM) and rolipram (1 nM) were diluted in artificial CSF (ACSF) 

immediately before use, and applied in the bath solution at different time 

points before or after the induction of LTP.  

According to statistical guidelines for ORT analysis [26], we compared all 

experimental conditions with a fictive group (discrimination index = 0 ± 0.65) 

using two-sided student t-tests to evaluate whether animals discriminated 

between objects. Furthermore, a one-way ANOVA was performed, after 

which individual comparisons were assessed using the Fishers’ LSD test for 

multiple comparisons. LTP data were analyzed with 2-way repeated measures 

ANOVAs. Significance level was for all analyses set at 0.05. 
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Rats that received vehicle injections or a single, sub-efficacious, vardenafil 

(T1+0h) or rolipram (T1+3h) PDEi’s dose did not show significant object 

discrimination 24 h after the learning trial (respectively: t(45)=0.09, n.s.; 

t(44)=0.17, n.s.; t(45)=0.18, n.s.).  When both sub-efficacious doses were 

combined, animals showed a preference towards the new object (t(45)=2.89; 

p < 0.01) (See Fig. 1A). In addition, between group comparisons revealed 

that rats receiving combination treatment of vardenafil and rolipram showed 

a significantly  better  discrimination performance when compared to 

animals in all other treatment conditions (F(3,80)=3,75; p < 0.05). 

Sub-efficacious administrations of the PDE2i BAY 60-7550 showed a similar 

pattern of results (Fig. 1B). Single PDE-2I administration, i.e. at T+0h or T+3h,  

did not produce a preference of rats towards the novel object (respectively: 

t(44)=0.15, n.s.; t(44)=0.52, n.s.), while combination treatment with the two 

time-separated injections of BAY 60-7550 led to a significant increase in 

discrimination performance (t(45)=2.65, p < 0.05). When comparing between 

treatment conditions, we found that animals receiving double PDE2i 

treatment had a significantly better discrimination performance than in all 

three other conditions (F(3,85)=3.56, p < 0.05). 

Perfusion of hippocampal slices with a low concentration of vardenafil before 

tetanus, or rolipram 90 min after tetanus did not alter synaptic transmission 

(Vehicle: 112.03 ± 5.50 % of baseline slope 180 min after tetanus; Vardenafil: 

130.53 ± 17.21 % of baseline slope, F(1,10) = 0.911, p = 0.362;  Rolipram: 

125.13 ± 10.35 % of baseline slope, F(1,10) = 2.951, p = 0.117 compared to 

vehicle; Fig. 2A). When combining both perfusions, we observed an increase 

in hippocampal synaptic transmission starting from around 120 min after 

tetanus, which is the end time of rolipram perfusion; Fig. 2B). This increase 

was stable and lasted untill the end of the experiment (183.83 ± 13.51 % of  
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Figure 1. Discrimination performance in an object recognition task after a single or combined 

sub-efficacious PDEi administration. A) Sub-efficacious dose of vardenafil (VAR; 0.1 mg/kg) at 

T1+0h and/or rolipram at T1+3h (ROL; 0.01 mg/kg), n =20-21-21-22. B) Sub-efficacious dose of 

BAY 60-7550 (BAY; 0.3 mg/kg) at T1+0h and/or at T1+3h; n =21-22-23-23.  Bars represent 

means ± S.E.M. Hashes indicate significant object discrimination (two-sided t-test; #p < 0.05, ## 

p < 0.01) and asterisks represent significant differences between conditions (post-hoc Fishers’ 

LSD test; *p < 0.05, **p < 0.01). 

 

 

Figure 2: Effects of sub-efficacious PDEi’s perfusion on hippocampal LTP.  

A. Perfusion of hippocampal slices with vardenafil (0.3 nM; 10 minutes) before tetanus or 

rolipram (1 nM; 30 minutes) 90 minutes after tetanus does not increase levels of potentiation 

when compared to vehicle treated slices (n = 6 for each condition) B. Perfusion of slices with 

both vardenafil (0.3 nM) before tetanus and rolipram (1 nM) (n = 8) 90 minutes after tetanus 

increases hippocampal LTP when compared to controls. Arrow indicates tetanus delivery (one 

10-burst stimulation – weak tetanus) and horizontal bars indicate the period during which drugs 

were added to the bath solution. 
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baseline slope 180 min after tetanus at 180 min after tetanus, F(1,12) = 

27.720, p<0.0001 compared to vehicle). This suggests that combining 

vardenafil and rolipram triggers a conversion of a transient E-LTP into a 

stable long-lasting L-LTP. 

In this study, we confirmed the memory enhancing properties of three types 

of PDEi’s, i.e. cAMP-specific PDE4i rolipram, cGMP-specific PDE5i vardenafil 

and PDE2i BAY 60-7550, which influences both cAMP and cGMP levels. Their 

cognition enhancing effects have been described in a vast number of studies, 

showing beneficial effects on different cognitive functions and paradigms 

(for a review, see 1, 2, 27). The origin of the enhanced cognitive 

performances has been a matter of discussion. Because PDE inhibition is 

known to cause vasodilation, some have argued that PDE induced cognition 

enhancement is likely the result of an increased blood flow in cognition-

related brain areas (28). However, we have demonstrated that the doses of 

vardenafil and rolipram which were effective in enhancing memory 

performance did not increase blood flow or glucose metabolism in brain 

structures vital for memory formation such as the hippocampus (29). In 

addition, selective inhibition of PDE2, PDE4 as well as PDE5 has been shown 

to increase synaptic plasticity as measured with LTP (11, 17, 30). Ever since 

the discovery of LTP, these synaptic plasticity changes have been linked to 

neuronal memory formation (14, 15). Thus, the effects of PDEi’s are most 

likely attributable to changes in neuronal cAMP and cGMP-related signaling.  

A recent study of our group demonstrated the sequential relationship of 

cGMP and cAMP in memory consolidation. During an early phase in the 

consolidation process, memory performance can be altered by applying 

cGMP-targeting drugs, while in a later phase during consolidation cAMP is 

essential for memory formation and synaptic plasticity, i.e. LTP (10). In the 

present study, we confirm this relationship and suggest that these findings 

may have therapeutical implications. We observed an enhancement in 

memory performance and synaptic plasticity when an early sub-efficaciously 

dose of the cGMP-targeting PDE5i vardenafil was combined with a delayed 
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sub-efficacious dose of the cAMP-targeting PDE4i rolipram. This implies that 

upon weak stimulation of the cGMP pathway, the effects of cAMP 

stimulation are facilitated. The precise mechanism by which cGMP exerts its 

effect on cAMP signaling is not fully understood. Memory improvement of 

cGMP-targeting PDEi’s is dependent on subsequent protein kinase G (PKG) 

signaling (10, 31, 32).  It can be speculated that cGMP-PKG signaling affects 

cAMP signaling via calcium (Ca
2+

) influx through cyclic nucleotide gated 

receptors or via Ca
2+

 release from the intracellular Ca
2+

 stores through 

activation of ryanodine receptors (33, 34). This would further depolarize the 

synapse and create beneficial circumstances for cAMP elevation. Once cAMP 

levels are upregulated, protein kinase A is recruited to phosphorylate cAMP 

responsive element binding protein (CREB), a transcription factor responsible 

for de novo synthesis of many plasticity related proteins (35). The 

implementation of these new proteins in the synapse is thought to underlie 

the long-term plasticity changes observed in LTP and memory formation 

(36).  

Our findings may have important implications for future therapeutic use of 

PDEi’s, in particular as an acute treatment. The therapeutic effects of 

rolipram, the prototypic PDE4 inhibitor, have been extensively studied for a 

wide array of disorders. The usage of selective PDE4 inhibitors such as 

rolipram in a therapeutic setting has been limited by its adverse side effects. 

The strong, dose-dependent emetic properties of rolipram are without any 

doubt the most problematic (21, 37). The rolipram-induced emesis has been 

attributed to the presence of high levels PDE4 in the area postrema, which is 

known to be a major chemoreceptor trigger zone for vomiting (38, 39). 

Recently, a second generation PDE4 inhibitor roflumilast (Daxas) has been 

approved for the treatment of chronic obstructive pulmonary disorder. 

Roflumilast has less severe emetic side effects, although nausea is still 

reported by 5% of the patients (40). The selective PDE5i’s vardenafil, 

sildenafil and tadalafil have been approved by the FDA for the treatment of 

erectile dysfunction and are currently on the market under the trade names 

Levitra, Viagra and Cialis, respectively. However, vardenafil and other 

selective PDE5 inhibitors also show a number of common, dose-dependent 

side effects - although less invasive as compared to rolipram-induced emesis 

-, such as headache, flushing, dyspepsia and rhinitis (41, 42). Although the 
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pro-cognitive effects are well established in pre-clinical studies, these side-

effects might represent a major obstacle for replication of these nootropic 

effects in clinical trials (43). Therefore, combining very low doses of PDE4 and 

PDE5 inhibitors could be an interesting clinical approach to maximize 

cognition-enhancing effects while minimizing potential side-effects. Our 

study demonstrates for the first time that low-dose combination treatment 

of different types of PDEi’s may prove effective in treating memory 

dysfunction.  

It is important to note that our study does not provide direct 

pharmacological evidence for a synergistic interaction of rolipram and 

vardenafil. To determine such a relationship, a quantitative analysis of dose-

dependent potency is mandatory (44), which was beyond the scope of this 

article. However, one can interpret these findings as a therapeutic synergy, as 

the observed potency of the combination treatment for cognition 

enhancement is higher than what would be expected from simply adding up 

the effects of the singular sub-efficacious doses of the respective PDEi’s.   

We also showed that two combined non-efficacious doses of BAY 60 7550, 

directly after learning and at 3h after learning, effectively improved object 

memory. These findings are in line with the dual-substrate properties of 

PDE2 and existing literature which demonstrated that memory improving 

effects of PDE2i’s can be either cGMP- or cAMP-mediated, dependent on the 

timing of treatment (10, 19). That is, when applied during the early 

consolidation phase, the enhanced long-term memory performance is the 

result of enhanced cGMP-mediated signaling, while during late consolidation 

the improvement is attributable to enhanced cAMP-signaling. This adds 

further weight to the notion that PDE2i’s are attractive candidates for 

cognition enhancement. Along similar lines, our findings suggest that a 

constant low-level presence of PDE2i’s could represent a novel strategy for 

treating cognitive disorders. Of note, in preclinical research, chronic 

treatment with BAY 60-7550 has not only shown to enhance memory 

consolidation, but has also demonstrated beneficial effects on other 

cognitive functions, depressive-like behavior and memory performance in a 

mouse model of Alzheimer’s disease (17, 45, 46).  
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Taken together, this study provides further evidence for the potential use of 

PDEi’s for memory improvement. Furthermore, our results emphasize the 

feasibility of combined treatment with cAMP-specific and cGMP-specific 

PDEi’s and of repeated administration of dual substrate PDEi’s, all at sub-

efficacious doses. We suggest that these low-dose treatment strategies 

might prove to be a superior option over singular PDE inhibition treatment. 

In future research, attempts should be made to translate these findings into 

the clinical setting.  
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Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuronal 

survival and neuroplasticity in the central nervous system (CNS). As a result, 

there has been a growing interest in the role of BDNF in neuropsychiatric 

disorders associated with neurodegeneration, including depression and 

dementia. However, until now, BDNF-targeting therapies have yielded 

disappointing results. BDNF is thought to exert its beneficial effects on 

synaptic and neuronal plasticity mainly through binding to the tyrosine 

kinase B (TrkB) receptor. Recently, 7,8-dihydroxyflavone (7,8-DHF) was 

identified as the first selective TrkB agonist. In the present study the 

effectiveness of 7,8-DHF on memory formation was evaluated. In healthy 

rats, 7,8-DHF improved object memory formation in the object recognition 

task when administered both immediately and 3 hours after learning. In a 

transgenic mouse model for Alzheimer’s disease, i.e. APPswe/PS1dE9 mice, 

spatial memory as measured in the object location task was improved after 

administration of 7,8-DHF in a similar manner as wild-type littermates at 7-

months of age in which neuropathology and hippocampal dysfunction are 

known to be present. The acute beneficial effects in healthy animals suggest 

that effects might be symptomatic rather than curing. Nevertheless, this 

study suggests that 7,8-DHF might be a promising  therapeutic target in 

dementia.  



115 

 

Brain derived neurotrophic factor (BDNF) is a neurotrophin which has 

emerged as one of the most important regulators of differentiation and 

survival of neurons in the central nervous system (CNS). It instigates diverse 

and region specific effects. BDNF plays an important role in neuronal survival 

and pruning throughout the development of the brain and is involved in 

physiological proliferation during embryonic development, and cortical and 

hippocampal health (1). In the adult CNS, BDNF is shown to be highly 

implicated in mechanisms of synaptic plasticity and neurogenesis (2). 

Interestingly, one specific form of plasticity, i.e. hippocampal long-term 

potentiation (LTP) has been reported to be reliant on BDNF (3, 4). LTP is 

generally considered as the cellular correlate of memory formation. The 

dependence of LTP on BDNF implies a critical role for BDNF in the formation 

of learning and memory. Indeed, evidence for the involvement of BDNF in 

learning and memory is substantial. BDNF expression has been reported to 

increase following learning experiences in various tasks and animals (see (5, 

6)). Although genetic modeling of BDNF is complex because of its crucial role 

in neurodevelopment, serious memory deficits are apparent in in vivo 

models when lowering or prohibiting expression of BNDF through 

conditional knockouts or viral approaches (7-9). Furthermore, there is an 

association between lower levels of BDNF and cognitive decline as is obvious 

in aging, depression, schizophrenia and Rett’s syndrome (10). In Alzheimer’s 

disease (AD) in which memory decline is a core symptom, BDNF activity is 

decreased. Expression of mature BDNF (mBDNF) as well as forms of 

proBDNF, precursors of BDNF, are reduced in hippocampal and cortical 

areas, and this decline is present in preclinical stages of AD (11). 

Therefore, targeting BDNF is considered a very attractive treatment strategy 

for disorders such as AD. However, up until now, efforts to establish direct 

BDNF-based therapeutic interventions have yielded disappointing effects in 

preclinical studies (12). There are multiple reasons why BDNF-targeting 

therapies are inadequate. BDNF has a poor pharmacokinetic profile, as it 

undergoes little diffusion, does not readily cross the blood-brain barrier and 

has a short half-life in vivo. Furthermore, due to the inability of recombinant 
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BDNF to significantly cross the blood-brain barrier, proposed administration 

techniques were mostly too invasive to apply on a large scale in patients. 

BDNF binds to two receptors, Tyrosine kinase B (TrkB) receptor and p75. 

Whereas p75 binds mostly proBDNF, a precursor of BDNF, and all other 

neurotrophins with low-affinity, TrkB binds specifically mature BDNF 

(mBDNF) with high affinity (13). Generally, it is understood that p75 is closely 

associated with apoptotic processes, while TrkB is linked to processes of 

neuronal growth and survival (13). 

Recently 7,8-dihydroxyflavone (7,8-DHF) was identified as a selective TrkB 

agonist. This small and potent molecule mimics the effects of BDNF on TrkB 

binding and consequent activation of neuroprotective molecular pathways 

(14-16). Furthermore, since 7,8-DHF selectively activates TrkB receptors and 

not p75 receptors, potential apoptotic processes that are associated with 

BDNF signaling are avoided. Therefore, 7,8-DHF is an interesting new option 

for therapeutic interventions in memory decline. In this study, we aimed at a 

profound evaluation the memory-enhancing effects of 7,8-DHF. We assessed 

episodic-like memory in rodents, in particular object memory in healthy rats 

and spatial, i.e. object location, memory in a genetic mouse model for AD, i.e. 

APPswe/PS1dE9 mice.  

All experiments were designed to minimize the potential discomfort of the 

animals during the behavioral experiments and all experimental procedures 

were approved by the local ethical committee for animal experiments 

according to governmental guidelines. 

In the current study, both rats and mice were tested. Animals were separately 

caged in individually ventilated cages in a reversed light/dark cycle (lights on 

from 19.00h-07.00h). During the entire experiment animals had free access 

to food and water. They were tested during their active phase (the dark 
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phase) in red light conditions. Animals were housed in the same room where 

testing procedures took place. A radio played continuously to provide 

background noise.  

Three-month-old male Wistar rats and seven-month old male 

APPswe/PS1dE9 transgenic mice and wild type (WT) littermates, that were 

purchased from Charles River (Sulzfeld, Germany and  L’Arbresle, France, 

respectively) were used in this study. The APPswe/PS1dE9 mice express 

mouse/human chimeric APP695 harbouring the Swedish K694M/N595L 

mutation and the PS1 gene with a deletion of exon 9 (PS1ΔE9) under the 

mouse prion protein promoter (17). The animals were backcrossed to a 

C57BL/6 background for at least 8 generations.  

Object Recognition Task (ORT) 

The object recognition task was performed in Wistar rats as described 

elsewhere (18). The ORT is a one trial learning task. In the first (learning) trial 

the rat was put into an arena in which two identical objects are placed. After 

a certain delay, the animal is given a second trial. In this second trial the 

animals are again placed in the same arena but now one of the objects has 

been replaced by a novel object. Time spent exploring both objects was 

recorded using a personal computer. 24 hours after the learning trial, 

memory performance was assessed by replacing one of the previously 

presented objects by a new object. Exploration of both objects was again 

recorded. The interval in between the learning and retrieval trial was set at 24 

hours. Under normal circumstances rats have forgotten the objects after 24 

hours, i.e. they are unable to discriminate between the new and old object 

(19). 

Before actual testing, rats were handled and habituated to the ORT setting 

and oral drug administration (p.o.) procedures. All experimental conditions 

were tested in 15 Wistar rats. This number is based on previous experience in 

ORT, and results in a statistical power of 89% (δ=3.20; α=0.05). To avoid bias, 

we excluded animals that had less than seven seconds exploration during a 
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trial (19). Throughout the experiment, 23 observations did not meet this 

criterion and were discarded from further analysis. Conditions were tested in 

random order. Within one testing session, multiple treatment conditions 

were tested. The experimenter scoring the animals was unaware of the 

treatment condition being tested. 

Object Location Task (OLT) 

Using this one-trial learning task spatial memory of WT and APPswe/PS1dE9 

mice was assessed (20). In the first (learning) trial mice were put into an 

arena for four minutes in which two identical objects are placed. After a 

certain delay, the animal is given a second trial. In this second trial the 

animals were again placed in the same arena with the same objects, but one 

of the objects had been moved to a different position within the area. On a 

personal computer the time the mice explore the two objects is manually 

scored. Mice show a good spatial memory performance when a one-hour 

delay is interposed between the first and second trial. However, when a 

twenty-four hour delay is used they do not discriminate between the moved 

and the stationary object in the second trial, indicating that they do not 

remember the object’s location, which was presented in the first trial (21). We 

opted for the 24 delay in order to evaluate the potential of 7,8-DHF to 

prolong the recollection of the object locations in wild-type animals as well 

as in animals with existing AD pathology. In total, 67 animals (34 WT and 33 

APPswe/PS1dE9) were repeatedly tested in the different treatment 

conditions, which resulted in a power of 83% (δ=0.5; α=0.05). A minimum of 

four seconds exploration was set as an inclusion criterion. Rats and mice 

differ in their exploration rates, with mice being more neophobic. Therefore, 

the time in the arena and inclusion criteria are adjusted accordingly. We had 

to remove a total of 42 observations (18 WT and 24 APPswe/PS1dE9) from 

the dataset. The experimenter was unaware of the genotype of the animals 

and condition tested. 
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Treatment 

TrkB agonist dihydroxyflavone (7,8-DHF; TCI Europe, Zwijndrecht, Belgium) 

was prepared fresh at day of testing and was dissolved for administration in 

mice or rats in 2% or 4% tween80 (Sigma Aldrich, Zwijndrecht, The 

Netherlands) and 98% or 96% tylose (0.5%) respectively, given that we apply 

a 30-fold higher dosage in rats in comparison to mice. 

Different dosages (0.1 mg/kg, 0.3 mg/kg, 1 mg/kg and 3 mg/kg) were tested 

to obtain a dose-response curve. In rats, the compound was dissolved in 

vehicle to the desired concentration in a volume of 2 ml/kg. Rats were 

injected immediately or 3 hours after T1 to affect early or late memory 

consolidation processes. In mice, 7,8-DHF was administered i.p., at a volume 

of 6.67 ml/kg and at a dosage of 0.1 mg/kg based on previous experiences 

in extrapolating doses from rats to mice. Injections in mice were given three 

hours after learning based on the findings in rats. The order of testing of the 

different treatment conditions was randomized, and every testing day two 

different conditions were tested. Every animal was subjected once to every 

treatment condition. 

Statistical analysis 

Results of ORT and OLT are based on the measures of times spent by rats in 

exploring an object during T1 and T2. The reported discrimination index is a 

relative measure representing discrimination between the new and old 

object or position, corrected for explorative activity ((time spent exploring 

new location)/time spent exploring old)/total time spent exploring). 

Explorative activity during the first (e1) and second (e2) trial is also taken into 

account as measure, to verify normal activity during the task. 

Data of the rat study were analyzed in two ways. Firstly, the ability to 

discriminate between the new and old was separately assessed object for 

every condition using a one-sample t-test to test for a difference from zero, 

with zero representing no discrimination. Second, we analyzed group 

differences for memory performance and explorative activity using a one-

way ANOVA with Dunnett’s multiple comparison corrections. To assess 

memory performance and explorative activity in the mice study a two-way 

ANOVA was applied with treatment and genotype as factors. 
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First, we determined the effective dose of the TrkB agonist 7,8-DHF in rats. 

Thus, different dosages of 7,8-DHF (0.3 mg/kg; 1 mg/kg and 3 mg/kg) were 

tested at a 24h interval. Animals were treated immediately or 3 h after the 

learning trial. In general, we did not observe any significant change over 

treatment conditions in exploration during the first (e1; F(8,106)=1.80; n.s.) or 

second trial (e2;F(8,106)=1.24; n.s.) in the ORT. 

Memory performance in the ORT with different dosages of 7,8-DHF 

administrated immediately after learning are represented in Figure 1A. 

Whereas vehicle (t(11)=0.79, n.s.) and 0.3 mg/kg treated animals were unable 

to discriminate between new and old objects (t(9)=0.20, n.s.) after 24 hours, 

animals which had been given 1 mg/kg (t(8)=4.88, p<0.01) and 3 mg/kg 

(t(12)=5.68, p<0.001) favored the new object. A one-way ANOVA showed 

that the discrimination indices differed across the three dosages 

(F(3,41)=10.33; p<0.001). Post hoc Dunnett’s Multiple Comparison Test 

revealed similar results as the t-tests: Vehicle treated animals differed from 

animals treated with 1mg/kg (p<0.05) and 3 mg/kg (p<0.01). There was no 

significant difference found between the lowest dose, i.e. 0.3 mg/kg, and the 

vehicle group (n.s.).  

Effects of different dosages of 7,8-DHF given 3 hours after learning are 

depicted in Figure 1B. A preference for the new object was observed 24 

hours after learning in the 0.3 mg/kg (t(13)=3.10, p<0.05), 1 mg/kg 

(t(11)=3.27; p<0.05) as well as the 3 mg/kg (t(13)=6.81, p<0.001) treatment 

condition. After detection of memory improvement at a 0.3 mg/kg, an extra 

dosing condition (0.1 mg/kg) was added, which did not yield significant 

discrimination (t(12)=0.71, n.s.). A one-way ANOVA revealed a treatment 

effect (F(4,63)=6.13, p<0.001). Further post-hoc analyses showed differences 

between vehicle and 0.3 mg/kg (p<0.05) and 3 mg/kg (p<0.01) treated 

animals.  
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No significant differences in exploratory activity were observed between 

genotypes or treatment conditions during the first exploration trial and there 

was no interaction effect (F’s(1,86)<2.68, n.s.) Also during the second trial of 

the OLT, exploratory activity was similar across conditions (F’s(1,86)<2.49, 

n.s.). We found a memory improving effect of treatment effect 7,8-DHF 

(F(1,88)=25.87, p<0.001). Animals that were treated showed a better 

discrimination performance. No significant influence of genotype was 

observed. Indeed, untreated WT (t(24)=0.522, n.s.) and APPswe/PS1dE9 

(t(20)=0.786, n.s.) mice did not discriminate between objects. After 

administration of 7,8 DHF, WT (t(24)=4.31; p<0.001) and APPswe/PS1dE9 

mice (t(20)=5,86; p<0.001) significantly discriminated between the new and 

old object. 

 

 

Figure 1: Discrimination in a 24 hour interval object recognition task after administration of 

different dosages of 7,8-DHF immediately (T1+0h; A) or 3 hours after learning (T1+3h; B). A: n = 

12, 10, 9, 13; B: n = 15, 13, 14, 12, 14. * p<0.05; ** p<0.01; *** p<0.001 with a Dunnett’s post-hoc 

test;  p<0.05;  p<0.01;  p<0.001 with a one sample t-test: comparison with zero. 

 

The aim of the current study was to evaluate the cognition enhancing 

properties of 7,8-DHF. Beneficial effects of 7,8-DHF were already reported in 
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previous studies. Thus far, most studies have focused on depressive-like 

behavior and stress-related memory performance because of the well-

established link between depression and BDNF (22). When enhancing 

BDNF/TrkB-signaling via 7,8-DHF administration, potent antidepressant 

effects are evident (23-25). Furthermore, it enhances fear learning, and when 

assessing it in preclinical models of post-traumatic stress disorder (PTSD), in 

which fear conditioning is disturbed, 7,8-DHF is able to reverse emotional 

learning and extinction deficits (26-28).  

In this study, episodic-like object and spatial memory were assessed. 

Whereas preceding studies mostly reported the ability of 7,8-DHF to reverse 

of deficits due to age, stress or genetic background, we report memory 

enhancement in young healthy rats. The dosages used were lower (p.o. 0.1 – 

3 mg/kg) than those used in previous studies (i.p. 5 mg/kg) (16, 29-31), yet 

they generated potent memory improving effects. These findings strengthen 

the notion postulated in existing literature that BDNF has an important role 

in memory formation. BDNF mRNA and protein expression as well as TrkB 

phosphorylation have been reported to increase in memory-related brain 

structures following learning (32). Intra-hippocampal BDNF administration  

 

 

Figure 2: Discrimination in a 24 hour interval object location task in APPswe/PS1dE9 mice (AD) 

and wild-type littermates (WT). Animals were injected with 0.1 mg/kg 7,8-DHF three hours after 

the learning trial. n = 25, 21, 25, 21. *** p<0.001 with an ANOVA;  p<0.01;  p<0.001 with a 

one sample t-test: comparison with zero. 
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improves memory performance while intracerebroventricular infusion of 

antisense BDNF oligonucleotides causes memory deficits (33, 34). This study 

specifically shows the importance BDNF/TrkB-signaling in memory 

consolidation. 

However, memory is not a unitary process; different stages in memory 

formation require activation of different molecular pathways. In memory 

consolidation, a differentiation can be made between an early, protein-

synthesis independent phase in which temporary changes in the synapse and 

a late (< 3h) protein-synthesis-dependent phase with enduring structural 

synaptic changes. We applied the TrkB agonist immediately or 3 hours after 

the learning experience to assess at which phase in the consolidation process 

TrkB activation would facilitate the formation of the memory trace. BDNF 

activity has been mostly associated with later consolidation phases. A crucial 

transcription factor for de novo protein synthesis is cAMP responsive element 

binding factor (CREB), which is an important regulator of BDNF expression 

(35). Therefore we expected to find a more prominent effect of 7,8-DHF in 

later phases of memory consolidation. Along similar lines, recently it has 

been shown that hippocampal BDNF protein levels are highest in the late 

phase of consolidation (32). Surprisingly, 7,8-DHF could boost memory 

performance both during the early as well as the later consolidation phase. 

Two explanations can be given for this finding. On the one hand, it may be 

that administration of 7,8-DHF immediately after learning directly enhances 

synaptic transmission via glutamate release and altering NMDA receptor 

signaling, whereas a delayed administration stabilizes the memory trace by 

promoting long-term synaptic changes (36-38). On the other hand, one 

could also argue that that the effects of administration during early 

consolidation might be explained by residual activity of 7,8-DHF in the brain 

3 hours after learning given the pharmacokinetic profile of 7,8-DHF. Our 

finding that the lowest effective dose was lower, i.e. 0.3 mg/kg, when 7,8-

DHF was administered during the late consolidation phase compared to 1 

mg/kg during early consolidation, supports this notion and might suggest a 

stronger involvement of BDNF/TrkB signaling in late memory consolidation.  

Furthermore, effects of 7,8-DHF on spatial memory in mice were evaluated. 

We showed memory enhancing effects in a 24 interval, which were equally 
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pronounced in wild-type and in AD mice. In the used APPswe/PS1dE9 mouse 

model of AD, Aβ plaques are reported to be present from about 4 months 

of age and from 7 months of age hippocampal functional deficits are evident 

(17, 39-41). One may reason that the acute memory improvement of 7,8-DHF 

is probably symptomatic rather than addressing the cause of AD itself. 

Interestingly, one study already assessed the effectiveness of 7,8-DHF in an 

AD mouse model. In 5XFAD mice, Devi and Ohno (30) reported full 

restoration of a working memory deficit after systemic 7,8-DHF application (5 

mg/kg) during 10 consecutive days together with normalized BDNF-TrkB 

functioning and reductions in BACE1 levels. They observed a downregulation 

of baseline levels of -secretase enzyme that initiates amyloid-  generation 

after 7,8-DHF treatment. Thus this suggests that BDNF-TrkB dysfunction 

might be contributing to amyloid-  accumulation in 5XFAD mice. We show 

that acute administration of 7,8-DHF in a fifty-fold lower dosage is also 

capable of showing beneficial effects on cognition in animals with amyloid-

-induced neurotoxicity and synaptic dysfunction.  

The beneficial effects of 7,8-DHF can be explained by its selective binding to 

the TrkB receptor at the same binding site as BDNF, which causes 

dimerization and autophosphorylation of the receptor and instigates 

downstream signaling cascades both in vivo and in vitro, leading to higher 

levels of phosphorylation of Akt, Erk and CaMKII  (14, 16, 30, 31). 

Furthermore, the TrkB agonist protects neurons from apoptosis, increases 

spine density in the hippocampus and induces epigenetic changes by 

increasing levels of histone acetylation (16). 

In contrast to recombinant BDNF, 7,8-DHF readily passes the blood-brain 

barrier, has a beneficial pharmacokinetic profile, and is effective in low doses 

(14, 25, 42). Furthermore, selectively targeting TrkB receptors has a number 

of advantages over directly increasing BDNF levels. Overexpression of BDNF 

has been shown to actually have detrimental effects on memory 

performance (43). This negative outcome might be linked to the pro-

apoptotic p75 receptor to which BDNF binds with low affinity. This could be 

circumvented by applying an agonist of TrkB. In addition, activation of 

BDNF/TrkB signaling cascades seemingly instigates a positive feedback loop, 

possibly via Erk phosphorylation and consequent histone acetylation (16). In 
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case of lowered BDNF levels, application of 7,8-DHF has been reported not 

only to activate BDNF/TrkB-related cascades, but also to restore BDNF 

expression to normal levels.  

Although the role of BDNF in the pathogenesis of AD is not fully understood, 

7,8-DHF could be at least considered a symptomatic approach to treat AD-

related cognitive dysfunction, that is by improving memory and synaptic 

function to slow down the process of functional decline without dealing with 

the cause of the disease. In that regard, 7,8-DHF might be a superior option 

over current symptomatic therapeutic interventions, that have limited 

efficacy. Dysfunction of BDNF/TrkB-signaling is already present in preclinical 

stages of AD and even more importantly, these changes are preceding the 

cholinergic dysfunctions on which most treatment options are currently 

based (11). However, the clinical potential of 7,8-DHF is not limited to AD. 

There are indications that it may serve to be an interesting tool to treat age-

related memory decline, Parkinson’s disease, Rett’s syndrome, depression 

and PTSD (14, 24, 30, 31, 44, 45). Overall, it can be concluded 7,8-DHF is a 

very appealing candidate for treating several neurodegenerative disorders 

including age-related memory decline and AD. 
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Phosphodiesterase (PDE) 4 inhibitors are known to exert antidepressant 

effects, which are attributed to increased phosphorylation of the 

transcription factor cAMP responsive element binding protein (CREB). 

However, previous work has demonstrated pro- and antidepressant effects 

when enhancing CREB expression specifically in the nucleus accumbens and 

hippocampus, respectively. In the present study, we evaluated whether a 

similar dissociation could be found after repeated administration of the PDE4 

inhibitor rolipram directly to the CA1 of the dorsal hippocampus or to the 

core of the nucleus accumbens in healthy rats. Along this line we found that 

anhedonia, as measured by sucrose intake, was increased in animals in which 

we administered rolipram in the nucleus accumbens, while anhedonia was 

decreased in hippocampal-treated animals. Behavioral despair measures in 

the forced swim test and CREB activation in the hippocampus and nucleus 

accumbens remained unaltered after chronic local rolipram treatment. Since 

behavior and CREB activation were assessed at least 15 hours after a 

repeated rolipram injection, it may be suggested that rolipram does not 

induce tonic changes in cAMP-CREB signaling, though the temporary 

molecular changes might be long enough to alter synaptic plasticity and 

affective behavior. 
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Cyclic adenosine monophosphate (cAMP) is a second messenger that has 

been linked to the pathophysiology of depression. Whereas the targets of 

existing antidepressants are diverse, many have cAMP in common as an 

important downstream effector and numerous studies have demonstrated a 

downregulation of cAMP signaling in depression (1).  These findings 

increased interest in the potential development of antidepressant drugs that 

directly target cAMP levels. Of special interest in this regard are 

phosphodiesterase inhibitors (PDEi). Phosphodiesterases (PDE) are a family 

of proteins that degrade cyclic nucleotides among which cAMP and as such, 

they decrease levels of cAMP. Phosphodiesterase inhibitors, and specifically 

inhibitors of the PDE4 subtype that selectively enhance cAMP signaling, 

exhibit antidepressant effects (2-6). These effects are attributed to the 

upregulation of gene transcription and subsequent neurotropic actions via 

the transcription factor CREB, an important downstream effector of the 

cAMP-cascade (7-9).   

Interestingly, CREB has been reported to exert pro- and antidepressant 

effects in the ventral tegmental area–nucleus accumbens (VTA-NAc) and 

hippocampus, respectively. Rats with diminished CREB function in the NAc by 

viral-mediated knockdown of CREB or overexpression of a 

dominant/negative form of CREB display less depressive-like behavior (10, 

11). CREB overexpression in the NAc increases immobility in the forced swim 

test (11), while overexpression of CREB in the hippocampus decreases 

immobility time in this behavioral assay (12). In addition, antidepressants 

increase CREB levels in the hippocampus (13) while they reduce CREB 

phosphorylation in the NAc (14).   

In this study, we want to confirm the antidepressant and prodepressant 

properties of cAMP/CREB signaling in the dorsal hippocampus and NAc core, 

respectively. Confirmation of this hypothesis would further identify CREB as a 

mediating factor in the proposed region-specific neurotrophic actions with 

regard to depressive-like behavior (9). This was done by infusing male Wistar 

rats with rolipram, a PDE4 inhibitor, for 14 consecutive days into the NAc 
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core or CA1 region of the hippocampus. Depressive- and anxiety-like 

behavior was assessed in the sucrose intake test (SIT), the forced swim test 

(FST) and the zero-maze (ZM). Locomotor activity was measured in the open 

field (OF) test. After behavioral testing, hippocampal and NAc tissue was 

collected for biochemical analysis of CREB phosphorylation. We hypothesize 

that rolipram exerts antidepressant effects in the hippocampus and 

prodepressant effects in the NAc by increasing cAMP/PKA/CREB signaling.  

All experimental procedures were approved by the local ethical committee 

for animal experiments of Maastricht University and were in agreement with 

local governmental guidelines. For behavioral experiments, 3- to 4-months 

old male Wistar rats were used (Charles River, Sulzfeld, Germany).  

Rats were individually housed in standard type 3 Makrolon cages on sawdust 

bedding. The animals were held in an air-conditioned room (approximately 

21 °C) and had free access to food and water. A softly playing radio provided 

constant background noise. A reversed light-dark cycle was applied in the 

room (lights on between 7.00 PM and 7.00 AM) in order to test the animals 

during their naturally active period. Animals were randomly tested between 

9.00 AM and 4.00 PM. 

Cannulae placement. Rats underwent stereotaxic surgery for cannulae 

implantation.  Animals were fixed in a stereotaxic frame after induction of full 

anesthesia with a mixture of isoflurane and air (induction: 5 %; maintenance: 

2 %). Cannulae (IDEE, Maastricht, The Netherlands) were placed bilaterally in 

hand drilled holes above the nucleus accumbens or hippocampus at the 

following coordinates:  -3.6 mm anterior, ±3.0 mm lateral and 3.0 mm ventral 

from bregma for the CA1 region of the hippocampus and 1.59 mm anterior, 
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±1.70 mm lateral and 7.80 mm ventral from bregma for the nucleus 

accumbens (Paxinos and Watson, 1998). When cannulae were in place, they 

were fixed to the skull using acrylic dental cement (Paladur
®

, Heraeus Kulzer, 

Hanau, Germany) and small screws. Animals were allowed to recover from 

surgery for two weeks before the testing procedures started.  

The injection location was verified by macroscopical examination of the 

injection track when dissecting the hippocampus or nucleus accumbens. The 

total number of animals taken into account in the analysis was 15 in the 

nucleus accumbens group (vehicle n=7, rolipram n=8) and 20 in the 

hippocampus group (vehicle n=10, rolipram n=10). 

Treatment. The nucleus accumbens group and the hippocampus group were 

tested in two separate studies. Animals were treated daily for 14 consecutive 

days with the PDE4 inhibitor rolipram (Sigma Aldrich, Zwijndrecht, 

Netherlands) or vehicle. Animals were randomly assigned to a treatment 

condition. The experimenter was blinded to injection and behavioral testing 

conditions to avoid bias.  

The vehicle solution contained 99.9 % saline (0.9 % NaCl) and 0.1% 

dimethylsulfoxide (DMSO). We infused 0.5 μl of the vehicle solution, or the 

vehicle solution containing rolipram (0.0275 μg/μl, i.e. 100 μM) bilaterally 

using two 10 μl Hamilton syringes connected to a micropump with 

polyethylene tubes. Drug dosage was based on previous studies (15). The 

injection volume was infused over one minute after which the injection 

needles were left in place for an additional minute to prevent reflux of 

infused drugs along the cannula track. Rolipram was stored at -20°C at a 

concentration of 0.0275 mg/μl in 100% DMSO. The injection solutions were 

freshly prepared on the day of administration. In order to avoid acute effects 

of the drug on the behavioral tests, administration of the drug was done 

daily between 4.00 P.M. and 7.00 P.M., i.e. after behavioral testing.  

Behavioral procedures 

Sucrose Intake Test: Anhedonia was assessed using the SIT. First, rats were 

allowed to drink a 1% sucrose solution for 24 hours. Next, animals received 
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24h of normal drinking water. The consumption of water during these 24 

hours was recorded for each rat by weighing the drinking bottles before and 

after the given period. Finally, rats were deprived from food and water for 6 

hours, starting at 7.30 A.M., after which the consumption of 1% sucrose 

solution was measured for one hour. Water intake over 24 hours was used to 

correct for individual drinking behavior (16). 

Locomotor activity: An OF was used to assess potential locomotor activity 

changes as these may interfere with other behavioral tasks relying on 

locomotion (17). The test was conducted in a square Plexiglas base (100x100 

cm) with a black floor and 40 cm high transparent Plexiglas
®

 walls , which 

was divided into 4 equal arenas (50x50cm each) separated by 40 cm high 

black walls. Four rats were placed in the center of each open field and able to 

freely move around for 30 min. The illumination of the room was reduced to 

20 lux on the floor of the apparatus. The total distance moved (in cm) was 

measured via a video camera connected to a video tracking system 

(Ethovision Pro, Noldus, Wageningen, The Netherlands). 

Zero Maze: The ZM, as originally described by Shepherd (18) was used to 

assess anxiety. The apparatus consisted of a circular runway (100 cm in 

diameter, 10 cm path width, 70 cm above floor level) made of black plastic, 

which is divided equally into two opposite open parts and two opposite 

parts enclosed with 40 cm high side walls. A 5 mm high rim surrounded the 

open parts to prevent falls. A rat was placed into one of the open parts 

facing a closed part and allowed to explore the maze for 5 min. Total and 

relative duration and distance traveled in the open and enclosed parts were 

measured under low light conditions (1–2 lux) via an infrared video camera 

connected to a video tracking system (Ethovision Pro, Noldus). 

Forced Swim Test: Animals were tested in the modified FST according to 

Detke (19). For this test, four cylindrical glass tanks (40 cm length × 19 cm 

diameter) were used, filled to a depth of 30 cm with 25°C water. All animals 

initially underwent a session in which each animal was placed in the water for 

12 min (day 1). On the following day, the animals were tested again by 

placing them in the water for 6 min (day 2). Immobility was scored manually 

by an experimenter who was blinded for the treatment condition being 

tested. Immobility was defined as follows: making no movements (floating) 
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or only making those movements that are necessary to keep the nose above 

the water. Video tracking was not possible due to the inability of the animals 

to float in the water in a normal way, which was most likely due to the 

cannulated cap on their heads. 

Two days after the testing procedures, and one day (24 h) after the last 

infusion, animals were sacrificed by decapitation and their brains were 

rapidly removed. In the hippocampus treated animals, the whole 

hippocampal tissue was dissected immediately after sacrificing and was snap 

frozen in liquid nitrogen. In the nucleus accumbens treated animals, brains 

were snapfrozen upon decapitation. Later, brains were slightly defrosted and 

we dissected the nucleus accumbens section rapidly by cutting a coronal 

slice from +2.0 mm to +0.7 mm to bregma. Guided by the lateral ventricles 

and olfactory tubercles, the nucleus accumbens area was taken and again 

frozen to -80C. All tissues were stored in a -80°C freezer. 

Tissue was homogenized in 1.5 ml of ice-cold extraction buffer containing 

PBS, 1 mM EGTA, 1 mM EDTA, 0.01% SDS, and 1 mM PMSF. Protein 

concentrations were determined using a Bradford assay (Bio-Rad, 

Veenendaal, the Netherlands) with bovine serum albumin as the standard. 

Equivalent amounts of protein (50 µg) for each sample were resolved in 7.5% 

SDS-PAGE. After electrophoresis, proteins were transferred to polyvinylidene 

difluoride membranes. Membranes were incubated in 50% Odyssey blocking 

buffer (Li-Cor, Wateringen, the Netherlands) and 50% PBS with 1% Tween 20 

(PBS-T) for 1 hr at room temperature to block nonspecific binding. The blots 

were incubated with primary antibodies against pCREB and CREB overnight 

at 4°C. After washing in PBS-T, blots were incubated with secondary antibody 

in PBS-T for 1 hr. Membranes were then washed three times with PBS-T. The 

primary antibodies used were mouse anti-CREB (Cell Signaling Technology, 

Lake Placid, NY, #9104, 1:1000) and rabbit anti-pCREB (phosphorylated at 

Ser-133; #9198, 1:500; Cell Signaling). The secondary antibodies used were 

1:5000 goat anti-rabbit IRDye 800 (#926-32211, Li-Cor) and 1:5000 donkey 

anti-mouse IRDye 680 (#926-32222, Li-Cor). Densitometric analysis was 

conducted to quantify the immunoreactivity with an Odyssey Infrared 
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Imaging System (Li-Cor) and ImageJ software. The CREB and pCREB bands 

were detected at 43 kDa, and the pCREB/CREB ratio was calculated for each 

sample and analyzed across conditions. 

All data are represented as means and standard error of the mean (S.E.M.). 

Unpaired student’s t-tests were performed to investigate effects of rolipram 

treatment on the behavioral outcome within the hippocampus and nucleus 

accumbens groups separately. Statistical significance was set at an alpha 

level of 0.05. 

 

 

 

Figure 1. Behavioral assessment of affective behavior in animals chronically treated with 

rolipram in the hippocampus (a-d; n=10-10) or nucleus accumbens (e-h; n=7-8). a, e: Amount of 

sucrose consumed in one hour corrected for 24h water consumption. b, f: Immobility time in the 

forced swim task (day 1). c, g: Distance moved in the open field. d, h: Percentage of total time 

spent in the open parts of the zero maze. Bars represent means and S.E.M. ** indicate significant 

differences between groups, with p<0.01. 
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Daily drug administration into the hippocampus changed affective behavior 

as sucrose intake was increased after chronic administration of rolipram 

(t(18)=3.58; p<0.01; fig. 1 a). Measures of locomotor activity (OF: t(18)=1.61; 

n.s.; fig. 1 c), anxiety (ZM: t(18)=0.20; n.s; fig. 1 d) and immobility (FST day 1: 

immobility t(18)=0.95; n.s.; data not shown: day 1 latency to immobility: 

t(18)=0.98; n.s., fig. 1 b; FST day 2: immobility t(18)=0.72; n.s.; day 2 latency 

to immobility: t(18)=1.38; n.s., data not shown) were not affected by drug 

administration.  

The behavioral effects of PDE4 inhibition in the NAc are depicted in figure 1 

(e-h). We assessed affective behavior after chronic treatment with rolipram 

directly in the NAc. Drug administration decreased sucrose consumption in 

the SIT (t(13)=3.26; p<0.01; fig. 1 e). Rolipram treatment  did not result in 

differences on locomotor activity in the OF (t(13)=0.04; n.s.; fig. 1 g), anxiety 

in the ZM (t(13)=0.32; n.s.; fig. 1 h) or immobility in the FST (day 1: 

t(13)=1.03; n.s, fig. 1 f; day 1 latency to immobility: t(13)=0.15; n.s.; day 2 

immobility t(13)=0.78; n.s.; day 2 latency to immobility: t(13)=0.67; n.s, data 

not shown).  

Activation of the transcription factor CREB was measured in hippocampal or 

NAc tissue of animals that were treated repeatedly with rolipram in the 

respective brain structure. Using Western Blot, the levels of CREB and its 

activated form phosphorylated CREB (pCREB) were quantified. pCREB/CREB 

ratios were unaltered by rolipram in hippocampal tissue of hippocampal 

treated animals (t(18)=1.03; n.s.; fig 2 a) or in the NAc of NAc treated rats 

(t(13)=1.13; n.s.; fig 2 b). 
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Figure 2. Levels of phosphorylated cAMP-responsive element binding protein (pCREB) relative 

to unphosphorylated CREB in the hippocampus (a, n=10-10) and nucleus accumbens (b, n=7-8) 

after repeated rolipram administration to the hippocampus or nucleus accumbens respectively. 

Levels of pCREB and CREB were determined by Western blot analysis. Bars represent means and 

S.E.M. 

In this study we investigated if depressive-like behavior can be differently 

altered by CREB activation in a brain-structure dependent manner after 

chronic treatment with the PDE4 inhibitor rolipram in the hippocampus or 

nucleus accumbens in healthy rats (11). 

In line with our hypothesis, we found contrasting behavioral effects of PDE4 

inhibition depending on the targeted brain structure. Whereas chronic 

delivery of rolipram to the hippocampus led to hedonic outcomes, infusions 

in the NAc yielded anhedonic effects, while leaving anxiety and motor 

activity measures unaffected. Anhedonic behavior is one of the most 

prominent hallmarks of depression. Our results thus provide evidence for the 

notion that administration of plasticity enhancing drugs in the NAc and 

hippocampus leads to opposite effects on depressive-like behavior.  

Similar diverging effects were reported in studies altering CREB activation 

levels in the hippocampus and NAc (10-14). The clear discrepancy in CREB 

action in the NAc versus the hippocampus could be attributed to different 

target genes being regulated by CREB. Dynorphin is a κ-opioid receptor 
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ligand, which is expressed in the NAc following activation of CREB (14, 20). 

Upon binding to the κ-opoid receptor, dynorphin decreases excitability of 

dopaminergic neurons innervating the NAc, resulting in decreased 

mesolimbic dopamine release into the NAc (21). This decreased 

dopaminergic state in the NAc is thought to explain drug withdrawal states 

and may explain dysphoria, aversion and anhedonia in major depression (21-

24). On the other hand, CREB phosphorylation in the hippocampus causes an 

upregulation of BDNF. Given the neurotrophic properties of BDNF, this could 

explain why activation of CREB in this brain structure increases cellular and 

synaptic plasticity and exerts antidepressant effects. (25, 26).  

However, surprisingly we did not observe an enhancement of CREB 

phosphorylation in the specific rolipram treated brain structures. This finding 

is in conflict with earlier findings suggesting an upregulation of pCREB 

following acute or chronic rolipram treatment (13, 27). Methodological 

differences that might explain the apparent discrepancy include the time 

between the last rolipram treatment and tissue collection which in our case 

was 24 hours, compared to a few hours in most other studies, and 

quantification technique (immunostaining versus immunoblotting). Chronic 

treatment with rolipram has been reported to increase the amount of pCREB 

immunopositive cells in the granule cell layer of the hippocampus (13, 27)). 

In contrast, we targeted the CA1 region of the hippocampus, as our main 

interest was not neurogenesis but synaptic plasticity. Also, we have 

quantified the pCREB expression relative to CREB in the total hippocampus 

using Western blotting which might have diluted any possible signal. 

Nevertheless, there are also other studies that, like us, were unable to 

demonstrate elevated pCREB levels after chronic PDE4 inhibition in healthy 

animals (28, 29). Gong and his colleagues (2004) found that in dysfunctional 

animals with AD pathology chronic PDE4 inhibitor treatment increased CREB 

phosphorylation, but it did not in healthy animals. Furthermore, 

antidepressant effects of acute and chronic rolipram administration (all 

peripherally given, i.e. oral, i.p or s.c.) have been widely documented (6, 8, 30, 

31), but to our knowledge most of the chronic preclinical studies have 

administered the animals with rolipram shortly before the testing procedures 

and/or used relatively high dosages of rolipram (6, 8, 31). Thus, one could 

argue that these studies’ effects were actually produced by acute elevations 
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of cAMP. This raises the question whether chronic treatment leads to chronic 

elevated levels of cAMP or rather to temporary increases in cAMP levels that 

coincide with the daily injections of PDE4i. In the present study, no changes 

were observed in anxiolytic and behavioral despair measures after treatment 

with rolipram regardless of the targeted brain structure, which could be in 

favor of this notion, given that behavioral testing was done at least 15 hours 

after the last rolipram administration. Nevertheless, we did find effects 15 

hours later on anhedonia. This supports the idea that although chronic 

rolipram treatment does not chronically increase CREB phosphorylation, it 

does result in long-lasting changes in cellular functioning. Acute increases of 

de novo protein synthesis via CREB are possibly involved, but this remains 

speculative. Future studies should further investigate the acute versus 

chronic effects of rolipram. 

In summary, the present study describes the dissociative roles of cAMP 

signaling in the hippocampus and nucleus accumbens on anhedonia. We did 

not observe effects on anxiolytic and despair measures nor did we find 

evidence for the involvement of CREB. Whereas our behavioral findings 

suggest that plastic changes have occurred in response to chronic rolipram 

treatment, these changes are not caused by a chronic increase in CREB 

activation. Rather, they may be the result of transient elevations of CREB 

phosphorylation after each administration of rolipram.  
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The aim of this thesis was to assess the role of cyclic nucleotide signaling in 

behavioral processes reliant on synaptic plasticity changes, and to evaluate 

the feasibility of therapeutic interventions aimed at enhancing cyclic 

nucleotide signaling and synaptic plasticity. To answer our research 

questions, we have applied behavioral pharmacological studies, have 

measured synaptic plasticity in vitro in hippocampal tissue and performed 

biochemical analysis of brain tissue.  

As second messenger molecules, cyclic nucleotides are thought to be 

involved in a multitude of cellular processes. In the last decennia, evidence 

points to a vital role of neuronal cyclic nucleotide signaling in memory 

formation (1, 2). Memory formation in the hippocampus is the brain process 

most commonly associated with synaptic plasticity, although direct in vivo 

evidence linking synaptic plasticity and memory has only emerged relatively 

recently (3, 4). In chapter 4 and 5 we broadened the current knowledge of 

how cyclic nucleotide pathways interact to facilitate in particular memory 

consolidation processes and synaptic plasticity. We found a sequential 

relationship of the cGMP-PKG and cAMP-PKA pathway, in discriminate time 

windows within the memory consolidation process. Immediately after 

learning cGMP signaling can alter memory formation, while 3 h after the 

learning experience cAMP signaling is essential for memory formation. In line 

with the notion of sequential activation of the pathways, cGMP-signaling 

depends on cAMP-signaling to attain enhanced memory formation. The 

parallel finding in behavioral memory paradigms and LTP added further 

weight to the notion that synaptic plasticity changes underlie memory 

enhancement by alterations in cyclic nucleotide signaling. 
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In depression, synaptic plasticity is thought to be dysfunctional as well (5). 

Therefore, we investigated the role of the cAMP pathway in depressive-like 

behavior in chapter 5. In that study we observed a discrepancy in the 

outcome of PDE4i treatment depending on where exactly in the brain cAMP-

signaling was enhanced. Accumbal injections of the PDE4i rolipram led to a 

decrease in hedonic behavior, while hippocampal injections had the opposite 

effects. This apparent discrepancy can be explained by regional differences in 

targeted genes by CREB. This emphasizes that it is not only important to look 

at neuronal processes influenced by cyclic nucleotides, but also at the bigger 

picture, i.e. which role these particular neurons play in the large network. On 

the other hand, zooming in on the intraneuronal processes also reveals 

another level of cyclic nucleotide signaling. It is now clear that individual PDE 

subtypes are responsible for compartmentalized regulation of cyclic 

nucleotide signaling (6). That is, specific PDE isozymes are recruited in 

different macromolecular complexes consisting of several signaling-relevant 

proteins, or signalosomes which have specialized functions within specific 

cellular compartments. 

 

Our research has solely focused on memory enhancing and antidepressant 

effects of selective inhibitors of three specific subtypes, i.e. PDE2 

(cAMP/cGMP), PDE4 (cAMP), and PDE5 (cGMP), after mostly systemic 

injections. However, we realize that we have applied simplified hypotheses, 

limiting our studies to the cAMP-PKA-CREB and cGMP-PKG-CREB pathway, 

given the overwhelming complexity of the cyclic nucleotide signaling. 

Studies into the several other targets of cyclic nucleotide signaling, such as 

cyclic nucleotide channels and cAMP-specific exchange factors (EPAC) should 

be performed, as well into isozyme-specific differences, distinct 

signalosomes and compartmentalization within the cell, since they could 

significantly add to our knowledge about specific characteristics of cyclic 

nucleotide signaling in memory formation and depressive-like states. 

Another critique may be raised on account of chapter 7, where we reported 

that there was no increase in CREB phosphorylation in chronically rolipram-

treated brain regions, which was unexpected. However, as we have argued in 
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that chapter, this could be due to the fact that we did not measure the acute 

effects after rolipram treatment, i.e. we waited too long to find the effect. 

Nevertheless, we are aware that this thesis does not present evidence for the 

direct link between cyclic nucleotides signaling and upregulation of 

plasticity-related proteins, such as CREB and BDNF, although a multitude of 

studies have reported such a link (7, 8).  

Because cyclic nucleotide pathways are involved in many physiological 

processes, PDEs, as their main regulators, have been identified as interesting 

targets for treatment of a multitude of disorders. As an example, in chapter 

2, an overview was given of preclinical and clinical studies that applied PDE5i 

in central nervous system (CNS) disorders. However, many of the clinical 

studies performed at the moment are not related to the CNS. For example, 

PDE5i’s are currently receiving a lot of attention regarding their promise as 

therapeutics in heart failure, while PDE4i’s are considered as novel anti-

inflammatory agents (6). In the experimental studies presented in this thesis, 

our primary focus was on the effects of PDEi on plasticity-associated 

behavioral processes. In specific, we focused on cognition and mood-

processes. Preclinical evidence of the cognition-enhancing effects of PDEi 

has been accumulating over the years (9). In chapter 4 and 5 we have 

confirmed the memory-enhancing properties of the PDE4i rolipram, PDE5i 

vardenafil and PDE2i BAY60 7550. In chapter 7, we confirmed the 

antidepressant properties of rolipram, although only when administered into 

the hippocampus and not into the nucleus accumbens. The interest in 

targeting cyclic nucleotide signaling via PDEi remains strong, although there 

have been some setbacks as the ubiquitous nature of cAMP and cGMP 

resulted in unwanted side-effects. For instance, emetic effects are associated 

with PDE4i’s (10, 11). Also, researchers have had little success in 

demonstrating similar pro-cognitive effects in humans (for instance PDE5i's; 

see 12, 13, but also see 14).  
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However, recent advances in our understanding of cyclic nucleotide signaling 

have reignited the attention towards PDE inhibitors (6). In chapter 4, we have 

demonstrated that the sequential relationship of cGMP and cAMP signaling 

could be translated into a therapeutical strategy by combining treatment of 

cAMP-selective and cGMP-selective PDEi’s to enhance memory at low doses 

that are not effective when given separately. Thus, combining several PDEi’s 

could produce more effective treatments, while reducing the unwanted side-

effects. Another strategy is to develop isozyme-specific PDEi. For example, it 

is now known that isozyme PDE4B is dysfunctional in schizophrenia, while 

PDE4D related to cognitive function (15, 16). The rationale behind this 

strategy is that targeting specific isozymes and thus specific compartments 

will have more precise effects on dysfunctional signalosomes in the signaling 

pathways, without affecting other functional members of its PDE family (6).  

We assume that cyclic nucleotide activates CREB, which is an important 

regulator of transcription of the BDNF gene. BDNF is a well-known 

neurotropic growth factor. One may argue that using a different approach, 

such as targeting the BDNF-TrkB pathway with small-molecules TrkB 

agonists, synaptic changes may be produced even more specifically. 

Advantages of such an approach include the selective activation of the TrkB 

pathways, leaving the pro-apoptotic p75-pathway unaffected. In chapter 6 

we tested the effects of selective TrkB agonist 7,8-dihydroxyflavone (7,8-

DHF) on memory consolidation. Memory formation was ameliorated by 

stimulation of the pro-plasticity TrkB pathways. Research into this particular 

compound and its derivates is currently booming, as 7,8-DHF was the first 

small molecule identified as a selective TrkB agonist (17). This discovery was 

a important breakthrough in BDNF-based therapeutic strategies and has 

resulted in a surge of evidence showing beneficial effects of 7,8-DHF in many 

disorders, including schizophrenia, depression and Huntington’s disease (18-

20). 
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In chapter 5, we showed that acute TrkB agonism not only improves memory 

function in healthy animals, but also enhances memory performance in a 

mouse model of Alzheimer’s disease. Synaptic degeneration is a 

pathophysiological hallmark in several neurodegenerative disorders, 

including AD, Parkinson’s disease and Huntington’s disease (21). In chapter 3, 

evidence of PDE dysfunction in neurodegenerative diseases was reviewed. A 

major conclusion of this chapter was that although PDE expression is altered 

in several neurodegenerative disorders, PDEs do not seem to be involved in 

the pathogenesis, but are likely secondary changes in response to neuronal 

dysfunction and damage (with the exception of autosomal-dominant striatal 

degeneration, see chapter 3). Targeting synaptic plasticity via PDEi’s, may still 

prove to be an effective treatment strategy in these disorders. Given the 

limited clinical success of targeting pathogenic processes, together with the 

challenges of an early diagnosis, a disease-modifying therapy might be the 

more practical approach (22). Whereas neuronal loss is considered 

permanent, synaptic damage is more likely to be reversible. Therefore, 

chronic synaptic repair therapies, including PDE inhibition and TrkB agonism, 

could induce long-term functional and structural changes and could slow or 

halt disease progression (21, 23). 

In this thesis, we have demonstrated that cGMP and cAMP act sequential to 

affect memory and synaptic plasticity. We translated this into a combinatory 

therapeutic approach, which may be a novel approach to treating memory 

decline and neurodegenerative disorders, alongside BDNF-targeting 

approaches. Although very promising, future research will have to point out 

if these findings will be able to withstand the ultimate test in clinical studies.  
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Our brain is without any doubt the most complex organ of our body. This 

complexity is also the major reason why most disorders of the central 

nervous system are still relatively poorly understood, despite the significant 

increase in efforts invested in neuroscience research in the last decades. As 

an obvious result of this lack of understanding, we are confronted with a 

general lack of effective therapies to prevent, treat or cure the majority of 

common neurological and psychiatric disorders, many of which are 

characterized by a specific level of cognitive dysfunction. In this respect, the 

best known example is Alzheimer’s disease, in which severe memory loss is 

one of the core symptoms. According to an estimation of Alzheimer Europe, 

Alzheimer’s disease currently affects approximately 11 million people in 

Europe, and this number is expected to rise significantly in the near future. 

This huge number represents a group of patients who are in need of chronic 

care, which results in an immense impact on the lives of the patient and its 

immediate surroundings, and thus in a vast financial burden for European 

societies, summing up to a cost of illness of approximately 200 billion euro in 

2015.  Importantly, in other common neurological and psychiatric disorders 

cognition is affected as well, including schizophrenia, autism, major 

depressive disorder, multiple sclerosis and Parkinson’s disease, though the 

changes in cognition may be more subtle. However, these dysfunctions can 

be particularly disabling as they often represent a major factor in preventing 

the patient to be (re)integrated in society. At the moment, only five drugs are 

commercially available to attenuate cognitive symptoms, of which four are 

acetylcholinesterase inhibitors. However, these drugs are only approved for 

Alzheimer’s disease and have limited efficacy, while also having side effects. 

Thus, there is a large interest in finding effective drug targets for treatment 

of cognitive impairment. 

In this thesis, we have added knowledge of the underlying processes of 

memory formation.  Comprehension of this basic process is a vital step to 

discover interventions which might repair dysfunctional pathways, and how 

the process could be reshaped to compensate for liabilities elsewhere in the 

system. Specifically, we have described how the intracellular signaling 

molecules cGMP and cAMP interact during subsequent phases of memory 

consolidation. This will give the scientific community new insights into the 
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process of memory consolidation and in possible ways to specifically 

enhance memory formation.    

Furthermore, we have put forward the idea of combining different low-dosed 

phosphodiesterase inhibitors (PDE-Is), which specifically increase cGMP 

and/or cAMP levels in the brain, as an optimization of their potential 

memory-enhancing effects.  The cognition enhancing properties of PDE-Is 

were already well characterized in preclinical research. However, the research 

in clinical trials has encountered some setbacks due to side-effects including 

emesis related to cAMP signalling. The combination treatment may provide 

us with a means to benefit from the pro-cognitive profile of PDE-Is with 

minimal or even without side-effects. 

We have also investigated the potential of the first specific tyrosine kinase B 

(TrkB) receptor agonist to enhance memory. The identification of 7,8-

dihydroxyflavone as a specific TrkB agonist has been a breakthrough for 

BNDF-based treatment strategies. Our preclinical work has added to the 

recognition of 7,8-DHF as a potential novel treatment for cognitive 

impairment, possibly even in relation to Alzheimer’s disease.  

Although we are aware that the translation of rodent data to humans is often 

difficult, animal research in general is indispensable to establish a first proof-

of-principle, as well as to evaluate safety and the dosing regimen to test in 

patients. Along these lines, the value of the preclinical studies described in 

this thesis lies in the fact that they will help researchers to formulate new 

hypotheses for preclinical and clinical research into cognitive functions and 

in particular memory functioning, which thus may bring us one step closer to 

effective treatment of cognitive impairments.  
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