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Summary Despite the growing field of interest in the role of pulmonary oxidative
stress in chronic obstructive pulmonary disease (COPD), barely any data are
available with respect to antioxidant capacity in the peripheral musculature of these
patients. The main objective of this study was to assess in detail the antioxidant
status in skeletal muscle of patients with COPD. Biopsies from the vastus lateralis of
21 patients with COPD and 12 healthy age-matched controls were analysed. Total
antioxidant capacity, vitamin E, glutathione, and uric acid levels were determined
and the enzyme activities of superoxide dismutase, glutathione reductase,
glutathione peroxidase, and glutathione-S-transferase were measured. Malondial-
dehyde was measured as an index of lipid peroxidation. The total antioxidant
capacity and the uric acid levels were markedly higher in COPD patients than in
healthy controls (25%, P ¼ 0:006 and 24%, P ¼ 0:029; respectively). Glutathione-S-
transferase activity was also increased (35%; P ¼ 0:044) in patients compared to
healthy subjects. Vitamin E level was lower in patients than in controls (Po0.05).
The malondialdehyde level was not different between the two groups. It can be
concluded that the muscle total antioxidant capacity is increased in patients with
COPD. Together with the reduced vitamin E levels, the increased glutathione-S-
transferase activity and normal levels of lipid peroxidation products, these findings
suggest that the antioxidant system may be exposed to and subsequently triggered
by elevated levels of reactive oxygen species.
& 2004 Elsevier Ltd. All rights reserved.
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Introduction

Evidence is accumulating that oxidative stress plays
an important role in chronic obstructive pulmonary
disease (COPD). Considerable attention has espe-
cially been paid to oxidative stress in the pulmon-
ary compartment during the last decade.1 Free
radical formation is associated with local inflam-
mation and cigarette smoking and may result in the
inactivation of antiproteases, airspace epithelial
damage, mucus hypersecretion, increased influx of
neutrophils into lung tissue, and the expression of
pro-inflammatory mediators.1,2 In addition to the
pulmonary impairment, skeletal muscle wasting
and muscle dysfunction are hallmarks of COPD.3,4

Likewise, oxidative stress may also be involved in
the systemic consequences of COPD. Oxidative
stress occurs when the balance between oxidants,
for instance reactive oxygen species (ROS), and
antioxidants shifts in favour of the ROS. A few
studies indicate that the antioxidant status is
impaired at the systemic level: increased levels of
lipid peroxidation products have been demon-
strated in serum of patients with stable COPD.5 In
patients with acute exacerbations, but not in
clinical stable condition, plasma antioxidant capa-
city was reduced.5 After exercise, serum levels of
lipid peroxidation products and oxidized glu-
tathione were increased in patients compared to
controls.6–8 The latter findings indicate that ex-
ercise-induced oxidative stress occurred and it is
therefore most likely that the source of oxidative
stress is the exercising muscle. A direct indication
of oxidative stress in skeletal muscle comes from a
study performed by Allaire et al. who found
increased accumulation of lipofuscin, a marker of
oxidative damage, in vastus lateralis biopsies from
COPD patients.9 Many diseases are associated with
oxidative stress and the use of antioxidant supple-
ments became very popular the last decades.
However, the adverse side effects and toxicity of
these supplements are not always recognized.10

Moreover, a detailed study is required to estab-
lish if and at what level the muscular antioxidant
defence system is impaired in COPD in order to
create a platform from which targeted intervention
strategies can be developed.

Therefore, the aim of the present study was to
assess in detail the antioxidant status in skeletal
muscle of patients with COPD compared to healthy
controls in rest. For this purpose the total
antioxidant capacity was measured. In addition,
the activities of several key antioxidant enzymes
were measured, including superoxide dismutase
(SOD), glutathione peroxidase (GPX), glutathione
reductase (GR), and glutathione-S-transferase

(GST). Also, the contents of total glutathione, uric
acid, and vitamin E were measured. Finally,
malondialdehyde (MDA) was determined as an
index of lipid peroxidation.

Methods

A group of 21 patients with moderate to severe
airflow obstruction and 12 healthy age-matched
volunteers was studied. All patients had COPD
according to ATS guidelines11 chronic airflow
limitation, defined as measured forced expiratory
volume in 1 s (FEV1) less than 70% of reference
FEV1. Furthermore, patients had irreversible ob-
structive airway disease (less than 10% improve-
ment of FEV1 predicted baseline after b2-agonist
inhalation). They were in clinically stable condition
and not suffering from a respiratory tract infection
or an exacerbation of their disease at least 4 weeks
prior to the study. Exclusion criteria were malig-
nancy, cardiac failure, distal arteriopathy, recent
surgery, severe endocrine, hepatic or renal dis-
orders and use of anticoagulant medication. The
healthy age-matched control subjects were volun-
teers recruited through advertisement in a local
newspaper. Written informed consent was obtained
from all subjects and the study was approved by the
medical ethical committee of the University Hospi-
tal Maastricht (Maastricht, The Netherlands).

Pulmonary function tests

All patients and control subjects underwent spiro-
metry to determine FEV1. Forced vital capacity
(FVC) was assessed by whole-body plethysmography
and diffusion capacity for carbon monoxide (DLCO)
was measured by using the single-breath method
(Masterlab, Jaeger, Wurzburg, Germany). All values
obtained were related to a reference value and
expressed as percentage of the predicted value.12

Arterial oxygen tension (PaO2) was determined
(ABL 330; Radiometer, Copenhagen, Denmark)
while breathing room air.

Assessment of body composition

Body height and weight were assessed. Whole-body
fat-free mass (FFM) was determined by bioelec-
trical impedance (Xitron 4000b, Xitron technolo-
gies, San Diego, California, USA) as described
previously.13 Weight parameters were adjusted for
body surface, resulting in the body mass index (BMI)
and FFM index (FFMI).14
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Muscle strength

Isokinetic muscle strength of the dominant knee
extensor (quadriceps) was measured using a Biodex
dynamometer (Biodex Corporation, Shirley, NY,
USA).15 The highest torque value (expressed as
Nm) of three sequential voluntary maximal con-
tractions at an angular velocity of 601/s was used.

Exercise capacity

Exercise capacity was assessed by means of cycle
ergometry. Subjects performed an incremental
(10W/min for patients and 15–25W/min for con-
trols) cycle ergometry test as described pre-
viously.16 Expired gases were investigated using
breath by breath analysis through a breathing mask
(Oxycon Betas, Jaeger, W .urzburg, Germany). Peak
VO2 and peak load were measured at the moment
of cessation of the exercise.

Collection and processing of muscle tissue

Postabsorptive muscle biopsies of the lateral part
of the quadriceps femoris were obtained under
local anaesthesia by the needle biopsy technique17

and the specimens were immediately frozen in
liquid nitrogen. The frozen biopsies were weighed
and subsequently grinded with a mortar cooled in
liquid nitrogen. The frozen powder was resus-
pended in buffer (100mM sodium phosphate, pH
7.4) to a final concentration of 250mg tissue/ml
and directly re-frozen in liquid nitrogen and stored
at �801C until use. For the determination of
vitamin E, an aliquot of the total muscle biopsy
homogenate was used. For analysis of the other
parameters the homogenate was centrifuged (5min
at 14,000� g and 41C) and the muscle biopsy
supernatant was used. Total protein content in
the homogenates was assayed according to Smith
et al.18 using BSA as standard.

Measurements of antioxidants and lipid
peroxidation

GST activity was determined by the GST catalysed
reaction of chlorodinitrobenzene (Sigma Chemical
Co., St. Louis, USA) with reduced glutathione
(GSH), resulting in a yellow coloured product,
glutathione-dinitrobenzene, of which the increase
in absorbance was measured (2min at 340 nm).19

After correction for the non-enzymatic reaction,
the activity of GST in the sample was calculated
using the molar absorptivity coefficient of glu-
tathione-dinitrobenzene. The GR activity was de-

termined by measuring the decrease in absorbance
(2min at 340 nm) by the consumption of NADPH
(Sigma) in the enzymatic reduction of oxidized
glutathione (GSSG) to GSH by GR.20 The activity
was calculated using the molar absorptivity coeffi-
cient of NADPH. The selenium dependent GPX
activity, with H2O2 as substrate, was also deter-
mined by measuring the decrease in absorbance
(3min at 340 nm) due to the consumption of
NADPH.21 GPX activity was calculated using the
molar absorptivity coefficient of NADPH. Total
glutathione level was determined by measuring
the increase in absorbance (2min at 405 nm),
caused by the GSH driven reduction of 5’5’dithiobis
2-nitrobenzoic acid (ICN Biomedicals Inc., Costa
Mesa, USA), using the recycling method described
by Vandeputte et al.22 The activity of the SOD was
measured using the xanthine–xanthine oxidase
system (Sigma) for the generation of superoxide
anions and nitro blue tetrazolium (NBT) (Sigma):
NBT is reduced by superoxide anions to the blue
formazan which can be measured at 560nm. SOD
scavenges superoxide anions resulting in less reduc-
tion of NBT. The increase in absorbance was
measured (2min at 560nm).25 After adding an
internal standard, vitamin E nicotinate (Sigma),
vitamin E was extracted by hexane extraction.
Vitamin E concentration was determined with the
HPLC method as previously described by van Haaften
et al.23 using an Agilent HPLC system (Agilent, Palo
Alto, CA, USA) and a Nucleosil C18 column
(125� 4mm2, particle size 5mm, Agilent). Uric acid
was determined in ultra filtrates with the HPLC
method described by Lux et al.24 using a Hypersil BDS
C18 end-capped column (125� 4mm2, particle size
5mm, Agilent). The total antioxidant capacity was
measured by means of the Trolox equivalent anti-
oxidant capacity (TEAC) assay, as described by van
den Berg et al.:25 MBS samples were deproteinated
with trichloro-acetic acid. The absorbance (at
734nm) of the radical solution was 0.770.02. Then
the decrease in absorbance, caused by antioxidant
capacity in the sample, was measured and related to
that of trolox standards. The determination of MDA
was based on the formation of a coloured adduct of
MDA with 2-thiobarbituric acid, which was measured
according to the HPLC method described by Lepage
et al.26 using a Nucleosil C18 column (150� 3.2mm2

particle size 5mm, Supelco Inc., Bellefonte, PA, USA).

Statistical analysis

Data were analysed with the unpaired Student’s
t-test (corrected for unequal variances if
appropriate) or the Pearson correlation test, as
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appropriate.27 Data are represented as the means
7SD. Differences in gender between the control
and the patient groups were examined using the w2-
test. A two-tailed probability value of less than
0.05 was considered statistically significant.

Results

Subject characteristics are presented in Table 1.
There were no statistically significant differences in
age and gender between the control and patient
groups. Lung function was clearly impaired in
patients with COPD. Patients had a lower body
mass index, a reduced peripheral muscle strength,
and a decreased exercise capacity compared to
control subjects.

The results of muscle biopsy analysis are shown in
Table 2. Total antioxidant capacity, as measured by
the TEAC, was significantly increased in COPD,
being 25% higher than in healthy controls. Muscle
tissue uric acid levels were also significantly higher
(24%) in patients compared to control subjects. The
antioxidant capacities of the TEAC and uric acid
can be directly compared on a one-to-one basis.
From this it can be calculated that the difference in
uric acid level (0.25 nmol/mg protein) accounts
only for 2% of the difference in TEAC (12 nmol/mg
protein). Glutathione levels were normal in pa-
tients. The activities of all four antioxidant
enzymes tended to be somewhat higher in COPD,
but only GST activity was statistically significant
higher (35%). The level of vitamin E, a lipid soluble
scavenger, was reduced in patients, being 66% of

control values. MDA, the marker of lipid peroxida-
tion, was not different between patients and
controls.

Muscle antioxidant status was not related to
disease severity as measured by the FEV1. In
addition, the increased antioxidant capacity can
not be explained by differences smoking history.
There were also no relations between antioxidant
status and muscle strength or exercise capacity.

Discussion

The most striking results of this study are that the
overall antioxidant capacity of peripheral skeletal
muscle in rest was higher in patients with COPD
compared to healthy age-matched control sub-
jects, whereas the vitamin E level was reduced.
These are very important findings, because they
indicate that the muscular antioxidant status is
chronically altered in COPD patients characterized
by peripheral muscle weakness and wasting. Prob-
ably the most important way by which the
antioxidant defence system can be triggered is
exposure to ROS.28–30 It is therefore likely that the
observed increased antioxidant capacity is a com-
pensatory adaptation to elevated ROS formation in
skeletal muscle of patients with COPD.

Oxidative stress occurs when the balance be-
tween oxidants, i.e. ROS, and antioxidants shifts in
favour of the ROS. The reactive superoxide anions
may subsequently give rise to hydrogen peroxide,
hydroxyl radicals, and other redox-reactive mole-
cules. An inadequate defence system may be
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Table 1 Subject characteristics.

Controls COPD

N (Female/Male) 12 (4/8) 21 (3/18)
Age (yr) 6577 6578
FEV1 (% pred) 113725 40723***
DLCO (% pred) 114716 64723***
FVC (% pred) 118718 86719***
PaO2 (kPa) 10.571.4 9.771.1
SaO2 (%) 9572.0 9471.9
Systemic characteristics:
BMI (kg/m2) 27.372 24.174**
FFMI (kg/m2) 19.871.8 17.372.9**
Exercise capacity as peak VO2 (ml/min) 21757889 8947343***
Exercise capacity as peak load (W) 193778 68729***
Leg muscle strength as peak torque (Nm) 154743 84747**
Smoking history (pack years) 1575 5177***

Values are mean 7 SD; Significance of difference compared to controls: **Po0.01; ***Pp0.001. BMI: body mass index; FFMI: fat-
free mass index; DLCO: diffusion capacity for carbon monoxide; FEV1: forced expiratory volume in one second; FVC: forced vital
capacity; peak VO2: peak oxygen consumption.
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overwhelmed by the ROS, leading to damage of
proteins, lipids, and DNA, which in turn may result
in extensive cell and tissue damage. SOD catalyses
the dismutation of superoxide anions to hydrogen
peroxide, which in turn is converted to harmless
water and oxygen by the glutathione system. This
system includes the enzymes GPX, GST, and GR.
GPX and GST activities require reduced glutathione
(GSH) as a co-factor, GPX activity results in oxidized
glutathione (GSSG) and the accumulating GSSG can
subsequently be recycled to GSH via the enzyme
GR.31 Uric acid has been suggested as a ROS
scavenger, although its action in muscle has not
been studied systematically.31 ROS can also react
with lipids, forming lipid radicals and lipid peroxyl
radicals. The lipid peroxyl radicals can be sca-
venged by vitamin E, a lipid-soluble antioxidant
that plays an important role in the protection of
phospholipid membranes against oxidative da-
mage.31 Vitamin E can be recycled by, for example
GSH. Lipid peroxidation products can be detoxified
by GST. But if the scavenging capacity is insuffi-
cient, lipid peroxidation products may accumulate,
as reflected by increased MDA levels.

In the present study, the total antioxidant
capacity, as measured by the TEAC, was markedly
higher in COPD than in controls and, as mentioned
earlier, oxidative stress may very well be the
trigger. The only direct indication for muscular
oxidative stress in COPD has recently been provided
by Allaire et al., who reported accumulation of
intramuscular lipofuscin, a marker of oxidative
stress.9 An interesting side-note is that lipofuscine
contains iron, which may in turn catalyse further
oxidative reactions.32 The fact that vitamin E levels
were decreased in patients also supports this
notion, because this may reflect its utilization
during oxidative stress. Interestingly, reduced
vitamin E was reported for COPD recently in blood

as well.8 However, in the current study no
significantly increased lipid peroxidation products
(MDA) were found in the muscle biopsies from COPD
patients. There are two possible explanations for
this. The first option is that, in rest, there is no
muscular oxidative stress; thus there is a balance
between the increased antioxidant capacity and
the, supposedly elevated, free radical formation. In
this respect, it is also possible that the observed
increase in GST activity provides extra potential to
detoxify lipid peroxidation products, thereby pre-
venting a rise in MDA. Skeletal muscle fibres
generate ROS at a relative low rate continuously,
because B3% of total oxygen consumed leaks away
from the mitochondrial electron transport in the
form of superoxide anions. ROS formation is
dramatically increased during exercise.31 It is
therefore still possible that exercise induced
oxidative stress is responsible for reduced vitamin
E levels and the stimulated TEAC. Unlike lipofuscin,
MDA does not accumulate in the muscle cells over
time, but diffuses away from the muscle and can be
metabolized. Therefore, a second option is that, in
rest, oxidative stress and subsequent lipid perox-
idation do occur, but at such a low rate that MDA
may not be a sensible marker.

Although the present study was not designed to
determine the mechanism behind and the sources
of muscular oxidative stress in COPD, some possi-
bilities will be briefly discussed below. First of all,
mitochondria in the muscle cells are a major source
of ROS, especially during exercise. Normally, the
antioxidant status in the oxidative type I fibres is
higher compared to the less oxidative type II
fibres.31,33 However, despite the currently observed
increased total antioxidant capacity, a I-II fibre
type shift and a reduction of oxidative capacity
have consistently been observed in the vastus
lateralis of patients with COPD.34–37 This would
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Table 2 Muscle biopsy data.

Controls COPD

SOD (U/mg protein) 6.975.0 9.574.0
GR (U/mg protein) 12.872.5 13.373.6
GST (U/mg protein) 0.1770.07 0.2370.08*
GPX (nmol NADPH/min/mg protein) 20.776.7 23.176.4
Glutathione (nmol/mg protein) 18.574.9 19.675.2
TEAC (nmol Trolox Eq/mg protein) 4678.8 58712.7**
Uric acid (nmol/mg protein) 1.0470.21 1.2970.31*
Vitamin E (mg/mg tissue) 21.670.5 17.370.5*
MDA (nmol/mg protein) 0.6970.17 0.7770.37

Values are mean 7SD; Significance of difference compared to controls: *Po0.05; **Po0.01. GPX: glutathione peroxidase; GR:
glutathione reductase; GST: glutathione S-transferase; SOD: superoxide dismutase; TEAC: Trolox equivalent antioxidant
capacity; MDA: malondialdehyde.
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suggest that ROS formation in the remaining type I
fibres may be higher than normal, which is
supported by the recent study in which increased
lipofuscin accumulation was indeed greater in type
I fibres than in type II fibres.9 Because COPD
patients are certainly not more physically active
than healthy subjects, this suggests that relatively
more free radicals are produced in exercising
muscles of these patients. Baarends et al. recently
reported that leg muscle mechanical efficiency is
less in COPD compared to controls.38 This and the
reduced capacity of oxidative energy metabolism
mentioned earlier may lead to the incomplete
oxygen reduction and subsequent ROS formation.

A second source of ROS is inflammation. Systemic
inflammation is indeed common in COPD and has
been associated with muscle wasting in these
patients.39–41 There is also evidence that immune
cells that are activated during inflammation are a
source of ROS in the skeletal muscles.42,43 In
addition, there are indications that the muscle
cells themselves can be triggered by circulating
inflammatory mediators to produce ROS.44–47

A third alternative source of ROS is the xanthine
oxidase, which is an enzyme that catalyses the
conversion of hypoxanthine into uric acid, hypox-
anthine accumulates in situations of metabolic
stress (i.e. exercise and hypoxia) as a result from
AMP degradation.33 Heunks et al. demonstrated,
for COPD, that the oxidation of glutathione in blood
during exercise can be inhibited by treatment with
allopurinol, a xanthine oxidase inhibitor.6 In this
study we found elevated levels of uric acid in the
muscle biopsies from patients with COPD. Although
it can be considered as an antioxidant itself, the
observed increase of uric acid is probably of minor
importance compared to the increased total anti-
oxidant capacity in patients, as measured by TEAC.
However, an increased uric acid level may also
indicate increased xanthine oxidase activity, since
uric acid is a degradation product of AMP degrada-
tion. This is in line with a previous study in which
elevated IMP levels were observed in skeletal
muscle biopsies from COPD patients, since IMP is
an intermediate in AMP degradation.48

The present data indicate that the total muscular
glutathione level was normal in this COPD group.
Rabinovich et al. also demonstrated that muscle
glutathione was normal in COPD compared to
controls.49 Previously, Engelen et al. reported
reduced glutathione levels in vastus lateralis
biopsies from emphysema patients, which was
associated with reduced levels of its precursor,
glutamate.50 This suggests that glutathione home-
ostasis may differ between COPD sub-groups.
Alternatively, the discrepancy may reflect differ-

ences between the methodologies that were used:
Engelen et al. expressed glutathione levels per wet
weight of muscle tissue, whereas glutathione levels
were corrected for total protein level in the other
two studies.

The present data provide some new starting
points for future research. For example, the
elevated TEAC remains largely unexplained. Be-
cause the TEAC is measured in a deproteinated
sample, the contribution of enzymes can be ruled
out. Identification of the antioxidant(s) that is (are)
responsible for this increase may provide perspec-
tives for new therapies. The findings also suggest
that vitamin E supplementation might be beneficial
for COPD patients. Although evidence for a protec-
tive effect of vitamin E intake on respiratory
symptoms and lung function are inconsistent,51

there are some indications that vitamin E may
prevent oxidative stress induced muscle damage,
for example in immobilized rats52 or in humans
during surgical ischemia/reperfusion.53 More re-
search is thus required to establish whether
antioxidant supplementation in COPD patients is
beneficial from a ‘‘muscular’’ point of view.

In summary, to our knowledge, this is the first
detailed study in which several key antioxidants in
peripheral skeletal muscle were examined in COPD.
The collected data strongly suggest that the
production and handling of oxygen free radicals is
altered in muscles of COPD patients. It remains to
be explored whether this alteration is instrumental
in muscle weakness in COPD patients (Fig. 1).
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Figure 1 A schematic representation of antioxidants and
ROS formation. AMP: adenosine monophosphate; IMP:
inosine monophosphate; XO: xanthine oxidase; HX:
hypoxanthine; X: xanthine; SOD: superoxide dismutase;
GPX: glutathione peroxidase; GSH: reduced glutathione;
GSSG: oxidized glutathione; GR: glutathione reductase;
GST: glutathione S-transferase; L: lipid radical; LPOs:
lipid peroxidation products; MDA: malondialdehyde; vitE:
vitamin E.

Altered muscular antioxidant status in COPD 123



References

1. MacNee W, Rahman I. Is oxidative stress central to the
pathogenesis of chronic obstructive pulmonary disease?
Trends Mol Med 2001;7:55–62.

2. Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic
obstructive pulmonary disease. Oxidative stress study group.
Am J Respir Crit Care Med 1997;156:341–57.

3. Mador JM, Bozkanat E. Skeletal muscle dysfunction in
chronic obstructive pulmonary disease. Respir Res
2001;2:216–24.

4. Gosker HR, Wouters EF, van der Vusse GJ, et al. Skeletal
muscle dysfunction in chronic obstructive pulmonary disease
and chronic heart failure: underlying mechanisms and
therapy perspectives. Am J Clin Nutr 2000;71:1033–47.

5. Rahman I, Morrison D, Donaldson K, et al. Systemic oxidative
stress in asthma, COPD, and smokers. Am J Respir Crit Care
Med 1996;154:1055–60.

6. Heunks LM, Vina J, van Herwaarden CL, et al. Xanthine
oxidase is involved in exercise-induced oxidative stress in
chronic obstructive pulmonary disease. Am J Physiol
1999;277:R1697–704.

7. Vina J, Servera E, Asensi M, et al. Exercise causes blood
glutathione oxidation in chronic obstructive pulmonary
disease: prevention by o2 therapy. J Appl Physiol
1996;81:2199–202.

8. Couillard A, Koechlin C, Cristol JP, et al. Evidence of local
exercise-induced system oxidative stress in chronic obstruc-
tive disease patients. Eur Respir J 2002;20:1123–9.

9. Allaire J, Maltais F, LeBlanc P, et al. Lipofuscin accumulation
in the vastus lateralis muscle in patients with chronic
obstructive pulmonary disease. Muscle Nerve 2002;25:
383–9.

10. Bast A, Haenen GR. The toxicity of antioxidants and their
metabolites. Environ Toxicol Pharmacol 2002;11:251–8.

11. ATS. Standards for the diagnosis and care of patients with
chronic obstructive pulmonary disease. Am J Respir Crit
Care Med 1995;152:S77–121.

12. Quanjer P, Tammeling GJ, Cotes JE, et al. Standardized lung
function testing. Eur Respir J 1993;6:5–40.

13. Schols AM, Wouters EF, Soeters PB, et al. Body composition
by bioelectrical-impedance analysis compared with deuter-
ium dilution and skinfold anthropometry in patients with
chronic obstructive pulmonary disease. Am J Clin Nutr
1991;53:421–4.

14. VanItallie TB, Yang MU, Heymsfield SB, et al. Height-
normalized indices of the body’s fat-free mass and fat mass:
potentially useful indicators of nutritional status. Am J Clin
Nutr 1990;52:953–9.

15. Dvir Z. Isokinetics. Muscle testing, interpretation and
clinical applications. Edinburgh: Churchill Livingstone;
1995.

16. Franssen FME, Wouters EFM, et al. Arm mechanical
efficiency and arm exercise capacity are relatively pre-
served in chronic obstructive pulmonary disease. Med Sci
Sports Exerc 2002;34:1570–6.

17. Bergstrom L. Muscle electrolytes in man. Determination by
neutron activation analysis on needle biopsy specimens. A
study on normal subjects, kidney patients, and patients with
chronic diarrhea. Scand J Clin Lab Invest 1962;68:1–110.

18. Smith PK, Krohn RI, Hermanson GT, et al. Measurement of
protein using bicinchoninic acid. Anal Biochem
1985;150:76–85.

19. Habig WH, Jakoby WB. Assays for the differentiation of
glutathione S-transferases. Methods Enzymol 1981;77:
398–405.

20. McCormick DB. Method for the determination of erythrocyte
glutathion reductase activity. In: Tietz NW, editor. Textbook
of clinical chemistry. Philadelphia: WB Saunders Company;
1986.

21. Paglia DE, Valentine WN. Studies on the quantitative and
qualitative characterization of erythrocyte glutathione
peroxidase. J Lab Clin Med 1967;70:158–69.

22. Vandeputte C, Guizon I, Genestie-Denis I, et al. A microtiter
plate assay for total glutathione and glutathione disulfide
contents in cultured/isolated cells: performance study of a
new miniaturized protocol. Cell Biol Toxicol 1994;10:
415–21.

23. van Haaften RI, Evelo CT, Haenen GR, et al. No reduction of
alpha-tocopherol quinone by glutathione in rat liver micro-
somes. Biochem Pharmacol 2001;61:715–9.

24. Lux O, Naidoo D, Salonikas C. Improved HPLC method for the
simultaneous measurement of allantoin and uric acid in
plasma. Ann Clin Biochem 1992;29:674–5.

25. Berg van den R, Haenen GRMM, Berg van den H, et al.
Applicability of an improved Trolox equivalent antioxidant
capacity (TEAC) assay for the evaluation of the antioxidant
capacity measurements of mixtures. Food Chem 1999;66:
511–7.

26. Lepage G, Munoz G, Champagne J, et al. Preparative steps
necessary for the accurate measurement of malondialde-
hyde by high-performance liquid chromatography. Anal
Biochem 1991;197:277–83.

27. Altman DG, Gore SM, Gardner MJ, et al. Statistical guide-
lines for contributors to medical journals. Br Med J Clin Res
Ed 1983;286:1489–93.

28. Ji LL. Exercise, oxidative stress, and antioxidants. Am J
Sports Med 1996;24:S20–4.

29. Giuliani A, Cestaro B. Exercise, free radical generation and
vitamins. Eur J Cancer Prev 1997;6:S55–67.

30. Ji LL. Exercise-induced modulation of antioxidant defense.
Ann N Y Acad Sci 2002;959:82–92.

31. Reid MB. Invited Review: redox modulation of skeletal
muscle contraction: what we know and what we don’t.
J Appl Physiol 2001;90:724–31.

32. Marzabadi MR, Sohal RS, Brunk UT. Effect of ferric iron and
desferrioxamine on lipofuscin accumulation in cultured rat
heart myocytes. Mech Ageing Dev 1988;46:145–57.

33. Heunks LM, Dekhuijzen PN. Respiratory muscle function
and free radicals: from cell to COPD. Thorax 2000;55:
704–16.

34. Whittom F, Jobin J, Simard PM, et al. Histochemical and
morphological characteristics of the vastus lateralis muscle
in patients with chronic obstructive pulmonary disease. Med
Sci Sports Exerc 1998;30:1467–74.

35. Gosker HR, van Mameren H, van Dijk PJ, et al. Skeletal
muscle fibre type shifting and metabolic profile in patients
with COPD. Eur Respir J 2002;19:617–26.

36. Maltais F, Simard AA, Simard C, et al. Oxidative capacity of
the skeletal muscle and lactic acid kinetics during exercise
in normal subjects and in patients with COPD. Am J Respir
Crit Care Med 1996;153:288–93.

37. Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme
activity in the quadriceps femoris muscle in patients with
severe chronic obstructive pulmonary disease. Am J Respir
Crit Care Med 1995;151:374–7.

38. Baarends EM, Schols AM, Akkermans MA, et al. Decreased
mechanical efficiency in clinically stable patients with
COPD. Thorax 1997;52:981–6.

39. Eid AA, Ionescu AA, Nixon LS, et al. Inflammatory response
and body composition in chronic obstructive pulmonary
disease. Am J Respir Crit Care Med 2001;164:1414–8.

ARTICLE IN PRESS

124 H. R. Gosker et al.



40. Di Francia M, Barbier D, Mege JL, et al. Tumor necrosis
factor-alpha levels and weight loss in chronic obstructive
pulmonary disease. Am J Respir Crit Care Med
1994;150:1453–5.

41. Schols AM, Buurman WA, Staal van den Brekel AJ, et al.
Evidence for a relation between metabolic derangements
and increased levels of inflammatory mediators in a
subgroup of patients with chronic obstructive pulmonary
disease. Thorax 1996;51:819–24.

42. Reid MB. Reactive oxygen and nitric oxide in skeletal
muscle. News Physiol Sci 1996;11:114–9.

43. Supinski G, Stofan D, Nethery D, et al. Apocynin improves
diaphragmatic function after endotoxin administration.
J Appl Physiol 1999;87:776–82.

44. Li YP, Atkins CM, Sweatt JD, et al. Mitochondria
mediate tumor necrosis factor-alpha/NF-kappaB signaling
in skeletal muscle myotubes. Antioxid Redox Signal
1999;1:97–104.

45. Langen RC, Schols AM, Kelders MC, et al. Inflammatory
cytokines inhibit myogenic differentiation through
activation of nuclear factor-kappaB. Faseb J 2001;15:
1169–80.

46. Callahan LA, Nethery D, Stofan D, et al. Free radical-
induced contractile protein dysfunction in endotoxin-in-
duced sepsis. Am J Respir Cell Mol Biol 2001;24:210–7.

47. Buck M, Chojkier M. Muscle wasting and dedifferentiation
induced by oxidative stress in a murine model of cachexia is
prevented by inhibitors of nitric oxide synthesis and
antioxidants. EMBO J 1996;15:1753–65.

48. Pouw EM, Schols AMWJ, Vusse van der GJ, et al. Elevated
inosine monophosphate levels in resting muscle of patients
with stable COPD. Am J Respir Crit Care Med 1998;157:
453–7.

49. Rabinovich RA, Ardite E, Troosters T, et al. Reduced muscle
redox capacity after endurance training in patients with
chronic obstructive pulmonary disease. Am J Respir Crit
Care Med 2001;164:1114–8.

50. Engelen MP, Schols AM, Does JD, et al. Altered glutamate
metabolism is associated with reduced muscle glutathione
levels in patients with emphysema. Am J Respir Crit Care
Med 2000;161:98–103.

51. Smit HA, Grievink L, Tabak C. Dietary influences on chronic
obstructive lung disease and asthma: a review of the
epidemiological evidence. Proc Nutr Soc 1999;58:309–19.

52. Appell HJ, Duarte JAR, Soares JMC. Supplementation of
vitamin E may attenuate skeletal muscle immobilization
atrophy. Int J Sports Med 1997;18:157–60.

53. Novelli GP, Adembri C, Gandini E, et al. Vitamin E protects
human skeletal muscle from damage during surgical ische-
mia-reperfusion. Am J Surg 1997;173:206–9.

ARTICLE IN PRESS

Altered muscular antioxidant status in COPD 125


	Altered antioxidant status in peripheral skeletal muscle of patients with COPD
	Introduction
	Methods
	Pulmonary function tests
	Assessment of body composition
	Muscle strength
	Exercise capacity
	Collection and processing of muscle tissue
	Measurements of antioxidants and lipid peroxidation
	Statistical analysis

	Results
	Discussion
	References


