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Stochastic Online Scheduling

Tjark Vredeveld∗

November 5, 2009

Abstract

In this paper we consider a model for scheduling under uncertainty. In
this model, we combine the main characteristics of online and stochastic
scheduling in a simple and natural way. Jobs arrive in an online manner
and as soon as a job becomes known, the scheduler only learns about
the probability distribution of the processing time and not the actual
processing time. This model is called the stochastic online scheduling
(SOS) model. Both online scheduling and stochastic scheduling are special
cases of this model. In this paper, we survey the results for the SOS model.

1 Introduction

Machine scheduling problems belong to the classical problems in combinatorial
optimization. These problems play a role whenever jobs need to be processed
on a limited number of machines or processors, with applications in manufac-
turing, parallel computing [3] or compiler optimization [5]. Machine scheduling
problems have been studied since the 1950s and for a general overview of the
vast amount of literature we refer to the books by Brucker [2] and Pinedo [24]
and to the handbook of scheduling by Leung [17].

In standard deterministic scheduling all relevant data to the problem is
known a priori. However, this assumption is not always realistic. In many
scenarios, we need to �nd a good schedule when the data is not fully available
and decisions with wide-ranging implications need to be taken in the face of
incomplete data. To cope with these uncertainties, there are two major frame-
works in the theory of scheduling: online scheduling and stochastic scheduling.
In online scheduling models the instance is only presented to the scheduler piece-
wise. Jobs are either arriving one by one (online list model) or over time (online
time model). The actual processing time of a job is usually disclosed upon ar-
rival of the job and decisions must be made without any knowledge of the jobs to
come. See the survey of Pruhs, Sgall, and Torng [26] for an overview on online
scheduling. In stochastic scheduling, the population of jobs is assumed to be
known beforehand, but in contrast to deterministic models, the processing times
of jobs are only given by a probability distribution. The actual processing times
become known only upon completion of the jobs. The distribution functions of
the random variables that describe the processing times, or at least their �rst
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and second moment, are assumed to be known beforehand. See the survey of
Pinedo [25] and the PhD theses [32, 9] for overviews on stochastic scheduling.

Recently, a combined model was introduced [7, 19] that generalizes both
stochastic scheduling and online scheduling. Like in online scheduling, we as-
sume that the instance is presented to the scheduler piecewise, and nothing is
known about jobs that might arrive in the future. Once a job arrives, like in
stochastic scheduling, we assume that its expected processing time, or the dis-
tribution function of the processing time, is disclosed, but the actual processing
time remains unknown until the job completes. In this survey, we will review
the results on this stochastic online scheduling model.

2 Model and de�nitions

In the machine scheduling models that we consider, we are given a set of n
jobs J = {1, . . . , n} each of which has to be scheduling on one or all of m ma-
chines. Each machine can process at most one job at a time and is available
from the beginning. Job j ∈ J has release date rj , which is the earliest pos-
sible time at which this job may be processed on. Moreover, with job j, we
associate a nonnegative weight wj . In this survey, we only consider machine
scheduling problems in which the goal is to �nd a schedule that minimizes the
total weighted completion time

∑
j wjCj , where Cj denotes the completion time

of job j. Depending on the model, we may or may not preempt a job, that is,
interrupt a job and continue its processing later on the same or another machine.

The time it takes to process job j on machine i is denoted by the random
variable Pij . In this survey, we consider several machine environments each with
there own restrictions on the processing times. In single machine models, there
is only one machine to process all jobs and therefore, we denote the processing
time by Pj instead of P1j . In the identical parallel machine model, each job
has to be processed by only one machine and as the machines are identical, we
have that the processing time of a job is not machine dependent, i. e., Pij = Pj .
Also in the uniformly related machine environment, jobs need to be processed
by only one machine. Each machine has a certain speed denoted by si and the
processing time of job j on machine i is given by Pij = Pj/si, where Pj is the
random variable denoting the processing requirement of job j. The last model
that we will consider in this survey is the �ow shop. In the �ow shop problem
a set of n jobs needs to be processed non-preemptively on m machines. Each
machine can process at most one job at a time and each job can be processed
by at most one machine at a time. Each job must be processed by each machine
in the same order.

The goal is to �nd a stochastic online scheduling (SOS) policy that mini-
mizes the objective function in expectation. The de�nition of an SOS policy
extends the traditional de�nition of stochastic scheduling policies by Möhring,
Radermacher, and Weiss [22] to the setting where jobs arrive online. A schedul-
ing policy speci�es actions at decision time t. An action is a set of jobs that is
started or, in case of preemption, interrupted at time t and a next decision time
t > t at which the next action is taken, unless some job is released or ends at
time t′′ < t′. In that case, t′′ becomes the next decision time. To decide, the
policy may utilize the complete information contained in the partial schedule
up to time t, as well as information about unscheduled jobs that have arrived
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at or before t. However, a policy is required to be online, thus at any time, it
must not utilize any information about jobs that will be released in the future.
Moreover, it needs to be non-anticipatory, thus at any time, it must not utilize
the actual processing times of jobs that are scheduled or unscheduled but not
yet completed. An optimal scheduling policy is de�ned as a non-anticipatory
scheduling policy that minimizes the objective function value in expectation.
Note that we do not assume that an optimal policy needs to be online. Also
notice that even an optimal scheduling policy generally fails to yield an opti-
mal solution for all realizations of the processing times; this is because it is
non-anticipatory.

For an instance I, consisting of the number of machines m, the set of jobs J
together with their release dates rj , weights wj , and processing time distribu-
tions Pij , let CΠ

j (I) denote the random variable for the completion time of job

j under policy Π. When the instance is clear from the context, we write CΠ
j for

short. Let

E [Π(I)] = E

∑
j∈J

wjC
Π
j (I)

 =
∑
j∈J

wjE
[
CΠ

j (I)
]

denote the expected performance of a scheduling policy Π on instance I.
Generalizing the de�nitions of by Möhring, Schulz, and Uetz [23] for tra-

ditional stochastic scheduling, we de�ne the performance guarantee of an SOS
policy as follows.

De�nition 1 An SOS policy Π is a ρ-approximation if, for some ρ ≥ 1, and
all instances I of the given problem,

E [Π(I)] ≤ ρE [OPT (I)] .

Here, OPT (I) denotes an optimal stochastic scheduling policy on the given
instance I, assuming a priori knowledge of the set of jobs J , their weights wj ,
release dates rj and processing time distributions Pij . The value ρ is called
the performance guarantee or approximation ratio of policy Π. The asymptotic
approximation ratio of a policy Π is given by

ρ∞ = inf
{

ρ ≥ 1 : ∃N0 s.t.
E [Π(I)]

E [OPT (I)]
≤ ρ, for all instances I with |J | ≥ N0

}
.

The asymptotic approximation ratio characterizes the maximum relative devia-
tion from optimality for all su�ciently large instances. If a stochastic scheduling
policy has an asymptotic approximation ratio of one, then we say it is asymp-
totically optimal.

3 Single machine

The �rst results on stochastic online scheduling have been obtained for the non-
preemptive single machine environment [7, 19], although [19] also considered
the identical parallel machine environment.

Whenever all release dates are the same, i. e., rj = 0 for all j = 1, . . . , n,
then the deterministic as well as the stochastic single machine problem can be
solved to optimality by a simple rule, called the Weighted Shortest (Expected)
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Processing Time rule (WSEPT): process the jobs in non-increasing order of
weight over (expected) processing time [30, 27]. A straightforward extension
to the problem in which there are non-trivial release dates, is the policy that
whenever the machine is idle it will process a job that has highest ratio of
weight to expected processing time, wj/E [Pj ]. Chou, Liu, Queryanne, and
Simchi-Levi [7] named this policy the Weighted Shortest Processing Time among
Available jobs (WSEPTA) rule and performed an asymptotic analysis for this
rule. They showed that whenever the weights are bounded from above and
below by some arbitrary constants, i. e., there are constants w and w such that
w ≤ wj ≤ w for all j ∈ J , and there are some upper and lower bounds on
the possible realizations of the processing times, i. e., there are some constants
x and x such that Pr [x ≤ Pj ≤ x] = 1 for all j ∈ J , the ratio between the
expected performance of the WSEPTA rule and the expected total weighted
completion time of the optimal policy tends to 1, when the number of jobs
tends to in�nity. To show their results they �rst prove that the value of the LP-
relaxation from Goemans [14, 15] on expected processing times yields a lower
bound on the optimal value of the stochastic scheduling problem. This lower
bound for stochastic scheduling has �rst been obtained by Möhring et al. [23].
Then Chou et al. show that the gap between the expected value of WSEPTA
and the lower bound is relatively small, that is, o(n2w x), whereas the expected
performance of the optimal policy is at least n(n + 1)w x/2. This last bound
can be easily obtained by computing the optimal value for an instance with
n jobs, all having processing time x, weight w and release date 0. When the
assumption that the processing are bounded from below by a positive constant
is not satis�ed, then any non-idling, and thus WSEPTA, can be arbitrarily bad.

The asymptotic analysis of Chou et al. has been extended by Chen and
Shen [6] to an asymptotic analysis for any non-idling policy. However, Chen
and Shen not only assume uniform bounds on the weights and processing times,
but they also assume that the processing times are i.i.d. with mean µ and the in-
terarrival times are also i.i.d. with mean λ > µ. Under these assumptions, they
show that any non-idling policy is optimal for the non-preemptive single ma-
chine stochastic scheduling problem as to minimize the expected total weighted
completion time. They showed that when the interarrival times are larger than
the processing times on average, the total �ow time is insigni�cant compared to
the sum of the release dates. Using the same kind of reasoning, Chen and Shen
also show that any non-idling policy is asymptotically optimal for the �owshop
and uniformly related machine environment.

The �rst non-asymptotic analysis for stochastic online scheduling on a single
machine as to minimize the expected total weighted completion time has been
given by Megow, Uetz, and Vredeveld [19]. They consider a modi�ed version
of the WSEPT rule, the α-shift WSEPT policy: Given �xed α > 0, when a
job arrives, modify its release date to r′j = max{rj , αE [Pj ]}. At any time
t, when the machine is idle, start processing the job with the highest ratio
wj/E [Pj ] among all available jobs with t ≥ r′j . The deterministic version of this
policy has been proposed by Megow and Schulz [18]. To analyze this policy,
Megow et al. [19] introduce the concept of δ-NBUE random variables, extending
the notion of NBUE (new better than used in expectation)random variables.
A random variable X is said to be δ-NBUE if for all x > 0 it holds that
E [X − x |X > x] ≤ δ E [X]. An NBUE random variable is 1-NBUE. Given that
all processing times are δ-NBUE, they show that the α-shift WSEPT policy is
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a (2 + δ)-approximation for α = 1. The intuition behind the proof of this
approximation ratio is that as soon as a job j becomes available according to
its modi�ed release date, only higher priority jobs, i. e., jobs with higher ratio
wk/E [Pk], will be processed up to the start of this job plus possibly a job, ` that
is in process at its modi�ed release date. To bound the remaining processing
time of this job `, we use the property of δ-NBUE random variables and the fact
that due to the modi�cation of the release dates this job satis�es E [P`] ≤ E [Pj ].

The literature for deterministic online scheduling when there are precedence
relations among the jobs is rather limited. A natural online paradigm for on-
line scheduling with precedence relations is given by Feldmann, Kao, Sgall, and
Teng [11]: a job becomes known to the online scheduler as soon as all its pre-
decessors have �nished. Feldmann et al. study the online problem to minimize
the makespan, i. e., the latest completion time of a job. Erlebach, Kääb, and
Möhring [10] studied the deterministic online problem for and/or-precedence
relations, which is a generalization of the general precedence constraints, when
the goal is to minimize the total weighted completion time. They analyzed
the performance of the Shortest Processing Time (SPT) rule that schedules the
jobs in order of non-decreasing processing times and showed that it is a 2

√
n-

approximation if all weights are equal and an n-approximation for arbitrary
weights. Megow and Vredeveld [21] extended these results to the stochastic
online setting and also improved on them. They showed that the Shortest Ex-
pected Processing Time (SEPT) rule attains a performance guarantee of

√
2n

if all jobs have equal weights and n for arbitrary weights. To prove the upper
bound of n, Erlebach et al. introduced the concept of a threshold of a job j,
which is the largest processing time of a job that is completed before job j. They
then showed that for each job j the algorithm that minimizes the threshold is
the SEPT rule and thus is the completion time of job j at least its threshold.
Megow and Vredeveld extended the de�nition of the threshold to the stochastic
setting and showed that a similar property on the thresholds hold true for the
SEPT policy. Megow and Vredeveld also gave lower bounds on the approxima-
tion ratio for any stochastic online scheduling policy: for arbitrary weights the
lower bound is n− 1, whereas no online policy can be better than a 2

√
n/3− 1

approximation when all weights are equal.
Let us now consider single machine scheduling when preemption is allowed.

Some of the �rst results in this setting that can be found in the literature are by
Chazan, Konheim, and Weiss [4] and Konheim [16]. They formulated su�cient
and necessary conditions for a policy to solve optimally the single machine
problem in which all jobs have the same release date. Later Sevcik [29] developed
an intuitive method for creating optimal schedules in expectation. He introduces
a priority policy that relies on an index which can be computed for each job
based on the properties of a job, but not on other jobs. Gittins [12] showed
that this priority index is a special case of his Gittins index [12, 13]. Twenty
years after Sevcik presented the priority policy, Weiss [33] formulated Sevcik's
priority index again in terms of the Gittins index and provided a di�erent proof
of the optimality of the priority policy. Weiss named this policy a Gittins Index
Priority Policy (GIPP).

GIPP computes an index, or rank, for each job. This rank is not dependent
on other jobs, but changes with the amount of processing a job has received,
and thus also changes over time. We thus can compute a tentative schedule,
assuming that no job will ever �nish before it received its maximum possible
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processing time. This tentative schedule can be seen as an ordered list of job
pieces. This amount of processing time for each piece is the time spent on the job
before it will be preempted. GIPP then always processes the next uncompleted
job in the list for the speci�ed amount of time, or up to completion, whatever
comes �rst.

Megow and Vredeveld [20] formulated two variants of this GIPP that work
online. The �rst one, called Follow GIPP (F-GIPP), computes at any release
date t the ordered list of job pieces and their processing times for the jobs
that have been released at or before time t. Note that this list does not take
the release dates into account. It then deletes all the pieces that have been
processed up to time t, possibly decreasing the amount of processing time for
certain job pieces. It then follows the GIPP until the next release date. It can
easily be shown that this is 2-approximation policy. For any realization it can be
shown that between the release date and the completion time of a job j, only job
pieces are processed that also would have been processed before the completion
of job j in the schedule obtained by the optimal policy for the relaxed problem
in which the jobs have no release date. Moreover, no job can complete before
its release date.

The second policy de�ned by Megow and Vredeveld is easier to formulate:
it always processes the job that has currently the highest rank. We call this
policy Gen-GIPP. Unfortunately, for this policy we cannot claim that in any
realization of the processing times, between release and completion of a job
only pieces are processed that also would have been processed in the schedule
constructed by the optimal policy for the problem without release dates. That
is, compared to the schedule obtained by F-GIPP, some jobs may be delayed.
However, the expected gain from a job j that delays a certain (piece) of job k is
more than the expected loss of the delay of job k. Therefore, this policy is also
a 2-approximation.

4 Multiple machines

Besides the asymptotic analysis for the non-preemptive single machine problem
as discussed in the previous section, Chen and Shen [6] also considered two
multiple machine models: uniform related machines and the �ow shop prob-
lem. Recall that in the �ow shop problem, each job must be processed by
each machine in the same order, 1, . . . ,m. Chen and Shen made the following
assumptions for the �ow shop problem: there exist uniform bounds on the pro-
cessing times and weights, i. e., there exist constants w,w and x, x > 0 such
that w ≤ wj ≤ w and Pr [x ≤ Pij ≤ x] = 1. Moreover, they assumed that the
interarrival times are i.i.d. with mean λ, the processing times Pij are i.i.d. with
mean µ < λ. They then showed that for any non-idling policy the sum over
all jobs of the time between the completion of the �rst operation and the last
operation is insigni�cant compared to the sum of the weighted release dates.
Therefore, they can use the result for the single machine case and thus is any
non-idling policy asymptotically optimal.

In the uniformly related parallel machine setting, each job needs to be pro-
cessed by exactly one of m machines and a machine i has constant speed si > 0
and processing a job j on machine i takes Pj/si time, where Pj is a random vari-
able denoting the processing requirement of job j. Again, Chen and Shen assume
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that there exists uniform bounds on the weights and processing requirements
as well as i.i.d. distributed interarrival times and i.i.d. distributed processing
requirements. The mean of the processing requirements, µ, is assumed to be
larger than the sum of all machine speeds times the average interarrival time,
λ

∑
i si. Under these assumptions, they show that the non-idling policy First

Come First Serve (FCFS) is asymptotically optimal. To come to this result,
Chen and Shen �rst bound the average waiting time of the jobs by the average
waiting time of a speci�c �xed assignment policy. In a �xed assignment policy
a job is assigned to a machine as soon as it arrives. Then, each machine follows
its own policy, in this case FCFS, for the jobs that are assigned to it. Due to
the assumptions on the interarrival times and processing requirements and due
to the way of assigning the jobs to the machines, the problem for each machine
satis�es the assumptions for the single machine problem, and therefore it can
be shown that the total weighted waiting time as well as the total weighted
processing times are insigni�cant compared to the total weighted release date.

As mentioned in the previous section, the �rst result for parallel machines
in the stochastic online setting is by Megow, Uetz, and Vredeveld [19] for the
problem in which preemption is not allowed. They consider a �xed assignment
policy in which each machine schedules the jobs assigned to it according to the
α-shift WSEPT. By assigning the jobs in a greedy manner to the machines, i. e.,
assigning a job to the machine on which it has the minimal expected increase
in the objective function, we can show that this policy is a ρ-approximation, for
ρ = 1+max{1+δ/α, α+δ+(m−1)(∆+1)/2m}, for δ-NBUE processing times.
Here ∆ is a bound on the squared coe�cient of variation of the processing times,
V ar[Pj ]/E [Pj ]

2 ≤ ∆. For NBUE processing times, where ∆ = δ = 1, we obtain
a performance guarantee which is less than (5+

√
5)/2−1/(2m) ≈ 3.62−1/(2m),

when we choose the right α. This bound is better than the previously best
known bound of 4 − 1/m of Möhring et al. [23], even though their policy was
not an online policy. The assignment strategy of the jobs to the machines in the
above described policy can be viewed as a derandomization of the strategy in
which each job is assigned uniformly at random to one of the m machines. This
random strategy has the same worst-case performance ratio as the derandomized
version.

Megow et al. [19] also show a lower bound on the performance ratio that can
be obtained by a �xed assignment policy. The show that if all processing times
are i.i.d. and exponentially distributed, that there exist instances such that any
�xed assignment policy on these instances have an expected solution value of at
least 3(

√
2− 1) times as large the expected solution value of an optimal policy.

Schulz [28] improved on these results. He gave a randomized online policy
that achieves a bound of 2 + ∆. His policy is also a �xed assignment pol-
icy and is an extension of an online algorithm proposed by Correa and Wag-
ner [8] for deterministic scheduling to the stochastic scheduling setting. This
policy �rst computes a virtual preemptive fast single machine schedule for jobs
with deterministic processing times equal to the expectation of the process-
ing times based on the ideas of Goemans [14, 15] and uses the concept of α-
points, introduced by Sousa [31] to determine the time at which a job becomes
available for scheduling on a randomly selected machine. A derandomized ver-
sion, which is not a �xed assignment policy, attains a approximation ratio of
max{φ + 1, ((φ + 1)∆ + φ + 3)/2}, where again ∆ is a bound on the squared
coe�cient of variation and φ = (1 +

√
5)/2 is the golden ratio.
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When precedence constraints are present, Megow and Vredeveld consider an
version of the SEPT policy that utilizes only one machine, which they call the
1-SEPT policy. They prove that this is a n-approximation policy and also show
a lower bound of (n−1)/m for any online policy. To prove the upper bound of n,
they basically use the same technique as in the single machine case. In case that
the weights are all equal, they show that this policy is a

√
2mn-approximation

and that no online policy can have an approximation ratio that is less than
(2

√
n/m)/3− 1.
For the preemptive problem, Megow and Vredeveld [20] extend the F-GIPP

policy to identical parallel machines: at any time process the m �rst jobs in
the list of job pieces, or if less than m uncompleted jobs are present process all
uncompleted jobs. They show that this policy is a 2-approximation by bounding
the expected value of the optimal policy by the optimal value of a single machine
stochastic scheduling problem in which the processing times are a factor m
smaller. Besides the extension of the F-GIPP policy to multiple machines, they
also provide a randomized �xed assignment policy with a performance guarantee
of 2: assign each job uniformly at random to one of the m machines and run on
each machine Gen-GIPP.

It is worth noticing that, unlike the known results for non-preemptive schedul-
ing, the approximation guarantees for these preemptive policies are not depen-
dent on properties of the probability distribution, such as the squared coe�cient
of variation. Actually, the guarantee for F-GIPP is the same as its determinis-
tic counterpart that at any moment in time processes the at most m jobs with
highest ratio of weight to processing time, see [18]. On the other hand, the
non-preemptive policies work well if only information about the �rst and sec-
ond moment of the processing times are given, whereas our preemptive policies
need to know the complete probability distribution.

5 Concluding remarks

The area of stochastic online scheduling is relatively new. However, several
results have been obtained so far, but many more open problems remain. Up
to now, only results are known when the objective is to minimize the total
weighted completion time and it would be interesting to see what results can be
obtained for other objective functions, like minimizing the expected makespan
or the expected total �ow time.

A big di�erence between stochastic online scheduling and deterministic on-
line scheduling can be found in the single machine problem in which we schedule
the jobs preemptively to minimize the total completion time. In the determin-
istic setting, an optimal solution can be found by a simple online algorithm
that always processes the job with shortest remaining processing time. On the
other hand, we have shown that the optimal stochastic scheduling policy for
this problem cannot be an online one [1].

Another interesting question comes from the di�erence in the results for
the preemptive and non-preemptive problems. We have seen that for the non-
preemptive problem on identical machines, the proposed stochastic scheduling
policies only need to know the �rst and second moment of the probability dis-
tributions of the processing times, whereas the proposed policies for the non-
preemptive problems need to have full knowledge of the random variables and
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their distribution functions. Then again, the performance guarantee of these
policies is independent of the properties of the distribution functions, whereas
the obtained performance guarantees for the non-preemptive problem depend
properties like the coe�cient of variation and δ-NBUE. This raises the ques-
tion what the in�uence of knowledge of the probability distributions is on the
performance guarantee.
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