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Abstract

We consider a stochastic scheduling problem which generalizes traditional stochastic schedul-
ing by introducing parameter uncertainty. Two classes of independent jobs have to be pro-
cessed by a single machine so as to minimize the sum of expected completion times. The
processing times of the jobs are assumed to be exponentially distributed with parameters ϑ
and µ, depending on the class of the job. We adopt a Bayesian framework in which µ is
assumed to be known, whereas the value of ϑ is unknown. However, the scheduler has specific
beliefs about the parameter ϑ. By processing jobs from the corresponding class, the scheduler
can update his beliefs about this parameter yielding better future decision making.

For the traditional stochastic scheduling variant, in which the parameters are known,
the policy that always processes a job with shortest expected processing time (SEPT) is an
optimal policy. In this paper, we show that in the Bayesian framework the performance of
SEPT is at most a factor 2 away from the performance of an optimal policy. Furthermore, we
construct instances with non-degenerately distributed processing times for which this bound
is tight. To our knowledge, this latter result is unique within stochastic scheduling. Finally,
we remark that SEPT is asymptotically optimal when the number of jobs of one class tends
to infinity, given a fixed number of jobs of the second class.

1 Introduction

Over the last few decades a vast amount of research has focused on stochastic scheduling problems,
e. g., A full range of articles is concerned with criteria that guarantee the optimality of simple
policies for special scheduling problems or the quality of non-optimal policies. All these papers have
in common that the processing times of the jobs are random variables of which the parameters, like
expected value, are known for certain. In this paper, we relax this assumption. That is, we study a
stochastic scheduling problem in which also the parameters of the processing time distributions are
uncertain. By adopting Bayesian methodology, we can learn about these parameters by processing
jobs and observing their processing times. We study a policy, which is optimal for the classical
stochastic scheduling problem, but not necessarily optimal in the Bayesian framework. We show
that this policy is only a factor 2 away from optimality.

Problem definition. Given is a set of jobs, each of which needs to be scheduled on a single
machine. This machine can process at most one job at a time and once a job has been initiated it
must remain on the machine until completion, i. e., preemption of jobs is not allowed. Moreover, the
machine and all jobs are available for processing from the beginning. The processing time of a job
is a random variable. The goal is to minimize the total completion time,

∑
j Cj , in expectation.

In traditional stochastic scheduling, it is assumed that the parameters of the processing time
distributions are known. In this paper, we generalize by assuming that these parameters are
uncertain. However, prior beliefs on their values do exist which will be updated over time when
new jobs are completed.
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We consider two job classes JA and JB , a setting that has been previously studied by Burne-
tas and Katehakis [3] and Hamada and Glazebrook [14]. Classes JA and JB consist of nA and
nB independent jobs. The processing time of a job in class JA is a random variable, which is
exponentially distributed with parameter ϑ. Here, ϑ is assumed to be unknown but fixed. The
processing time of a job in class JB is a random variable which is exponentially distributed with
known parameter µ. Let X and Y represent two generic random variables for the processing times
of a job of class JA and JB , respectively. Note that E [Y ] = 1/µ. Furthermore, let random variable
Xj denote the processing time of the jth job of class JA.

Bayesian methodology offers a method to formally recognize the uncertainty regarding ϑ. For
some θ > 0, let g(θ) := ∂

∂θPr [ϑ ≤ θ] denote a probability density function. Intuitively, the
probability expresses how strongly we believe that the value of ϑ is less or equal to θ, prior to
seeing any realization of processing times of jobs of class JA. We assume g(θ) to be a gamma
distribution with parameters ω > 0 and α > 1. Once k jobs of class JA have been completed with
processing time realizations x1 up to xk, the beliefs with respect to the unknown value of ϑ will
be updated and expressed by the probability density function

g(θ|x1, . . . , xk) :=
∂

∂θ
Pr [ϑ ≤ θ|X1 = x1, . . . , Xk = xk] .

Since the gamma distribution provides a conjugate prior for the exponential distribution, g(θ|x1, . . . , xk)

is also a gamma distribution but with parameters ωk := ω+
∑k
i=1 xi and αk := α+ k. This result

was already mentioned in Section 9.4 of [7] and is also trivially derived from Bayes’ theorem for
probability density functions.

Updating beliefs towards ϑ results in updated beliefs regarding the processing times of un-
completed jobs in class JA. The probability density function expressing these latter beliefs, after
having completed k jobs of class JA, is denoted by

f(xk+1) :=
∂

∂xk+1
Pr [Xk+1 ≤ xk+1|X1 = x1, . . . , Xk = xk] ,

which is equal to

f(xk+1) =

∫ ∞
0

f(xk+1|θ)g(θ|x1, . . . , xk)∂θ

=

∫ ∞
0

θe−θxk+1
ωαk

k

Γ(αk)
θαk−1e−θωk∂θ =

αkω
αk

k

(ωk + xk+1)αk+1
,

where f(xk+1|θ) is an exponential probability density function with parameter θ. Furthermore,
straightforward integration yields the first moment of Xk+1:

E [Xk+1|x1, . . . , xk] =

∫ ∞
0

xk+1 f(xk+1)∂xk+1 =
ωk

αk − 1
.

The solution to a stochastic scheduling problem is not a simple schedule, but a so-called schedul-
ing policy. We follow the notion of scheduling policies as proposed by Möhring, Radermacher, and
Weiss [22, 23]. Roughly spoken, a scheduling policy makes scheduling decisions at certain decision
time points, and these decisions are based on information on the observed past, as well as the
a priori knowledge of the input data of the problem. The policy, however, must not anticipate
information about the future, such as the actual realizations of the processing times of jobs that
have not yet been completed.

In this paper, we analyze the performance of the Shortest Expected Processing Time policy
(SEPT) with respect to an optimal policy (OPT). In traditional stochastic scheduling an optimal
policy is one that minimizes the total completion time in expectation. In the Bayesian framework,
an optimal policy also minimizes the total completion time in expectation, but in addition underlies
the uncertainty about the parameter ϑ. The scheduling policy SEPT is defined as follows: when
the machine is idle, start processing the job with shortest expected processing time. Within the
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Bayesian framework, we allow SEPT to update the expected processing time of jobs in a class
every time a job of this specific class has been completed.

In terms of decision making, SEPT and OPT could be interpreted as having a short-term
and long-term view, respectively. SEPT only processes a job of class JA in case the expected
processing time of this job is minimal. OPT, however, might choose to process a job of class JA
for which the expected processing time is not necessarily minimal. As a trade-off, OPT benefits
from the additional information which is acquired regarding the uncertain parameter ϑ. This
information could then lead to better future decision making and a lower sum of completion times.
From the above reasoning, one might expect SEPT to perform suboptimal. It is well-known that
SEPT is optimal for stochastic single machine scheduling, see [25]. On the other hand, it follows
from [3] and [14] that whenever the parameters of the processing times are uncertain, SEPT is not
necessarily optimal. This raises the question how effective SEPT is within a Bayesian framework.
A conclusive answer is presented in this paper.

Related work. Stochastic scheduling has been an active field of research for more than 40 years.
In traditional stochastic scheduling, the processing times of jobs are random variables for which the
parameters of the underlying distribution are known. Rothkopf [25] shows that WSEPT (Weighted
Shortest Expected Processing Time) is an optimal policy for the stochastic single machine schedul-
ing problem, where the objective is to minimize the sum of weighted expected completion times.
Weiss [29, 30] analyzes the performance of WSEPT for the stochastic parallel machine scheduling
problem. He shows asymptotic optimality of WSEPT for a certain class of processing time dis-
tributions. The first guarantee on the quality of an approximative policy was given by Möhring,
Schulz, and Uetz [21]. Other approximative policies have been considered in [6, 19, 20, 27, 28].

The scheduling problem studied in this paper extends traditional stochastic scheduling by ap-
plying a Bayesian framework. So far there are only few papers within the field of scheduling that
also apply this framework, mostly on a single machine. In the pioneering paper of Gittins and
Glazebrook [11], the distributions of processing times of jobs depend all upon the same unknown
parameter. The optimal schedule is obtained by calculating appropriate dynamic allocation in-
dices, first proposed by [12]. Another Bayesian scheduling paper is by Hamada and Glazebrook
[14]. They study the problem with multiple weighted job classes. The processing time distri-
butions of these classes depend on either known or unknown parameters. Optimal policies are
derived by formulating the problem as a dynamic program and using dynamic allocation indices
similar to the ones in [9, 10].

Burnetas and Katehakis [3] derive dynamic programming optimality conditions for the same
problem with two classes: one with known and one with unknown underlying parameter. For
arbitrary processing time distributions, they show that an optimal policy does not depend on the
number of jobs in the class with known parameter. As a result the optimality conditions simplify,
allowing the problem to be modeled as a stopping problem. For exponential processing times, they
thereafter obtain characterizations concerning the structure and properties of the optimal policy.
Finally, a policy is given that approximates the decisions made by an optimal policy, in case of
the number of jobs in the class with unknown parameter approaches infinity.

There are several other papers that combine stochastic scheduling with Bayesian methodology.
In [13], Glazebrook and Owen employ a comparative study in which they seek to quantify the
difference between using adaptive scheduling policies based on Bayesian methodology and non-
adaptive classical stochastic scheduling policies. The difference is called the value of an adaptive
solution. Upper bounds on this value are derived for several scheduling problems on a single
machine. Further, Rieder and Weishaupt [24] study a problem in which jobs may change their
class with some fixed but unknown probability. A Bayesian approach is taken to update beliefs
regarding these probabilities. Finally, the paper of Hamada and Tamaki [15] constitutes the first
extension to two machines, for two job classes. Again, a dynamic programming formulation is
used to derive optimality conditions.

Bayesian methodology is also widely applied in research fields related to scheduling. In in-
ventory management, for example, there is a large body of literature dealing with uncertain
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demand distributions and Bayesian learning. Pioneered by [2, 26], some recent papers are given
by [4, 16, 18]. The majority of these papers assumes that prices are exogenous and studies the
problem of making optimal inventory decisions. Bayesian demand learning has also received a
great deal of attention within the field of pricing, see [1, 5, 17]. All these papers are experimental
in that they focus on developing heuristics and studying their computational aspects. The first,
and so far only, paper to analyze the theoretical worst-case performance of a pricing heuristic
is [8].

Motivation. In traditional stochastic problems, parameters are assumed to be fixed and known.
Bayesian methodology however, allows a decision maker to be uncertain about their true value.
Parameters are treated as random variables, which is not a description of their variability but a
description of the uncertainty. All available information about the true value of the parameters
is combined in one expression, a probability distribution. At first it includes all existing beliefs
regarding the parameters which might be present prior to seeing any data. Over time these beliefs
are updated in the light of new realizations.

In the field of scheduling, the majority of research papers applying Bayesian methodology
focuses on analyzing optimal policies using a dynamic programming formulation and deriving
dynamic allocation indices. However, applying such an optimal policy is often impractical since
the computational complexity explodes with the size of the instance. For example, quantifying the
dynamic allocation indices as derived in [14] is hard, even for moderate values of α and nA, since
it requires recursively solving a vast amount of non-linear equations. This calls for the need to
develop policies of low computational effort which yield good qualitative performance. The policy
SEPT, analyzed in this paper, is an example of such a policy.

So far there are only few papers that propose approximative policies and investigate their the-
oretical performance, for stochastic problems in a Bayesian framework. In particular, in Bayesian
scheduling only the work of Glazebrook and Owen [13] considers and analyzes the quality of ap-
proximative policies. We distinct ourselves from their work by studying an adaptive approximative
policy. Whereas they focus on the performance of policies that do not update their beliefs of jobs’
processing times in light of new realizations, we study the policy SEPT which adapts its beliefs
about the mean processing times of jobs, every time a job is completed.

Our contribution. In this paper, we provide a worst case performance guarantee on the ex-
pected performance of the Shortest Expected Processing Time policy with respect to the expected
performance of an optimal policy. This performance guarantee depends on nA and nB and is tight.
Furthermore, for arbitrary nA and nB , we show that this performance guarantee cannot exceed
2, but might be arbitrarily close. To our knowledge, this exemplifies the first tight performance
guarantee in stochastic scheduling, where the tightness follows from non-degenerate processing
time distributions. Finally, we remark that SEPT is asymptotically optimal whenever the number
of jobs of one class remains fixed while the number of jobs of the second class tends to infinity.

2 Dynamic programming formulation

In this section, we formulate the problem at hand as a dynamic program, introduced by [14]. For
notational convenience, we denote SEPT and OPT by, respectively, ΠS and Π∗ in the remainder
of the paper.

Let (nA, nB , ω, α) ∈ Z+×Z+×R>0×R>1 be a state vector encompassing all relevant informa-
tion of the state the system is in. It consists of the number of jobs in class JA and JB as well as the
parameters of the current belief for ϑ. Note that we do not include the known parameter µ in this
state vector as it does not change during the process. If in state (nA, nB , ω, α), a job of class JA is
processed and completed having realization x, then the state changes to (nA−1, nB , ω+x, α+ 1).
On the other hand, if in state (nA, nB , ω, α) a job of class JB is processed and completed, then
the state changes to (nA, nB − 1, ω, α). Let E

[
ΠS(nA, nB , ω, α)

]
and E [Π∗(nA, nB , ω, α)] denote

the expected sum of completion times when, respectively, ΠS and Π∗ are adopted from state
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(nA, nB , ω, α) onwards. Further, let E [Π∗A(nA, nB , ω, α)] denote the sum of the expected comple-
tion times of a policy which first processes a job of class JA (assuming nA ≥ 1) and follows an
optimal policy afterwards. Similarly for E [Π∗B(nA, nB , ω, α)]. An optimal policy can be modeled
by the following dynamic program:

E [Π∗(nA, nB , ω, α)] = min {E [Π∗A(nA, nB , ω, α)] ;E [Π∗B(nA, nB , ω, α)]} ∀ nA, nB ≥ 1

and

E [Π∗(nA, 0, ω, α)] =
ω

α− 1

nA∑
i=1

i ∀ nA ≥ 0,

E [Π∗(0, nB , ω, α)] =
1

µ

nB∑
i=1

i ∀ nB ≥ 0.

As the length of the first job to be processed by a policy influences the completion time of all jobs,
straightforward calculations show that for all nA ≥ 1 and nB ≥ 1

E [Π∗A(nA, nB , ω, α)] = (nA + nB)
ω

α− 1
+

∫
x

E [Π∗(nA − 1, nB , ω + x, α+ 1)] f(x)∂x,

E [Π∗B(nA, nB , ω, α)] = (nA + nB)
1

µ
+ E [Π∗(nA, nB − 1, ω, α)] ,

where f(x) is the probability density function of the processing time of a job of class JA.

3 Performance bounds on scheduling policies

In this section, we present several useful bounds on the performance of policies for the Bayesian
scheduling problem. First, we state a trivial lower bound on the performance of an arbitrary
policy. This bound is based on the fact that in any policy jobs of a class have to wait for other
jobs of the same class. Hence, in constructing the lower bound we neglect waiting times caused
by jobs having to wait for jobs of a different class.

Lemma 1. Let Π be an arbitrary scheduling policy. Then, for any nA, nB , ω, µ and α > 1,

E [Π(nA, nB , ω, α)] ≥ E [Π(nA, 0, ω, α)] + E [Π(0, nB , ω, α)]

=
(nA + 1)nA

2

ω

α− 1
+

(nB + 1)nB
2µ

.

Next, we give an upper bound on the performance of policies OPT and SEPT. Due to space
limitations. In order to obtain the result, we make use of the following fact: whenever SEPT
processes a job of class JB the expected processing times of neither class are updated, causing
SEPT to process one more job of class JB , if available. This leads to the observation below.

Observation 1. SEPT processes all jobs of class JB consecutively.

Lemma 2. For any nA, nB , ω, µ and α > 1,

E [Π∗(nA, nB , ω, α)] ≤ E
[
ΠS(nA, nB , ω, α)

]
≤ (nA + 1)nA

2

ω

α− 1
+

(nB + 1)nB
2µ

+ nAnB min

{
1

µ
,

ω

α− 1

}
.

Proof. The first inequality trivially follows from the optimality of OPT. Therefore, we continue by
proving the second inequality. In case SEPT starts by processing a job of class JB , i.e., 1

µ <
ω
α−1 ,

it follows from Observation 1 that SEPT will process all jobs of class JB consecutively. Hence,

E
[
ΠS(nA, nB , ω, α)

]
=

(nA + 1)nA
2

ω

α− 1
+

(nB + 1)nB
2µ

+ nAnB
1

µ

=
(nA + 1)nA

2

ω

α− 1
+

(nB + 1)nB
2µ

+ nAnB min

{
1

µ
,

ω

α− 1

}
.
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On the other hand, if SEPT starts by processing a job of class JA,i. e., ω
α−1 ≤

1
µ , the upper bound

can be proved by induction on nA. For nA = 1 and arbitrary nB , it is easily verified that

E
[
ΠS(1, nB , ω, α)

]
= (nB + 1)

ω

α− 1
+

(nB + 1)nB
2µ

=
ω

α− 1
+

(nB + 1)nB
2µ

+ nB min

{
1

µ
,

ω

α− 1

}
.

Now assume that

E
[
ΠS(n, nB , ω, α)

]
≤ (n+ 1)n

2

ω

α− 1
+

(nB + 1)nB
2µ

+ n · nB
ω

α− 1

holds for all n ≤ nA − 1 and any nB . We will verify that this statement is also valid for n = nA.

E
[
ΠS(nA, nB , ω, α)

]
= (nA + nB)

ω

α− 1
+

∫ ∞
0

E
[
ΠS(nA − 1, nB , ω + x, α+ 1)

]
f(x)∂x

≤ (nA + nB)
ω

α− 1
+

∫ ∞
0

(
(nA − 1)(nA + 2nB)

2

ω + x

α
+

(nB + 1)nB
2µ

)
f(x)∂x

=
(nA + 1)nA

2

ω

α− 1
+

(nB + 1)nB
2µ

+ nAnB
ω

α− 1

=
(nA + 1)nA

2

ω

α− 1
+

(nB + 1)nB
2µ

+ nAnB min

{
1

µ
,

ω

α− 1

}
.

where the inequality follows from the induction step.

We finally present a recursive upper bound on the performance of an optimal policy.

Lemma 3. For any nA, nB , ω, µ and α > 1,

E [Π∗(nA, nB , ω, α)]− E [Π∗(nA, nB − 1, ω, α)]

≤ E [Π∗(nA, nB − 1, ω, α)]− E [Π∗(nA, nB − 2, ω, α)] + 1/µ

Proof. We provide a proof by induction on nA. In case nA = 0, it follows immediately that

E [Π∗(0, nB − 1, ω, α)]− E [Π∗(0, nB − 2, ω, α)] + 1/µ =
(nB + 1)nB

2µ
− (nB − 1)nB

2µ

= E [Π∗(0, nB , ω, α)]− E [Π∗(0, nB − 1, ω, α)]

for any nB , ω, µ and α > 1. Now assume that

E [Π∗(n, nB , ω, α)]− E [Π∗(n, nB − 1, ω, α)]

≤ E [Π∗(n, nB − 1, ω, α)]− E [Π∗(n, nB − 2, ω, α)] + 1/µ

for all n ≤ nA−1 and any nB , ω, µ and α > 1. We will verify that this statement is also valid for n =
nA. In order to do so, we first assume that E [Π∗B(nA, nB − 1, w, a)] < E [Π∗A(nA, nB − 1, w, a)].
Then,

E [Π∗(nA, nB , ω, α)]− E [Π∗(nA, nB − 1, ω, α)]

≤ E [Π∗B(nA, nB , ω, α)]− E [Π∗B(nA, nB − 1, ω, α)]

= E [Π∗(nA, nB − 1, ω, α)]− E [Π∗(nA, nB − 2, ω, α)] + 1/µ,
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where the inequality follows from the assumption and the optimality of Π∗. Secondly, assume that
E [Π∗B(nA, nB − 1, ω, α)] ≥ E [Π∗A(nA, nB − 1, ω, α)]. This gives

E [Π∗(nA, nB , ω, α)]− E [Π∗(nA, nB − 1, ω, α)]

≤ E [Π∗A(nA, nB , ω, α)]− E [Π∗A(nA, nB − 1, ω, α)]

=

∫ ∞
0

E [Π∗(nA − 1, nB , ω + x, α+ 1)] f(x)∂x

−
∫ ∞
0

(
E [Π∗(nA − 1, nB − 1, ω + x, α+ 1)]− ω + x

α

)
f(x)∂x

≤
∫ ∞
0

E [Π∗(nA − 1, nB − 1, ω + x, α+ 1)] f(x)∂x

−
∫ ∞
0

(
E [Π∗(nA − 1, nB − 2, ω + x, α+ 1)]− ω + x

α

)
f(x)∂x+

1

µ

= E [Π∗A(nA, nB − 1, ω, α)]− E [Π∗A(nA, nB − 2, ω, α)] + 1/µ

≤ E [Π∗(nA, nB − 1, ω, α)]− E [Π∗(nA, nB − 2, ω, α)] + 1/µ,

where the first and last inequality follow from the assumption and the optimality of Π∗, and the
second inequality from the induction step.

4 Structural analysis of OPT

In this section, we show that OPT and SEPT produce the same schedule in case OPT starts by
processing a job of class JB . This result builds upon the property of OPT processing all jobs of
class JB consecutively. To establish this property, we first show that in case it is optimal to start
processing a job of class JA, it remains optimal to start processing a job of class JA when the
number of jobs in class JB is increased by an arbitrary number.

Lemma 4. For any nA, nB > 1, ω, µ and α > 1, if

E [Π∗B(nA, nB − 1, ω, α)] ≥ E [Π∗A(nA, nB − 1, ω, α)] ,

then
E [Π∗B(nA, nB , ω, α)] ≥ E [Π∗A(nA, nB , ω, α)] .

Proof. Assume that

E [Π∗B(nA, nB − 1, ω, α)] ≥ E [Π∗A(nA, nB − 1, ω, α)] ,

for any nA, nB > 1, ω, µ and α > 1. Since,

E [Π∗B(nA, nB − 1, ω, α)] = (nA + nB − 1)(1/µ) + E [Π∗(nA, nB − 2, ω, α)]

≤ (nA + nB − 1)(1/µ) + E [Π∗A(nA, nB − 2, ω, α)]

= (nA + nB − 1)
1

µ
+ (nA + nB − 2)

ω

α− 1

+

∫ ∞
0

E [Π∗(nA − 1, nB − 2, ω + x, α+ 1)] f(x)∂x,

and

E [Π∗A(nA, nB − 1, ω, α)] = (nA + nB − 1)
ω

α− 1

+

∫ ∞
0

E [Π∗(nA − 1, nB − 1, ω + x, α+ 1)] f(x)∂x,
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rewriting yields

nA + nB
µ

− ω

α− 1
≥ 1

µ
+

∫ ∞
0

(E [Π∗(nA − 1, nB − 1, ω + x, α+ 1)]

−E [Π∗(nA − 1, nB − 2, ω + x, α+ 1)]) f(x)∂x

≥
∫ ∞
0

(E [Π∗(nA − 1, nB , ω + x, α+ 1)]

−E [Π∗(nA − 1, nB − 1, ω + x, α+ 1)]) f(x)∂x, (1)

where the last inequality follows from Lemma 4. Then,

E [Π∗B(nA, nB , ω, α)] =
nA + nB

µ
+ E [Π∗A(nA, nB − 1, ω, α)]

=
nA + nB

µ
+ (nA + nB − 1)

ω

α− 1

+

∫ ∞
0

E [Π∗(nA − 1, nB − 1, ω + x, α+ 1)] f(x)∂x

≥ (nA + nB)
ω

α− 1
+

∫ ∞
0

E [Π∗(nA − 1, nB , ω + x, α+ 1)] f(x)∂x

= E [Π∗A(nA, nB , ω, α)] ,

where the inequality follows from (1).

It follows immediately from the lemma above that if it is optimal to start processing a job of
class JB , then all jobs of class will be processed consecutively until none remains.

Theorem 1. OPT processes all jobs of class JB consecutively.

Proof. Assume that E [Π∗B(nA, nB , ω, α)] < E [Π∗A(nA, nB , ω, α)] for any nA, nB > 1, ω, µ and
α > 1. We want to show that E [Π∗B(nA, nB − 1, ω, α)] < E [Π∗A(nA, nB − 1, ω, α)], in which
case the theorem trivially follows. By contradiction, assume that E [Π∗B(nA, nB − 1, ω, α)] ≥
E [Π∗A(nA, nB − 1, ω, α)]. Then, E [Π∗B(nA, nB , ω, α)] ≥ E [Π∗A(nA, nB , ω, α)] by Lemma 4, yielding
a contradiction to our original assumption. We remark that the result given in the theorem
above also follows from Theorem 3.4 and Remark 3.5 of the work of Burnetas and Katehakis [3].
However, our line of reasoning is build upon different arguments and bounds, which provide new
insight into the problem at hand. Burnetas and Katehakis introduce a regret function which is
the difference between the expected sum of completion times of an optimal policy and a lower
bound on this value. They show that instead of minimizing the expected sum of completion times
of an optimal policy, one might instead minimize this regret function. Finally, they establish that
deciding whether it is optimal to process either a job of class JA or a job of class JB does not
depend on the number of jobs of class JB which still have to be processed. Hence, all jobs of class
JB will be processed consecutively.

Below we show that if OPT starts by processing a job of class JB , then the expected processing
time of a job of class JA exceeds that of a job of class JB .

Theorem 2. If OPT starts by processing a job of class JB, then
1
µ ≤

ω
α−1 .

Proof. Let E [Π∗B(nA, nB , ω, α)] < E [Π∗A(nA, nB , ω, α)]. From Theorem 1, we have that in any
optimal policy all jobs of class JB are processed consecutively. Hence,

E [Π∗(nA, nB , ω, α)] =
(nA + 1)nA

2

ω

α− 1
+

(nB + 1)nB
2µ

+
nAnB
µ

≤ (nA + 1)nA
2

ω

α− 1
+

(nB + 1)nB
2µ

+ nAnB
ω

α− 1
,
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where the inequality follows from Lemma 2. Rewriting gives 1
µ ≤

ω
α−1 , and the result follows.

From Observation 1 and Theorem 1 we have that both SEPT and OPT process all jobs of class
JB consecutively. In the theorem above we established that whenever OPT starts processing a
job of class JB , then so does SEPT. Combining these insights yields the following corollary.

Corollary 1. If OPT starts by processing a job of class JB, then OPT and SEPT yield the same
schedule.

5 Performance of SEPT in a Bayesian setting

In the previous section we observed that SEPT and OPT yield the same schedule and hence
identical objective values for the case that OPT starts by processing a job of class JB . In this
section we analyze the worst case performance of SEPT with respect the performance of OPT in
its full generality. We provide a tight upper bound on the performance guarantee depending on
the parameters nA and nB . Moreover, we show that this upper bound cannot exceed 2.

5.1 Performance guarantee for SEPT

Theorem 3. For any nA, nB , ω, µ and α > 1,

E
[
ΠS(nA, nB , ω, α)

]
E [Π∗(nA, nB , ω, α)]

<
n2A + n2B + 2nAnB + nA + nB

n2A + n2B + nA + 3nB
.

Proof. From Corollary 1, it follows that in case OPT starts by processing a job of class JB , both
policies produce the same schedule and performance. Therefore, we assume that OPT starts by
processing a job of class JA. By Lemma 1, we then have

E [Π∗A(nA, nB , ω, α)] = (nA + nB)
ω

α− 1
+

∫ ∞
0

E [Π∗(nA − 1, nB , ω + x, α+ 1)] f(x)∂x

≥ (nB + 1)nB
2µ

+
(nA + 1)nA

2

ω

α− 1
+ nB

ω

α− 1
. (2)

Combining (2) and Lemma 2, we obtain

E
[
ΠS(nA, nB , ω, α)

]
E [Π∗(nA, nB , ω, α)]

≤
(nA+1)nA

2
ω
α−1 + (nB+1)nB

2µ + nAnB min
{

1
µ ,

ω
α−1

}
(nB+1)nB

2µ + (nA+1)nA

2
ω
α−1 + nB

ω
α−1

≤
(nA+1)nA

2
ω
α−1 + (nB+1)nB

2 min
{

1
µ ,

ω
α−1

}
+ nAnB min

{
1
µ ,

ω
α−1

}
(nB+1)nB

2 min
{

1
µ ,

ω
α−1

}
+ (nA+1)nA

2
ω
α−1 + nB

ω
α−1

(3)

≤
(nA+1)nA

2
ω
α−1 + (nB+1)nB

2
ω
α−1 + nAnB

ω
α−1

(nB+1)nB

2
ω
α−1 + (nA+1)nA

2
ω
α−1 + nB

ω
α−1

(4)

=
n2A + n2B + 2nAnB + nA + nB

n2A + n2B + nA + 3nB
.

Here, the second inequality follows from the fact that for any constants a, b, c and d, a+b
a+c ≤

d+b
d+c

in case b ≥ c > 0 and a ≥ d > 0. The third inequality can be seen from the fact that the ratio is
increasing in 1

µ for 1
µ ≤

ω
α−1 . Note that (3) and (4) cannot both hold with equality simultaneously,

hence the strict inequality in the theorem.
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5.2 Tightness of the performance guarantee

We show that a series of instances exist for which the ratio of the performance of SEPT over the
performance of OPT approaches the performance guarantee of the previous subsection arbitrarily
close. In order to obtain this result, we need make use of the following proposition.

Proposition 1.

lim
β↓1

1

β

(
β − 1

β

)β−1
= 1.

Proof. Let v(β) = β lnβ = lnβ/(1/β). It follows trivially from l’Hôpital’s rule that

lim
β↓0

v(β) = 0. (5)

Further, let w(β) = 1
β

(
β−1
β

)β−1
. Then,

lnw(β) = ln
1

β

(
β − 1

β

)β−1
= ln

(β − 1)β−1

ββ

= (β − 1) ln(β − 1)− β lnβ

and
lim
β↓1

lnw(β) = lim
β↓1
{(β − 1) ln(β − 1)− β lnβ} = 0,

where the last equality follows from (5). Since u = exp(lnu), this brings us to

lim
β↓1

w(β) = lim
β↓1

exp(lnw(β)) = exp(0) = 1,

which concludes the proof.

Theorem 4. For any nA and nB, there exists parameter settings ω, µ and α > 1, such that

E
[
ΠS(nA, nB , ω, α)

]
E [Π∗(nA, nB , ω, α)]

>
n2A + n2B + 2nAnB + nA + nB

n2A + n2B + nA + 3nB
− ε,

for any ε > 0.

Proof. First, set µ = 1. Then,

E [Π∗(nA, nB , ω, α)] ≤ E [Π∗A(nA, nB , ω, α)]

= (nA + nB)
ω

α− 1
+

∫ ∞
0

E [Π∗(nA − 1, nB , ω + x, α+ 1)] f(x)∂x

≤ (nA + nB)
ω

α− 1
+

(nA − 1)nA
2

ω

α− 1
+

(nB + 1)nB
2

+ (nA − 1)nB

∫ ∞
0

min

{
1,
ω + x

α

}
αωα

(ω + x)α+1
∂x

= nB
ω

α− 1
+

(nA + 1)nA
2

ω

α− 1
+

(nB + 1)nB
2

+ (nA − 1)nB
ω

α− 1

[
1− 1

α

(ω
α

)α−1]
. (6)
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Here, the second inequality follows from Lemma 2, and the last equality follows from the derivation
below. ∫ ∞

0

min

{
1,
ω + x

α

}
αωα

(ω + x)α+1
∂x =

∫ α−ω

0

ωα

(ω + x)α
∂x+

∫ ∞
α−ω

αωα

(ω + x)α+1
∂x

= ωα
[

1

α− 1

1

ωα−1
− 1

α− 1

1

αα−1

]
+
(ω
α

)α
=

ω

α− 1

[
1− 1

α

(ω
α

)α−1]
.

Next, set ω = α− 1. This gives

E
[
ΠS(nA, nB , α− 1, α)

]
=

(nA + 1)nA
2

+
(nB + 1)nB

2
+ nAnB . (7)

Combining (6) and (7), we define

z(nA, nB , α) :=
(nA+1)nA

2 + (nB+1)nB

2 + nAnB

nB + (nA+1)nA

2 + (nB+1)nB

2 + (nA − 1)nB

[
1− 1

α

(
α−1
α

)α−1] .
Furthermore, define

ρ(nA, nB) :=
n2A + n2B + 2nAnB + nA + nB

n2A + n2B + nA + 3nB

Clearly, z(nA, nB , α) < ρ(nA, nB), and it follows from Proposition 1 that

lim
α↓1

z(nA, nB , α) = ρ(nA, nB).

Therefore, for any ε > 0 there exists an α̃ > 1 such that

z(nA, nB , α̃) > ρ(nA, nB)− ε. (8)

From equations (6) and (7), we also have that

E
[
ΠS(nA, nB , α− 1, α)

]
E [Π∗(nA, nB , α− 1, α)]

≥ z(nA, nB , α), (9)

for all nA, nB and α > 1 whenever µ = 1 and ω = α − 1. Hence, combining Theorem 3 and
equations (8) and (9), we find that for any epsilon ε > 0 there exists an α̃ > 1, for which

ρ(nA, nB) >
E
[
ΠS(nA, nB , α̃− 1, α̃)

]
E [Π∗(nA, nB , α̃− 1, α̃)]

> ρ(nA, nB)− ε.

5.3 Constant factor performance guarantee

It follows from Theorem 3 that the performance guarantee of SEPT will not exceed 2. Furthermore,
extending the proof of Theorem 4, it shows that a series of instances can be constructed for which
the ratio of the performance of SEPT over the performance of OPT approaches the upper bound
of 2 arbitrary close.

Corollary 2. For any nA, nB , ω, µ and α > 1,

E
[
ΠS(nA, nB , ω, α)

]
E [Π∗(nA, nB , ω, α)]

< 2,
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and there exist parameters settings nA, nB , ω, µ and α > 1 such that

E
[
ΠS(nA, nB , ω, α)

]
E [Π∗(nA, nB , ω, α)]

> 2− ε

for any ε > 0.

Proof. From Theorem 3, it follows that

E
[
ΠS(nA, nB , ω, α)

]
E [Π∗(nA, nB , ω, α)]

<
n2A + n2B + 2nAnB + nA + nB

n2A + n2B + nA + 3nB
≤ 4n2max + 2nmax

2n2max + 4nmax
< 2,

where nmax = max {nA, nB}. We show that this bound is tight by extending the instance provided
in Theorem 4. We additionally set nA = nB = n and define

z(n, α) :=
4n2 + 2n

2n2 + 4n+ (n− 1)n
[
1− 1

α

(
α−1
α

)α−1] < 2.

Since by Proposition 1,

lim
n→∞

lim
α↓1

z(n, α) = lim
n→∞

4n2 + 2n

2n2 + 4n
= 2,

it follows that for any ε > 0 there exists values for ñ and α̃ such that

z(ñ, α̃) > 2− ε. (10)

Further, from (6), (7) and (10), there exist values ñ and α̃ such that

2 >
E
[
ΠS(ñ, ñ, α̃− 1, α̃)

]
E [Π∗(ñ, ñ, α̃− 1, α̃)]

≥ z(ñ, ñ, α̃) = z(ñ, α̃) > 2− ε,

for any ε > 0, and the result follows. Note that z(ñ, ñ, α̃) is defined in the proof of Theorem 4.

6 Concluding remarks

In this paper, we showed that the performance of SEPT can be a factor of 2 away from the
performance of an optimal policy when both nA and nB tend to infinity. For given nA and
nB , Theorem 3 provides a performance guarantee only depending on these two parameters. It
immediately follows from this result that the performance guarantee will be close to one in case
the number of jobs in one class is of a different order than the number of jobs in the second class.
To be more explicit, when the number of jobs in one class is fixed while the number of jobs in the
second class tends to infinity, then the performance guarantee will go to one, yielding asymptotic
optimality of SEPT.

Next, we remark that the performance guarantees provided in Theorem 3 and Corollary 2 are
highly sensitive to the values of the parameters and in particular to the value of α. To illustrate
this sensitivity, take α ≥ 2. Then, it can be shown that the performance guarantee for arbitrary
nA and nB reduces from 2 to a tight bound of 2/(2− 1/e) ≈ 1.225.
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