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Summary

The creation and allocation of economic wealth ultimately relies on the creation and

diffusion of knowledge. As a result, understanding the dynamics, organization and

viability of economies requires in-depth analysis of knowledge systems. This thesis

proposes to study knowledge systems as self-organizing two-mode networks. Two-

mode networks have two types of nodes, and the links are only between nodes of

different types. These are self-organizing in the sense that simple rules of evolution

lead to a rich but patterned dynamics. The thesis builds on the literature on

social (agent-agent) and epistemic (idea-idea) networks to study socio-epistemic

co-evolution (agent-idea networks).

It is found that: (i) stable power law distributions of ideas’ popularity naturally

emerge from innovation and face-to-face diffusion; (ii) this dynamic is compatible

with the observed (shifted) power law distribution of citations, and (iii) the gen-

eralized beta size-rank relation observed for patent classes can be explained by a

slowdown in the growth of the number of classes. A general lesson from this work

is that knowledge systems often exhibit non-equilibrium and non-linear dynamics,

which may cast doubts on their long term viability.

The thesis starts with a general introduction (chapter 1) followed by a review of

the literature on knowledge and development (chapter 2) explaining why the study

of self-organizing knowledge systems should be a core topic of economics. Next, an

overview of growing one-mode and two-mode network models is given (chapter 3),

together with some original results. The three main chapters follow.

Chapter 4 presents a model of creation and diffusion of ideas in a social network.

Agents learn random ideas of random friends, creating a self-reinforcing dynamic in

ideas’ diffusion. However, this exponential diffusion is constrained since population

is bounded, leading to a logistic diffusion curve. At the steady-state, the distribu-

tion of ideas’ popularity (the number of agents knowing an idea) is a specific Gen-

eralized Hypergeometric Distribution, which tends to the well-known Yule-Simon

distribution as the population size goes to infinity. A mean-field self-consistency

equation for the partition factor of the attachment kernel highlights that a sta-

ble self-organization takes place because the “overlap” among agents’ ideas sets,
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determining and determined by which ideas diffuse, reaches a stable state.

Chapter 5 uses the results of chapter 4 to explain the structure of citation net-

works. In chapter 5, it is assumed that, when new ideas (papers) appear, they

cite random ideas previously known by the inventor. In contrast to existing mod-

els, which explain the exponent of power law citation distributions by the relative

prevalence of bibliographic and random search (reading papers cited by other pa-

pers, or found at random), the model shows that limited attention and face-to-face

diffusion can also explain the observed patterns.

Chapter 6 studies the size of patent categories. The size-distribution of US

patent subclasses is well fitted by a (shifted) power law. However, at the level of

patent classes, Zipf’s law is clearly violated, and the size-rank relationship is well

fitted by a generalized beta distribution. To explain this pattern, a nonlinear mod-

ification of the Yule-Simon-Naranan principle is proposed. While according to the

latter, both individual categories and the number of categories grow exponentially,

here it is assumed that the number of categories follows an asymmetric logistic

(Richards) curve.
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Chapter 1

Introduction

By its very definition, economics studies how people organize to create and allocate

wealth. But if wealth ultimately relies on knowledge, then economics should study

the dynamics and organization of knowledge systems. In fact, the creation of value

relies on what people do, individually and collectively. What people do and how they

do it – the routines and institutions at the origin of wealth– is intimately related to

what people know, and to the knowledge embodied in the available artefacts. The

creation and allocation of economic wealth, therefore, co-evolves with the creation

and diffusion of knowledge.

In the view of this thesis, understanding the dynamics, organization and viabil-

ity of economies requires a better understanding of the organization of knowledge

systems. The thesis proposes parsimonious theoretical and empirical models that

help understanding the dynamics and organization of knowledge systems. In par-

ticular, knowledge networks are modelled as self-organizing two-mode networks.

Two-mode networks are networks with two types of nodes, and links between nodes

of different types. They are self-organizing in the sense that simple rules of evolu-

tion lead to a rich but patterned dynamics. For instance, as it is well-known in the

literature on complex systems, positive feedbacks can generate power law (Pareto)

distributions. In this thesis, a particular emphasis is put on non-linearities, typ-

ically logistic (S-shaped) curves, and how they affect self-organization and power

law distributions. The main findings are: (i) stable power law distributions of ideas

popularity naturally emerge from innovation and face-to-face diffusion; (ii) this dy-

namic is compatible with the observed (shifted) power law distribution of citations,

and (iii) the generalized beta size-rank relation observed for patent classes can be

explained by a slowdown in the growth of the number of classes. A general les-

son from this work is that knowledge systems often exhibit non-equilibrium and

non-linear dynamics, casting some doubts on their long term viability.

Chapter 2 reviews the literature on knowledge and development. Historically,
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2 CHAPTER 1. INTRODUCTION

economics has always recognized the importance of knowledge in explaining indi-

vidual and collective outcomes. In the second half of the XX th century, it was made

explicit that there is no possibility of long-run per capita growth without productiv-

ity improvements. To construct an economic system capable of sustained growth,

it is necessary for productivity growth to be an endogenous variable. Education,

institutions and technological change have been identified as the main sources of

productivity growth, and considerable effort has been devoted to understanding

their origins. The endogenous growth literature has emphasized the mechanisms

by which self-interested choices can be compatible with constant growth. But the

importance of knowledge calls for a more explicitly micro- and meso-level analysis

of knowledge systems. The distinctive feature of my approach resides in the use of

theoretical and empirical models based on self-organizing networks. It is natural

to use network theory for understanding knowledge systems. Knowledge is often

tacit, and diffuses more easily face-to-face. In other words, knowledge flows take

place on a network. As recent developments have shown, the structure of the net-

work crucially influences the patterns of diffusion. In turn, innovation networks

emerge from partner choice, which depends on the current allocation of knowledge.

Moreover, besides agent-agent networks, the study of knowledge systems has made

extensive use of network theory to analyze the relationships among knowledge arte-

facts themselves. Archetypical examples are scientific publications and patents.

The references made by pieces of knowledge to other pieces form a citation network

and reveal the overall structure of knowledge. More importantly, these references,

by showing the relationship between new and existing knowledge, provide excellent

information about the nature of growth in knowledge systems.

However, in spite of a large literature on social (agent-agent) and epistemic

(idea-idea) networks, only little effort has been devoted to the formal study of their

co-evolution. How does an agent-agent network relate to an idea-idea network? To

answer this question, I argue that it is useful to formalize an “agent-idea” network.

Two-mode networks, which have links only between nodes of different types, tie

together the two one-mode (social and epistemic) networks. A contribution of this

thesis (chapters 4 and 5) is to show that studying the dynamics of two-mode agent-

idea systems allows us to relate, for instance, the structure of the social network

to the structure of the citation network. Another contribution, chapter 6, uses

two-mode networks to study the mesoscale organization of knowledge systems, that

is, how ideas are classified into (an expanding set of) categories. To introduce the

techniques used in chapters 4-6, chapter 3 presents in detail the most important

models of growing one-mode and two-mode networks. In general, exact analytical

results are hard, if ever possible to obtain. This is often the case in interaction-based
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models, where one obtains macro-properties as emerging from self-organizing micro-

behavior. However, different methods of approximation are available, and computer

simulations allow us to check their validity, as well as to analyze more general cases

inaccessible to pen-and-pencil methods. Chapter 3 puts a particular emphasis on

a landmark model proposed by Herbert Simon in the early 50’s to explain the

emergence of power law (Pareto) distributions. This model can be seen as a self-

organizing two-mode network, and is particularly well-suited to study agent-idea

systems. Simon himself instantiated his model to author-paper systems, explaining

the power law distribution of productivity in science (Lotka’s law). However, it is

clear and largely explained in chapter 2 that the creation of knowledge relies on

previously acquired knowledge. There are no reasons to believe that in general,

knowledge producers rely solely on knowledge that they have themselves produced

in the past. Quite the opposite, the (mostly) non-rival and non-excludable nature of

knowledge implies that it diffuses easily far away from its inventor. Simon’s model

does include innovation, but it lacks diffusion.

Chapter 4 proposes an original stochastic model in which agents generate new

ideas and imitate existing ideas. There is a fixed number of agents, related by a

social network. Agents learn random ideas of random friends, which creates a self-

reinforcing dynamic in ideas’ diffusion: the more well known is an idea, the more

chances it has to be found in a random friend. This self-reinforcing dynamic would

lead to exponential growth, but population is bounded, by assumption. Hence, the

(expected) diffusion is logistic, in agreement with a large existing empirical and the-

oretical literature. If we wish to understand the diffusion of all ideas over time, we

have to understand a stochastic discrete nonlinear dynamical system, which is also

non-autonomous and with an increasing dimension. However, the distribution of

ideas’ popularity (the number of agents knowing an idea) can be characterized pre-

cisely, because it converges in the long run. The derivation of this result highlights

the level at which self-organization takes place and gives rise to a “stable” state.

Innovation and diffusion lead to a stable organization in terms of agents’ knowl-

edge overlap: the proportion of the ideas known by either of two agents which are

known by both. This overlap among agents’ ideas set determines and is determined

by which ideas are learned. I present mean-field self-consistency equations that

indicate the nature of this process and its convergence to a fixed point. At the

steady-state, the distribution of ideas’ popularity is a specific Generalized Hyper-

geometric Distribution, which tends to the well-known Yule-Simon distribution (a

discrete power law) as the population size goes to infinity. Informally, it means

that ideas’ popularity is power law distributed, with a curvature of this power law

due to population being bounded. Even though each idea is known by everybody
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if we wait long enough, at every point in time there are a lot of ideas known by

almost nobody and a few ideas known by almost everybody. I conclude the study

by relaxing some assumptions. Changing the number of ideas that can be inno-

vated or imitated per period does not change the results. However, changing the

social network, which is assumed to be complete in the main developments of the

chapter, can significantly affect the distribution of ideas’ popularity. I show that

a 2-regular one-dimensional circular lattice (a “circle” social network) leads to a

geometric distribution. This suggests that distributions which have the exponential

and the power law as limiting case (such as the shifted power law), constitute good

expectations for the distribution of ideas’ popularity, when that is unobserved but

influences an observed quantity of interest.

Chapter 5 uses this result to explain the structure of citation networks. I extend

the model of chapter 4 to explicitly model citations. It is simply assumed that, when

new ideas (papers) arrive, they cite random ideas previously known by the inventor.

Under this assumption, the exponent of the power law distribution of citations is

the same as the exponent of the power law distribution of ideas’ popularity, which is

determined by the innovation-imitation trade-off. Hence this analysis departs from

existing models, which explain the exponent of power law citation distributions by

the relative prevalence of bibliographic and random search (reading papers cited

by other papers, or found at random), These models are asocial, denying the col-

lective nature of science, and do not account for the fact that attention is limited.

The model of chapter 5 shows that limited attention and face-to-face diffusion can

explain the observed patterns as well as backward bibliographic search models do.

I also provide some evidence that, in spite of a pretty good fit obtained for the

(shifted) power law predicted by both models (backward bibliographic search and

social diffusion), the estimated parameters are not necessarily stable over time, indi-

cating that the scientific citation networks studied (10 years of high energy physics)

has a disequilibrium dynamics, due to the average size of reference lists being in-

creasing over time. This disequilibrium dynamics may have important implications

for the viability of knowledge systems, but the non-availability of long time series

of the complete science system prevents a rigorous empirical analysis.

Chapter 6 analyzes the meso-scale dynamics of knowledge systems by studying

the size of patent categories. How are patents distributed across technological

categories? Answering this question requires an explicit consideration of the fact

that new categories are created when genuinely novel technologies emerge. A large

literature on category systems has found that the size distribution of categories is

often very skewed, close to a power law. This observation for the size of biological

genera even motivated U. Yule and then H. Simon to develop their models. When
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size is power law distributed, the size-rank relation is also a power law, known as

Zipf’s law. In fact, the size-distribution of US patent subclasses is well fitted by a

(shifted) power law. However, at the level of US patent classes, Zipf’s law is clearly

violated. Chapter 6 shows that the size-rank relationship is well fitted by a form

close to a generalized beta distribution, which previous literature had identified in a

variety of contexts, but which has not been explained by many theoretical models.

To explain this pattern, I propose a new model which is a very simple non-linear

modification of the Yule-Simon-Naranan principle (Naranan’s model is the simplest

version of the Yule-Simon mechanism). I assume that the number of categories

grows as an asymmetric logistic (Richards) curve, while each category grows as in

the Yule-Simon-Naranan framework. This result shows that when the growth of the

number of categories tends to vanish as compared to the size of existing categories,

a nonlinearity (in log-log terms) emerges in Zipf’s law. The fact that this is the case

in the US patent system may be a sign that radical innovations (new categories)

tend to decrease as compared to incremental (same-category) innovations.

Besides the individual contributions of each chapter, a general message emerges

from the thesis and is discussed in the conclusion: knowledge systems are self-

organizing, but most likely they are in disequilibrium (the moments of the distribu-

tion of interest are changing over time). Moreover, significant nonlinearities have

to be taken into account to accurately describe empirical patterns. Overall, this

reinforces a complexity view of economics and knowledge systems, in which inter-

actions, nonlinearities and disequilibrium dynamics are key components, but which

can be usefully modelled by simple, self-organizing network models.





Chapter 2

Knowledge and development

Suppose that economic development, reflected in structural change, is driven by

innovation and knowledge diffusion. Then theoretical economics should study the

properties of innovation-imitation economies (as proposed in chapter 4), and explain

empirical patterns found in various knowledge systems (such as citations among sci-

entific publications or the size of technological domains, as proposed in chapters 5

and 6). This chapter explains that the knowledge-based nature of development is

not an assumption, but a result of economic thought. The importance of technol-

ogy, innovation and knowledge has always been at the heart of economics. Because

economic wealth basically comes from people doing things, economic progress nat-

urally comes from people doing things in a better way. People do things in a better

way by using more or better knowledge, that they hold personally, collectively, or

which is stored in institutions and artefacts. Of course, many factors interact to

determine how individual productivity and collective organization evolve. But from

a historical and dynamic point of view, an increasing division of labor in a world

of expanding, improving varieties stands out as the main structural transformation

incurred by economies along their path of development.

2.1 Historical background

It goes back to the classics to say that structural change and development are in-

timately related. Economic thinking, indeed, started off alongside the industrial

revolution. Smith, Ricardo and Marx all made major contributions to the under-

standing of the fact that the movement towards specialization and diversification

deeply impacts many aspects of human life and collective organization. From an

analytical point of view, the concepts of specialization and diversification presup-

pose that there exists distinct types of activities. If that is the case, it is likely

that at least some activities are dependent on some others, for instance for their

7



8 CHAPTER 2. KNOWLEDGE AND DEVELOPMENT

inputs. What exactly is the structure of these interdependencies? This question

raised a lot of interest in the early and mid of the last century, alongside develop-

ments in national accounting and input-output tables. Hirschman (1958) insisted

that industrial development should be thought with forward and backward linkages

between sectors in mind. The Hawkins-Simon theorem (Hawkins & Simon 1949)

gives condition under which an economy, represented by its input-output coeffi-

cients, can produce the right amount in each activity. General equilibrium theory

(Walras 1874, Arrow & Debreu 1954) established conditions under which demand

will be cleared on all markets simultaneously, and additional conditions under which

welfare will be maximized.

Finding the conditions in which a complex system can or must be in equilibrium

is informative if the system reaches its equilibrium (say, market clearing) much faster

than this equilibrium is disturbed by external (or structural, but slowly moving)

factors (Ando et al. 1963). This in essence legitimates neoclassical growth models,

where an economy can grow, a deeply disequilibrating factor, while (almost) always

being in equilibrium.

Growth models appeared early with Neumann (1945). Neoclassical growth mod-

els, such as the Solow-Swan and the Ramsey-Cass-Koopmans models, were devel-

oped in the 50’s and 60’s, embodying different amounts of general equilibrium the-

ory, consumer rationality and capital accumulation dynamics. The development

of econometrics increasingly allowed to test the correctness of certain assumptions,

such as Cobb-Douglas production functions, and the validity of the predictions, for

instance in consumer theory with Samuelson’s (1938) revealed preferences approach.

It is thus from the data that a bewildering fact arose. Solow (1957) estimated an

aggregate production function and deduced that only 12.5% of the increase in labor

productivity in the US (1909-1949) was due to an increased use of capital (a move

along the production function). The 87.5% left (a shift of the production function),

the “Solow residual”, was interpreted as technical change. But in absence of a di-

rect indicator for it, the Solow residual was dubbed “a measure of our ignorance”

(Abramovitz 1956). Growth accounting was founded, and the second half of the

XXth century largely confirmed the role of knowledge, embodied in capital, labor

and institutions.

2.2 Knowledge-based growth and development

In the growth model of Solow (1956), there are decreasing returns to capital accu-

mulation, leading to a steady-state level of GDP in the long-run, unless exogenous

technological progress occurs. What can be added to a Cobb-Douglas production
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function to obtain a steady-state rate of growth, that is, endogenous growth?

First, one can consider that most productivity improvements come from the

skills of agents, obtained through education, on-the-job training, learning by doing

and so forth. Lucas’s (1988) model is centered around the accumulation of knowl-

edge at the individual level, putting the focus on “human capital”, and therefore

on labor more than physical capital. In this case, the key decisions are education

choices made by individuals. The emphasis on learning processes denotes a view of

knowledge as difficult and long to acquire.

Second, one can instead see knowledge as perfectly codified, and easy to learn.

Knowledge in this view can be thought of as a blueprint or capital vintage. Romer

(1990) introduced a three-sector model in which R&D workers produce blueprints

which are used by intermediate goods producers. Output is then determined by a

production function in which there are an increasing number of blueprints. This

increase in variety compensates decreasing returns within each type of intermediate

goods.

Motivated by empirical questions on trade between asymmetric countries, Gross-

man & Helpman (1991) considered vertical instead of horizontal differentiation.

They hypothesize that R&D allows products to improve on a quality ladder, in-

troducing a creative destruction effect, when improved versions of products replace

old ones. Schumpeterian growth theory (Aghion & Howitt 1992) built on industrial

organization to study these business-stealing effects in detail.

An interesting debate within the endogenous growth literature is the presence of

scale effects. Scale effects refer to a result present in Romer’s model but not in the

data. It says that the larger a country is, in terms of population, the higher should

be its steady-state rate of growth. However, small countries do not in general grow

more slowly than large countries (Jones 1995). Other models have been proposed

which do not have a scale effect. Nevertheless, this shows that scale and aggregation

are crucial issues.

In fact, knowledge is used by individuals, and most of their interactions take

place at a local level. If knowledge is cumulative and localized, there should be

self-reinforcing dynamics at the local level, suggesting that specialization patterns

cannot be understood without reference to the idiosyncratic histories of particular

places. Arthur (1994) and Krugman (1996) insisted that increasing returns generate

self-reinforcing dynamics, and that under these conditions, self-organization leads to

local places being differentiated in the knowledge space. An apparently innocuous

“small historical event” can push a region into specific trajectories of specializa-

tion which are hard to escape. Important factors behind increasing returns are

inter-sectoral (jacobian) and intra-sectoral (marshallian) externalities. These ex-
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ternalities generate unique specialization patterns and clustering in space. It has

been suggested that for a large part, these externalities are localized due to the

stickiness of knowledge. In this case, it is not really the physical proximity that

generates externalities, but other types of proximity that favor knowledge diffusion

and creativity (Boschma & Frenken 2010). A case in point is given by patent cita-

tions. Jaffe et al. (1993) showed that patent citations are localized, with inventions

being more likely to cite other inventions born at the same place. Breschi & Lissoni

(2009) found that this is due to inventors mobility. Inventors change positions and

co-workers, contributing to knowledge diffusion, but most often mobility is local –

so are knowledge spillovers.

The literature on innovation systems (Freeman 1987, Lundvall 1992, Nelson

1993) has provided a theoretical framework to systematize the study of knowl-

edge flows and agents’ interactions. The emphasis is on the interactive nature of

learning and on the complexity of the interactions among a diverse set of actors.

Private businesses, public agencies, universities, technological centers, and other

organizations engage in partnerships or exchange information and employees. The

institutions thus created can be formal or informal, and overall the organization of

the system that they constitute determines region (Cooke 2001), sector (Malerba

2002) or country-level innovation.

Innovative performance has been measured in various ways, such as total factor

productivity, learning curves, patent or scientific publication counts, and innovation

surveys. The multiplicity of methods reflects the difficulty to define innovation and

knowledge in an unambiguous and universal way.

2.3 The economics of knowledge

It seems hardly possible to define knowledge in a non-controversial way. How does

it differ from data or information? Does it exist independently of its carrier? Does

it really flow, or is it always recreated, reinterpreted, reintegrated into one’s own

existing mental scheme? When and how can it be stocked and cumulated?

There are too many conceptual difficulties in the analysis of knowledge for a

short literature review to be fair. Pragmatically, and omitting from the history of

philosophy to the latest developments in artificial intelligence, this section recalls

some of the main properties of knowledge which make it a somehow peculiar object

for economic analysis.

Although the patent systems had been created in the XVIII th century in Eu-

rope and the US, the economic literature on incentives to produce knowledge really

started out when Arrow (1962) and Nelson (1959) formulated it as a classical prob-
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lem of externalities. Considering that knowledge is non rival and non excludable

raises the problem of appropriation, and since then there has been many models

aimed at understanding which institutions give the highest incentives to knowledge

creation. For instance, patent race models study the effect of breadth, depth and

length of private property protection on overall outcomes.

The assumption of non excludability of knowledge has been criticized on the

grounds that it is not so easy to imitate knowledge held by others, even when

it is codified in patents and scientific articles. First, it seems as if part of the

knowledge people use to do things cannot be explained or codified. In Polanyi’s

(1962) well-known summary, “we know more than we can tell”. A case in point

that rigorous codification of procedures is not enough for effective transmission

of knowledge was provided by Collins’s (1974) study of the TEA laser: he found

that no team could build one without the help of somebody having worked in a

previously successful team. Whether or not everything can actually be codified

and transmitted (is articulable), it is clear that not everything is codified. Thus

agents make choices regarding codification and knowledge organization, storage, and

access, and this choice is influenced by the technological and institutional context

in which it takes place (Cowan et al. 2000). The point here is that we should expect

a lot of heterogeneity, with different pieces of knowledge having different degrees

of codification, and even identical pieces of knowledge being codified to different

degrees depending on the context.

Furthermore, different individuals will have different abilities to acquire knowl-

edge from a codified or uncodified source. This high individual heterogeneity can be

explained by intrinsic abilities, but first and foremost, the ability to acquire a given

piece of knowledge is determined by what an individual already knows. Knowledge

is thus cumulative, and initial conditions matter. Often learning is cumulative be-

cause knowledge itself was created in a sequential way, with problems solved giving

rise to new problems.

However, innovations and new ideas are sometimes disruptive. In some cases,

new knowledge substitutes existing knowledge instead of complementing it. Schum-

peter (1942) coined the term creative destruction to describe how innovations make

existing products obsolete and can profoundly alter industrial organization. Knowl-

edge cumulates until a point of rupture, when a breakthrough fundamentally changes

which problems are interesting and which previous knowledge is useful to solve these

new problems. These breakthrough are rare and their impact lasts over time. Hence

they create strong non linearities in economic change. Radical innovations spark

a wealth of other innovations early in the cycle, creating innovation clustering in

time. The non linear evolution of knowledge and technologies suggests long waves
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à la Kondratiev (Silverberg 2002).

The cumulativeness of knowledge is often associated to the idea that knowledge

is created by recombining existing knowledge. This combinatorial view has an opti-

mist corollary, as the number of possible combinations between ideas rises extremely

fast with the number of ideas, making long run growth possible (Weitzman 1998).

But the cumulativeness of knowledge also lead to less optimistic conclusions. If

knowledge really grows, then there is more and more to learn. If new knowledge

does not make previous knowledge easier to learn, newcomers should devote more

efforts to reach the frontier. In Jones’s (2009) telling metaphor, it becomes harder

to climb the giant’s back as the giant grows1. As evidence for this “burden of

knowledge”, Jones (2009) shows that the age at greatest invention increased over

time, as did time to PhD graduation. For him, this increasing burden of knowledge

is responsible for an increasing specialization and propensity to work in teams. The

interesting point is that the organization of knowledge systems (the structure of

who knows what) cannot be stable as knowledge grows.2

To conclude, knowledge is very heterogenous, and it is difficult to make general

claims. Knowledge is often cumulative but sometimes a breakthrough displaces

old knowledge. Knowledge is often non-rival but sometimes too hard to imitate.

Knowledge accumulation creates possibilities for further progress but puts an in-

creasing burden on newcomers. Moreover, knowledge is learned by individuals but

it is often stored in organizational routines or institutions. One can then approach

knowledge as rules which are created, diffuse and are displaced by new rules in a

perpetual cycle of variation-selection-retention.

2.4 Evolutionary economics

Evolutionary economics is born from the idea that economic forces can be under-

stood by analogy with evolutionary biology. This is an old idea, and economics and

biology have repeatedly exchanged metaphors and mathematical tools (Hodgson

2006).

In a light version of the argument,3 the pressure induced by competition among

1The original quote from Isaac Newton in 1676 is “If I have seen further it is by standing on
the shoulders of giants.”

2The relation between knowledge growth and the organization of knowledge systems is the main
point of inquiry of this thesis. In Chapter 4, I propose a model which exhibits self-organization
into a stable state at the level of the distribution of ideas’ diffusion. But in chapter 5, it will be
noted that citation distributions have a shape (and mean) changing over time. In chapter 6, I
have to introduce a strong non linearity in growth to explain the size-rank relationship of patent
classes.

3There are a number of controversies about the link between biology and economics. The map
of the human genome and the availability of large datasets drive current work in evolutionary



2.4. EVOLUTIONARY ECONOMICS 13

firms in a market is analogous to that faced by biological organisms competing

to survive and reproduce in a world of limited resources. Market forces act as a

selection device, and only the most profit-maximizing firms can survive, justifying

the profit-maximizing assumption (Alchian 1950).

At a closer microeconomic inspection, however, evolutionary forces are better

thought at the level of behavioral routines (Nelson & Winter 1982). When a new

type of behavior appears (variation), if it is successful (it “increases fitness” in

the sense of providing additional utility), it will be selected, and its imitation in the

population can be thought of as retention. In an evolutionary world, there are many

rules constantly being created, and eliminated or selected. What is needed for an

evolutionary theory of economic change is a theory of behavior and rationality based

on rules. This theory was provided by Herbert Simon, under the rather misleading

label of “bounded” rationality.

Simon (1947), equipped with microeconomics principles, studied decision mak-

ing of city planners. Deceptively, they did not seem to be checking all alternatives,

formalizing their preferences, and finding an optimum. Instead, they followed rules

of thumb that they would adapt to changing circumstances. The birth of com-

puting around this time greatly helped Simon formalizing his ideas on heuristic

problem solving (Newell et al. 1972), and many models embodying some degrees

of bounded rationality have been introduced (Simon 1956, Dosi et al. 2006, Kir-

man 1993, Young 2001). Taking the idea of a satisficing rule seriously, Nelson &

Winter (1982) proposed an evolutionary metaphor of how routines are discovered,

imitated and selected. They showed how procedural rationality explains industrial

dynamics, pioneering agent-based modelling on classical questions of industrial or-

ganization, such as the number of firms, technology races, and demand dynamics

(Nelson & Winter 1982, Malerba et al. 1999). Dopfer et al.’s (2004) discussion of

economic evolution is a plea for a mesoscale understanding of economic dynamics.

Microeconomics should explain us how rules are generated and imitated. Macroe-

conomics provides a global understanding of the relationship between aggregated

variables. The interesting dynamics is at the mesoscale, which should keep track

of innovation and diffusion at a semi-aggregated level, by considering relevant av-

erages and distributions. In this framework, rules exist somehow independently of

their users/carriers. But in practice, what matters economically is knowledge that

is effectively used.

The relationship between knowledge and productive labor is a complex one.

Agents learn by doing, and competition induces them to do preferably what they are

good at, which is what they know the most about. This two-way relation between

psychology and sociobiology, which tries to settle the debate between the influence of genetic and
cultural factors on behavior.
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the division of labor and the division of knowledge is dramatically affected by the

disruptive forces of innovation, and raises important issues of coordination (Becker

et al. 2007, Marengo & Dosi 2005). The focus on actual use of knowledge also

suggests bottom-up approaches to knowledge-based development. Traditionally, for

instance according to Vannevar Bush’s doctrine for Science and Technology Policy,

knowledge generation and use is seen as a top-down process, with knowledge being

created by science and flowing down to its productive users. This linear model of

innovation has been largely criticized and amended with virtually every possible

feedback loop (Kline & Rosenberg 1986).

The discussions on knowledge tacitness and bottom up innovations is interesting

in the context of developing countries. An older literature on appropriate technolo-

gies, which was criticizing top-down “technology transfer”, is now rejuvenated with

“inclusive innovations” or innovations for the “bottom of the pyramid”, highlight-

ing that knowledge-based development is not only (if at all) a process of imitation

and catch-up but the construction of local capabilities and institutions conducive

of creative and cooperative interactions.

To understand this process on the basis of theoretical models, it is necessary

to start with a simplified view of what is knowledge. Since this choice is delicate

and influences the results and focus of study, the next section discusses some of the

possible choices in that matter.

2.5 Modelling innovation and imitation

The literature on innovation and imitation is huge (Hall & Rosenberg 2010, Rogers

2010). Here I describe different approaches to model knowledge growth, including

knowledge as a quantity, knowledge as ideas (possibly with an underlying topological

structure), knowledge as problem solving, and knowledge as learning about a state

of the world.

A common approach to modelling knowledge is to assume that it is a level of

expertise. In this case some agents have more knowledge than others, and diffusion

is a catching-up process. Innovation is modelled independently, with some agents

pushing the frontier (Ehrhardt et al. 2006). When there exist different types of

knowledge, one can study barter exchange. In this case, it can happen that knowl-

edge does not completely diffuse, because in some parts of the network, agents do

not have an interest to exchange (Cowan & Jonard 2004). This depends on the

exact structure of the network on which diffusion takes place.

A different modelling approach is to consider discrete ideas. In this case, knowl-

edge can still be seen as a quantity, simply because the number of ideas can be
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counted. But now it can be that two agents with the same amount of knowledge

have something to exchange, because they have the same number of ideas, but not

the same ideas (as when one considers that there are different types of knowledge).

Discrete “ideas” have sometimes been thought of as blueprints (Romer 1990) or

production recipes (Jones 2005).

A more elaborated approach is to assume that knowledge itself has an underlying

structure, and this structure is intimately linked to time, due to the cumulative,

autocatalytic nature of knowledge (Vega-Redondo 1994, Carayol & Dalle 2007).

Although making assumptions on the underlying structure of knowledge may seem

delicate, the availability of large datasets on citation and co-classification networks

makes it possible to actually observe how different branches or fields of knowledge

are related and co-evolve.

Saying that different pieces of knowledge are related is only one step from saying

that knowledge is a complex system of interacting elements, and that if it is, we

might expect a range of nonlinear phenomena to take place. This was illustrated

by Silverberg & Verspagen (2005) who proposed a percolation model for innova-

tion. Innovators explore a technological space which is conceived as a topological

structure given by Nature (here, a lattice).

Another approach to modelling knowledge starts from the idea that knowledge

creation is essentially a process of problem solving. Technological and scientific

evolution can be described as new solutions giving rise to new problems (Arthur

2009). The problem solving perspective allows us to acknowledge that in general

there are competing problems to be solved, and competing methods to do so. By

analogy to Kuhn’s (1962) “normal science”, Dosi (1982) identifies technological

paradigms with what in a particular context is judged as “relevant” problems to

solve and ways to solve it.

A crucial step in the modelling of problem solving was made possible by Kauff-

man’s (1993) work on evolutionary biology. Kauffman (1993) considered the fitness

attained by a species which incurs random mutations. Assume that a species is

defined by a vector of elements, each element can be 0 or 1. Each element has

epistatic relations to only K others,4 that is, the fitness of an element is the same

whatever the state of an unrelated element is. On the other hand, the fitness of

an element being on say, 1, depends on a related element being on 0 or 1. Fitness

values are otherwise random, and the overall fitness of the organism is the average

of the fitness of its elements.

This way of computing fitness implies that very different system states (vectors)

can have high fitness, but the states in-between (which random mutations should

4This can be thought as a K-regular directed graph. When K = 0 or K = N − 1, it is unique.
Otherwise one of all the possible K-regular directed graph is chosen.
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follow to go from one to the other) may have lower fitness. Hence evolution might

not be able to explore the whole state space. In, fact, evolution gets stuck whenever

it is in a local optimum. At this point, any single mutation would lower fitness, and

since multiple mutations at once are not allowed, this is an equilibrium.

The NK model described above provides a powerful representation of a hard

problem that cannot be solved optimally by heuristic search, providing a good

framework to study how finding good solutions depends on problem complexity

and the search algorithm. In this interpretation, an agent has to design a tech-

nological system by choosing a value for each element (Frenken et al. 1999). Of

particular interest in the technology literature has been the emergence of modu-

lar technological structure (Baldwin & Clark 2000), a phenomena that has wide

ranging consequences on the organization of innovation and on market structure.

Using a NK model, Frenken et al. (1999) showed that the depth of search neces-

sary to find the global optimum decreases with the decomposability of the prob-

lem. A problem is decomposable when the fitness of some groups of elements is

independent of outside-group elements, and can thus be optimized independently.

Nearly-decomposable systems, which have a few intergroup relations, can also be

searched effectively and have evolutionary advantages (Frenken et al. 1999, Simon

2002, Marengo & Dosi 2005). In another use of the NK framework, Page (2008)

studied how the diversity of teams influences problem solving performance.

Finally, knowledge growth has also been modeled as a learning process. Gener-

ally, one assumes that there exists a (possibly changing) true state of the world, and

agents form and revise beliefs about it. One is then interested in the convergence

of individuals’ beliefs to the truth. How beliefs are formed and revised depends on

the particular model being studied. Learning models are thus extremely numerous

and diversified, also due to the interest that they have received from different com-

munities for different purposes. Theoreticians of games and general equilibrium use

learning models to find the conditions under which equilibrium or consensus will be

reached (Marimon 1997). Evolutionary economists use learning models that con-

vey a large number of bounded rationality principles (Dosi et al. 2006). Computer

scientists use learning models in artificial intelligence (machine learning). In biol-

ogy, learning in evolutionary games has received a lot of attention recently. More

generally, learning models for populations of agents have been well studied, and

tend to be particularly appropriate to study the effect of an underlying interaction

structure (Bala & Goyal 1998, Golub & Jackson 2010).

Of course, the link between an increasing number of “ideas” and economic de-

velopment is complex and by no means automatic. In fact, some ideas turn out to

make people rather worse off, or to benefit a few to the detriment of others. At the
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very least, we should expect that even “positive” technologies create inequalities,

as is clear from the wide literature on diffusion. By definition, innovation implies

a leader-follower structure, in the sense that the innovator (or the team) is always

the first to know, and is followed by others, who catch-up. However, when there are

different types of knowledge, or when ideas are modelled as discrete objects, agents

can be both leaders and followers.

This thesis takes the view that approaching this ecology of creation and diffusion

formally is best done using the theory of networks, by putting interactions at the

center of the analysis. It is part of a general research program on agent-based

models and complexity in social sciences which has been driven by the advent of

computers. In this context, it was discovered that simple rules can generate complex

and interesting patterns of behavior. Complex behavior implies that it is very hard

and sometimes impossible to predict mathematically how such systems behave.

But simple rules imply that these systems are easy to simulate, and for this reason

simulations have been heavily used to understand even toy models (Schelling 1960,

Epstein & Axtell 1996, Axelrod 1997).

Agent-based models have also been studied using mean-field theory and a range

of other techniques of approximation. The computer keeps track of what happens

to every agent; and the modeler constructs an approximate mathematical model of

the computer model. The mathematical predictions can then be checked against the

simulations. This practice allows us to go deep into the microdynamics thanks to

the computer while having a mathematical understanding of the meso- and macro-

dynamics. This approach will be repeatedly used in this thesis.

Perhaps even more important than agents are the relations among the agents.

It has been found throughout the last 60 years or so that graphs are very appro-

priate mathematical objects to study social (or others) interactions empirically and

theoretically.

A graph G is a set of vertices or nodes, and a set of links or edges between pairs

of nodes. It is usefully represented by an adjacency matrix A in which the entry

Aij shows the relationship between i and j. Generally, Aij takes the value 0 or 1

to express whether or not “i is friend with j”. It can also be an arbitrary scalar,

indicating the strength of the relationship (edge weights). If edges are undirected,

A is symmetric. Graphs can be represented by drawing curves between points. One

has to choose first where to draw the points (the nodes), and then edges can be

added. The graphical representation of complex systems as graphs is intuitive and

widely used qualitatively. But in spite of great progress in visualization techniques,

one often resort on more concrete mathematical analysis to extract meaning from

networks.
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2.6 Social network analysis and complex networks

There does not really exist a point in time at which networks were invented or

discovered – for obvious reasons social and kinship networks are older than homo-

sapiens. But there certainly is a beginning to the technical creation of nets (e.g.

for fishing) and a long sequence of trial and errors in organizing paths, for pedes-

trians, water and other infrastructures. As technology, science and society grow in

complexity, networks are more and more apparent and their organization more and

more consequential (Castells 2011).

From a mathematical point of view, the history of graph theory starts in Königs-

berg, where Euler concerned himself with the puzzle of travelling the whole city by

walking each of its seven bridges once and only once. The nature of the problem

lead him to formalize pieces of land as dots and bridges as lines between the dots.

Graphs were born and they quickly delivered their first result. To travel Königsberg

as required by the puzzle, the nodes along the path taken (excluding the first and

last) must have an even degree (an even number of edges attached to them), so that

one can enter and then leave. Because more than two nodes had an odd degree in

1736’s Königsberg, there was no path as required by the puzzle.

Besides the work on discrete structures by the mathematical community (Berge

1989, Bollobás 1998) sociologists have been at the forefront in the use of graphs. The

idea of an underlying “social structure” is as old as sociology, but Social Network

Analysis, as it came to be known, started out in the 50’s. By the mid-90’s, the field

had produced a wide range of methods (Wasserman & Faust 1993) soon followed

by computer programs, leading to a large diffusion of the techniques.

Among many insights from this large literature, the tension between triangular

closure and structural holes is worth noting. Triangular closure (or clustering, or

cliquishness) is the propensity of two friends of ego to be friends with each other.

Triangle closure can be interpreted as a sign of high social capital, in the sense that

it generally indicates that agents form tightly connected subgroups. On the other

hand, when friends of ego are also friends of each other, information tends to be

redundant. Friends from another group, who are not connected to other friends of

ego, and thus supposedly only “weak ties”, tend to provide different information:

hence the “strength of weak ties” (Granovetter 1973). In addition, observe that

when two friends of ego are not connected, ego is in between, therefore it has some

power over information flows in the network (Burt 1995) and can capture more rent.

The example above only hints to the rich theories that can be embodied into for-

mal propositions about network structure. Another legacy of XX th century social

network analysis is a set of centrality measures, each capturing a different inter-

pretation of what it means to be prominent, powerful or “central” in a network.
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For example, the degree only counts the number of friends. Closeness evaluates

the average geodesic distance (shortest path) with all others. Betweenness counts

how many pairs of players have a shortest path through ego. Bonacich’s (1987)

centrality takes a linear algebraic approach. Assuming that the centrality of ego is

the sum of the centralities of her friends leads to an eigenvalue equation. Since the

adjacency matrix is non-negative, the Perron-Frobenius theorem ensures that there

exists a positive solution vector for the highest positive eigenvalue.

Besides the progress driven by empirical work, mathematicians have been inter-

ested in random graphs. In particular, Erdős & Rényi (1960) studied a model in

which each possible edge exists with independent probability p. They showed that

the size of the largest connected component is a very special function of p. Below a

critical pc, the largest connected component has very high probability of being very

small, and above the critical probability it has a very high probability of being very

large. The system exhibits a phase transition at the critical point at which nodes

are connected to 1 other node on average.

Random graphs are also used as null models in empirical work. Often one goes

further than simple Erdős & Rényi (1960) graphs and also imposes a given degree

sequence (the degree of each node) that the random graph must have. To create a

random graph with a given degree sequence, one needs to count up all the possible

graphs satisfying this constraint, and then choose one of these graphs at random.

In practice, it is computationally too expensive, and stub-matching algorithms are

used to create a graph which respects the constraint. The analysis of random

graphs revealed that the sheer number of total possible graphs makes it difficult

to count and classify graphs, with some graphs sharing a common property but

being completely different with respect to another property. When some of these

properties are desirable or, on the contrary, need to be avoided, it is very difficult

to find an optimal graph.

Watts & Strogatz (1998) made a methodological and substantive contribution

to this issue by proposing to study two properties in a family of random graphs

interpolating from a lattice to an Erdős-Rényi graph. In a lattice, such as a graph

where agents are organized in a circle and are connected to a few others on each side,

the distance between agents is pretty high because one needs to travel the whole

lattice to go from one side to the other. On the other hand, clustering5 is high in a

5Watts & Strogatz (1998) define clustering at the local level, that is, for each agent, how
many pairs of friends of ego are also friends of each other. This individual clustering can then
be averaged, which is meaningful in their context. However, it must be noted that individual
clustering is ill-defined for agents with no or one friend. Moreover, if we want the probability that
two random friends of a random node are friends, we need to compute clustering at a global level,
by counting the number of connected triples (three connected nodes) and checking what is the
share of those that are closed (i.e. “triangles”, which are full subgraphs of three nodes).
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lattice such as the one described above, where agents are densely connected locally.

How can it be that social networks seem to be made of tightly connected groups, and

at the same time empirical claims are made about the “small-world” phenomena,

according to which every two persons on earth are connected by a chain of at most 6

acquaintances?6 Watts & Strogatz (1998) showed that by rewiring only a few edges

of the lattice, clustering would not drop as fast as path length. That is, starting

from the lattice, if we pick an edge, detach it on one side and put it back to a

node chosen at random, clustering has decreased locally (for the few nodes involved

where the link was detached from), but path length has decreased for potentially

many nodes who now find it easier to reach the other side of the lattice by going

through the rewired edge, which plays the role of a shortcut. By rewiring every

link the graph would become completely random. In this case path length would be

low, but clustering would be low as well.7 Hence it is between a completely ordered

(lattice) and a completely random network that we can find a system with both

low path length and high clustering. This result received a lot of attention after

the literature on the edge of chaos and self-organized criticality.

Another example of the use of random graphs is the modularity maximization

criterium for community detection. Community detection in networks seeks to

divide the nodes (or edges in some cases) into possibly overlapping subsets of nodes

such that, loosely speaking, most interactions are within communities, and there

are only few inter-communities interactions. To see how crucial it is to uncover

the community structure of networks, consider the Simon-Ando theorem (Simon &

Ando 1961). They consider nearly-decomposable dynamical systems, that is, with

variables that can be organized in almost independent groups. They showed that

convergence can be decomposed into short-run convergence of individual subgroups

of variables (dominated by the largest eigenvalue in this subgroup), and long run

convergence of the blocks to the unique steady state (dominated by the largest

eigenvalue of the whole matrix). Hence a dynamical process taking place on a

network is greatly affected by the degree of modularity, or near-decomposability of

the network.

Often, modular systems are also hierarchical. This implies that the network

can be meaningfully split into subnetworks, and in turn these subnetworks can

be decomposed. In some nice cases where decomposition is self-similar, one can

see the fractal structure of multi-level systems. More generally, the emergence

6This figure is of course debated. See Milgram (1967), de Sola Pool & Kochen (1979) and the
review of Schnettler (2009).

7In practice Watts and Strogatz normalized their measure of clustering and path length with
that of Erdős-Rényi graphs. Since edges exist independently in the Erdős-Rényi model, the proba-
bility that two friends are friends of each other is simply the probability that two nodes are friends
of each other, which is fixed by definition of the model.
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of the complex networks literature has allowed great progress in the modelling of

multilevel systems. On the one hand, the study of community structure has been

the source of numerous ideas about the hierarchic nature of complex systems. In

fact, to find an optimal way of splitting a set of nodes into homogenous groups,

algorithms often construct a whole hierarchy of subsets (a dendrogram), and use

a given criterium such as modularity to choose which layer of the dendrogram is

the best. The dendrogram delivers information about the hierarchical organization

of the network, and some authors have turned the community detection problem

into one of revealing the multilevel organization of networks (Granell et al. 2011).

On the other hand, another branch of the complex networks literature has chosen

to extend one-mode networks to more complicated structures, so as to deal with

multiple interacting networks (Kivelä et al. 2013). Two-mode networks are perhaps

the simplest of these extensions, and potentially allow to integrate easily the two

one-mode networks on each side of the two-mode network, as shown concretely in

chapters 4 and 5.

Another connection between two-mode networks and multi-level systems can be

seen using hypergraphs. A hypergraph is a set of nodes and a set of hyperedges.

Each hyperedge is a subset of nodes. This can be fully represented by an incidence

matrix B where Bij = 1 if the node i is contained in the hyperedge j. Hypergraphs

are now sometimes used to study multimode networks. In this case, the nodes of

an hyperedge can (and in most applications must) come from a different mode. For

instance, in a three-mode network of tags, users and photos, Zlatić et al. (2009)

define a hyperedge as a user tagging a photo. From this example, we sense that

the emphasis is on agent-artefact interactions. In many cases, these agent-artefact

interactions can be thought of as events occurring over time. There is a literature on

hypergraphs (Seidman 1981) and simplicial complexes (Atkin 1977) which identifies

precisely which information is lost when we require all relations to be among pairs

of agents only, instead of more general group-level relations. The theory of self-

organizing multi-mode networks allows to incorporate old ideas about multi-level

systems into the framework of network science.

2.7 The economics of networks

The economics of networks is now well established, with a number of monographs

and textbooks (Goyal 2007, Vega-Redondo 2007, Jackson 2008, Easley & Kleinberg

2010). Besides the connection between input-output and networks, economists have

traditionally been interested in networks in the context of industrial organization.

Many industries that require a large infrastructure to operate are characterized by
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economies of scale leading to natural monopolies. In these cases state intervention is

required, either as direct owner or through price regulations (such as the Ramsey-

Boiteux rule). Moreover, there exist many industries characterized by demand-

side externalities, known as network effects. This situation arises, for instance,

when there are competing standards. Standards create an incentive for newcomers

to adopt the standard which is currently the most popular, leading to monopoly.

Hence, if by historical accident the worse standard is more widely adopted early on,

the best standard will not be adopted even in the long run, a situation of lock-in

(David 1985, Arthur 1989). This analysis lead to a body of work on standards and

compatibility issues (David & Greenstein 1990), technology choice (Cowan 1991),

and industrial organization (Economides 1996, Shy 2001).

In spite of some attempts to study the topology of the underlying network

(Economides 1996), this early literature did not systematize the use of graph theory.

Game theorists instead started to use graphs along different directions. Models

of network formation are often divided between access (one-sided decision) and

connection (two-sided) models. For instance, Jackson & Wolinsky (1996) studied a

connection model in which externalities decay along geodesic distance, and prove

that (pairwise) stable networks are not necessarily efficient. Bala & Goyal (2000)

studied an access model and again found a possible discrepancy between stable and

efficient networks. Other models have taken the structure of the network as given,

and study the effect of network structure on collective outcome, typically using a

coordination game (Morris 2000). Vega-Redondo (2007) provides a framework with

endogenous strategy and partner choice, characterizing the coevolution of networks

and institutions. A specific type of network formation particularly relevant for this

thesis is based on growth. Instead of considering all players and ask who wants

to connect to whom, one starts with few players, and ask to whom the newcomers

want to connect to. These growing network models are central to the thesis and

will be reviewed in the next chapter.

2.8 Power laws and stochastic growth models

In this thesis, networks and power laws are central topics. This is due to the

nature of knowledge systems. If we denote by p(k) the fraction of observations

with value k, a power law is a relation p(k) = Ck−γ where C is a constant that

must ensure correct normalization of the probability distribution8. Typically power

law behavior (“scaling”) is observed only within a certain range. Power law (or

8This constant differs depending on the data being discrete or continuous, and depending on
the admissible range of k.
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Pareto) distributions are found for many quantities of interest, in particular size-

distributions. For instance, the empirical observations of chapters 5 and 6, citation

distributions and patent category sizes, are suggestive of power laws or “similar”

distributions. Under one form or another, this distribution has been observed in,

inter alia, the number of times single words are being used in a text (studied by

Estoup), the size distribution of cities (studied by Zipf), the distribution of income

(studied by Pareto), the distribution of the number of papers published per author

(Lotka’s law), and the size distribution of genera (observed by Willis), which was

explained by a mathematical model in Yule (1925). This universality is interesting

and has stimulated theoretical models to explain these power laws. The model of

chapter 4 is an extension of a core model in this area due to Simon (1955). This

model gained renewed interest after its rediscovery (driven by empirical observation)

in the context of networks by Barabási & Albert (1999). Simon’s model is different

from Barabási & Albert’s model, but both are growing networks.

This thesis aims at understanding the self-organization of knowledge systems,

but the models of two-mode network growth presented here are relatively general,

and relate to several other branches of the economic literature which has used them

to understand wealth distribution, firm size distribution, and, more recently, prod-

uct diversification or other quantities in international trade. Pareto discovered his

eponym law using income data, and many stochastic models for the emergence of

power laws were designed with income distribution as their main application (e.g.

Champernowne (1953), Shorrocks (1975)). Regarding firm size distributions, the

major early work is of course Gibrat (1931) who showed that multiplicative shocks

generate a lognormal distribution: if firms have an expected growth rate indepen-

dent of their size, the central limit theorem can be invoked to show that the log

of the size is a Gaussian distribution. Simon (1955) obtained a power law, in fact

a Yule-Simon distribution, by adding an entry process. Steindl (1965) and Ijiri &

Simon (1977) contributed other, more elaborated models but the lack of very large

datasets prevented rigorous empirical testing. Axtell (2001) studied a large dataset

and found that the power law gives a better fit than the lognormal in the case of

city sizes. Gabaix (1999) modified Gibrat’s principle by assuming a random walk

with a lower reflecting barrier, and find that it leads to a Pareto distribution. Fu

et al. (2005) proposed a model which reproduced the tent-shaped distribution of

growth rates. Bottazzi & Secchi (2006) used a stochastic growth model to study

diversification. More recently, stochastic growth models for the emergence of power

law distributions have been included in neoclassical economic models, following the

upsurge of interest on the causes and consequences of firm heterogenity (Luttmer

2007). Stochastic growth models have also been applied to microeconomic data in
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international trade, such as the two-mode networks of which firm or which country

exports which products (initiated by Hidalgo et al. (2007)). For instance, Ar-

menter & Koren (2014) proposed null models, while Riccaboni & Schiavo (2014)

and Chaney (2011) introduce more microfounded principles. Finally, there has also

been applications in economic geography, where they are particularly well suited

to model the positive feedbacks typical of spatial agglomeration processes (Arthur

et al. 1987). For instance, Frenken & Boschma (2007) derived simultaneously the

distribution of city and firm sizes, and Bottazzi et al. (2007) proposed a testable

model of spatial agglomeration under positive feedback and entry-exit of firms.

More generally, stochastic birth and death models with an explicit account of the

topology of the underlying spaces (geographical, social, cognitive...) seem particu-

larly appropriate for constituting the field of “organizational genealogy”, with the

aim of encompassing industrial dynamics and economic geography in an evolution-

ary framework.

2.9 Conclusion

This chapter aimed at backing-up the main premise of this thesis: economics is

fundamentally about the creation and diffusion of knowledge. Knowledge has to be

put to use to create economic value, but it is a pre-requisite and determines most

of the economic system dynamics.

Neoclassical knowledge-based growth models provide an encompassing frame-

work relating knowledge growth with welfare, but at the cost of delicate assump-

tions, such as substantive rather than procedural rationality. Evolutionary eco-

nomics has proposed numerous aggregated and agent-based models with rich knowl-

edge - based dynamics, but a synthesis is still missing. Knowledge itself is hard to

comprehend as a homogenous category, which is challenging for the design of the-

oretical models. In fact, an issue in the literature on interaction-based models of

knowledge dynamics is that it is difficult to model innovation and diffusion in a

meaningful yet parsimonious way. Hence, one often has to resort on simulations

to understand the model, making comparison with data much harder. This thesis

proposes agent- or interaction-based models and devotes special effort to finding

analytical approximations, leading to straightforward empirical estimations.

In chapter 4, I propose a new framework to study analytically the interplay of

innovation and imitation in interaction-based models. I show that the evolution of a

system in which ideas are created and diffuse can be formulated as a self-organizing

two-mode network. In line with a large empirical and theoretical literature, the

expected diffusion of each idea follows a logistic (S-shaped) curve. This dynamical
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system is a non-linear extension of a well-known model (Simon 1955), and can be

relatively well characterized in spite of its dimension (the number of ideas) being

increasing. The distribution of ideas’ popularity is an extension of the Yule-Simon

distribution, and can be thought of as a power law with a significant upward or

downward curvature. The innovation-imitation trade-off determines the slope of

the power law.

In chapter 5, I propose to extend and modify the theoretical model of chapter

4 to bring it to the data. Science is a knowledge system in which new ideas are

created and exchanged. I consider the distribution of citations received by scien-

tific publications, which is often well fitted by a shifted power law. The literature

explains the value of the power law exponent by the relative rates of “random” and

bibliographic search (whether cited papers are found at random, or by reading the

bibliography or other papers). Based on theoretical knowledge obtained in chapter

4. I propose a different interpretation: the shape of the citation distribution mainly

reflects the way in which attention is traded-off between innovation and imitation.

It is also influenced by the structure of the social network on which diffusion takes

place.

While chapters 4 and 5 start from theory to go to the data, chapter 6 takes the

opposite route. There, I find that the size-distribution of technological subcategories

(US patent subclasses) follows a relatively expected distribution (not far from Zipf’s

law). But at a higher level (classes), the empirical picture cannot be explained by

existing models. This motivates the introduction of a new model for this class of

phenomena. To be compatible with the empirical evidence, the new model posits

that the number of categories follows an S-shaped curve.





Chapter 3

Models of growing networks

In this chapter, I review simple models of growing (or self-organizing) networks.

There are two important distinctions to be made. First, there are one-mode and

two-mode networks. Two-mode networks have two types of nodes, for instance au-

thors and papers, with a link between an author and a paper meaning that this

particular author wrote that particular paper. Second, there are two major tech-

niques of analysis, mean-field continuous approximations and master equations. As

far as Simon’s (a two-mode network) and Barabási & Albert (BA)’s (a one-mode

network) models are concerned, both techniques work on each model. However,

later in the thesis, master equations become untractable and it is thus necessary

to present both approaches. Consistent with original works, the BA model is pre-

sented using the mean-field continuous method, and Simon’s model using the master

equation.

This chapter also contains new results and original derivations of known facts.

Section 3.1 reviews growing one-mode network models, and shows precisely the link

between average degree and the parameters of the shifted power law in shifted at-

tachment kernel models. Section 3.2, which reviews Simon’s (1955) model, includes

an original derivation of the Yule-Simon distribution and proof of proper normal-

ization, to introduce some techniques used in chapter 4. While section 3.3 only

reviews other models of self-organizing two-mode networks, section 3.4 proposes an

encompassing model of two-mode network growth by addition of (complete) sub-

graphs. It generalizes Simon’s model and its extension by Ramasco et al. (2004) for

collaboration networks and, as in section 3.1, it clarifies the respective roles of initial

and acquired degrees, the latter being preferentially attributed and the former not.

3.1 Models of growing one-mode networks

Barabási & Albert (1999) proposed a model to explain their observations of the

27
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structure of the World Wide Web (“the BA model”). The nodes are web pages and

the links are hyperlinks. They found that the degree distribution is a power law,

that is, the share p(k) of pages with k links is proportional to k−γ . They developed

a model to explain that this power law distribution is due to two main factors:

growth and preferential attachment of new pages to popular existing pages.

The model is a growing undirected graph. At each period, a new node arrives

in the network, and connects to m other nodes. The m chosen nodes are selected

with probability proportional to their degree, hence the expression preferential at-

tachment.

To find the degree distribution, Barabási & Albert (1999) proposed to study

the evolution of individual node’s degree using a deterministic, continuous time,

continuous degree equation. In this approximation, the degree of node i, denoted

ki, evolves as
dki
dt
= m

ki
∑

i ki
=
ki
2t
, (3.1)

where the last relationship follows from the fact that since m edges are added at

each period, there are 2mt degrees (i.e. end of edges) in the system. The solution

of (3.1), with the initial condition that i is born at time ti with degree m is

ki(t) = m

(

t

ti

)1/2

. (3.2)

Using this information for all i one can find the share of nodes with a certain degree.

Using the cumulative distribution function, we have

p(ki < k) = p

(

m

(

t

ti

)1/2

< k

)

= 1− p

(

ti < t
(m

k

)2
)

. (3.3)

Since there is exactly one node born at each period 1 . . . t, the ti’s are uniformly

distributed, that is, p(ti < Y ) = Y/t. Using this, (3.3) becomes

p(ki < k) = 1−
(m

k

)2

. (3.4)

Note that (3.4) simply shows that, under these approximations, the fraction of

nodes with degree less than k at time t is the fraction of nodes born after the node

who has exactly degree k at time t (Jackson 2008). From (3.4),

p(ki = k) =
dp(ki < k)

dk
= 2m2k−3. (3.5)

Equation 3.5 is a power law with exponent 3, so the BA model predicts a universal
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exponent. This is both a good and bad feature of this model. This is good because

empirical data shows that the exponent is often not too far from 3, and this is

explained in the simplest way by the BA model. However, the departure from 3 is in

some cases quite significant, which triggered additional research modifying the BA

model to obtain a tunable power law exponent. Furthermore, the derivations above

rely on continuous time and continuous degree approximations, and keep track only

of the expected degree. To obtain a better characterization of the BA model, one can

use master equations, a task carried on simultaneously by Dorogovtsev et al. (2000)

and Krapivsky et al. (2000). However, not all extensions of the BA model can be

solved using master equations. For this reason, I first show the different extensions

using the mean-field continuous approximation of BA, and I will introduce master

equations to discuss two-mode networks in the next two sections.

Dorogovtsev et al. (2000) start from the insight that in the BA model, edges

should be seen as directed, running from the newborn node to the existing ones.

Suppose that we want to know the distribution of indegrees. According to the

BA, model nodes receive edges with probability proportional to their total degree,

which is their indegree, that changes over time, plus their outdegree, which is m

throughout their life. Denoting by qi the indegree of node i, the BA model implies

dqi
dt
= m

qi +m
∑

j[qj +m]
.

Dorogovtsev et al. (2000) propose to generalize this by assuming1

dqi
dt
= m

qi + a
∑

j[qj + a]
, (3.6)

where a is the initial attractiveness of a node. If this term was 0, new nodes would

not be able to receive any new link since they arrive in the network with qi = 0. This

shows that in the BA model, the outdegree of nodes is their initial total degree from

which the “proportional to degree” attachment rule applies. As noted by Newman

(2010), Dorogovtsev et al.’s (2000) model is an extension of de Solla Price’s (1976)

model, who used a = 1. At this stage it is useful to remark that in this type of

models, nodes compete to receive new edges. Hence to compute the probability that

a given node receives a given edge, we always need to make sure that for each edge,

the sum over all nodes of the probabilities that a node receives this edge is equal

to one. Hence the attachment rule is often called the attachment kernel. Often

the difficulty comes from computing the correct normalization factor. In the case

1A point emphasized by Dorogovtsev et al. (2000) is that in their version of the model, it does
not matter whether the new edges come from the new node or from some others.
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of (3.6), the total number of indegrees is equal to the number of outdegrees, which

increases by m at each period and hence is equal to mt. Hence
∑t

i=1[qi + a] =

t(m+ a). Thus (3.6) becomes

dqi
dt
=

qi + a

t(1 + a/m)
. (3.7)

Using this, the solution of (3.7) with initial condition qi(ti) = 0 is

qi(t) = a

[

(

t

ti

)
1

1+a/m

− 1

]

, (3.8)

and using the cumulative distribution as for the BA model in the beginning of this

section, one obtains

p(q) ∝ (q + a)−2− a
m , (3.9)

where the symbol ∝ means “proportional to”. The general form of the distribution

(3.9), p(k) = (k+ r)−γ, will be called the “shifted power law” throughout the thesis

(it appeared in Mandelbrot (1953) who insisted that the shift r was very helpful to

obtain a better fit to the data when a “shoulder” appears on the left, that is, power

law behavior is not observed for small k). It is close to a power law, in the sense

that k + a → k as k → ∞. However, for small k, the term a dominates and the

function p(k) decreases slower than a power law, creating a “shoulder” on the left

of the distribution (the bins of the histogram for small k). From (3.9), note that

we recover the BA model if we set a = m, and remember that ki = qi +m.

This model is very similar to models with mixed random and preferential at-

tachment (reviewed in Jackson (2008)). Suppose that a node arrives and, out of its

m links, a share α goes to nodes selected uniformly at random, and a share 1 − α

goes to nodes chosen with probability proportional to their indegree. Then

dqi
dt
= m

[

α
1

t
+ (1− α)

qi
mt

]

=
qi +

αm
1−α

1
1−α

t
, (3.10)

showing that a mixed random and preferential attachment implies a “shifted” at-

tachment kernel, and therefore a “shifted” power law

p(q) ∝

(

q +
mα

1− α

)−1− 1
1−α

. (3.11)

For completeness, consider now that a node arrives and, out of its m links, a share

α goes to nodes selected uniformly at random, and a share 1 − α goes to nodes
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chosen with probability proportional to their degree ki = qi +m. Then,

dqi
dt
= m

[

α
1

t
+ (1− α)

qi +m

2mt

]

=
qi +

(1+α)m
1−α

2
1−α

t
, (3.12)

leading to

p(q) ∝

(

q +
(1 + α)m

1− α

)−1− 2
1−α

. (3.13)

To obtain the distribution of the total degrees, as in Jackson (2008) p.136, the

change of variable k = q +m gives the correct result, p(k) ∝ (k + 2αm
1−α
)−1−2/(1−α).

What is interesting in this exercise is that the specific way of microfounding a shifted

attachment kernel by a mixed attachment mechanism does not change the shape

of the distribution but changes the effects of the parameter m on the distribution.

In Dorogovtsev et al.’s (2000) model (equations 3.7-3.9), m has no effect on the

shift of the attachment kernel, and therefore no effect on the shift of the power

law. However, m appears in the partition factor of the attachment kernel (the

denominator of the differential equation), and therefore in the exponent of the

power law. In the two mixed attachment models (equations 3.10-3.13), m does not

appear in the denominator of the differential equation, and does not appear either

in the exponent of the power law. To see that this pattern holds in general, it can

be verified that
dqi
dt

=
qi + f(m)

tg(m)

gives

p(q) ∝ (q + f(m))−1−g(m) .

An important extension of the simple preferential attachment kernel is the non-

linear kernel introduced by Krapivsky et al. (2000) in the original BA framework.

At each period one node arrives and connects to m others, chosen with probability

proportional to a certain power of their total degree:

dki
dt

= m
kαi

∑

i k
α
i

. (3.14)

When α = 1, we recover the linear preferential attachment kernel. When α > 1

(a superlinear attachment kernel), the vertices with a high degree get a dispropor-

tionate share of incoming edges, leading to a winner takes all situation (Krapivsky

et al. 2000, Chung et al. 2003) in the very long run, but a scale free distribution

for the non-leader nodes at finite time (Krapivsky & Krioukov 2008). When α < 1,

known as the sublinear attachment kernel case, we can argue that (Liu et al. 2002)
∑

i k
α
i = µt, with 1 < µ < 2m since

∑

i k
0
i = t <

∑

i k
α
i <

∑

i k
1
i = 2mt. Using this,
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equation 3.14 becomes

dki
dt
= m

kαi
µt
. (3.15)

Integrating (3.15) with the initial condition kj(j) = m gives (Liu et al. 2002)

ki(t) =

(

m1−α +
(1− α)m

µ
ln

(

t

ti

))1/(1−α)

, (3.16)

which can be used with the usual method to obtain the stretched exponential form

p(k) =
µ

m
k−α exp

{

−
µ

m

k1−α −m1−α

1− α

}

. (3.17)

The tail (k → ∞) of this distribution is between the exponential (α = 0) and a

power law with exponent 3 when α = 1 (which recovers Barabási & Albert (1999)).

The non-linear attachment model is of particular interest in this thesis. In chapter

4, where I study a growing two-mode network, the micro-level assumptions (learning

random unknown ideas of random friends) lead to a non linear attachment kernel

of a different form than that studied by Krapivsky et al. (2000) and others. In my

model, the attachment kernel has a logistic form, that is, proportional to k(n− k)

with n being the maximum degree, which in this case is population size (an idea

cannot be known by more agents than there exist). Moreover, chapter 4 highlights

that the derivations above assume that µ is a constant, whereas it is constant

only for large time/network size. In my argument, µ testifies the self-organization

of the network in the sense that the dynamics of the distribution depends on µ,

and µ itself depends on the distribution. In fact, µ determines the dynamics and

the distribution represents the structure. Their convergence to a steady-state shows

that the feedback mechanism leads to a fixed point, which is de facto self-organized.

In chapter 4, the main method used is different, although the mean-field con-

tinuous approximation is also used for comparison purposes. The master equation

method, which is widely used for deriving the equilibrium distribution of Markov

chains, is more precise than the mean-field continuous approximations of this sec-

tion. It works very well for linear and shifted attachment kernel, as exemplified in

the original papers of Dorogovtsev et al. (2000) and Krapivsky et al. (2000). How-

ever, for a sublinear attachment kernel, it is not possible to obtain exact solutions

of the master equation in terms of well-known functions (Iguchi & Yamada 2007).

It turns out that the logistic attachment kernel of chapter 4, which is quadratic and

not of a fractional power, is less problematic. Chapter 4 suggests that in general,

a polynomial attachment kernel leads to a generalized hypergeometric structure of

the master equation.
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The next two sections introduce master equations in the context of some impor-

tant models of growing two-mode networks.

3.2 Simon’s (1955) model

More than half a century ago, Herbert Simon proposed a model of stochastic growth

to explain the emergence of power law distributions. This model has been widely

used since then, and even started a new life after the general increase of interest

in networks. This model has a rich history and some intricacies have been clarified

only recently. The purpose of this section is to provide a detailed review of Simon’s

model.

In general terms, consider a number of elements grouped into a number of enti-

ties. Let us think of elements (or items) as inhabitants and entities (or categories)

as cities. To understand the static picture (the observed distribution), we have to

understand the dynamic process which leads to it. Simon hypothesized that the

system only grows. There are new inhabitants arriving, say one per period (time is

“system time”, not “clock time”). All that has to be chosen is if newborns create

a new city, or to which city they go if they go to an existing one. Simon realized

that if he assumes that existing cities get the new inhabitant with a chance propor-

tional to the size of their population, the bins of the (normalized) histogram will

ultimately stabilize. He recalls being aided by a metaphor, while thinking about

the power law distribution of the number of times that a word is used in a text.

If we think of a book as being created word by word, and if a word is

added that has occured k times, the number of words occuring k + 1

times each will be increased by one, and the number of words occuring

k times each decreased by one. For a steady state equilibrium, the rate

at which words are created that had previously occured k times must be

equal to the rate at which words are created that had previously occured

k− 1 times. In this way, the “k” bin will be replenished as rapidly as it

is depleted. At some point I began to visualize this as a cascade, with

successive pools of water each maintained at a constant level by flow in

from the pool above, and flow out from the pool next below. Working

back from our answer – the distribution that we know describes the

phenomena - it is not too hard to show that the equilibrium condition

requires that the probability of creating a word that has already occured

k times must be proportional to k. (Simon 1989)

The framework sketched above leads directly to the formulation of a master
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equation,2 and the equilibrium condition provides a direct way to find the steady

state.

The model assumes that discrete items arrive to a growing population of entities.

At each period exactly one item arrives. Simon formally states two assumptions

Assumption 3.2.1. With probability b, the new item goes to a new entity which is

thus created.

Assumption 3.2.2. If the new item does not create a new entity, it goes to an

entity chosen with probability proportional to its size (number of items within this

entity).

The master equation should tell us the expected change in the number of entities

of size k, denoted P (k). This number increases by one when a new item goes to

an entity of size k − 1, and decreases by one when a new item goes to an entity

of size k. Suppose that the new item has to go to an existing entity (this happens

with probability 1 − b). The probability that the new item goes to an entity of

size k is proportional to k, by assumption 3.2.2. Conditional on the new item not

creating a new entity, it must be that exactly one entity is chosen. This entity is

in exactly one class of size (say the kth bin). So it must hold that the sum of the

probabilities over all possible classes of size (i.e. over k) is one. So the probability

(conditional on creating a new entity) that the new item goes to an entity of size

k is k divided by the total size of all other competing entities. This total is simply

the total number of items in the system, t.

The expected number of entities of size k in (t+1) is equal to number of entities

of size k in t, plus the number of entities of size k − 1 in t times their probability

of getting the new item, minus the number of entities of size k in t times their

probability of getting the new item. Putting this together,

E[Pt+1(k)]− Pt(k) = (1− b)

(

Pt(k − 1)
k − 1

t
− Pt(k)

k

t

)

. (3.18)

The system always grows so the vector P (k), the total number of entities of a

certain size, can never stabilize. We need to study the share of entities of a certain

size, which is a probability mass function defined as pt(k) = Pt(k)/wt, where the

total number of entities wt is a stochastic variable. If Πw(t) is the probability that

in t there are exactly w entities in the system,

Πw(t) =

(

t− 1

w − 1

)

bw−1(1− b)w−t, (3.19)

2The term master equation is used in this context for an equation describing the expected
changes in the heights of the bins of a histogram. It is used more generally in the context of
Markov chains, for describing the change in the probabilities that a system be in certain state.
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from which

E[wt] = E[kPt(k)] = E[Πw(t)] =
t
∑

j=1

jΠj(t) = 1− b+ bt, (3.20)

where the expectation is over many realizations of the system. In general, E[Pt(k)/wt]  =

E[Pt(k)]/E[wt]). But from equation 3.20, we see that E[wt] tends to bt when t→ ∞.

Simon therefore uses wt = bt. With this, taking expectations of equation 3.18 gives

(t+ 1)pt+1(k)− tpt(k) = (1− b)[(k − 1)pt(k − 1)− kpt(k)].

Assuming that a stationary distribution exists for t→ ∞, so that pt+1(k) = pt(k) =

p(k), one obtains

p(k) = (1− b) [(k − 1)p(k − 1)− kp(k)] . (3.21)

So far, only existing entities have been considered. Hence, the equations are not

valid to describe the evolution of the number of entities of size 0, since they do

not exist, or the number of entities of size 1, since it is affected by the creation of

new entities. For k = 0, we know that p(0) = 0 since each entity enters with a

degree equals to 1. For k = 1, there are no inflows of entities from the (k−1)th bin.

Instead, there is a fixed inflow of new entities, at a rate b (assumption 3.2.1). The

master equation for k = 1 therefore reads

Pt+1(1) = Pt(1) + b− (1− b)Pt(1)
1

t
.

Using the same simplification as before gives

p(1) = 1− (1− b)p(1). (3.22)

Hence the share of entities of size one, p(1), can be found directly by solving equation

3.22

p(1) =
1

2− b
. (3.23)

To solve equation 3.21, it is convenient to introduce b̂ = 1
1−b
, so that it can be

rewritten as

p(k) =
k − 1

b̂+ k
p(k − 1), (3.24)
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which implies

p(2) = p(1)
2− 1

b̂+ 2

p(3) = p(1)
2− 1

b̂+ 2

3− 1

b̂+ 3

p(k) = p(1)
(k − 1)(k − 2)...1

(b̂+ k)(b̂+ k − 1)...(b̂+ 2)
. (3.25)

The numerator is (k−1)! = Γ(k), where Γ is the Gamma function. The denominator

should be seen as a ratio of Gamma functions ( b̂ + k)(b̂ + k − 1)...(b̂ + 2) = Γ(b̂ +

k + 1)/Γ(b̂+ 2). Hence,

p(k) = p(1)
Γ(b̂+ 2)Γ(k)

Γ(k + b̂+ 1)
= p(1)(b̂+ 1)

Γ(b̂+ 1)Γ(k)

Γ(k + b̂+ 1)
. (3.26)

Using the definition of the beta function B(a, b) = Γ(a)Γ(b)
Γ(a+b)

,

p(k) = p(1)(b̂+ 1) B(k, 1 + b̂). (3.27)

Substituting (3.23) into (3.27), one obtains the Yule-Simon distribution

p(k) = b̂ B(k, 1 + b̂). (3.28)

Another way to solve (3.24) is to remark that its series is a particular instance of

Gauss hypergeometric series. Starting again from (3.25),

∞
∑

k=1

pk = p(1) + p(1)
1

b̂+ 2
+ p(1)

1

b̂+ 2

2

b̂+ 3
+ · · ·+ p(1)

1 2 . . . k

(b̂+ 2)(b̂+ 3) . . . (b̂+ k + 1)
+ . . .

= p(1)

(

1 +
1

b̂+ 2
+

1

b̂+ 2

2

b̂+ 3
+ · · ·+

1 2 . . . k

(b̂+ 2)(b̂+ 3) . . . (b̂+ k + 1)
+ . . .

)

∞
∑

k=1

pk = p(1)

(

1 +
∞
∑

K=1

K−1
∏

i=0

i+ 1

i+ b̂+ 2

)

. (3.29)

By mere definition of Gauss hypergeometric function,

2F1 [{a1, a2}, {b1}; z] :=
∞
∑

s=0

Γ(a1 + s)Γ(a2 + s)Γ(b1)

Γ(a1)Γ(a2)Γ(b1 + s)Γ(s+ 1)
zs, (3.30)
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it can be seen that (3.29) is

∞
∑

k=1

pk = p(1)2F1(1, 1, b̂+ 2, 1), (3.31)

and therefore, identifying the terms of the sum gives equation 3.26, and so the Yule-

Simon distribution. This connection between the Yule-Simon distribution and the

Gauss hypergeometric function is useful because one can use Gauss hypergeometric

summation theorem,

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (3.32)

with a = 1, b = 1 and c = b̂+2 to evaluate (3.31) and check that it is equal to one.3

In fact, in the study of growing network models and other Polya urns, one

often resorts to the use of generating functions, which allow to derive a differential

equation for the series of the distribution. It is also known that hypergeometric

functions satisfy a certain differential equation. This suggests a link between the

differential equation obtained by using generating functions and the one satisfied by

the Gauss hypergeometric function, which is the Gauss hypergeometric differential

equation:

z(1− z)
d2f(z)

dz2
+ (c− (a+ b+ 1)z)

df(z)

dz
− abf(z) = 0.

To uncover this link, define the generating function

g(z) =
∞
∑

k=1

p(k)zk−1.

It implies zg′ + g =
∑

∞

k=1 kp(k)z
k−1 and z(zg′ + g) =

∑

∞

k=1(k − 1)p(k − 1)z
k−1.

Summing up the master equation 3.21 from k = 1 to∞ and using these definitions,

one gets

b̂g + (zg′ + g)− z(zg′ + g) = 0,

that is

(b̂+ 1− z)g + (z − z2)g′ = 0.

3Ijiri & Simon (1977) use the integral representation of the beta function to prove this result.
The original paper of Simon does not contain this result (perhaps due to the typo in equation 2.13
p. 429), but gives arguments that the series converge when the power law exponent is sufficiently
high. Garibaldi & Scalas (2010) p.268 prove normalization by showing that the partial sum of
the terms tends to one as the number of terms accounted for goes to infinity. For the case of the
Waring distribution, Peterson et al. (2010) in a footnote on p. 16024, use a formula for infinite
sums of factorials. Fenner et al. (2005) used Gauss theorem.
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Following Iguchi & Yamada’s (2007) procedure for the BA model, take derivatives

with respect to z and simplify to get

z(1− z)g′′ + (b̂+ 2− 3z)g′ − g = 0,

which is Gauss hypergeometric differential equation with parameters a = 1, b = 1,

c = b̂ + 2, as it should. As far I am aware of, the derivation of Gauss hypergeo-

metric differential equation for Simon’s model is original, although (3.31) and the

relevance of Gauss Hypergeometric Theorem had previously been noticed (Fenner

et al. 2005). They are not necessary here, but they highlight a more general theory

behind Simon’s model. In chapter 4, the master equation will be non-linear due to

the logistic diffusion of ideas. To prove that the obtained distribution is properly

normalized, a more general hypergeometric theorem (Pfaff-Saalschütz) will be used.

This highlights that not only the distribution obtained in chapter 4 generalizes the

Yule-Simon, but there exists a whole class of under-studied “Saalschützian” Hyper-

geometric Distributions which generalizes the class of “Gaussian” Hypergeometric

Distribution (Gaussian Hypergeometric Distribution include the Yule-Simon and

many well known others, see Johnson et al. (2005)).

Finally, note that in this section the existence of a steady-state distribution has

been assumed. Several papers have studied convergence using different methods.

Kullmann & Kertész (2001) have given complete solutions for the time-dependent

marginal distributions, that is, the probability that a randomly chosen entity in

a randomly chosen realization of the system exhibits degree k. From this expres-

sion, they derived the time-dependent distribution. Levene et al. (2002) studied

perturbed steady-state equations. Hou et al. (2009) use Markov chains to analyze

the evolution of individual nodes, and show that at the level of the bins of the

histogram, a theorem on the convergence of series (Stolz-Cesàro) can be invoked.

3.3 Self-organizing two-mode networks

Simon’s model can be seen as a self-organizing two-mode network. It has two types

of nodes (say items and categories, authors and papers, inhabitants and cities. . . ),

and it is self-organizing in the sense that there is a feedback loop (cumulative ad-

vantage) which nevertheless leads to a clear pattern of organization (a power law

size distribution). However, Simon’s model is too simple for elaborated empirical

settings. For instance, it reproduces Lotka’s law (a power law distribution of the

number of papers per author), but it makes the counter-factual assumption that

papers are always single-authored. This makes the model quite unable to go along

the well documented rise of collaborations in science. Ramasco et al. (2004) pro-
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posed a series of modifications to Simon’s model to study the self-organization of

collaboration networks.

Ramasco et al. (2004) assume that at each period, m̄ new authors form with

n̄ − m̄ existing authors a new team of size n̄ to write 1 paper. Existing authors

are chosen with probability proportional to their existing publication record. This

is an extension of Simon’s model to papers with multiple authorship. Ramasco

et al. (2004) showed that the number of papers per author keeps the form of the

Yule-Simon distribution

p(k) =
n̄

n̄− m̄
B

(

2 +
m̄

n̄− m̄
, k

)

. (3.33)

A related model was proposed by Peruani et al. (2007). In their model, one set

of nodes is an alphabet, that is, a set of elements that can be combined. The other

set represents the combinations. Every period a new combination is created, and

has m edges towards the elements of the alphabet it uses. So, as in Simon’s and

Ramasco et al., one side of the network is growing of one node per period. But in

this case, the other set of nodes – the alphabet – is fixed, equal to N . They study

the degree distribution of the fixed set of nodes, assuming a shifted attachment

kernel, which they choose to write A(k, t) ∝ γk + 1. This model does not have a

steady state, but they found an insightful approximation for the time-dependent

distribution in the long time limit

p(k, t) ∝ (k/t)1/γ−1(1− k/t)
N
γm
−1/γ−1.

Depending on the strength of preferential attachment, they show that this distri-

bution varies from binomial (γ → 0) to U -shaped (γ > N/m− 1).

This behavior was found in another model of a self-organizing bipartite graph

due to Evans (2007) (see also Evans & Plato (2008)). This model has a fixed

number of nodes (E agents and N artefacts) and edges. At each period, only one

end-of-edge is (potentially) modified, always on the same side. In other words,

each agent is connected to exactly one artefact, and at each period, one edge is

detached from an artefact, and attached somewhere (possibly back to the same

artefact). The departure node is chosen with preferential probability, and the arrival

node is chosen with a shifted attachment rule. As emphasized in Evans (2007), it

is important to account for the case in which the vertex from which the edge is

removed is also the one to which the edge is attached. The equilibrium distribution

of Evans’s (2007) model is found by showing that the generating function satisfies

Gauss Hypergeometric differential equation. The equilibrium distribution is thus

expressed in terms of Gamma functions (see Evans (2007) for the exact expression).
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For large k, and if the attachment kernel is sufficiently random (not preferential),

this can be approximated either by a distribution of the beta form

p(k) ∝ k−γ
(

1−
k

E

)Eξ̄

,

or as a power law with exponential cut-off

p(k) ∝ k−γe−ξk.

However, when the attachment is sufficiently preferential, Evans (2007) observes

that an upward curvature appears, as in Peruani et al. (2007).

These models are particularly relevant for this thesis as they showed practically

how to analyze self-organizing two-mode networks, and are the closest to the model

of chapter 4. Other contributions include Peltomäki & Alava (2006), who studied

explicitly degree correlations, and Hébert-Dufresne et al. (2011) who propose a

framework encompassing two-mode and one-mode growing network models. Criado

et al. (2012) proposed a model based on hypergraph theory, where a whole subgraph

is added at each period, which inspired the model of the next section, where I

propose to generalize Simon’s and Ramasco et al’s by adding a complete new two-

mode subgraph at each period.

3.4 Growth by addition of full subgraphs

In this section, I develop a simple model that encompasses Simon’s and Rasmaco

et al’s models. In Simon’s and Ramasco et al’s models, there is one more new

paper per period, and some new authors (In Simon’s, a new author arrives with

a given probability, which corresponds to having a fraction of a new author per

period). Neither Simon nor Ramasco et al. attempt to answer the question of

what happens if several new papers and several new authors arrive at each period.

I address this question explicitly here assuming that all the new authors are co-

authoring all the new papers. The idea is to add a given full subgraph at each

time step. Some edges are going out and are used to connect to the existing graph.

These connections are made using preferential attachment kernels. In particular,

preferential attachment of new nodes of type X to existing nodes of type Y (i.e.

with probability proportional to the degrees of Y -nodes) generalizes the famous

model of Simon (1955) and the “self-organization of collaboration networks” model

of Ramasco et al. (2004), which are recovered as particular cases. I show that there

exists a relationship between the power law exponent of the degree distribution of
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each set of nodes and the number of incoming edges/new nodes of both sets of

nodes. As in section 3.1, the main insight is that the power law exponent depends

on the relative weights of random and preferential attachment. Since attachment is

always preferential (by assumption here), the “random” (non-preferential) part of

attachment comes from the initial degree of nodes. The model is shortly discussed

in its original context of author-paper networks. If we think of projects as sets of

people and papers all connected and arriving simultaneously, the results imply that

Lotka’s law is influenced by project’s size.

A two-mode network has two degree distributions. However, the model is sym-

metric so the equations presented are valid under relabelling of the two partitions.

Let the two partitions be labeled X and Y . We are looking for the probability mass

function for the degrees of Y-nodes, denoted pY (k). Consider an existing graph G.

At each period, a new subgraph, called g, is added to G. This new subgraph has

three parts:

• A complete two-mode subgraph denoted ḡ. It has nX X-nodes, nY Y-nodes,

and (nX · nY ) edges,

• A number of edges from each X-node in g to some Y-nodes in G: mY
o ,

• A number of edges from each Y-node in g to some X-nodes in G: mX
o .

Consider one of the new edges going from new X-nodes to old Y-nodes. Then

AY
t (k) denotes the probability that a Y-node having degree k at time t receives

that particular link. Here I consider preferential attachment, AY
t (k) ∝ k.

An initial condition that is simple and will deliver nice equations is as follows.

At time t0 there is nothing. We start at time t = 1 with g, although some edges are

only stubs. They are not connected to anything, but we count them both in the

degrees of the “emitting” nodes and in the total number of degrees4. From t = 2

onwards we continue as described in the algorithm. With this convention, the total

number of X-nodes at time t is simply wX
t = nX t. Let us also introduce the total

number of edges in g, nE = nXnY + nXmY
o + nYmX

o . Finally, it is useful to define

v = nXmY
o . This is the exact number of new edges which connect to existing Y-

nodes. These ones are the key of the model, since they are those whose attachment is

governed by the attachment kernel. In the sequel, I assume that the new subgraphs

are relatively small. Multiple edges are allowed to avoid complications, but there

tends to be fewer and fewer of them as time goes to infinity.

4This is just to get rid of constants that add pedagogical complications. It does not change
the nature of the results, since these stubs become anyway negligible as the system grows.
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Using the above assumptions and approximations, the master equation for the

number of Y-nodes with degree k is:

P Y
t+1(k)− P Y

t (k) = v
(

P Y
t (k − 1)AY

t (k − 1)− P Y
t (k)A

Y
t (k)

)

, (3.34)

and its initial condition

P Y
t+1(q)− P Y

t (q) = nY − vP Y
t (q)A

Y
t (q), (3.35)

where q = nX+mX
o is simply the degree of an incoming Y-node. The classical “rich

gets richer” attachment kernel is chosen,

AY
t (k) =

k
∑wYt

j=1 kj
=

k

nE t
, (3.36)

where nE is the number of edges in g. Second, the probability mass function p(k)

giving the share of Y-nodes having degree k is the number of Y-nodes with degree

k (P (k)) divided by the total number of Y-nodes (wY
t = tnY ),

P Y
t (k) = wY

t p
Y
t (k) = nY t pY (k). (3.37)

Inserting equations 3.36 and 3.37 into 3.34 and 3.35, and assuming a steady state

such that pt+1(k) = pt(k) = p(k), one obtains

pY (k) =
k − 1

(nE/v) + k
pY (k − 1), (3.38)

and

pY (q) =
1

1 + (v/nE)q
. (3.39)

Now, solving the recurrence equation 3.38 with initial condition 3.39 nicely simplifies

to

pY (k) =
B(α+ 2, k)

B(α+ 1, q)
, (3.40)

where B(, ) is the beta function and

α =
nE

v
− 1 =

nYmX
0 + nXnY

nXmY
0

. (3.41)

can be seen as the number of new edges going to new Y-nodes relative to the number

of new edges going to old Y-nodes. Notice that the sum of the three elements in

the RHS of (3.41) gives nE, the total number of new edges. So the exponent of

the power law depends on how the total number of new edges is split up into its
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nX nY mY
o mX

o γ − 2

Simon (1955) 1 b 1− b 0 b
1−b

RDP (2004) 1 m n̄-m̄ 0 m̄
n̄−m̄

Full subgraphs nX nY mY
o mX

o
nYmX

o +nXnY

nXmY
o

Table 3.1: The values are given assuming that the partition studied is pY . The last column gives
the power law exponent B(k, γ) ∼ k−γ from equations 3.28, 3.33 and 3.40.

.

three parts: the number of edges of the full subgraphs, i.e. the edges going from

new X-nodes to new Y-nodes (nXnY ), the number of edges going from new Y-nodes

to existing X-nodes (nYmX
0 ), and the number of edges going from new X-nodes to

existing Y-nodes (v = nXmY
0 ). Hence, the numerator is related to the degrees of

the new Y-nodes, whereas the denominator is related to the new degrees for the

old Y-nodes. Thus, we find again Simon’s insight: the exponent for the degree

distribution of Y-nodes must depend on the probability (in this case share) of new

(vs. existing) Y-nodes. This result comes from the fact that the edges of newborn

Y-nodes are given uniformly (each node has the same chances to get those edges;

in fact they all have exactly the same number of edges initially), whereas edges

obtained afterwards are given preferentially.

The model admits two interesting particular cases described below and sum-

marized in table 3.1. Ramasco et al. (2004) assume that at each period, m̄ new

authors form with n̄ − m̄ existing authors a new team of size n̄ to write 1 paper

(section 3.3). We want to derive the degree distribution of authors, pY (k), that is,

the probability that a randomly chosen author has written k papers. The number

of new X-nodes is 1, the number of new Y-nodes is m̄. The number of new edges

that goes from a new author to an old paper is zero (mX
o = 0),5 and the number

of new edges that go from a new paper to an old author is mY
o = n̄ − m̄. From

equation 3.41, we can compute α = m̄
n̄−m̄

, giving an exponent in agreement with

their results (equation 3.33).

As a second example, consider Simon’s model (section 3.2). Here one X-node

arrives with one edge which attaches to one new Y-node with probability b, and to

an old Y-node with probability (1 − b). From the master equation point of view,

we can think of it as a new X-node arriving with b new Y-nodes and (1 − b) old

Y-nodes attached. We have nX = 1, nY = b, mY
o = 1− b and mY

o = 0, giving again

the correct formula 3.28. Of course, it should be noted that in Simon’s model b

is a probability, and here mY
o is treated as an integer. But from the point of view

of a rate equation for the height of the bins of the degree distribution, it does not

matter whether we have integer or rational numbers – a point already demonstrated

5This possibility would imply imitation or diffusion, and is discussed in chapters 4 and 5
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in practice by Ramasco et al. (2004).

An important limitation of this model is that existing authors are not full mem-

bers of the projects. Only new authors are linked to all new papers, but the existing

authors of new papers are chosen by one paper at a time.

3.5 Conclusion

This chapter presented a number of recent models of self-organizing multi-mode

networks. Two important models in the context of knowledge systems, Simon

(1955) and Ramasco et al. (2004), were shown to be particular cases of a two-mode

network growing by addition of full subgraphs, which clarifies the origins of the

power law exponent in these models.

A classical critique of economists to this type of work is the lack of clear

(axiomatic) behavioral foundations. In the next chapter, I start from justifiable

premises about behavior to derive the attachment kernel of a growing two-mode

network of agents and ideas.



Chapter 4

Self-organization of knowledge

economies

Abstract

Suppose that homogenous agents fully consume their time to invent new ideas

and learn ideas from their friends. If the social network is complete and agents

pick friends and ideas of friends uniformly at random, the distribution of ideas’

popularity is an extension of the Yule-Simon distribution. It has a power-law tail,

with an upward or downward curvature. For infinite population it converges to

the Yule-Simon distribution. The power law is steeper when innovation is high.

Diffusion follows S-shaped curves.

4.1 Introduction

The importance of knowledge in explaining economic outcomes has been widely

documented. At the individual level, educational training and skills determine

income (Schultz 1961) and capabilities (Sen 1999). At the firm level, innovation is

the source of competitive advantage and profits (Schumpeter 1934). At the country

level, technological change explains most of GDP growth (Solow 1957).

To understand the process of economic development, one should therefore study

the generation and diffusion of ideas. The literature on endogenous growth has

significantly clarified the mechanisms through which knowledge can lead to GDP

growth (Lucas 1988, Romer 1990), but less efforts have been devoted to the study

of the detailed distribution of ideas in simple, decentralized “knowledge economies”

in which agents create and exchange ideas. Some patterns are more likely or ef-

ficient than others (Cowan & Jonard 2004). For economists, it is crucial to have

expectations about the structure of who knows what (the distribution of ideas). For
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instance, since production relies on knowledge, the structure of who knows what

influences the structure of who produces what (product differentiation and coun-

tries’ specialization). Moreover, since knowledge is (mostly) a public good, and is

(mostly) cumulative in nature, the structure of who knows what determines and

is determined by the rate and direction of inventive activity. Therefore, long-run

economic progress depends intimately on the detailed organization of knowledge

systems.

This chapter analyzes the structure of who knows what by deriving the distribu-

tion of ideas’ popularity in a simple model based on the assumption that attention is

allocated between innovation and imitation. The objectives are first, to find condi-

tions under which a stable system can be characterized, and second, to characterize

the resulting organization. In other words, this chapter studies the self-organization

of knowledge economies: when a collection of agents produce and consume knowl-

edge, can we expect a certain form of stability in the distribution of knowledge?

and if so, which is this stable form? I find that if the trade-off between innovation

and imitation is constant, then a stable distribution of ideas’ popularity emerges,

in spite of the disturbing force of innovation being at play, with new ideas arriving

regularly. Moreover, even though which ideas diffuse and which agents are chosen

to receive and diffuse knowledge are stochastic events, self-organization produces a

certain stability in the average overlap among agents’ ideas’ portfolios, and hence

in the distribution of ideas’ popularity. Self-organization can be understood at the

mean-field level, where there exists a fixed point, self-consistency equation from

which one can derive a steady-state that is unique. In other words, when agents

create new ideas and learn random ideas of random friends, after some time the

structure of who knows what will be such that the diffusion process is compatible

with that same structure, even though it is growing due to innovation. Hence it is

a stable, self-organized knowledge economy.

The distribution of ideas’ popularity is, roughly speaking, a power law, due to

the fact that learning random ideas of random friends produces cumulative advan-

tage (or self-reinforcing dynamics) in ideas’ diffusion: the more an idea is known,

the higher the chances that it is found at random in a random friend. However,

since population is bounded, which ensures logistic (S-shaped) diffusion, the power

law has finite support (ideas are known by at most the number of agents in the

population). When the social network is complete, this finite support power law

is characterized precisely, as a discrete distribution which is a particular case of

a Generalized Hypergeometric Distribution, and an extension of the Yule-Simon

distribution. Changing the social network can change the distribution of ideas’

popularity to some extent, and this is investigated mostly using simulations.
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The relationship between the special Pfaff-Saalschützian Generalized Hyergeo-

metric distribution derived here and the Yule-Simon distribution follows from the

fact that the proposed model can be seen as an extension of Simon’s (1955) model.

In Simon’s original model, there are agents and ideas. At each period, a new idea

arrives. With some fixed probability b, it goes to a new agent (created simultane-

ously). Otherwise, it goes to an agent chosen with probability proportional to the

number of ideas that he holds. This process leads to a steady-state distribution of

the number of ideas per agent which has power law tail, and is called the Yule-Simon

distribution. For instance, among many other fields of application, Simon fitted his

distribution using scientific authors and their papers. My starting point is that

diffusion is missing. Scientific papers, like technologies and social norms, diffuse

through the population. For clarity let me abstract from agent heterogeneity, and

consider a fixed number of agents. I still want to have a growing number of ideas,

consistent with reality, but also wish to allow agents to learn ideas of/from others.

Since I contend that attention is limited, I assume that at each period, a randomly

chosen agent chooses either to innovate, or to learn an existing idea. The agent

then gets a new edge in the two-mode network of agents and ideas, a (bipartite)

network where an edge between agent i and idea j means that “i knows j”’. The

other side of the new edge is either an existing idea or a new one (figure 4.1). As

described, the process is close to Simon’s, but with one fixed set of nodes. This

is important because the finiteness of population is necessary for diffusion to be

S-shaped. Simon’s master equation for the degree distribution should be modified,

using a quadratic instead of linear attachment kernel. The resulting distribution is

an extension of the Yule-Simon distribution, and resembles the beta distribution.

It converges to the Yule-Simon when the population is infinite. The Yule-Simon

distribution has one parameter, which depends on the relative rates of innovation

and imitation.

The chapter is organized as follows. The next section discusses related litera-

ture. Section 4.3 presents the model and clarifies key mathematical relationships in

this setup. Section 4.4 gives the main results. Section 4.5 provides some results for

two key generalizations (with a sparse social network, and with differentiated pro-

ductivity of the time spent on imitation or innovation). The last section concludes.

4.2 Related literature

Cohen & Levinthal (1989) argued that R&D activities allow firms to absorb knowl-

edge spillovers from their environment, reinforcing innovation capabilities. This

paper is about the global organization of knowledge systems resulting from the
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allocation of time between “true” (new-to-the-world) innovation and learning/ im-

itation/ diffusion. There is an extensive literature on diffusion (Geroski 2000), but

it generally takes the new technology (idea, product, etc.) as pre-existing, and is

concerned only with adoption, elaborating the mechanisms behind diffusion and

looking for their idiosyncratic traces in empirical data (Young 2009). In the infor-

mation age, much more information is available online, and we could think that

individuals and firms learn from a database, instead of from their friends. Why

would neighborhood effects in learning be so important then? One reason is that

knowledge is tacit, situated, localized or embedded. This stickiness of knowledge

implies that it can diffuse only, or preferably, face-to-face (Breschi & Lissoni 2009).

Relatedly, social embeddedness channels awareness of ideas: one may learn new

knowledge from a book or online after having been referred to it (by a peer). An

important consequence of word-of-mouth interaction is that the diffusion pattern

is likely to be S-Shaped, in agreement with the literature on diffusion (Mansfield

1961). In fact, learning from others naturally introduces increasing returns in ideas’

diffusion due to the fact that well known ideas have more chances to diffuse, because

they have more carriers. In the model below, as in the literature, this exponential

growth is constrained by the population size in such a way that the diffusion is

logistic. Logistic diffusion is well established theoretically and empirically, which

leads to the two following questions: (i) What happens when there are many ideas

competing for attention? (ii) What happens when there is continuous arrival of new

ideas?

A way to characterize a system in which ideas are created and diffuse is by keep-

ing track of the distribution of of ideas’ popularity.1 In the language of networks,

this is the degree distribution of the “ideas” set of a two-mode network of agents

and ideas. I assume one fixed set of nodes (the number of agents does not change)

and one growing set of nodes (the number of ideas increases without bound). This

framework allows to keep track of who knows what in a very detailed way, and pro-

vides a bridge between social network models (a one-mode network of agents) and

epistemic network models (a one-mode network of ideas). Such a representation of

the co-evolutionary dynamics of social and knowledge networks has been used in

empirical studies (Roth & Cointet 2010) and simulation modelling (Börner et al.

2004). Cowan & Jonard (2009) study a closely related system, where firms form

1For models of knowledge growth and diffusion which do not involve networks, see e.g. Jo-
vanovic & Rob (1989), König et al. (2012) and Lucas Jr & Moll (2014). The model presented
here is complementary, because these models are more elaborated in terms of agent’s choice and
economic observables (e.g. GDP or productivity), but my model is richer in terms of the underly-
ing combinatorial structure. For instance, since ideas are discrete in the model below, two agents
with the same number of ideas can imitate ideas of each other, whereas two agents with the same
productivity level cannot learn from each other in e.g. Lucas Jr & Moll (2014).
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an alliance network based on knowledge matching. In their model, firms hold ideas

and form pairwise alliances with other firms in order to innovate. Partner choice

is based on knowledge overlap: too much overlap would mean that partners have

few things to learn from each other; too little overlap may hinder mutual under-

standing. Their model reproduces several empirical facts of R&D networks, such

as small world properties and skewed degree distribution.

The model developed here is also closely related to models of network growth

based on copying (Vázquez 2003). For instance, in Jackson & Rogers’s (2007) model

for social networks, newborn agents choose to link to random existing agents (“ran-

dom meetings”), and to random neighbors of their random meetings (“search”).

Here, cumulative advantage comes from search meetings, because the more friends

an agent has, the higher the chances he has to be found through a friend. Likewise,

in a two-mode network, search can generate cumulative advantage and, ultimately,

fat tail distribution of popularity. This was clearly demonstrated by Evans & Plato

(2008), who consider a fixed set of agents and a fixed set of artefacts. Agents are

linked to one and only one artefact, and, when they are chosen, connect to another

artefact by imitating a friend. Their model is a two-mode network with both sets

of nodes fixed, and a rewiring process. Actors are linked to one and only one arte-

fact, and the distribution of artefacts popularity is studied. Their model applies

for instance in anthropology where one is interested in the transmission of cultural

artefacts. The model proposed below also applies to this context, but assumes that

new artefacts appear over time, and that actors accumulate artefacts over time.

Another closely related model was studied by Ramasco et al. (2004). As Simon,

they consider only the production of ideas (papers) but the number of agents is

allowed to grow and papers are co-authored. Their work focused on reproducing the

empirical data on the “co-authorship” network. Assuming that authors are chosen

for new authorship with probability proportional to the number of their previously

authored papers, Ramasco et al. (2004) derive the Yule-Simon distribution (with

modified parameters) for the distribution of the number of papers authored by an

author, and a shifted power law for the degree distribution of the co-authorship

network. There have been other studies of two-mode or multi-mode networks in

which all sets of nodes are growing. As the model presented here, Peruani et al.

(2007) studied a model in which only one set of nodes is growing, but they analyze

the degree distribution of the non-growing side, while the focus here is on the

growing side. Beguerisse-Diaz et al. (2010) studied a system in which users rate

videos. Liu et al. (2011) study a social tagging system, which can be seen as a

three-mode network (users, resources tagged, and tags). Zeng et al. (2012) show

that certain recommender systems produce more unequal popularity distribution
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than others.

The model proposed below contributes to the literature on “self-organizing”

networks by providing a detailed analysis of the artefact degree distribution under

the assumption of a non-growing population of actors and assuming a specific one-

mode network for agents’ interactions. Technically, the most noticeable feature of

the model presented below is that the probability for a given idea to diffuse at time

t (the attachment kernel) is a quadratic function of its popularity at time t. This

gives rise to a combinatorial interpretation of the partition factor of this attachment

kernel. In the classical growing network model with sub-linear attachment kernel

(Krapivsky et al. 2000), the value of the partition factor of the attachment kernel

cannot be solved for in closed-form, and is computed numerically. In the model

below, such a solution may exist but it is hard to find as it involves solving a

polynomial of order n (number of agents).

More generally, the model presented here relates to a larger literature on re-

inforcing processes in economics (Arthur 1989, Kirman 1993). Following Simon’s

own applications of his model, notably to the size distribution of firms (Ijiri &

Simon 1977), there has been a large literature impossible to review here. In an

influential contribution, de Solla Price (1976) applied Simon’s process to explain

the power law distribution observed for the in-degree of citation networks. He as-

sumed that existing papers are cited with probability proportional the number of

citations that they have already received. This assumption can be microfounded,

by assuming that papers are found by searching through the bibliography of other

papers (Vázquez 2003). The model below allows for an alternative microfoundation

of citation networks. In the next chapter, using the model described below, and

assuming that (an infinite number of) agents cite papers chosen uniformly at ran-

dom among the papers that they have previously learned or written, the predicted

citation distribution is a shifted power law.

4.3 The model

Before turning to the technical presentation of the fully fledged model, it is useful

to present the main assumptions and results as follows:

Assumption 4.3.1 (Knowledge growth and innovation). Knowledge is a set of

discrete ideas. This set is expanding because new ideas are invented over time.

Assumption 4.3.2 (Social embeddedness and diffusion). Agents imitate ideas of

their friends. More precisely, agents choose uniformly at random (u.a.r.) an (un-

known) idea of a friend chosen u.a.r.
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Assumption 4.3.3 (Limited attention and innovation/imitation trade-off). Ho-

mogenous agents supply inelastically a fixed amount of attention to obtain ideas.

Because some ideas must be invented (assumption 4.3.1), and some must be imi-

tated (assumption 4.3.2), attention is split between these two activities. I assume

that this split is the same for all agents and is constant over time.2

Result 4.3.1. Social embeddedness creates cumulative advantage for ideas’ diffu-

sion, that is, if diffusion was unbounded, ideas would diffuse at a rate proportional

to their current popularity.3 However, diffusion is constrained by the population

size, as in logistic diffusion models. Thus, any idea’s diffusion is S-shaped.

Result 4.3.2. This logistic diffusion of sequentially created ideas gives rise to a

steady-state distribution of ideas’ popularity which is close to a power law but with an

upward or downward curvature in the tail. This curvature disappears when n→∞

and the distribution is the Yule-Simon distribution. A higher share of attention

devoted to innovation (respectively, imitation) generates a steeper (flatter) power

law.

Since the model is stochastic, and because the boundedness of the population

introduces a non linearity, the derivations of the steady-state distribution are rather

involved and can obscure the gist of the argument. Hence, before going into the

details of the stochastic model, let me first present a simplified version of the model

that allows to see why learning ideas of friends under an innovation/imitation trade-

off gives rise to a power law distribution of ideas’ popularity. The derivations are

a two-mode version of Barabási & Albert’s (1999) original procedure. Assume an

infinite population and deterministic diffusion. Once an idea is invented, it diffuses.

Since agents learn ideas of their friends, the more carriers an idea has, the more

chances it has to diffuse. So it diffuses at a rate proportional to its popularity.

However, it competes with all other ideas, which also diffuse at a rate proportional

to their popularity – so to write the diffusion rate it will be necessary to divide

the popularity of each idea by the “total popularity” in the system. If exactly one

agent-idea relationship is added per time period, the total of all popularity is the

number of periods, t. Hence kj, the popularity of idea j born at time tj, evolves as

follows:

k̇j(t) = (1− b)kj(t)/t.

2I regard the innovation/imitation choice as exogenous, because the forces determining choice
can be modelled independently, that is, there exists several choice theories compatible with the
innovation/diffusion process that I describe.

3Throughout the paper, the popularity of an idea is the number of times it is known, that is,
the number of agents who have adopted/learned/imitated it.



52 CHAPTER 4. ORGANIZATION OF KNOWLEDGE ECONOMIES

The factor (1 − b) has been added because I assume that a fraction b of time is

spent on innovation, which limits the speed of diffusion. Using the initial condition

kj(tj) = 1 (j is invented by one agent, at some time tj) this differential equation

has solution:

kj(t) =

(

t

tj

)1−b

. (4.1)

Knowing when ideas are born and their popularity, one can tell, at any point in

time, how many of them have a certain popularity. Indeed, the share of ideas

known k times, denoted p(k), can be found starting from the cumulative distribution

function:

Pr(kj ≤ k) = p

(

(

t

tj

)1−b

≤ k

)

= 1− p
(

tj ≤ tk−1/(1−b)
)

.

Assume that ideas arrived sequentially, in such a way that the tj’s are uniformly

distributed i.e. prob(tj = Y ) = 1/t for Y from 1 to t, so prob(tj ≤ Y ) =
∑Y

1
1
t
= Y

t
.

This leads to p(kj ≤ k) = 1−k
−1
1−b . Apply p(k) =

dp(kj≤k)

dk
to retrieve the probability

distribution of ideas’ popularity,

p(k) = b̂k−1−b̂,

where b̂ = 1/(1 − b). It is easy to check that
∫∞

1
p(k)dk = 1. This is a power law

which steepens with b. The power law exponent is best rewritten γ = 2 + b
1−b

to

show that for 0 < b < 1 it is greater than 2, and depends positively on the ratio of

the share of innovation over the share of diffusion.

The heuristic description above does not account properly for the finiteness of

the population, and therefore fails to feature an S-shaped diffusion pattern (see

equation 4.1). It does not include the structure of social interactions, and is deter-

ministic. I describe below a more complete mathematical model and its numerical

(agent-based) simulation.

4.3.1 The algorithm

Consider a two mode network with n agents and w ideas. Ideas are either known

or unknown by any given agent, which is represented by the presence or absence

of a link between an agent and an idea. The number of agents is kept fixed, but

the number of ideas grows. Time is discrete and indexed by t. Denote by Et the

total number of agent-ideas relationships, i.e. the number of edges of the two-mode

network. At the beginning (t = 1), there is one idea known by one randomly chosen

(r.c.) agent (w1 = 1 and E1 = 1). Then at each time period, as illustrated in figure
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4.1, the following algorithm is applied (where random always means uniformly at

random):

I/ Pick an agent i at random.

II/ With probability b, the agent i creates a new idea (a new node is added to

the set of ideas, and an edge is added to the two-mode network, between i

and the new node);

III/ otherwise (i.e. if the r.c. agent does not create a new idea), pick another

agent i′ at random. Then pick at random an idea j among those ideas known

by i′ and unknown by i. Then i learns j (an edge is added to the two-mode

network, between i and j).4

The following section clarifies the setup of the model by deriving key mathematical

relationships implied by the algorithm (I-III).

4.3.2 Preliminary results

This section derives two results which will be necessary later and help understanding

the setting. First, it is explained that the network density is constant, which is key

to obtain a steady-state distribution, and makes clear the importance of assuming

a constant b. Second, an expression is derived for the probability that a r.c. idea is

known by two r.c. agents. This will be useful when deriving the chances that an idea

is unknown by a r.c. agent but known by his friend, which essentially determines

the speed of diffusion of individual ideas and hence the popularity distribution.

Consider a matrix Q which has a fixed number of rows (n agents) and a number

of columns that depends on time (wt ideas). The entries Qij are equal to one if

agent i knows idea j, and zero otherwise. This matrix is the incidence matrix of the

two-mode network where agent i is linked to idea j if and only if agent i “knows”

4If both b and n are very small, there are not enough new ideas to satisfy the number of required
learning events. This problematic configuration always happens with non negative probability,
and to ensure that the model always run, the computer code is as follows: when a r.c. agent
i is supposed to learn but his chosen neighbor has nothing new, i creates a new idea. Again,
there will always exist a positive probability to find a (directed) pair that cannot perform the
exchange. This probability is small in the region of interest, so I do not include this effect in
the derivations. In particular, I consider that a knowledge economy is defined for µ > 0 (µ is
an increasing function of b and n to be defined later. See infra and figure 4.3). Moreover, one
can correct the main theoretical result equation 4.10 simply by using the “empirical” (from the
simulation) values of b = wt/Et and µ (equation 4.4)). This condition µ > 0 illustrates that there
cannot exist a knowledge economy in which, at a global level, ideas are imitated faster than they
are created. This constraint is due to the assumption of inelastic supply of (cognitive) labor. Still,
it is possible for individual agents to imitate faster than they innovate, because one newly created
idea can be imitated (n− 1) times.
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1 2 3 4 5

With probability 1−b,

an existing idea is imitated

r.c. agent

(Diffusion)

agents

ideas 1 2 3 4 5

With probability b

a new idea is created

r.c. agent

(Innovation)

Figure 4.1: Schematic description of the model. At each time step, one and only one of the two
events represented above happens. In both cases, a link is added. The main focus here is on
the degree distribution of the top nodes (ideas’ popularity), p(k). The degree distribution of the
bottom nodes is discussed in 4.7.2 but is purposefully uninteresting (agents are homogenous so
it is binomial). On the left panel, the r.c. agent (in grey) is learning. In this case, a neighbor
has been randomly chosen and turns out to be the leftmost (in white). There are only two ideas
unknown by the r.c. agent and known by the r.c. neighbor (1 and 2). The randomly chosen agent
chooses uniformly at random an idea of the r.c. neighbor that he doesn’t know himself— in the
example above he turns out to choose the second idea (a link (in grey) is added between the r.c.
agent and this idea). On the right panel, the r.c. agent has created a new idea. The social network
between bottom nodes, not depicted here, is assumed to be full throughout the paper except in
section 4.5.1.

idea j. Start at t = 1 with a column vector filled with a one and (n− 1) zeros. At

each period, with probability b, a column is added (a new idea is created). Then,

with probability 1, one entry of Q is changed from zero to one (if a new column

has been added, this modified entry must be in that new column). Since exactly

one 1 is added at each period, the total number of ones in Q, which is the total

number of edges in the network, is Et = t. The total number of ideas wt is a

random variable equal to W if there has been exactly W − 1 successes out of t− 1

trials, success happening with probability b. Hence the expected number of ideas

is E(wt) = 1 − b + bt. Throughout the paper the concern will be on the long run

equilibrium state of the system so I will use wt = bt. Then, it is direct to see

Lemma 4.3.1. The density of the system, defined as the two-mode network density

and denoted D, is stable in the long run:

Proof.

Dt =
Et

nwt

≈

1

nb
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Lemma 4.3.1 shows that if fluctuations due to the stochastic nature of wt are

omitted (which is legitimate in the long run), the density of the two-mode network

is constant (independent of system time t), since b and n are fixed parameters.

Time independence of the two-mode network density suggests that there may exist

a steady state degree distribution. Lemma 4.3.1 shows that an increased rate of

innovation b will make the system sparser (since there are more ideas and agents

are learning less often), whereas a high rate of learning (1 − b) will make it denser.

In this model, growth corresponds to the increment of a column. Diffusion ensures

that the density of the system stays stable, by adding positive entries in existing

columns.

The key to characterize the self-organized steady-state of the system is to find

the number of ideas shared by two r.c. agents, that is, the number of common ideas

in a r.c. pair. This is because diffusion takes place between two agents, and is

conditioned by what both agents know, since an agent learns only something that

his neighbor knows but that he doesn’t know himself. Denoting by Ni the set of

ideas of agent i and by |Ni| its cardinal, we have

Lemma 4.3.2. Consider all pairs of agents (i, i′) in a system with n agents and w

ideas. Then the average (over all pairs) of the number of ideas known by both i and

i′ is

〈|Ni′ ∩Ni|〉 =

∑

i′<i |Ni′ ∩Ni|

#ofpairs
=

∑n
k=1

(

k
2

)

P (k)
(

n
2

) =
w(〈k2〉 − 〈k〉)

n(n− 1)
(4.2)

Proof. Observe that the sum over all pairs of |Ni′ ∩Ni| is simply the total number

of pairwise “overlaps” in the system, i.e. the total number of times that the triplet

“two agents linked to an idea” can be found in the network. Since each idea known

kj times produces
(

kj
2

)

overlaps between pairs, and denoting P (k) the number of

ideas with degree k, the sum can be obtained. Using P (k) = wp(k) and denoting

〈kr〉 =
∑w

j=1 k
r
j =

∑n
k=1 k

rp(k) gives the simplified form.

Note that lemma 4.3.2 holds in quite general conditions but gives only the

average value of pairwise overlap, not its distribution across different pairs. The

average will be very informative because the distribution turns out to be tightly

peaked around its mean, since I have excluded all structural sources of agents’

heterogeneity. In practice, lemma 4.3.2 will often be used after substituting 〈k〉 =

Et/wt = 1/b.

The main objective is to derive pt(k), the probability that a r.c. idea in t is

known k times (i.e. has degree k). Under what conditions will idea j be learned

at time t? First, the r.c. agent i must be learning, which happens with probability
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(1− b). Second, the r.c. pair (i, i′) must be such that j ∈ Ni′\Ni, that is, j belongs

to the set of ideas which are both known by i′ and not known by i. Third, idea

j must be the one chosen among all other ideas j′ : j′ ∈ Ni′\Ni. At each period,

conditional on the event “learning” being realized, exactly one idea must be chosen.

The attachment kernel gives the probability that a particular one be chosen, that

is

At(kj) := Pr(kj(t+ 1) = kj(t) + 1) ;
wt
∑

j=1

At(kj) = 1− b

At(kj) = (1− b)
〈Pr(j ∈ Ni′\Ni)

|Ni′\Ni|

〉

,

where the angle brackets denote average over all possible (ordered) pairs. Since

agents and pairs of agents are ex-ante homogenous, and since there is no source of

strong ex-post heterogeneity, I simply assume that all pairs have the same value of

Pr(j ∈ Ni′\Ni) and |Ni′\Ni|. Hence,

At(kj) = (1− b)
Pr(j ∈ Ni′\Ni)

|Ni′\Ni|
. (4.3)

The probability that j ∈ Ni′\Ni can be computed as follows. We want to know

the number of choices for finding an ordered pair (i, i′) such that j ∈ Ni′\Ni.

There are kj choices for i
′ such that j ∈ Ni′ and (n − kj) choices for i such that

j /∈ Ni. Hence there are kj(n−kj) choices for an ordered pair such that j ∈ Ni′\Ni.

Since there are n(n − 1) ordered pairs, a r.c. pair will exhibit j ∈ Ni′\Ni with

probability
kj(n−kj)

n(n−1)
. The denominator |Ni′\Ni| can be computed as |Ni′\Ni| =

|Ni′| − |Ni′ ∩ Ni|. Using again the assumption that this is the same for all pairs,

|Ni′\Ni| = 〈|Ni′|〉−〈|Ni′ ∩Ni|〉 =
µt
n−1

, where equation 4.2 was used and µ is defined

as

µ(t) := 1−
wt

Et

〈k2〉

n
= 1−

〈(k/n)2〉

Dt

. (4.4)

The last step in equation 4.4 uses wt = bt, Et = t and lemma 4.3.1. I omit the time

subscript in 〈k2〉 =
∑wt

j=1[kj(t)]
2. The attachment kernel equation 4.3 can now be

written

At(kj) =
kj(n− kj)

b̂µnt
. (4.5)

The condition
∑wt

j=1 At(kj) = 1 − b is the same equation as the definition of µ

(equation 4.4). µ ensures that the attachment kernel is correctly normalized, that

is, if the event of period t is imitation, the chances that a particular idea diffuses



4.3. THE MODEL 57

are such that exactly one will diffuse. In this sense, µ characterizes the degree of

competition among ideas. The higher µ, the lower the chances that each particular

idea diffuses. µ indicates how many ideas are available for diffusion, in a precise

sense. Since the chances of “meeting” an unknown idea j is the number of times

that j is known by somebody else (or by a friend, if the friendship network is sparse),

at this level each idea competes with all ideas unknown by a r.c. agent (not with

all other ideas in the system). Algebraically, µ as defined in equation 4.4 admits

the following combinatorial interpretation

Proposition 4.3.1. µ is the average of the individual quantities µi, where µi is the

fraction of edges that are pointing to ideas unknown by agent i.

µ =
1

n

n
∑

i=1

µi ; µi =

∑

j /∈Ni
kj

∑w
j=1 kj

(4.6)

Proof. The denominator of µi is simply the total number of edges, Et. The numer-

ator of µi can be rewritten
∑

j /∈Ni
kj =

∑w
j=1 kj(1 − Qij) where Qij are the entries

of the incidence matrix, equal to one if i knows j and zero otherwise. Hence,

µ =
1

nEt

n
∑

i=1

w
∑

j=1

[kj(1−Qij)].

Transposing the two sums and decomposing the sum over i, this becomes

µ =
1

nEt

w
∑

j=1

[
n
∑

i=1

kj −
n
∑

i=1

kjQij].

It is easy to see that by definition
∑n

i=1 kj = nkj and
∑n

i=1 kjQij = k2
j . Therefore,

µ =
1

nEt

w
∑

j=1

[

nkj − k2
j

]

= 1−
wt

Et

〈k2〉

n

The factor µ(t) is defined at all periods of time and helps characterizing the

dynamics of the system. However, it depends itself on the dynamics of the system.

How is this feedback loop solved? Does the system stabilize? Since the distribution

p(k) depends on the attachment kernel, and the attachment kernel depends on µ

which depends on the second-order moment of the distribution, equation 4.4 is a

fixed point equation, i.e. µ = f(µ, b, n, t). If the popularity distribution is stable,

its second order moment is stable and so is µ.

I show below that assuming that µ is constant and that a steady-state exists,

the steady-state is unique. This gives a steady-state value of 〈k2〉, which can be



58 CHAPTER 4. ORGANIZATION OF KNOWLEDGE ECONOMIES

inserted into equation 4.4 to obtain a steady-state fixed point equation for µ.

4.4 Results

4.4.1 Distribution of ideas’ popularity

In view of the attachment kernel (4.5), the flows in and out of the kth bin of the

histogram can be written explicitly, following the method of Simon. Recall that

Pt(k) is the total number of ideas with degree k at time t. Then,

Pt+1(k)− Pt(k) = Pt(k − 1)At(k − 1)− Pt(k)At(k).

Using Pt(k) = btpt(k) and At(k) from equation 4.5

t
(

pt+1(k)− pt(k)
)

+ pt+1(k) = pt(k − 1)
(k − 1)(n− (k − 1))

b̂µn
− pt(k)

k(n− k)

b̂µn
.

Assuming a steady state in the sense that pt+1(k) = pt(k) = p(k) gives the recur-

rence

p(k)(k(n− k) + b̂µn) = p(k − 1)(k − 1)(n− (k − 1)). (4.7)

Equation 4.7 can be iterated to give

p(k) = p(1)
k−1
∏

i=1

i(n− i)

b̂nµ+ (i+ 1)(n− (i+ 1))
. (4.8)

Making use of the quadratic formula, the denominator can be rewritten (−1)(i −

u1)(i−u2) where {u1, u2} =
1
2

(

n− 2±

√

n(n+ 4b̂µ)

)

. Now consider the definition

of the Pochhammer symbol:

(x)y = x(x+ 1)(x+ 2) . . . (x+ y − 1) =
Γ(x+ y)

Γ(x)
. (4.9)

Expanding the product in (4.8) and using (4.9) on each of the terms gives

p(k) = p(1)
(1)k−1(n− (k − 1))k−1

(−1)k−1(1− u1)k−1(1− u2)k−1

.

From Slater’s (1966) formula I.5 p. 239, (n − (k − 1))k−1 = (−1)k−1(1 − n)k−1.

Therefore,
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Proposition 4.4.1. The steady-state distribution of ideas’ popularity is given by

p(k) = p(1)
(1)k−1(1− n)k−1

(r1)k−1(r2)k−1

, (4.10)

where

{r1, r2} =
4− n±

√

n(n+ 4b̂µ)

2

and

p(1) =

(

1 +
n− 1

nb̂µ

)−1

. (4.11)
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Figure 4.2: Distribution of ideas’ popularity. For each of six configurations of parameters, the
model is run once for 3 × 106 periods (only 106 when n = 5, n = 10). In the left panel, n = 20
and the effect of b is studied. In the right panel, b = 0.4 and the effect of n is studied. The plain
lines are the theoretical results, computed using equation 4.10 and values of µ computed using
the fixed point equation (4.14). These six points of the parameter space are marked in figure 4.3.
When a point in figure 4.3 is in the lower left half of the (µ, b) plane, the corresponding curve in
the figures above exhibit an upward curvature, otherwise it exhibits a downward curvature.

The term p(1) is found by setting up the appropriate master equation, in which

there are no inflows from the 0th bin but there is a probability of innovation:

Pt+1(1) − Pt(1) = b − Pt(1)At(1). Assuming a steady-state and solving for p(1)

gives (4.11).

The probability mass function (4.10) is plotted against simulations in figure 4.2.

In some region of the parameter space, it has an upward curvature in the tail. 5 This

5A similar phenomenon was found by Peruani et al. (2007) on the degree distribution of the fixed

set of nodes, in a growing two-mode network with mixed (random and preferential) attachment,
and a high value of the parameter tuning the relative amount of preferential versus random
attachment. The model of Evans & Plato (2008), which is a fixed two-mode network with rewiring,
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curvature exists when the function admits a minimum at some k = k∗ < n. Using

(4.10), the point at which p(k∗) = p(k∗ − 1) is given by k∗ = 1
2
(1 + n(1 + b̂µ)) and

the point at which p(k∗ +1) = p(k∗) is given by k∗ = 1
2
(−1+ n(1 + b̂µ)) so that we

may take k∗ = 1
2
n(1+ b̂µ). The condition k∗ < n is then the same as µ < 1−b. The

region of the parameter space for which this condition holds, such that an upward

curvature exists, is the lower left half of figure 4.3 (see section 4.4.2). The latter

corresponds to relatively low values of b and n (but conditional on b and n being

large enough to have µ > 0; see footnote 4).

To obtain further insights onto the nature of the distribution (4.10), consider

verifying that the terms sum up to one. These terms are hypergeometric, so the

sum is of the form

n
∑

k=1

p(k) = p(1)
n
∑

k=1

(1)k−1(1− n)k−1

(r1)k−1(r2)k−1

= p(1) 3F2[{1, 1, 1− n}, {r1, r2}, 1].

The five parameters of this generalized hypergeometric function (3F2[. . . ]) satisfy

an important constraint. This 3F2 is 1−balanced, that is, its parametric excess is

equal to one:

(r1 + r2)− (1 + 1 + (1− n)) = 1.

It means that this 3F2 is Saalschützian. Hence, the Pfaff-Saalschütz summation

theorem can be applied to check that (4.10) and (4.11) define a properly normalized

probability mass function

3F2[{1, 1, 1− n}, {r1, r2}, 1] =
(r1 − 1)n−1(r1 − 1)n−1

(r1)n−1(r1 − 2)n−1

=
n(1 + b̂µ)− 1

b̂µn
= 1/p(1).

Note that many other distributions are, in this sense, Pfaff-Saalschützian. More

generally, the steady state distribution (4.10) is a generalized hypergeometric prob-

ability distribution (GHPD). It is named so because its generating function is a

ratio of generalized hypergeometric functions (Johnson et al. 2005). In the case of

(4.10), the generating function takes the following particular form.6

G(z) =
n
∑

k=1

p(k)zk =
3F2[{1, 1, 1− n}, {r1, r2}, z]

3F2[{1, 1, 1− n}, {r1, r2}, 1]
. (4.12)

This class is interesting because there exists a deep connection between Pfaff-

Saalschütz and Gauss hypergeometric theorems, and Gauss hypergeometric function

can also produce a U-shaped distribution, when the relative amount of preferential v.s. random
attachment is high.

6More general cases involving 5-parameters generalized hypergeometric functions are given in
Johnson et al. (2005) and Gutiérrez Jáimez & Rodŕıguez Avi (1997).
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is the generating function of, inter alia, the Poisson, binomial, negative binomial,

hypergeometric, and Waring distribution. In fact each theorem can be obtained

starting from the other (Slater 1966, p. 48-49). The convergence of Pfaff-Saalschütz

to Gauss theorem, applied to the finite population distribution (4.10), shows that

Proposition 4.4.2. For n → ∞, the distribution of ideas popularity is the Yule-

Simon distribution

p(k) = b̂B(k, b̂+ 1), (4.13)

where B() is the beta function.7 The condition
∑

∞

k=1 p(k) = 1 can be verified using

Gauss hypergeometric theorem.

Proof. Consider the limit of each term of (4.10). Assuming lim
n→∞

µ = 1, as will

be justified in section 4.4.2, lim
n→∞

p(1) = b̂

b̂+1
. Also, lim

n→∞
r1 = 2 + b̂. Furthermore,

2− n− b̂µ < r2 < 2− n and (Slater 1966, p.49) lim
n→∞

(1−n)k−1

(2−n−b̂µ)k−1
= lim

n→∞

(1−n)k−1

(2−n)k−1
= 1

so lim
n→∞

(1−n)k−1

(r2)k−1
= 1. Combining all three limits, lim

n→∞
p(k) = b̂

b̂+1

(1)k−1

(2+b̂)k−1
= b̂

b̂+1
(1 +

b̂)B(k, 1 + b̂) which simplifies to (4.13)

It should be emphasized that this result is not a steady-state result. The steady-

state result for all values of n is given in proposition 4.4.1. However, when n is very

large and t is not large enough for finite-size effects to be observed (no idea has

had enough time to diffuse to the whole population), the Yule-Simon gives a good

approximation of the observed distribution.

A last remark on the distribution (4.10) is its relation to the beta distribution.

In the mean field-deterministic-continuous approximation of the stochastic process,

the variable k/n follows a distribution proportional to (k/n)−1−b̂µ(1−k/n)−1+b̂µ(see

4.7.1). However, the support is on [1/n, 1] instead of [0, 1] for the classical beta

distribution, and the restriction on the parameters in the beta (both parameters

must be positive) does not hold. The mean-field deterministic approximation is also

useful to see that the (expected) diffusion is S-shaped (equation 4.17).

The distribution (4.10) is not fully closed form, in the sense that the term µ

appears in it, while also depending on it. I now turn to determining the steady-

state value of µ.

7The beta function is defined in terms of the Gamma function: B(x, y) = Γ(x)Γ(y)
Γ(x+y) . The Gamma

function generalizes the factorial function for non integer values, such that when x is an integer
Γ(x + 1) = xΓ(x) = x!, but x can also take non-integer values. It relates to the Pochhammer
symbol through equation 4.9.
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4.4.2 Properties of the partition factor

Practically, to compute the predicted steady-state distribution, the value µ(b, n) is

needed. This value can be recorded from the simulations, using either (4.4) or (4.6),

which are equal by proposition 4.3.1. However, it is also possible to compute, prior

to the simulations, the tables of µ at its steady-state (so that (4.10) is genuinely

closed-form), for all values of b and n. The steady-state value of µ attained by the

stochastic system turns out to be unique, even though the self-consistency fixed

point equation studied below admits a second fixed point in the interval of interest.

The second fixed point is µ = 1−b for all values of n and can be formally proven.8 As

already mentioned, this fixed point separates the two regions of the parameter space

for which there exists or not an upward curvature in the steady state distribution

(4.10).

In the general case the objective is to solve equation 4.4 for µ with 〈k2〉 taken

at its steady state value. The steady-state value of 〈k2〉 and other moments are

readily determined

Proposition 4.4.3. The moments of the popularity distribution are

〈kr〉 = p1 r+1Fr[{2, 2, 2, . . . , 1− n}, {1, 1, . . . , r1, r2}, {1}].

Proof. Each successive term is found by multiplying by k = (2)k−1

(1)k−1
.

Inserting the steady-state value of 〈k2〉 and wt in equation 4.4 gives the fixed

point equation

µ = 1−
b

n
p1 3F2[{2, 2, 1− n}, {r1, 4− n− r1}, 1]. (4.14)

This equation is solved numerically in the region of interest (b ∈]0, 1[). I com-

puted values of fµ (the RHS of the equation) for 99 values of b and a few values of

n, and then obtained the fixed points by studying at which points µ − fµ changes

sign. The results are reproduced in figure 4.3 where one can see, abstracting from

the µ = 1−b line, that µ is monotonically increasing and concave in b and n. When

the population is large, or when innovation is high, an agent i knows only a small

proportion of all ideas, and hence the popularity of the ideas unknown by i is high

8 Upon substituting µ = 1 − b, which cancels b, one obtains the surprising one-parameter
generalized hypergeometric function identity

3F2[{2, 2, 1− n}, {
1

2

(

4− n+
√

n(n+ 4)
)

,
1

2

(

4− n−
√

n(n+ 4)
)

}, 1] = 2n− 1.

It can be proven using the computer implementation of Gosper’s (1978) algorithm by Paule &
Schorn (1995). On this topic, see Petkovšek et al. (1996).
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Figure 4.3: Left panel: Numerically computed fixed points of equation 4.4 at the steady-state
(i.e. solutions of equation 4.14). From the clearest to darkest points, n = 2, 5, 10, 20, 50, 500. The
six large black dots correspond to the six points of the parameter space used in figure 4.2. Their
position with respect to the line µ = 1− b (above or below) determines the shape of the curvature
in figure 4.2 (downward or upward). Note that darker dots overlap brighter ones along the line
µ = 1 − b. Right panel: The decreasing curves represent the average overlap θ computed using
equation 4.15 (the increasing curves correspond to the fixed point µ = 1− b).

as compared to the total popularity of all ideas. By proposition 4.3.1, this implies

a higher µ.

For small values of n, µ can be found explicitly but at considerable computa-

tional cost. It involves solving polynomials of the order of n. As it turns out, this

polynomial always has a root in µ = 1− b. When n = 2, appendix 4.7.3 shows that

the other root is

µ(n = 2) = −
1

2
+ b.

Finally, note that the values of µ recorded directly from the simulations (unre-

ported) are in good agreement with the numerical solution of equation 4.14. How-

ever, for values of µ close to 0, a significant departure can be observed, especially

for low n. This is due to the fact that in these cases, many innovation events oc-

cur because of learning events failing (the chosen friend does not have any original

ideas to offer, see footnote 4). So, in these cases, the recorded value of µ is not in

very good agreement with the input value of b, chosen in advance of the simulation

as a parameter; however, it is in excellent agreement with the effective value of b

computed as b = wt/t.

It should be emphasized that the convergence of µ(t) to a fixed point indicates

the self-organization of the system. Self-organization results from the feedback loop

between structure and dynamics, which comes from the fact that what is learned

depends on what is known/unknown. Because µ is a structural quantity capturing

the organization of who knows what (proposition 4.3.1), and because it determines

who learns what (equation 4.5), it is a fundamental quantity. Its convergence to a
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fixed point reveals that at this level of aggregation, the system self-organizes into a

stable state. To understand this more intuitively, the next section shows that the

average pairwise overlap is related to µ.

4.4.3 Average overlap

Consider the average overlap between two given agents, defined as the Jaccard index

of their knowledge portfolios

θii′ =
|Ni ∩Ni′ |

|Ni ∪Ni′ |
=

|Ni ∩Ni′ |

|Ni|+ |Ni′ | − |Ni ∩Ni′ |
.

The average over all pairs of agents is

θ = 〈θii′〉 ≈
〈|Ni ∩Ni′ |〉

〈|Ni|+ |Ni′ | − |Ni ∩Ni′ |〉
=

〈|Ni ∩Ni′ |〉

2〈|Ni|〉 − 〈|Ni ∩Ni′ |〉
.

The first relationship is not exact because the expectation of a ratio is, in general,

different from the ratio of expectations. However, pairs are very similar in terms

of the sizes of their intersections and unions, so that the distribution of these sizes

are very tightly peaked, making the approximation fairly good. Now we can use

〈|Ni|〉 = t/n, lemma 4.3.2 and equation 4.4, to get

Proposition 4.4.4. The average overlap between agents is well approximated by

θ =
1− µ− 1/n

1 + µ− 1/n
. (4.15)

Since µ is monotonically increasing in b, the average overlap θ decreases with

innovation and increases with learning. Intuitively, an agent who learns ideas of

others gets closer to them, and an agent who invents his own ideas increases his

distinctiveness. It can also be seen in figure 4.3 (right panel) that θ is also decreasing

in n, because it is harder to maintain a high overlap with everybody when there

are many agents.

Since there is a one-to-one mapping between b and µ, equation 4.15 implies a

one-to-one mapping between b and θ. Hence, for a given number of agents, the rate

of innovation determines the average overlap between two agents’ portfolio. If the

model is reversed in the sense that agents choose to imitate or innovate so as to

have a certain θ∗, then, given n, the effective b = wt/Et is uniquely determined.

In other words, while assuming a fixed innovation-imitation trade-off produces a

certain (self-)organization, assuming a certain self-organization would determine

the innovation-imitation trade-off. This of course would depend on the particular
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assumptions made, and would require further work to be rigorously analyzed. 9

However, this remark helps to emphasize that in this model, if there exists an

optimal overlap θ∗ there also exists an optimal rate of innovation b∗.

4.5 A few generalizations

4.5.1 Social network

The derivation of the distribution (4.10) was made by assuming a complete social

network. Consider an opposite case.

Proposition 4.5.1. If the social network is a circle in which agents have one friend

on each side, the distribution is geometric (with a slight modification for p(n)):

p(k) = b(1− b)k−1 for k ∈ [1, n− 1],

p(n) = (1− b)n−1.

Proof. See Appendix 4.7.4.

For other types of social networks, simulation results are reported in figure

4.4. If we stay with a one dimensional circular lattice, as in proposition 4.5.1, but

with a larger number of neighbors on each side, this creates the possibility for an

idea to be known by two neighbors of an agent, and the derivation above becomes

inexact. However, this configuration would not happen very often, so that for circle

networks with small degree, the distribution stays geometric (panel f on figure

4.4). However, when the number of neighbors increases to a maximum, the network

becomes complete, so that the degree distribution converges to the one obtained

under the complete network assumption (see panel d). Note that the important

criterium to determine the shape of the popularity distribution is not the average

degree of an agent, because the competition among ideas cancels out this effect. For

instance, panels a and b show that even sparse Erdős-Renyi networks give results

roughly similar to complete networks.10 The decisive criteria is the dependence

9Using simulations, I checked the following. At each period, a directed pair of agents is chosen
at random. Agent i computes θii′ and learns from i′ if θii′ is less than some predetermined θ∗,
otherwise he innovates. As expected, in the simulations explored, pairs of agents converge to
θii′ ≈ θ∗ and the system itself exhibits wt/t = beffective ≈ btheory where btheory is computed by
inverting the relationship between θ and b through µ.
10There was a probability that these random networks would not be fully connected. I forced

connectedness by repeating the algorithm of graph creation until one fully connected was created
– so strictly speaking, they are not Erdős-Rényi but random graphs from a (slightly) restricted
ensemble.
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Figure 4.4: Simulations for 106 periods, using different social networks, n = 20 and b = 0.2. The
plain line is the theoretical result for a complete social network, as in figure 4.2. The dashed
line is the theoretical result for one-dimensional 2-regular circular lattice (proposition 4.5.1). The
first line of the panel shows two (connected) Erdős-Rényi (p = 0.1, 0.4). The second line shows
two q-regular circular one dimensional lattice (q = 2, 10). The third line shows two 4-regular one
dimensional circular lattice, with one rewired edge for the right one. The fourth line shows two
modular networks, constructed by linking two complete subgraphs. The fifth line shows a star
network, and a combination of a star and a one dimensional 2-regular circular lattice. The last
line shows two regular trees, one with two children, and one with 4 children (some nodes have less
children, due to the requirement that n = 20).

or independence of the attachment kernel on kj, that is, the fact that the rate

of diffusion of an idea depends or not on its popularity. While relating arbitrary

social network structure to the popularity distribution by analytical methods is out

of the scope of this chapter, it can be argued heuristically that social networks

with a relatively high number of short cycles will tend to produce an attachment

kernel which is not preferential, whereas networks which are closer to trees, such as

Barabási-Albert or Erdős-Rényi networks, will tend to produce attachment kernel

which are preferential. This comes from the fact that when there are short cycles

in the social network, ideas do not diffuse mostly to agents whose neighbors are

ignorant of that idea.
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4.5.2 Differentiated productivity

This section relaxes the unrealistic assumption that conditional on investing one

unit of time, agents get as many ideas by learning as by innovating. Instead of

learning or creating one single idea, agents now have a fixed productivity. When

they innovate, they create λP ideas, and when they learn, they learn λL ideas

(sampling a new neighbor with replacement every time).11 The attachment kernel

is now given by

At(k) = (1− b)λL
P (j ∈ Ni′\Ni)

∑

j P (j ∈ Ni′\Ni)
,

where P (j ∈ Ni′\Ni) =
k(n−k)
n(n−1)

does not change. The productivity of learning

does not change the nature of the diffusion process, but simply its speed. The

productivity of innovation now determines the total number of ideas, wt = bλP t,

and the total number of edges Et = t(bλP+(1−b)λL). It still holds that.
∑w

j=1 P (j ∈

Ni′\Ni) =
nEt−wt〈k2〉

n(n−1)
so that

At(k) = (1− b)λL
k(n− k)

nEt − wt〈k2〉
=

k(n− k)

(ζ + 1)µnt
,

where µ is still defined by equation 4.4, and the combinatorial interpretation (propo-

sition 4.3.1) still holds. The parameter ζ is defined as ζ = bλP
(1−b)λL

. Note that if we

set λP = λL = 1, we find ζ+1 = b̂ as it must to recover the attachment kernel (4.5).

The procedure to find the steady-state distribution (section 4.4.1) can be followed

here as well. The resulting degree distribution simply now balances the rate of

innovation bλP with the rate of learning (1 − b)λL (instead of only b with 1 − b).

In the limit of an infinite population, the exponent of the Yule-Simon was 2 + b
1−b

,

and with productivity parameters it can be shown that it is 2 + ζ. This highlights

that the original and productivity-augmented models can really be thought of as

one parameter (ζ) models.

4.6 Conclusion

The importance of innovation and knowledge diffusion in economic systems is widely

recognized. Likewise, the literature has emphasized the role of interactions and

self-reinforcing dynamics in shaping the structure and dynamics of economies. This

context calls for a fundamental understanding of the self-organization of knowledge

economies: considering interacting agents who innovate new-to-the-world ideas and

11λL must be a small number to ensure that there are enough ideas to be learned. See footnote
4.
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imitate existing ideas, what can we say about the likely long term structure of who

knows what?

In this paper, I have characterized a parsimonious model of knowledge diffusion

and growth. In the model, learning ideas of friends implies self-reinforcing but

bounded diffusion, leading to an S-shaped or logistic diffusion curve. Together with

a continuous arrival of new ideas, a stable organization emerges in terms of the

distribution of ideas’ popularity. In general, because who knows what determines

who learns what, there is a feedback loop between the structure and dynamics of

the system. In the model studied, this feedback loop leads to a stable state which

is thus “self-organized”. Moreover, it is shown that under most circumstances, the

distribution of ideas’ popularity is close to a power law: most ideas are known by

only a few agents, who just discovered them, and only a few ideas have diffused

completely. A higher rate of diffusion, relative to the rate of innovation, implies

a fatter right tail of the popularity distribution (more diffusion implies more very

well known ideas). Moreover, the structure of the social network on which ideas’

diffusion takes place matters in a non trivial way. Heuristically, networks with short

cycles, as opposed to tree-like networks, prevent ideas from diffusing as fast as they

could, leading to less skewed distribution of ideas’s popularity.

The main consequence of these results is that in a society which facilitates

relatively more diffusion than innovation (which implies a high λL, and a low b if

the choice of innovation/ imitation depends on the relative returns to each activity),

we should expect the distribution of ideas’ popularity to be very skewed and the

average overlap to be very high. On the other hand, in a society which favors

the emergence of genuinely new ideas, we should expect the distribution of ideas’

popularity to fall faster, and the average overlap to be lower.

Finally, the model or some technical aspects of this paper may be of use in other

applications. Since the model presented is a non-linear (logistic) extension of the

widely used model of Simon’s (1955), and given the large number of phenomena

across which power laws and logistic growth are observed, it might be of interest

beyond the literature on knowledge systems, and it contributes to the ongoing

research agenda on the evolution of networks.



4.7. APPENDIX 69

4.7 Appendix

4.7.1 Distribution of ideas’ popularity: mean-field continu-

ous deterministic approximation

Consider that each idea j diffuses deterministically and assume that time is contin-

uous. Using (4.5),
dkj(t)

dt
=

kj(t)(n− kj(t))

b̂µnt
. (4.16)

This is a first-order ordinary differential equation. It looks similar to Verhulst’s

equation of population growth, except that it has non constant coefficients since

t appears on the RHS. It is non-linear, but it is a Bernoulli equation so it can be

linearized and integrated. We could also note that it is an exact differential equation

and apply relevant techniques. The simplest is probably to separate variables to

obtain

b̂µn

∫

1

k(n− k)
dk =

∫

1

t
dt

b̂µ
[

log

(

k

k − n

)

+ C1

]

= log(t) + C2

kj(t) = n/(1− Ct−1/b̂µ),

where C is an arbitrary constant. Using the initial condition kj(tj) = 1, it follows

that C = (n− 1)/(t
−1/b̂µ
j ), and therefore the solution of (4.16) is

kj(t) = n

[

1 + (n− 1)

(

tj
t

)
1−b
µ

]−1

. (4.17)

Note that equation 4.17 is a logistic curve, that is, diffusion is S-shaped (from

equation 4.16,
d2kj(t)

dk2 changes sign at kj = n/2). The continuous distribution is

computed thus (using equation 4.17):

p(kj ≤ k) = p



n

[

1 + (n− 1)

(

tj
t

)
1−b
µ

]−1

≤ k





= 1− p

(

tj ≤

(

kj − kjn

kj − n

)b̂µ

t

)

.



70 CHAPTER 4. ORGANIZATION OF KNOWLEDGE ECONOMIES

Since the tj’s are uniformly distributed
12 their probability mass function is Pr(tj =

Y ) = 1/t for Y from 1 to t, so Pr(tj ≤ Y ) =
∑Y

1
1
t
= Y

t
. This leads to

p(kj ≤ k) = 1−

(

kj − kjn

kj − n

)b̂µ

.

Applying p(k) =
dp(kj≤k)

dk
gives

p(k) = b̂µn(n− 1)−b̂µ (n− k)−1+b̂µ k−1−b̂µ. (4.18)

One can check that this is a proper distribution function,
∫ n

1
p(k)dk = 1. This

distribution has the shape of a particular beta distribution. Making the change of

variable x = k/n, we have

p(x) ∝ (1− x)−1+b̂µ x−1−b̂µ,

which is almost the definition of a beta distribution beta(α, β) with α = −b̂µ and

β = b̂µ. However, negative parameters are not allowed in the definition of the beta

distribution. Moreover, the factor of proportionality is different from that of the

beta distribution because the support is different. This distribution has to have a

strictly positive support, because the integral diverges at 0.

4.7.2 Distribution of agents’ number of ideas known

Below it is shown that the the number of ideas known by a r.c. agent has a binomial

distribution. To “know” ka ideas at time t, a r.c. agent needs to have been chosen

exactly ka times, and not chosen exactly (t − ka) times. Thus it follows that the

distribution of agents’ number of ideas known is the binomial distribution

pt(ka) =

(

t

ka

)(

1

n

)ka (

1−
1

n

)t−ka

.

4.7.3 Exact solution of the fixed point equation for n = 2

Written explicitly the fixed point equation 4.14 becomes

µ = 1−
b

n
p(1)

n
∑

k=1

k2 (1)k−1(1− n)k−1

(r1)k−1(4− n− r1)k−1

. (4.19)

12Contrary to one-mode scale free network models, this is not exactly true, since there is not
one new idea per period, but only one at each period with probability b. The uniform distribution
is, nevertheless, an appropriate approximation since the tjs of many independent realizations of
the stochastic process are uniformly distributed over [1, t].
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For n = 2, the series has only two terms and r1r2 = −2b̂µ. The series itself is thus

1 + 4 1−2
r1r2

= b̂µ+2

b̂µ
. The term p(1) is (p1|n = 2) = 2b̂µ

2b̂µ+1
. Substituting into (4.19),

1− µ =
b(2b̂µ)(b̂µ− 2)

2(2b̂µ+ 1)a
=
b(b̂µ+ 2)

2b̂µ+ 1
,

that is

−2b̂µ2 + b̂µ+ 1− 2b = 0

µ = {1− b,−1/2 + b}. (4.20)

This result can also be derived using the inclusion/exclusion formula or by writing

the dynamic process for µi.

4.7.4 Distribution of ideas’ popularity when the social net-

work is a circle

Consider a network in which agents are placed around a circle and have only one

friend on each side. Because ideas diffuse face to face, the number of social network

(directed) pairs with j ∈ Ni ∩ Ni′ is simply 2(kj − 1). It is also easy to see that

there are only two directed pairs such that j ∈ Ni′\Ni. In total, there are 2n

directed pairs. Thus Pr(j ∈ Ni′\Ni) =
2
2n
, so that|Ni′\Ni| =

w
n
. The attachment

kernel is then At(kj) =
1−b
bt
, and the master equation for the steady state becomes

p(k) = (1 − b)p(k − 1). The first term is found to be p1 = b, hence iterating the

master equation gives the geometric distribution

p(k) = b(1− b)k−1.

However, when an idea is known n times, it cannot diffuse more. There are no bias

as long as k ≤ n− 1, but for k > n it must be that p(k) = 0. For k = n the master

equation becomes

p(n) =
(1− b)

b
p(n− 1)− 0

p(n) =
(1− b)

b
b(1− b)n−2 = (1− b)n−1.

The key point in the derivation above is that Pr(j ∈ Ni′\Ni) is independent of

kj. As long as this is the case, the same distribution will be obtained, because of

the normalization by the sum (the competition among ideas).





Chapter 5

Knowledge diffusion and the

structure of citation networks

Abstract

The distribution of citations received by scientific publications can be approximated

by a power law, a finding that has been explained by “cumulative advantage”. This

chapter argues that socially embedded learning is a plausible mechanism behind

cumulative advantage. More generally, irrespective of the source of cumulative

advantage, the citation distribution reflects the popularity distribution of ideas,

that is, “who knows what” determines “who cites what”. Hence the shape of the

citation distribution depends on the relative amounts of innovation and diffusion,

with more diffusion (less innovation) implying flatter power laws. The structure of

the social network on which diffusion takes place also influence the distribution of

papers’ popularity and, hence, citations received.

5.1 Introduction

In a paradigmatic model of the evolution of science, de Solla Price (1976) assumed

that new papers tend to cite preferentially the papers already well cited. But do

scientists cite the most cited papers or do they read the most well known ones?

This chapter argues that the former is an artefact of the latter. In other words,

the so-called preferential attachment of new papers to well-cited existing papers

comes from a preferential learning mechanism through which scientists learn pref-

erentially the popular papers and cite uniformly at random among the papers they

know. While generally the literature claims that preferential citing occurs because

scientists cite papers found in the bibliographies of other papers (“copying” models),

this paper suggests that the main mechanism behind preferential learning resides

73
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in the fact that scientists learn papers known by their peers. It is found that these

assumptions predict a distribution of citations received similar to models of net-

work growth by copying, and, to a good extent, compatible with recent empirical

studies. In copying models, the distribution is determined by the relative amounts

of papers found at random or through search. In the model introduced here, the

citation distribution is determined by the way in which diffusion takes place, and

by the way in which attention is allocated between knowledge consumption and

knowledge production. Roughly speaking, preferential learning (learning popular

ideas) is responsible for the power law distribution of citations, and the slope of

this power law is determined by the relative amounts of time devoted to innovation

(writing papers) or to diffusion (reading papers).

Since the prominent study of de Solla Price (1965), a large literature has re-

peatedly found that the number of citations received by scientific papers is approx-

imately distributed according to a power law,1 that is, the share of scientific papers

having received k citations is p(k) = Ck−γ , where C is a normalizing constant and

with the power law exponent γ generally lying between 2 and 5. This finding has

been explained by a mechanism that was originally pointed out to explain another

well known power law in scientometrics called Lotka’s law of scientific productivity,

which states that the number of authors having published k papers follows again

a power law. Simon (1955) proposed a model to derive Lotka’s law as follows. He

assumed that at each period one new paper appears, and it has a new author with

probability v, otherwise this new paper is authored by an author who is chosen

from the pool of existing authors with probability (called attachment kernel) pro-

portional to his publication record, thus creating a “rich get richer” effect. These

two principles (growth and positive feedback) are enough to generate Lotka’s law.

de Solla Price (1976), however, was interested in the citation network. Arguing for

the existence of what he dubbed “cumulative advantage”, de Solla Price derived a

power law distribution of citations received from the following assumption: a paper

receives citations at a rate proportional to the number of citations that it already

has, that is, there is a process of preferential citing by which papers cite preferen-

tially the papers that have been already well cited. The purpose of this chapter is

to show that a power law-like distribution can emerge if we assume that scientists

cite uniformly at random, but learn preferentially the papers which are already well

known. A formal model is built using a growing two-mode (author-paper) network

in which there is a link between an author and a paper if the author has produced

or has learned the paper. Thus, the focus shifts from the dynamics of the epistemic

1Or a relatively similar law (to be discussed below). In all cases, the distribution is very (right)
skewed, indicating a high level of inequality, where very few papers receive a very high number of
citations, while the large majority of them receive none or a few.
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network (the citation network alone) towards the co-evolution of the socio-epistemic

network (the social network of authors, the citation network, and the author-paper

network). In the model, the number of citations received by a paper is a direct

function of its popularity, defined as the number of people knowing the paper. In

fact, it seems reasonable to say that authors cite what they know; but it implies

that the one-mode network dynamics (citations) depends on the structure of the

two-mode network (popularity).

One mechanism that can create cumulative advantage in popularity is socially

embedded learning. To see this, observe that if an agent chooses uniformly at

random a paper known by another agent, then papers are chosen with probability

proportional to their popularity. By reference to the landmark model of scale-free

networks (Barabási & Albert 1999), in which newborn agents choose preferentially

highly connected friends (“preferential attachment”), I call “preferential learning”

the preferential attachment of people to papers that occurs when agents are choosing

random ideas of random friends. In this case, the mechanism generating preferential

learning is a two-mode version of what has been proposed for one-mode networks, a

form of copying or referral (Kleinberg et al. 1999, Vázquez 2003, Jackson & Rogers

2007).

The model assumes that a population of agents read papers of others and cite

part of what they know when writing their own papers . Under certain conditions

(infinite population and complete social network), socially embedded learning can

generate cumulative advantage in diffusion. Under additional restrictive assump-

tions about the productivity of the time spent writing/reading papers (only one

paper can be written or learned per period), it is possible to estimate empirically

that the share of time spent writing papers is about a third, with two thirds of the

time devoted to reading/learning activities.

However, the structure of the social network can affect the distribution of popu-

larity (chapter 4 section 4.5.1). Furthermore, there may be other factors influencing

the diffusion process. To show that the creation/diffusion trade-off determines the

shape of citation distribution, I propose a model in which agents can learn and

create several ideas per time period, and ideas diffuse with probability proportional

to popularity plus a constant a, intended to capture all the factors preventing pure

preferential learning, including clustered (with many short cycles) social networks,

preference for original or novel ideas, media (recommender systems and search en-

gine) bias toward non popular ideas, etc.

The chapter is structured as follows. Section 5.2 reviews the literature. Section

5.3 presents the model. Section 5.4 gives empirical observations. The last section

concludes.
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5.2 Related literature

The model is related to a long tradition of modeling science, and in particular

citation networks (section 5.2.1). The availability of very large datasets has revived

a debate regarding the best functional form for empirical citation distributions

(section 5.2.2). Meanwhile, many have argued that two-mode networks are an

insightful way of representing science (section 5.2.3). This modelling standpoint

is easily backed up by social theories of knowledge such as actor-network theory

(section 5.2.4).

5.2.1 Models of citation networks

The literature on citation networks has become prominent following the seminal

contribution of de Solla Price (1965) who explicitly conceived scientific publications

and their bibliographies as a citation network, and explored the power law nature

of the citation distribution. Power laws are ubiquitous in natural and artificial

systems, and in the 1950’s they had already been found for city sizes by Zipf (1949)

and for biological genera sizes by Yule (1925), which motivated the paper by Simon

(1955). Simon’s model is in fact a growing two-mode network, but de Solla Price

(1976) showed that it could be used to analyse a growing citation network. He

assumed that new papers constantly arrive and cite previous papers with probability

proportional to their already accumulated stock of citations.

One problem with this heuristic is that since papers start their life with zero

citations, they would have no chance to receive their first citation. In his original

article, Price simply counts publication as the first citation, such that everything

happens as if papers were arriving with an in-degree equal to one. Dorogovtsev

et al. (2000) have generalized de Solla Price’s (1976) model2 to allow for an initial

attractiveness (call it a), and showed that the exponent of the (shifted) power law is

given by 2+ a/h. Hence, in this theory, the slope of the shifted power law depends

on two parameters: the bibliography size (h) and the initial attractiveness (a).

The scale-free network model (Barabási & Albert 1999) has triggered an impor-

tant amount of research on growing networks, providing new inputs for the under-

standing of citation networks. For instance, superlinear preferential attachment, the

assumption that existing nodes receive new links at a rate more than proportional

to their degree (Krapivsky et al. 2000), and initial attractiveness (Dorogovtsev et al.

2Newman (2009) showed that the in-degree distribution of Dorogovtsev & Mendes’s (2000)
model can be simplified as a ratio of beta functions, and Golosovsky & Solomon (2012) found its
name to be the Waring distribution (this can be checked from its generating function defined in
Irwin (1963), appendix II p.29). Throughout the paper I will refer to “Price’s model”, but credit
is due to all these authors for extending and clarifying Price’s original contribution.
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2000) have been used to explain the in-degree distribution of the patent citation

network by Sanditov (2005). Superlinear preferential attachment and aging (Doro-

govtsev & Mendes 2000) have been used in the same context by Csárdi et al. (2007)

and Valverde et al. (2007).

Another strand of literature has focused on the idea that authors typically cite

recent literature, and then cite papers cited by this first article. An ingenious

empirical study is that of Simkin & Roychowdhury (2012), who have shown that

misprints in citations tend to repeat (in fact, the number of misprint repetitions

follows a power law). They propose a model which allows them to estimate that 70

to 90% percent of the citations are copy/pasted from other papers.3 Another recent

contribution, by Peterson et al. (2010), explicitly distinguishes between two mecha-

nisms underlying citations. In the direct mechanism, which occurs with probability

c, a paper simply gets to be known and cited (the new paper cites every old paper

with equal probability). In the indirect mechanism, which occurs with complemen-

tary probability (1−c), the paper cited is taken from the bibliography of the known

paper (thus the new paper cites every old paper with probability proportional to

the in-degree of the old paper). These assumptions generate a rule for citation sim-

ilar to preferential attachment with initial attractiveness. The latter comes from

the random choice of papers, and preferential attachment comes from the search

mechanism. They find a power law exponent equal to 1 + 1
c
.

The difference between the two mechanisms described above is related to Jackson

& Rogers’s (2007) model for social networks, where newborn agents choose to link

to random existing agents (“random meetings”), and to random neighbors of these

first chosen agents (“search”). Atalay (2013) argued that these simple “mixed-

attachment” (random and preferential) models cannot account for differences in

citations received by papers of similar age. He modified the model by introducing a

fitness function, as in Bianconi & Barabási (2001), to account for the differentiated

quality levels of the papers.

In the context of patents, Ghiglino & Kuschy (2011) have proposed that the

origin of the in-degree distribution is to be found in the heterogeneous nature of

patent’s applicability. They assume that there is a fixed number of patent classes,

each of which sees new patents arriving following a Poisson process. Each patent

i has a type µi and a broadness ai which determines its support Fi = [µi ± ai].

3According to them, copying a misprinted citation constitutes evidence that the faulty author
has not read the paper. One may dispute this interpretation, but their data at least suggests that
sometimes authors know, among their references, which one cites another, and use this information
to save time in preparing their reference list. From this, it is tempting to infer that an author
became aware of a certain paper by seeing it referenced in another paper. Nevertheless, one can
think of a situation in which an author knows a paper, see it subsequently cited by another paper,
and copy the citation from this last paper.
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When a new patent arrives, it cites the youngest patents which are in the support of

technologically related but not-already-existing patents. As a result, the probability

of patent i being cited is proportional to its broadness, ai, so the distribution of

citations received also depends on the distribution of the ai’s.

Bramoullé et al. (2012) also propose a model to explain the pattern of citations,

though their main focus is on “long-run integration”. Agents are of different types,

and long-run integration occurs when the distribution of types of a node’s friends

becomes the same as in the whole population. Again based on Jackson & Rogers’s

(2007) idea of an initial random choice followed by neighbor-picking, Bramoullé

et al. (2012) also add paper’s type, and a homophilous process: the initial random

choice of papers is biased towards same type (same subfield) papers. Their key

insight is that, as time passes, the search process becomes more prevalent than the

random meetings. Since in-degree is correlated with time, if the search process is

unbiased we should observe a form of integration, which they confirm empirically on

the American Institute of Physics dataset (1985-2003, 207,912 papers): as in-degree

increases, the share of citations from same-type papers decreases.

This literature recognizes that authors must know the existence of a paper before

they cite it, but does not explicitly keep track of who knows what. An exception

is the TARL (Topic, Aging and Recursive Linking) model of Börner et al. (2004).

They proposed that authors and papers co-evolve, but additional features of their

model (papers’ topics and aging) prevent them from finding closed-form expressions

for the degree distributions. Notwithstanding details, the main difference with the

model presented here is that they assume that authors, at each period, choose a

number of items to read among all existing papers, and then scan the bibliographies

of these papers to find additional literature. By contrast, in the learning-based

model below, authors do not find new references by looking in the reference list of

existing papers; they discover new papers to learn by choosing at random a paper

known by a friend. Another important difference is that the TARL formulation does

not explicitly model the trade-off between learning existing papers and producing

new ones. This distinction is central here, where it is shown that the allocation of

attention between knowledge consumption and production determines the shape of

the citations distribution.

5.2.2 Degree distribution of citation networks

The statistical analysis of power laws is a rather technical and controversial topic

(Perline 2005, Stumpf & Porter 2012) summarized in Clauset et al. (2009) and

Gabaix (2009). Regarding citations data, the early contribution of de Solla Price

(1965) and Seglen (1992) have been followed since the turn of the century by a
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number of studies on large datasets, following the influential note of Redner (1998),

who estimated that the tail of the distribution for the two datasets he studied

could roughly be fitted by a power law with an exponent around 3. Arguing that a

stretched exponential function (Laherrere & Sornette 1998) is helpful in fitting the

left side (papers with few citations) but fails in the tail, Tsallis & De Albuquerque

(2000) introduced a form which can fit the whole distribution, namely p(k) ∝

[1 + (g − 1)λk]
−g

g−1 , where g and λ are parameters, and can be rewritten p(k) ∝

( 1
(g−1)λ

+ k)
−g

g−1 to show that it is a particular case of the shifted power law p(k) ∝

(r + k)−γ , with a certain correlation of its parameters.

Several recent papers have used massive datasets to discriminate between the

three major candidates: power law, shifted power law, and log-normal.4 Stringer

et al. (2010), looking at the ultimate number of citations received (i.e considering

only papers which are not cited anymore), found that the distribution is a discrete

version of the log-normal. Albarrán & Ruiz-Castillo (2011), with a huge dataset and

considering citations received after 5 years, found that in most fields it is not possible

to reject the hypothesis of a power law for the tails. Eom & Fortunato (2011), using

a citation network constructed from papers published in American Physical Society

journals, compared the fits given by the power law, the log-normal, and the shifted

power law, finding that the last one is the best.

5.2.3 Two-mode networks

Sociologists have long been using two-mode networks to analyze social phenomena

(Freeman 2003). For instance, the classical paper of Breiger (1974) studies the dual

relationship between individual people and groups using a two-mode network where

one mode is the actors, and the other is the groups to which they belong or the

events that they attend. The intuition here is that actors are linked through their

common affiliations or participation in certain activities. Indeed, although many

classical concepts for one-mode networks have been extended to two-mode networks

(Faust 1997, Latapy et al. 2008), two-mode networks are often projected into one-

mode networks, in which two actors are linked if they have a common affiliation.

However, many have argued that in most applications it is better to stick with

two-mode networks, which allow, inter alia, to study the co-evolution of the two

sets of nodes. For instance, Roth & Cointet (2010) studied empirically a scientific

collaboration network and the concepts used in the associated articles, effectively

characterizing socio-semantic co-evolutionary dynamics.

The model below is close to this literature as it adapts de Solla Price’s (1976) and

4Or other more complicated distributions such as the modified bessel function, the stretched
exponential, etc. See the literature review in Eom & Fortunato (2011).
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Barabási & Albert’s (1999) models to a two-mode network framework, following the

work of Ramasco et al. (2004) which focused on co-authorship networks. Ramasco

et al. (2004) considered both the set of actors and the set of papers, but only the

production of papers. They proposed that at each time step, a new paper arrives,

this paper having na authors. The authors are partly new, and partly taken from

the existing set of authors proportionately to their existing number of authored

papers. Thus, a difference with the model proposed below is that actors create

new papers but they never learn existing ones. Another difference is that Ramasco

et al. (2004) are interested in the distribution of the number of papers per author

(whereas the interest here is in the number of agents knowing a given paper, which

is the other side of the two-mode network), and on the projection of the two-mode

network into its “co-authorship” one-mode projection (whereas projections are not

considered here).

In summary, Simon showed that growth of the number of papers and cumulative

advantage of authors regarding new authorship generates Lotka’s law. de Solla Price

(1976) showed that growth of the number of papers and cumulative advantage of

papers regarding new citations generates scale-free citations networks.5 Ramasco

et al. (2004) showed that growth of the number of authors and papers and the

cumulative advantage of authors regarding authorship generates Lotka’s law and

a scale-free co-authorship network. Chapter 4 shows that growth of the number

of papers and cumulative advantage of papers regarding new diffusion generate a

scale-free distribution of papers’ popularity. This chapter will use this last result

to study cumulative advantage in receiving citations.

5.2.4 Science in the making: some arguments for actor-

paper systems with learning

Perhaps one of the most general, least controversial statement about scientists is

that they are learning. But what do they learn? Once we assume that they learn

knowledge items nicely encoded into “papers”, the question becomes: what is the

structure of this actor-paper network? There has been a number of models of

knowledge production and diffusion (Cowan 2005), showing that network structure

influences the distribution of knowledge. The point made here is that general in-

formation about knowledge diffusion can be inferred from citation networks. It

is proposed to model the self-organization of science as a morphogenesis of the

actor-paper system driven by heuristics: agents learn ideas, for instance from their

friends, and, when they write a paper, they cite what they have learned before.

5“Scale-free” is used loosely here and in the literature in general. In fact Price’s model features
a shifted power law degree distribution, which is not scale-free except for (very) large degrees.
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This approach, which significantly complicates the one-mode approach to citation

networks, is justified by a large literature in science studies which has highlighted

that many “social” processes affect the self-organization of science (Merton 1968,

Latour & Woolgar 1979). Furthermore, not only are there arguments to introduce

humans in citation network models, but there are also arguments to introduce non-

humans in social network models of science. Proponents of actor-network theory

(Star & Griesemer 1989, Latour 2005) contend that artefacts – material or not,

but “non-humans” – indeed populate the net in which human agency takes place.

One may argue that the most important such objects in science are the publica-

tions. Hence, one can choose as a fundamental unit for the description of science

the relationship between an actor and a piece of knowledge. The dynamics of the

system follows from the constitution of this relation (the learning event), because

it is not independent of the rest of the network: it is this feedback loop which leads

to self-organization. A proposal of formal modelling of these ideas appears in the

next section.

5.3 The model

The objective of the model is to understand how diffusion impacts the structure of

citation networks. The idea is to model the evolution of papers’ popularity, and

use this to derive the distribution of citations. I derive approximate results using

the mean-field continuous framework6 with additional assumptions about time and

population size.

Denote by kj(t) the number of agents who know paper j (its popularity or

diffusion). Consider a very large population of agents in a finite time horizon. 7 At

each period, a randomly chosen (r.c.) agent takes a decision. With fixed probability

b, she invests her time in writing λP papers. Otherwise, she learns λL papers that

she did not previously know. I assume that a paper is chosen with probability

proportional to kj + a. In chapter 4, it is shown that, for large population and

finite time, if agents are choosing a random idea of a random friend in a full social

network, then diffusion is proportional to kj. However, if the social network is a

lattice with agents organized in a circle and with few links on each side, then the

dependence on kj disappears. Hence we can think of a as reflecting a departure

from preferential learning, possibly due to the structure of the social network (see

section 4.5.1).

6For the distribution of popularity, it would be possible to use more precise (chapter 4) or even
exact methods (Bollobás et al. 2001).

7This is to ensure that finite-size effects are negligible.
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Given these assumptions, the expected evolution of kj is

dkj(t)

dt
= (1− b)λL

kj(t) + a
∑wt

j=1[kj(t) + a]
. (5.1)

The total popularity is equal to t(bλP + (1− b)λL) so the sum in the denominator

is equal to t[(1 + a)bλP + (1− b)λL], using wt = bλP t. Defining

ξ ≡
bλP

(1− b)λL

, (5.2)

equation 5.1 becomes
dkj(t)

dt
=

kj(t) + a

t(1 + (1 + a)ξ)
. (5.3)

Using the initial condition kj(tj) = 1 (j is invented by one agent, at some time tj),

this differential equation has solution

kj(t) = −a+ (1 + a)

(

t

tj

)
1

1+(1+a)ξ

. (5.4)

This leads to the probability distribution of ideas’ popularity,

p(k) ∝ (k + a)−2−(1+a)ξ. (5.5)

This distribution is a shifted power law. The constant creates a “shoulder” on the

left of the distribution, but does not change the tails much since it converges to

the classical power law for large k (i.e. for k ≫ a). Equation 5.5 shows how the

innovation/diffusion trade-off determines the shape of the popularity distribution:

the more innovation (higher ξ), the more papers known only a few times. The more

diffusion (lower ξ), the more papers known many times.

By knowing how diffused papers are, it is possible to determine how much they

are cited. By assumption, when writing a paper, the author will cite some papers

chosen at random among what she knows. Note that since an agent is chosen with

probability 1/n, and get to know λL papers with probability b and λP papers with

probability 1−b, on average an agent knows t(bλP +(1−b)λL)/n papers. Moreover,

the probability that paper j is known by a r.c. agent i is kj/n. Hence,
8 the total

8As is usual in the literature, I do not explicitly take into account that a paper is never cited
more than once by a newly arriving paper (a draw without replacement is approximated by one
with replacement). This is reasonable because the probability that a paper would be chosen twice
in a row tends to zero as the number of papers in the network tends to infinity.
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number of citations received by paper j up to time t, denoted by kC
j (t), evolves as

dkC
j (t)

dt
= bλPhPr(j chosen|j known)Pr(j known)

= bλPh
n

t(bλP + (1− b)λL)

kj
n
=

hkj
t(1 + 1/ξ)

(5.6)

using equation 5.2. Since kj(t) is given by equation 4.17, it can be substituted into

equation 5.6. However, to derive the citation distribution, kj(t) might be simplified

by noting that for large t, the term −a will be negligible so that

kj(t) ≈ (1 + a)

(

t

tj

)
1

1+(1+a)ξ

. (5.7)

Note that using (5.7) instead of (5.4) would give a pure (Pareto) instead of a shifted

power law for the popularity distribution, but with same power law exponent. This

is not surprising since power law behavior is observed for large k, which is the

assumption made to simplify (5.4) to (5.7). Under this approximation, one can use

(5.7) into (5.6) to get

dkC
j (t)

dt
=

h(1 + a)

t(1 + 1/ξ)

(

t

tj

)
1

1+(1+a)ξ

, (5.8)

which, with the initial condition kC
j (t) = 0, has solution

kC
j (t) = (1 + a)h

ξ(1 + (1 + a)ξ)

1 + ξ

(

(

t

tj

)
1

1+(1+a)ξ

− 1

)

. (5.9)

Using the cumulative distribution function and assuming that the tj’s are uniformly

distributed (see section 3.1), equation 5.9 leads to the citation distribution

pC(kC) ∝

(

kC + (1 + a)h
ξ(1 + (1 + a)ξ)

1 + ξ

)−2−(1+a)ξ

. (5.10)

This is again a shifted power law. Equation 5.10 shows the effect of the innova-

tion/diffusion trade-off: more innovation (higher ξ) makes the power law steeper,

and more diffusion (lower ξ) makes it flatter. The parameter a, which captures the

details of the diffusion process, has an equivalent effect. Hence, more uniformly

random learning (that is, less preferential or higher a) has an effect similar to more

innovation (less diffusion). It should also be noted that the exponent is the same as

that of the distribution of papers’ popularity (equation 5.5), and is independent of

the bibliography size h. The key point is that the citation distribution reflects the
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popularity distribution, and the popularity distribution is determined by the learn-

ing process and the innovation-imitation trade-off. Hence, in contrast to existing

models where the power law exponent of a citation distribution is explained by the

prevalence of random and preferential citing, this model explains it by the preva-

lence of random and preferential learning (not citing), and the innovation-imitation

trade-off (ξ).

5.4 Empirical observations

The model predicts9 (equation 5.10) that the citation distribution is a shifted power

law

pC(kC) ∝ (kC + r)−γ , (5.11)

with

γ = 2 + (1 + a)ξ (5.12)

and

r = (1 + a)h
ξ(1 + (1 + a)ξ)

1 + ξ
. (5.13)

There are too many parameters in the model as compared to the number of pa-

rameters that can be estimated from data on the citation distribution (γ and r).

In other words, the model is under-identified. The parameters of the model are

the probability of innovation, b, the productivity of learning (λL) and innovating

(λP ), the degree of non-preferential learning, a, and the average bibliography size,

h, which also gives the mean of the distribution of citations received. The symbol ξ,

which is not a primitive parameter, summarizes the innovation-imitation trade-off

in terms of b, λL and λP (equation 5.2). To obtain identification, let me assume

λP = λL = 110. If one further assumes a = 0, then

γ = 2 +
b

1− b
(5.14)

and

r =
b

1− b
h. (5.15)

Equations 5.14 and 5.15 form a system of two equations with two unknowns, b

9It should be emphasized that the estimation of the parameters relies on the approximations
made to obtain analytical results. Ideally, one would fit a full-fledged agent-based model, with
specific network structure, number of agents, etc.
10It is possible to estimate the more general ξ instead of b. Here I choose to present the estimates

of b because it has a direct interpretation as a probability, which is more intuitive. However, it
should be remembered that what we are really measuring is the innovation-diffusion trade-off
in a general sense. From the estimates of b presented in table 5.1, ξ can be calculated using
ξ = b/(1− b).
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and h. Since h can be observed independently (as the mean in or out-degree of the

network), it will provide a useful consistency check.

To estimate the parameters, I propose to use a Waring distribution (Irwin 1963)

p(kC) =
B(kC + r, γ)

B(r, γ − 1)
(5.16)

instead of the shifted power law, mostly because the Waring is a discrete distribu-

tion, as are the data. This equation can be seen as a discrete form of the contin-

uous function (5.11). In fact, many related (i.e. linear) models of network growth

(de Solla Price 1976, Dorogovtsev et al. 2000, Jackson & Rogers 2007, Peterson

et al. 2010) have an exact solution of the form of (5.16), and an approximate solu-

tion of the form of (5.11). Therefore, it seems more legitimate to use (5.16) than a

discretized shifted power law.

By assuming that the data are distributed according to a Waring, it is possible

to obtain the empirical values of the parameters, r and γ, by maximum likelihood.

Here I study the time evolution of these parameters in two citation networks of

high energy physics papers. These two publicly available datasets11 are citation

networks of a subset of arXiv publications: High Energy Physics Theory (HepTh)

and High Energy Physics Phenomenology (HepPh).12 They cover almost completely

the history of these subsets of arXiv, until 2003. In both cases, a citation network is

constructed for each year, where year T network includes all the papers published

on arXiv before December 31st of year T .13 Descriptive statistics can be found in

the leading columns of table 5.1. In practice, a Nelder-Mead algorithm was used to

maximize the logarithm of the likelihood function associated to equation 5.16. For

comparison purposes, the fit of a power law is also added.14 The sixth and seventh

columns of table 5.1 show the estimated parameters assuming a power law (for the

tail), and the eighth and ninth columns give the estimated parameters assuming a

shifted power law (for the whole distribution). Early networks (1992-93) are not

reported. The resulting look of the predicted laws can be seen in figure 5.1. The fits

are reasonably good, although a deviation can be observed when the complementary

cumulative distribution is plotted, especially for the HepPh network (subpanel c of

the right panel of figure 5.1). Second, one sees that the predicted mean in-degree is

11Downloaded from http://snap.stanford.edu/data/index.html#citnets. Credit is due to
Gehrke et al. (2003) and Leskovec et al. (2005).
12There is an overlap between the two. arXiv is a server where scientists, mainly physicists,

can freely post pre- and post-prints of their work. See arXiv.org.
13The model presented here, as Price’s model, predict the distribution of all papers and all

citations to those papers. An ideal test of these models would require data on science as a whole.
14The power law fit was done using the procedure and code of Clauset et al. (2009) (translated

to R by Laurent Dubroca)
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Figure 5.1: Maximum likelihood fit for the citation distributions of the Hep-Th (left) and Hep-Ph
(right) networks at the end of 2003. In panels a, b and c, the grey points are empirical values, and
the black lines are the theoretical results constructed by using equation 5.16 with values of the
fitted parameters (see tables 5.1) from k = 0 to the maximum observed degree, and renormalizing
such that it sums up to one. All subpanels of a given panel display the same raw data. a)
Probability distribution. b) Cumulative distribution. c) Complementary cumulative distribution.
Panel d) is a Quantile-Quantile plot, where the black line materializes perfect fit.

close to the observed one (columns 4 and 5 of table 5.1). Finally, the last column

gives the corresponding value of b, computed using the estimated shifted power law

exponents and equation 5.14. The shifted power law exponent is strikingly stable

over time and across the two networks, and imply b ≈ 1/3. If one takes this exercise

seriously, it says that high energy physicists spend a third of their time working on

their own papers and two thirds learning the work of others.15

15A lower estimate results if we estimate h directly as the mean degree. In this case. one can
solve the system 5.12-5.13 for a and b in terms of h, r and γ. The estimated values of a are
generally small, but this new estimation can slightly affect the values of b. For the last year of
each network, I find (a = 0.78, ξ = 0.29) for the Hep-Th, and (a = 2.10, ξ = 0.16) for Hep-Ph.
Assuming λP = λL = 1, we have b = ξ/(ξ + 1) equals to 0.22 in the Hep-Th network and 0.14 in
the Hep-Ph network.
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Study Dataset γ r h b

Tsallis & De Albuquerque ISI cohort 1981 2.89 17.2 19.3 0.47
Tsallis & De Albuquerque Phys. Rev. D 2.56 12.0 21.5 0.36

Jackson & Rogers Small world 2.63 3.1 5.0 0.39
Newman Net. science 2.28 6.4 22.8 0.22

Peterson et al. ISI cohort 1981 3.20 25.0 20.8 0.55
Peterson et al. Phys. Rev. D 3.10 31.0 28.2 0.52
Peterson et al. Chemists 2.94 37.0 39.6 0.48

Golosovsky & Solomon Physics Journals 3.15 27.5 23.9 0.53
Golosovsky & Solomon Physical Review 3.15 10.2 8.87 0.53
Eom & Fortunato Am. Phys. Soc. 1950 5.60 7.92 2.2 0.78
Eom & Fortunato Am. Phys. Soc. 2008 3.10 9.90 9.0 0.52

Table 5.2: Estimates from the literature. These authors estimated slightly different distributions
(shifted power law, truncated shifted power law, Waring distribution, Tsallis distribution), and
using different methods, so the results are not perfectly comparable. The values of h and b are
deduced from the values of γ and r (using E[p(k)] = h = r/(γ − 2) and (5.14)). In some cases the
value of r is deduced from the reported h.

Furthermore, I collected estimates of γ and r in the literature (table 5.2). Dif-

ferent authors have used different datasets and estimation techniques, so that the

results can vary significantly among studies (b ∈ [0.2, 0.8]). Since most studies in

table 5.2 deal with physics papers, there are no reasons to expect such a diver-

sity. Besides data and estimation issues, the problem can be that the values of the

parameters are changing as the network evolves, making networks of different size

hard to compare.

In fact, the results in table 5.1 suggest that the networks are accelerating. Ac-

celeration (Dorogovtsev & Mendes 2001, Cooper & Pra!lat 2010) or densification

(Leskovec et al. 2005) means that the average degree is increasing, which is the

case here (column 4). In a citation network, this can happen only if new papers

have, on average, a larger bibliography than old papers. It is difficult here to say

if the network is truly accelerating or if we observe simply a biased data trunca-

tion (the oldest papers make more citations to outside-sample papers). However,

at a global level, there is evidence of an increase of bibliography size (Biglu 2008).

This acceleration shows that knowledge systems are in disequilibrium, leading one

to wonder what are the sources and consequences of this acceleration. If scientists

have to cite more papers over time, how many will they have to cite in the future?

If it increases unboundedly, it could be the case that writing one paper will require

reading more and more papers. In fact, it seems reasonable to think that the more

knowledge is already available, the more should be learned to push the frontier, a

point emphasized by Jones (2009).

Finally, note that the model proposed here does not take into account several
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features of real-world citation networks which have been shown to be relevant, such

as aging (Dorogovtsev & Mendes 2000), burst dynamics (Ratkiewicz et al. 2010)

and paper intrinsic value (Adamic & Huberman 2000, Bianconi & Barabási 2001,

Atalay 2013).

5.5 Conclusion

The availability of large scale citation networks allows us to observe the structure

of knowledge. The cumulative or sequential nature of knowledge reveals that it

is created at least partly by recombining existing ideas. Therefore, innovation it-

self is conditioned on diffusion. Typically, authors cite papers that they have not

written themselves. Since there must be both innovation and diffusion, the relative

amount of each activity shapes the distribution of ideas’ popularity, and therefore

the distribution of citations received.

This chapter developed a quantitative model relating the innovation - diffusion

trade-off and the type of learning dynamics (self-reinforced or not) to the parame-

ters of the power law distribution of citation networks. Hence, it showed that the

hypothesis of social diffusion (in an infinite population) explains the structure of

citation networks equally well as the current dominant hypothesis of bibliographic

(asocial) search. More generally, it is argued that learning preferentially well-known

ideas (“preferential learning”) naturally generates power law distribution of pop-

ularity, and hence of citations. Moreover, the shape of citation distributions (the

value of the power law exponent) is determined by the innovation-imitation trade-

off, which is absent from current models of citation networks. The more time is

allocated to diffusion instead of innovation, and the more learning is preferential,

the flatter (more unequal) we should expect citation distributions to be. As a re-

sult, it can also be concluded that the structure of the social network on which

knowledge diffusion takes place influences the distribution of citations, with social

networks conducive of preferential rather than random learning leading to more

unequal citation distributions.





Chapter 6

The size of patent categories:

USPTO 1976-2006

Abstract

Categorization is an important phenomenon in science and society, and classification

systems reflect the mesoscale organization of knowledge. The Yule-Simon-Naranan

model, which assumes exponential growth of the number of categories and exponen-

tial growth of individual categories predicts a power law (Pareto) size distribution,

and a power law size-rank relation (Zipf’s law). However, the size distribution of

patent subclasses departs from a pure power law, and is shown to be closer to a

shifted power law. At a higher aggregation level (patent classes), the rank-size

relation deviates even more from a pure power law, and is shown to be closer to

a generalized beta curve. These patterns can be explained by assuming a shifted

exponential growth of individual categories to obtain a shifted power law size dis-

tribution (for subclasses), and by assuming an asymmetric logistic growth of the

number of categories to obtain a generalized beta size-rank relationship (for classes).

This may suggest a shift towards incremental more than radical innovation.

6.1 Introduction

Categorization is at the basis of reasoning. Theorizing about scientific and techno-

logical systems is no exception, and always relies on the grouping of several items

into “categories”. For instance, the concepts of paradigms, research fields, school

of thought, epistemic communities, etc. are all based on the idea that an un-

derlying grouping can be meaningfully established. Elements in these categories

(“bio-technologies”, “economics”, “subclass N234”, “keynesians”) are then taken

to behave in the same way. At the very least, the analyst can argue that elements

91



92 CHAPTER 6. SIZE OF PATENT CATEGORIES

within a category have a degree of homogeneity which is much higher than elements

taken from different categories. Since analyzing a number of categories is simpler

than analyzing every single element, categorization reduces the dimension of the

problem.

Categorization, therefore, is at the heart of thought processes. This implies

that categories are not simply useful to describe reality, they are the main tool to

construct it. Categories, when they are created as nouns, can have a predicate and

become a subject. They enter discourses with their own identity, and shape our

understanding of reality. Classification systems are essential tools in the creation

of routinized habits of thoughts. Hence, when a classification is put to use, one

may argue that it creates a feedback on the system it describes. Classification

systems are institutions which often legitimate the items that they classify. This

affects the future evolution of the items, and their relation (boundaries) with other

items. Along this line of argument, the process of categorization is performative.

The evolution of the technological classification system therefore provides data on

how society understands its technological artefacts and legitimizes them through

the process of categorization.

In this chapter, I propose an attempt at clarifying some of the key processes

underlying the evolution of technological and scientific classification systems by

studying in detail one of the most important, relatively well defined quantity: the

size distribution of categories (or the size-rank relationship, which by construction

is less noisy). I study the US patents granted by the USPTO between 1976 and

2006, partitioned at the level of more than 400 classes and 100,000 subclasses.

The size distribution of patent subclasses is well fitted by a shifted power law,

in agreement with a slightly modified version of the Yule (1925)-Simon (1955)-

Naranan (1970) models. However, at the level of classes, the size distribution is

less skewed. The small sample (428 categories) suggests to study the size-rank

relationship instead of the size distribution. The size-rank relationship, at the level

of classes, is not a power law (Zipf’s law). An exponential relation was recently

proposed (Carnabuci 2013) for this data. Here I find that a generalized beta,

suggested for size-rank relationships by Mart́ınez-Mekler et al. (2009), fits the data

better. I give a simple and original explanation for this fact, answering partially

an open problem stated in Egghe (2012). The reason for the departure from Zipf’s

law is that the number of categories tends to grow faster in the beginning than

in the end, as compared to the growth of individual categories. The model of

Naranan (1970), which is a simplified version of Yule’s (1925) and Simon’s (1955)

models, derives Zipf’s law by assuming an exponential growth of both the number

of categories and the number of items per category. To obtain a generalized beta (of
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the first kind) for the size-rank relationship, I find that one should instead assume

an asymmetric S-shaped curve for the number of categories.

The chapter is organized as follows. Section 6.2 gives a background discussion on

category systems and technological change, and reviews existing literature. Section

6.3 describes the data and the methodology. Section 6.4 presents empirical results.

Section 6.5 proposes theoretical models consistent with the observed empirical laws.

Section 6.6 discusses the results. The last section concludes.

6.2 Literature review

The purpose of this section is to provide a general discussion of what categories

mean, why it is important to study them, and how this general theoretical back-

ground applies to the case of technological categories. A review of the literature on

the evolution of technological domains using patent categories follows.

6.2.1 Theoretical background

The philosophy of category systems1 has traditionally distinguished between Aris-

totle realism (categories of things do exist) and Kant conceptualism (what really

exists are the categories of understanding, based on experience). Husserl proposed

an encompassing view where the two systems, categories of meaning and ontolog-

ical categories, co-exist and are related. Foucault (1966) insisted on the idea that

words, the categories making up discourses, are not descriptive tools but genuinely

construct the world. Latour (2005) concluded that the social scientist should not

overimpose her own categories over the actors she analyzes. Instead, the analyst

should follow the actors, and see how they create categories themselves.

A more realist view is that of natural kinds. A natural kind is defined as one

that “corresponds to a grouping or ordering that does not depend on humans”.

Chemistry is said to provide the least controversial example of natural kinds (the

periodic elements table), whereas biological species classification are less easily taken

for granted. From a metaphysical point of view, one is interested in the essence

of natural kinds, that is, “the property or set of properties whose possession is a

necessary and sufficient condition for a particular’s being a member of a kind”. The

existence and relevance of these essences is the point of view of “essentialists”. The

view according to which there are “genuinely natural ways of classifying things” is

called naturalism.

1see the Stanford Encyclopedia of Philosophy for Categories and Natural kinds, from where
the quotes are taken (http://plato.stanford.edu, accessed 28/08/2014).
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On the other hand, constructivists do not believe that classifications reflect the

“real” world. In its weak version, constructivism does not deny the existence of

natural kinds, but doubts that we can actually see them. Strong constructivism

however rejects the mere existence of natural kinds. “Ontological relativism” can

be defined as “the view that all entities, processes, relations and theoretical posits

are relative to a certain conceptual scheme”. More generally, constructivists argue

that categories are created, constructed by the observer. In some cases, it is even

argued that the objects – not only the categories as a concept, but the actual objects

– are constructed.

Whatever the nature of categories – real or constructed – they are the key build-

ing blocks of discourses, including scientific discourses. More generally, a criterion

for the existence of a category is that it is a level of aggregation at which a given

law holds. According to the “cluster kind realists”, “a natural kind is any (...)

family of co-occuring properties that may be employed in inductive inference for

the purpose of scientific explanation”. Quine argued that “it is the similarity or

sameness of kinds between instances that permits an induction”. Putnam’s (1975)

theory of semantic externalism holds that the meaning of what people say is not in

their head, but in the head of experts - the linguistic community- who collectively

know what things are.

In recent years, there has been an expanding literature in sociology about classi-

fication, notably some historical studies of controversial classification systems, such

as the classification of diseases (Bowker & Star 2000). Some analytical insights

from this literature are worth mentioning (Shepherd 2010), and all have to do with

the fact that classification exerts an effect on the users of the classification scheme,

or even on the elements being classified. First, there is evidence that the degree of

institutionalization of the classification system influences the perception of hybrid

members (elements with multiple categories): once a classification system is well es-

tablished, there is a penalty to hybridity. Second, classification essentially consists

in drawing boundaries. Boundaries should be thought of as interfaces rather than

borders (Bowker & Star 2000). How communication takes places within boundaries

is different than how it takes place between; hence classification institutionalizes

possible interactions. Third, the extent to which the users of classification systems

can shape the classification changes the way in which users interpret and use the

classification system. Finally, actors exercise power to obtain classification systems

to their advantage.
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6.2.2 The classification of technologies

Technologies at the mesoscale

For Arthur (2009), a technology is something that relies on the mastering of natural

phenomena to produce a useful artefact. In his words, technology is “a collection

of phenomena captured and put to use”. Acknowledging that technology builds

out of itself, we see that a technology is made of technologies, thus a technology

is a “complex of interacting phenomena”. Here is the central point of the discus-

sion: since there are families of phenomena (chemical ones, electrical ones, quantum

ones), there are families of technologies based on these phenomena. Arthur goes a

step further by arguing that “each grouping forms a language within which particu-

lar technologies – particular devices and methods – are put together as expressions

within that language”. Hence, technologies form clusters, which he calls domains,

because they are based on the same phenomena, or because of some other shared

characteristics or purposes. Individual technologies and domains, though both hier-

archical constructs (i.e. having their sub-technology or sub-domains), are distinct.

To be sure,

A technology (individual, that is) does a job; it achieves a purpose -

– often a very particular purpose. A domain (technology-plural) does

no job; it merely exists as a toolbox of useful components to be drawn

from, a set of practices to be used. A technology defines a product, or a

process. A domain defines no product; it forms a constellation of tech-

nologies –a mutually supporting set – and when these are represented

by the firms that produce them, it defines an industry. A technology is

invented; it is put together by someone. A domain (...) is not invented;

it emerges piece by piece from its individual parts. A technology – an

individual computer, say – gives a certain potency to whoever possesses

it. A domain –the digital technologies – gives potential to a whole econ-

omy that can in time become transmuted into future wealth and political

power.

However, it is not always obvious to attribute a unique category to a given

innovation. From the inventor perspective, Arthur (2009) describes the process of

choosing a category (a “palette of components”) for a new device as domaining.

Sometimes, this is automatic, sometimes more difficult. Often, if the technology is

large enough, it will belong to several domains.
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Rationalizing practice: classification as legitimation

If technologies can be meaningfully categorized, the information feedback provided

by the category system will in turn influence further technological development.

From a pragmatic stance, things are real if they are real in their consequences, so if

firms use category systems to search for technologies and build their own, categories

are ontological. But how exactly do these categories map with the human percep-

tions, or construction, of them? Nelson (2006) describes technological evolution as

the co-evolution of a body of practice and a body of understanding. He describes

the role of the body of understanding as one of “rationalizing” the practice.

(...) what makes the evolution of human practice, and especially tech-

nology, different from the evolution of animal behavior as studied by

ethologists is exactly that extant human practice is generally supported

by a rather elaborate body of reasons, or rationalizations.(...) To the

extent that technology is seen as not simply a body of practice, but

also a body of understanding, the nature of the evaluation and selection

processes becomes more complicated. While the criteria for selection

on the former aspect may well ‘fit’ with user need, the criteria for the

later may appear to be the ‘ability to explain observed relevant facts

and enable problems to be solved and progress made’. The selection

processes and those who control them, as well as the criteria, may well

be different. For practice, the process is ultimately under the control

of users, or their agents; for understanding, the control rests with the

community of technologists”.

In this chapter, I consider categorization as a process of codification of an un-

derstanding concerning the technological system, and I argue that the dynamics of

patent classes and subclasses constitute a window on the “community of technolo-

gists”. Using mathematical and statistical modelling, it is possible to uncover the

most fundamental principles at play in the growth of classification systems. Perhaps

the most important of these principles is creation, i.e. the fact that new categories

are created over time.

The emergence of new technology categories

Technological evolution is reflected in the evolution of the classification system

and this suggests to study the dynamics of categories creation (Strumsky et al.

2012). Classification is a particularly important topic in innovation studies because

by definition, innovation challenges existing schemas (Hicks 2011). Economists of
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innovation have traditionally made a distinction between incremental and radical

innovations. In the context of classification, the former can be interpreted as being

a new technology which fits perfectly in the existing classification scheme. This

sort of innovation falls into what Arthur (2009) calls “structural deepening”, the

addition of subsystems and subassemblies to an existing technology so as to improve

basic performance, adapt to wider tasks, improve reliability and safety, or simply

react to changed circumstances, for instance on the demand side. On the other

hand, a radical innovation can be defined as a new technology which creates a new

category (perhaps by creating a need to reframe the classification system, or simply

by being sui generis, the first innovation of its own kind) – this would be called

redomaining or revolution in Arthur’s terms.

6.2.3 Growth and distribution of technological domains

The growth of technological domains has been deeply scrutinized in the economics

of technical change and development (Schumpeter 1934, Dosi 1982, Pasinetti 1983,

Pavitt 1984, Freeman & Soete 1997, Saviotti 1996, Malerba 2002). A recurring

theme in this literature in the high heterogeneity among sectors. Besides hetero-

geneity due to the very nature of the underlying knowledge base, sectors are also

at different stages of their life cycles (Vernon 1966, Klepper 1997).

Life-cycle theories of technological change suggest non linearities in the evolution

of individual technological domains. Andersen (1999) fits logistic growth models,

using USPTO data for the period 1890-1990, and aggregated at the level of 56

technological groups (collections of patent classes). Andersen (1999) does not fit

logistic growth for the whole period (1890-1990) but instead for subperiods, arguing

that a logistic growth episode constitutes one cycle. Hence, in this theory, an

individual category follows repeated S-shaped patterns. In this paper, I do not look

for detailed life-cycle patterns in the data. Instead, I seek for the most parsimonious

model that gives reasonable aggregated results. Hence, the results are less precise,

and less informative of individual sectors’ histories. On the other hand, the models

and results of this paper are more powerful in explaining why other, potentially

very different datasets, exhibit similar regularities (“universal laws”).

Similarly, Carnabuci (2013) detected a departure from pure multiplicative growth

(Gibrat’s model) for the size of individual categories, which I do not account for in

the models of section 6.5. It turns out that at both the subclass and class levels, as-

suming exponential growth of individual categories gives reasonable frequency-size

or rank–size distributions, if associated with an appropriate growth function for the

number of categories.

Finally, using the almost complete record of US patents, Youn et al. (2014) found
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that the number of subclasses follows the same trend as the number of patents until

about 1870, but grew less fast afterwards. Remarkably, however, the number of

unique combinations of subclasses used in a patent keeps the same trend as the

number of patents. The data used in the present study does not contain multiple

classifications, but only the main patent class/subclass, and covers only the period

1976-2006, as described in the next section.

6.3 Data and method

6.3.1 The United States Patent Classification System

Falasco (2002) describes three types of rationale behind the United States Patent

Classification System(USPCS). The classification by industry was the original method

when the first USPCS appeared in the beginning of the XIX th century. The classifi-

cation by structure (“arrangement of components”) is sometimes useful, for instance

composite materials can be classified according to the arrangement of their parts.

The classification by utility (proximate function) was “adopted in the early XXth

century as the fundamental principle for classifying prior patent art in the USPCS”.

By proximate function, it is meant the fundamental function of the invention, not

some example application in a particular device or industry. The classification by

utility includes also the classification by effect or product, which “provides collec-

tions based on result”, for instance measuring, illuminating, etc.

The USPCS attributes to each patent at least one subject matter. A subject

matter includes a main class, delineating the main technology, and a subclass,

delineating processes, structural features and functional features. All classes and

most subclasses have a definition. All subclasses within a class are arranged in a

class schedule, “with the most complex and comprehensive subject matter generally

at the top of the schedule, and the least complex and comprehensive at the bottom”

(USPTO 2012). Subclasses have indentation levels. Primary subclasses are the

main type of subclass, and each patent must be assigned to at least one of them.

Some subclasses are called “Alpha subclasses”. These were previously unofficial

subclasses, created by examiners to ease their work. They are identified by their

parent primary subclass, adding one or two letters. Finally, note that these are the

patent claims which are classified, and the patent inherits the classification of its

claims. The main classification is the one of its main claim.

Patent examiners follow a rather precise algorithm for finding the appropriate

subclass (USPTO 2012): starting at the top, scan downward looking only at main

line subclasses until one is found that provides for any portion of the claim. Within

this one, scan downward subclasses which are at one higher indentation level until
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one is found that provides with at least a certain portion of the subject matter, and

go ahead similarly to the next indentation level. When no subclasses can be found,

stop the process and classify at the last subclass selected.2

Classification is used mainly for the search of prior art. It is also used to de-

termine which department, that is, which examiners will evaluate the patent. It is

also widely used by business analysts.

6.3.2 The NBER patent data (1976-2006)

I use the well-known NBER patent dataset (Hall et al. 2001), updated to 2006.3

It contains information on 3,210,361 utility patents. 1335 patents have a “NA”

class, corresponding either to a “withdrawn” subclass (1328) or to a “D” subclass

(7 patents). I removed these 1335 patents, leaving a total of 3,209,056 uniquely

allocated to 428 classes and 119833 subclasses (“primary” US class/subclass). Sub-

classes are detailed at the 6 digits level, and I consider alpha subclasses as distinct.

Throughout, I use the current classification system, that is, the category of each

patent is its category in 2008 (“CCL” variables in the NBER file, i.e. the variables

“cclass” and “nclass”).

6.4 Empirical observations

This section presents empirical results on the size distribution of subclasses, and

the size-rank relation for classes. The size of a category is simply defined as the

number of patents within it.

6.4.1 The size distribution of subclasses

The size-distribution of patent subclasses is a heavy tail distribution, and it is

relatively well behaved (not too noisy). After trying a number of classical candidates

(power law, stretched exponential, Weibull, etc...), two distributions, the Waring (a

discrete version of the shifted power law) and the lognormal, were found to give a

good fit. The parameters of these two distributions were estimated using maximum

likelihood. A modified Waring distribution was used, defined so that it is properly

2It is interesting to note that this is a case of a formal, codified rule that should be followed to
produce additional codified knowledge (a classification). It highlights that classification is done by
following heuristics, as would be expected from bounded rationality and evolutionary economics
theory (Simon 1947, Nelson & Winter 1982). Note that the knowledge of this procedure can in
principle be exploited to understand the growth of subclasses as a function of their indentation
level and position in the class schedule.

3see https://sites.google.com/site/patentdataproject/Home. I used the file pat76 06 assg.dta.
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Figure 6.1: Size distribution of patent subclasses. Top left: Probability mass function. Top right:
Complementary cumulative distribution. Bottom right: Cumulative distribution. Bottom right:
QQ-plot on double log axis. The fitted curves are a Waring and a log-normal distribution.

normalized over the range k = 1 . . .∞ (instead of 0 . . .∞):4

p(k) =
d+ γ − 1

d

B(k + d, γ)

B(d, γ − 1)
. (6.1)

The parameters and R2 were computed for the cumulated system (all patents

granted up to a given year), at 6 periods of 5 years interval (table 6.1). The

visual fits for the system as of 2006 are provided in figure 6.1. Although this

fit is visually good, the log-transformed data does not pass the Anderson-Darling

test for normality. The values of the likelihood (not reported) were slightly but

systematically higher for the Waring distribution than for the lognormal.

4The normalization constant C = d+γ−1
dB(d,γ−1) is found as follow. First impose

∑

∞

k=1 CB(k +

d, γ) =
∑

∞

s=0 CB(s + 1 + d, γ) = 1). From that
∑

∞

s=0
(1+d)s

(1+d+γ)s
= 1/(CB(1 + r, γ)). The LHS is

Gauss Hypergeometric Function and Gauss hypergeometric theorem can be applied to get rid of
the summation symbol. Simplifying and solving for C then gives the result.
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Waring Log-normal
# patents # categories 〈k〉 γ d mean std. dev.

1981 378,040 84,834 4.46 4.44 7.49 1.05 0.90
1986 702,508 99,776 7.04 4.00 11.27 1.40 1.02
1991 1,145,796 109,268 10.49 3.74 15.85 1.71 1.12
1996 1,654,321 114,372 14.46 3.43 18.89 1.96 1.20
2001 2,390,834 117,772 20.30 3.01 19.63 2.20 1.29
2006 3,209,056 119,833 26.78 2.69 18.96 2.36 1.36

Table 6.1: Parameter estimates for the size distribution at the level of subclasses.

6.4.2 Rank-size relationship of classes

The number of classes is quite low, which makes the probability density rather

noisy.5 For this reason, I choose to study the rank-size distribution. Carnabuci

(2013) noticed that this relationship is not Zipfian. He fitted an exponential func-

tion, that is,

r(g) = Ce−xg,

where r is the rank and g is the relative size (i.e. the number of patents in the

category of rank r, divided by the total number of patents6). However, while this fit

is better than that of a power law and gives a good first approximation (R2 ≈ 0.96),

the exponential functional form clearly underestimates the tail (as can be seen in

the plots, but is only poorly reflected by the R2). On the other hand, since the tail

is not as fat as Zipf’s law would imply, one needs to find an alternative functional

form. Mart́ınez-Mekler et al. (2009) showed that for a number of datasets the size-

rank relation could be very well fitted by the following formula, which expresses

size g as a function of rank r:

g(r) = K1(N + 1− r)br−a, (6.2)

where K1 is a normalization constant. To ease later comparison with a close formula

derived here, I consider N + 1 → N . Then equation 6.2 can be rewritten as

g(r) = K2

(

1−
r

N

)b

r−a, (6.3)

where K2 is a normalization constant. This formula is like a power law, except

for the factor
(

1− r
N

)b
which decreases as the rank r approaches the number of

categories N , creating an overall decay faster than normal power laws. Mart́ınez-

Mekler et al. (2009) call it a Generalized Beta Distribution (GBD).

5Sanditov (2005) fitted a log-normal and gamma distribution to the 1963-1999 database.
6Carnabuci (2013) worked with absolute size, but it is easier here to work with relative size.
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Figure 6.2: Fit of the size-rank relationship at the level of classes. The same data is displayed on
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# of # of equation 6.3 equation 6.10
patents categories a b γ z

1981 378040 423 0.33 1.14 0.24 0.28
1986 702508 425 0.35 1.08 0.27 0.34
1991 1145796 426 0.36 1.07 0.29 0.36
1996 1654321 427 0.35 1.13 0.27 0.33
2001 2390834 427 0.36 1.18 0.27 0.31
2006 3209056 428 0.36 1.36 0.23 0.23

Table 6.2: Parameter estimates for the size-rank relation at the level of classes.

Using the NBER patent data at the class level, I compared three hypothesis:

the exponential relation between rank and size (Carnabuci 2013), the Generalized

Beta Distribution (GBD) of Mart́ınez-Mekler et al. (2009) (equation 6.3), and the

slightly different GBD equation 6.10 derived in section 6.5 infra. Figure 6.2 shows

that the two GBD clearly outperform the exponential. The R2 values are 0.9597 for

the exponential, 0.9974 for the GBD (6.3), and 0.9978 for the GBD derived from

an original model in section 6.5 (equation 6.4). These results suggest that these

two different GBD perform equally well, at least for this data. Note that following

Mart́ınez-Mekler et al. (2009), I take N directly from the data, that is, N is equal

to the number of classes. Hence only two parameters are estimated by the fitting

procedure.7 Table 6.2 shows the estimated parameters for the two GBD over time.

7I used nonlinear least squares with a Gauss-Newton algorithm. Alternative optimization
algorithms and starting conditions do not change the results significantly. Note that for Mart́ınez-
Mekler et al.’s (2009) equation, using (6.2) instead of (6.3) makes OLS estimation possible, by
taking logs. In this case, the estimated parameters are slightly different (for 2006, a = 0.24 and



6.5. THEORETICAL MODELS 103

It is interesting to see that the parameters seem very stable for the first four 5-years

periods, and change after 2001, except for the power law exponent (a) of Mart́ınez-

Mekler et al.’s (2009) equation, which is strikingly constant.8 This may reflect a

great stability in at least part of the process, as well as a slightly better performance

of Mart́ınez-Mekler et al.’s (2009) equation over the one presented here.

6.5 Theoretical models

Yule (1925) proposed the first model generating a power-law size distribution. He

assumed that the number of categories grows at an exponential rate, and each

category grows at an exponential rate.9 Under these assumptions, the size distribu-

tion of categories is a Yule distribution, which has power law tails. Simon (1955)

proposed a different version of Yule’s model, in which time is not clock time but

system time. However, up to a small modification, the two processes are equivalent

(Simkin & Roychowdhury 2011). Naranan (1970) proposed a deterministic version

and obtained similar results.

As we have seen in the previous section, neither the subclasses nor the classes

have a pure power law size distribution. How should the Yule-Simon-Naranan’s

model be modified to produce the distributions observed empirically? To answer

this question, I use Egghe’s (2012) Generalized Naranan’s Framework. Egghe (2012)

extended Naranan’s work for arbitrary invertible growth functions. He concluded

his paper by asking whether one could obtain Mart́ınez-Mekler et al.’s (2009) for-

mula (equation 6.3) using the generalized Naranan’s framework. Here I show first

how to derive a shifted power law size distribution from the Generalized Naranan’s

framework (to explain the phenomenology of subclasses), and second how to derive

a generalized beta curve very close to that of Mart́ınez-Mekler et al. (2009) for the

size-rank function (to explain the phenomenology of classes).

Consider that the number of categories at (continuous) time t is φ(t), and the

number of items in a category of age t is ψ(t). Moreover, assume that φ and ψ are

invertible. Egghe (2012) proved the following:

Theorem 6.5.1. In the generalized Naranan’s framework, the size-rank function,

b = 1.55, R2 = 0.986).
8The same heuristic conclusion could be reached by looking at the plots of the four parameters

over time for each year, not reported here.
9Yule’s model is actually more complicated, in that he does not assume exponential growth

but derives it from first principles, namely that each new species (item) has a fixed probability of
generating a new species of a new genera and a fixed probability of generating a new species of
an existing genera. Note that Yule’s model is stochastic, but the deterministic version here can
be seen as a mean-field approximation.
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which gives the size of a category as a function of its rank is

G(r) = ψ(t− φ−1(r)). (6.4)

Theorem 6.5.2. In the generalized Naranan’s framework, the frequency-size func-

tion, which gives the number of categories having a given size, is

P (k) =
φ′(t− ψ−1(k))

ψ′(ψ−1(k))
. (6.5)

6.5.1 Shifted power law for subclasses

Let us start by analyzing the subclasses. We seek for φ and ψ such that P (k) ∝

(k + a)−γ . It is known from growing network models that a shifted attachment

kernel (i.e. where the probability that the next newborn node links to an existing

node of degree k is proportional to k+constant) gives a shifted power law. In other

words, if a category accumulates items at a rate proportional to how many items it

already has, growth is exponential and the size distribution is a power law. But if

a category accumulates items at a rate proportional to how many items it already

has plus a constant, we should expect a shifted power law. Hence, I assume

dψ(t)

dt
= x1ψ(t) + x2,

which implies

ψ(t) =
−x2 + etx1(x1 + x2)

x1

= −q + c2e
a2t, (6.6)

where the parameters have been rewritten in a more condensed way. My assumption

for the growth of the number of categories is the same as Yule-Naranan’s:

φ(t) = c1e
a1t. (6.7)

Theorem 6.5 with the assumptions (6.6) and (6.7) gives

P (k) =
a1c

a1/a2

2 c1e
a1t

a2

(k + q)
−1−

a1
a2 .

The probability density p(k) is obtained by diving by the total number of categories

at time t,

p(k) = P (k)/φ(t) =
a1

a2

(k + q)
−1−

a1
a2 ,

which is the shifted power law we were seeking to obtain. Moreover, it is a steady-

state result. So, to obtain a shift in the power law size distribution in the generalized
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Naranan’s framework, all that needs to be modified is the shift parameter q in the

function ψ describing the growth of individual categories. It implies that in their

early life, categories (here, patent subclasses) benefit from an additional growth

factor that ultimately dies out. This factor is equivalent to Dorogovtsev et al.’s

(2000) “initial attractiveness”, which is necessary when such models are applied

to citation networks (de Solla Price 1976). In fact, using a stochastic and discrete

model (that is, Simon’s (1955) model with a shifted attachment kernel) would allow

to derive directly the Waring distribution. However, I preferred to use the general-

ized Naranan’s framework here, because it is much easier to apply to the next case

of interest: the generalized beta size-rank function observed for patent classes.

6.5.2 Generalized beta for classes

To obtain a generalized beta size-rank function, one can stick to Naranan’s as-

sumption that individual categories grow exponentially, but needs to assume a very

flexible function for the number of categories. More precisely, the number of items

in a category of age t is

ψ(t) = c2e
a2t, (6.8)

as in Naranan’s, and the number of categories is Richard’s curve. It is obtained as

the solution of (Tsoularis & Wallace 2002)

dφ(t)

dt
= a1φ(t)

(

1−

(

φ(t)

n

)z)

,

which is

φ(t) =
φ0n

(φz
0 + e−a1zt (nz − φz

0))
1
z

, (6.9)

where the initial condition is φ(0) = φ0. With z = 1, it is the classical logistic

(Verhulst) equation, which is also S-shaped but symmetric. Verhulst equation is

too simple to obtain a good rank-frequency function, because the inflexion point

is precisely at the point where size has reached exactly half of the total possible

(long term) size. The parameter z allows greater flexibility as to the position of the

inflexion point, making the S-shaped asymmetric.

Theorem 6.5 under the assumptions (6.8) and (6.9) gives the following size-rank

relation

G(r) = C1

(

1−
( r

n

)z)γ/z

r−γ,

where C1(t) = c2e
a2t(nφ0)

γ(nz−φz0)
−γ/z and γ = a2/a1. Note that this equation

will give 0 at the boundary r = n, which is not desirable but comes from the

assumption that growth functions are continuous in this framework. The total size
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(total number of patents) is
∑

r G(r) (or the integral if we stick to the continuous

approximation). Hence, since the relative size is g(r) = G(r)/
∑

r G(r), we have

g(r) = C2

(

1−
( r

n

)z)γ/z

r−γ , (6.10)

where C2(t) is a normalization constant. Equation 6.10 is not exactly the same

as, but is very similar to equation 6.3. Therefore, I believe that the mechanism

described here provides a good theoretical background for the original equation

proposed by Mart́ınez-Mekler et al. (2009) (equation 6.2). Hence, the results pre-

sented here answer to a good extent the open problem stated in Egghe (2012), who

asked if equation 6.2 could be derived from the Generalized Naranan’s framework.

It should be noted that Mart́ınez-Mekler et al. (2009) proposed a generative

model for their equation, based on a dynamical model of boolean replication. Their

model assumes that a vector of 0 and 1 is grown with a probabilistic rule, such that

an entry is flipped with some probability, or repeated otherwise. They then show

that the frequency with which non-overlapping sextuplets occur is well fitted by

a GBD. Their interpretation is that the parameter a is associated to permanence

(when an entry is replicated), whereas b is associated to change (when an entry if

modified). The model presented here presents several differences with Mart́ınez-

Mekler et al.’s (2009). First, it is simpler. Second, the derivation of the GBD is

analytical. Third, the formula is not exactly the same. Finally, the interpretation

of the parameters is quite different. In the model of this paper, the parameters are

determined directly by the parameters of the growth functions φ and ψ.

These results show that, using the generalized Naranan’s framework, a non

linear modification of the growth of the number of categories is enough to obtain

a very good fit of the rank-size relationship in many cases. This does not mean

that the number of categories is actually bounded, nor that we need to observe the

growth functions assumed here to obtain the GBD. In fact, note that the variable

t appears only in the constant of equation 6.10. Hence what the model means is

that, whatever the growth functions are in clock time (say φ(τ) and ψ(τ)), if we can

find a variable t(τ) such that φ(t) and ψ(t) follow (6.8) and (6.9), then we should

obtain the steady-state size-rank relation (6.10). It is difficult to test directly for

the shape of φ and ψ here, because the data covers only about the last half of the

US patents, while most classes were created very early, way before 1976 (Strumsky

et al. 2012). Nevertheless, we can get some insights into the shape of ψ by taking

logs of equation 6.8 to obtain the linear regressions:

logψ(t) = log c2 + a2t+ ǫt, (6.11)
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where t is the year. Figure 6.3 shows the results for the 415 classes which had

positive size in 1976. We can conclude from it that exponential growth, while very

rough and unfair to the heterogeneity among classes, is a decent assumption, with

most R2 above 0.9, and the coefficients highly concentrated between 0.05 and 0.15.

Although this exercise does not show that growth is exponential, it suggests that the

assumption of exponential growth has a fairly good amount of descriptive power.

Finally, note that Richards’ curve (6.9) cannot be meaningfully estimated directly,

since in 1976 there were already 415 classes out of 428. The next section discusses

why such simple assumptions nevertheless allow to make a good prediction of the

size-rank relationship.
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Figure 6.3: Test of the explanatory power of the exponential growth assumption of individual
classes. OLS regressions for equation 6.11. The mean a2 is 0.10 and the median 0.095.

6.6 Discussion

The assumptions of the models presented here should not be taken at face value. For

instance, it is likely that the functions need not be deterministic for the results on the

shape of the distributions to hold true (for the same reason that Yule and Simon’s

models give a result similar to Naranan’s, which can be seen as deterministic mean-

field continuous approximation of these discrete stochastic models). Moreover, what

matters is not the exact shape of the growth function over (real) clock time, but the

relationships that the time variable implies between the growth of different items

and the number of items.10 For these two reasons, one can expect that the models

10To be more explicit, consider a given model with a given φ(t) and ψ(t), predicting g(r) and
p(k). For the model to be correct, we need not observe φ and ψ as assumed, with t being our
experienced time in months or years. What we need to observe is φ and ψ such that there exists
a rescaling of time which makes them behaving as assumed over the rescaled time. It should be
emphasized that, even for subclasses, the growth assumptions are not validated if we consider t
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presented here can be stated in more general terms. Pinning down the general

conditions under which these laws hold is certainly an interesting avenue for future

research.

It can be seen in table 6.1 and 6.2 that the estimated exponents are not always

constant over time. To the extent that this is true, the models used are falsified. The

models display “steady-state” results, and therefore, if they were entirely correct,

we would not observe time-varying parameters. However, one possibility is that

the systems have not yet reached their steady-state, so that we are observing the

convergence dynamics, which may not be accounted for in the models. Alternatively,

and perhaps more plausibly, the system is actually in disequilibrium. There are no

steady-state distribution of the US patent classes and subclasses sizes, because the

way in which categories grow individually and in number is unstable. Note, in

particular, that the mean number of patents per category is increasing. This trend

can be worrying if one takes a realist view on technological categories. For instance,

if one thinks that new categories reflect radical innovation and new patents in

existing categories represent incremental innovations, then the data tell us that there

is a tendency towards innovation being more and more incremental (less and less

radical). echoing the concerns raised by other researchers using different theoretical

frameworks (Jones 2009, Gordon 2012).

Finally, the models presented here shed light on the significant differences be-

tween the dynamics of classes and subclasses in the US patent classification system.

Why is it the case that subclasses are almost power law distributed, whereas classes

have a much less fat tail? The models suggest a simple explanation for that: the

number of classes stops growing as the number of patents do, whereas the number

of subclasses does keep a pace similar (in terms of functional form) to the growth

of the number of patents. This is not a surprising result, because while classes have

a purely horizontal structure (each class is at the same level of the classification

tree), subclasses do not. Indeed, as explained in the literature review, subclasses

have different indentation levels, so that as patents accumulate one can create a

new subclass in a lower layer of the tree. Hence, if technological change is bounded

horizontally (taking a realist view, there is a finite number of categories of natural

phenomena, hence a finite number of categories of technologies based on them),

this will be reflected in the number of classes but not in the number of subclasses.

Moreover, while classes give an indication of the technological domain in which a

patent is granted, subclasses are a mandatory classification for claims, which are

the elements of novelty in a patent document. Novelty by definition cannot be novel

for too long, hence as new patents arrive it should be expected that new subclasses

as years (e.g. the number of subclasses grows much slower than exponentially)
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are created to accommodate genuine novelty. Beside these explanations, we cannot

dismiss other factors behind the emergence of the US patent classification struc-

ture. It is possible that the decision to create or not a category is based on search

efficiency arguments more than on ontological realities regarding the technology

being described. For instance, it can be decided by classification decision-makers

that the classes should not be changed too often, so as to provide a stability that

is necessary to fix common understanding and expectations. This would explain

the low growth of the number of classes. Albeit more speculative due to the lack of

data, the non-fully-realist interpretation reminds us that patent classifications do

not show directly the mesoscale organization of inventions, but the technologists’

understanding of it, codified for specific purposes which are not only ontological

but also functional (in particular searchability).

6.7 Conclusion

This chapter proposed three results. First, considering the US patents granted

between 1976 and 2006, the size distribution of subclasses is well fitted by a shifted

power law. Second, the size-rank relation of classes is well fitted by two different

forms of a generalized beta distribution. Third, it is possible to derive a generalized

beta functional form for rank-size relationships using the generalized Naranan’s

framework, by assuming an asymmetric logistic growth of the number of categories.

Much work is left to be done in this area. The models used make very strong

assumptions but it remains to be seen how much conclusions would change if more

randomness and heterogeneity were allowed. The role of time also needs to be clar-

ified by mathematical arguments, both to understand how general are the models

based on the generalized Naranan’s framework, and to allow for disequilibrium dy-

namics, a common feature of knowledge systems. Moreover, the dataset used here

covers (utility) patents granted in the US between 1976 and 2006, which is only

about a half of the total number of US patents, whereas the models assume that

the complete system is observed (notably the growth of the classification system).

By observing these “universal” laws more precisely and in different contexts, future

research may be able to understand better their fundamental drivers.





Chapter 7

Conclusion

At the scale of human evolution, the last two centuries of economic growth have

been impressive (Maddison 2007). The exponential growth of the post WWII period

generated hope that a sustained path of growth is achievable. Meanwhile, the

alarming pressure on natural resources led to serious concerns about the possibility

of exponential growth in a bounded world. But if infinite exponential growth of

the extraction of natural resources is impossible, what can we hope to keep growing

forever?

The value of the economic approach is to consider welfare, without necessar-

ily equating welfare with an increased consumption of natural resources intensive

goods. As many have argued (e.g. the conclusion in Arthur (2009)), technologies

create new constraints but on average they tend to increase human capabilities.

Interestingly, the literature on alternative indicators of welfare tends to consider

knowledge in itself as valuable for development (Sen 1999). The primacy of knowl-

edge as a source of economic progress is well reflected in the debates about the

actual possibility of long run growth, which often boil down to an opposition be-

tween technology optimists and pessimists. This debate has been particularly alive

in the last years, following Gordon’s (2012) claim that innovation is slowing down.

But for technology optimists, such as Brynjolfsson & McAfee (2014), “secular stag-

nation” is unlikely in view of the potentially tremendous transformative impact of

new technologies. This debate is of course not new; in one form or another it has

been going on since Malthus. What seems to generate consensus, however, is that

the answer lies in our ability or inability to produce, allocate and use knowledge

(Soete 2009, Fernald & Jones 2014).

This thesis took as a starting point the idea that development is knowledge-

based. It argued that as a result, the focus of economics should shift from the

self-organization of markets to the self-organization of knowledge systems. There-

fore, it proposed to study in detail the structure and evolution of abstract knowledge

111
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economies – agents and their ideas – but also more concrete examples, such as sci-

entific citations or patent classifications . Knowledge systems should be studied

in their own right, because they are very complex, and quite different from tradi-

tional economic systems (textbook’s production and exchange economies). Even

more than “normal” goods and services, knowledge or “ideas” evolve in a way

that involves feedback loops, self-reinforcing processes, auto-catalytic dynamics,

and leads to structures that have non trivial properties. These properties – power

law distributions have been the prime example in this work – can be nevertheless

well-understood once we recognize them as signatures of complex systems.

A particularly interesting connection between power laws and knowledge sys-

tems is that power laws are known to emerge when a system features both a growing

number of elements and growth of these elements. Hence, the nature of knowledge

– which is non-rival, builds out of itself, and is sometimes radically (essentially) new

– makes stochastic models for power law particularly attractive from a theoretical

point of view. Structural change, in this framework, can be seen as the creation,

diffusion and selection of varieties, be they product varieties, capital vintages and

blueprints, or behavioral and cognitive rules. Necessarily, to be empirically relevant,

classical models such as Simon (1955) are often too simple and need to be improved.

In the present work, I have focused on some nonlinearities, emerging either from

theoretical considerations (as bounded population in chapter 4) or empirical ob-

servations (as the non power law scaling of the size distribution patent classes in

chapter 6). These are only a few instances of the ways in which stochastic models in

this tradition can provide both theoretical and empirical insights into the process of

development. Other prominent examples include of course size distributions (such

as that of firms, sectors, and cities), but also the degree distributions in consumer-,

firm-, and country-product networks. The latter often exhibit a “nested” structure

which reflects the pattern of growth implied by the innovation/diffusion duality.

To summarize the thesis more specifically, I have proposed parsimonious theoret-

ical and empirical models of self-organizing knowledge systems. Chapter 4 charac-

terized precisely the self-organization of innovation - diffusion economies. Chapter

5 derived predictions of this model on empirical observables, arguing that the main

driver of the structure of citation networks is the way in which and frequency with

which knowledge diffuses. Chapter 6 studied the size of technological categories,

showing that an S-shaped growth of the number of categories is a sufficient modifi-

cation of existing models to explain the rank-size relationship at the level of patent

classes.

There are two general lessons from this thesis, one technical and one theoretical.

From a technical point of view, it has been argued that the theory of self-organizing
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two-mode networks provides a novel and useful framework to study economic pro-

cesses. In particular, it was shown that one can study the co-evolution of social

and epistemic networks by keeping track of the two-mode agent-idea network. This

framework is rather general, and the original models presented here are only early

examples of a mathematical theory which will be developed in the years to come,

and for which the economic theory is largely to be written.

The theoretical lesson from this thesis concerns the non-equilibrium nature of

knowledge systems, which casts a doubt on their viability. As knowledge accu-

mulates, can it keep growing at the same pace? Chapter 5 successfully fitted a

distribution derived from an “equilibrium” model, but could not show that the

parameters were constant over time. Equilibrium in the models that I presented

is a “statistical equilibrium”, that is a state in which many things keep happen-

ing (contrary to Nash or Walras equilibria), but compensate in such a way that

mesolevel quantities (such as certain distributions) are stable. However, the change

of these fits over time indicates that citation networks cannot be fully characterized

by (even statistical) equilibrium models. In chapter 6, a strong nonlinearity in the

growth of the number of categories was emphasized. In fact, during the 30 years

studied, only a few classes were added in spite of a tremendous increase in the num-

ber of granted patents. In both cases, these nonlinearities and disequilibria suggest

that the structure of knowledge systems changes as knowledge systems grow, which

opens the question of their viability. As a result, understanding the sources and

consequences of these disequilibria and nonlinearities is an important challenge for

future research.





Chapter 8

Societal Relevance

In accordance with article 23.5 of the “Regulation governing the attainment of doc-

toral degrees at Maastricht University” decreed by resolution of the Board of Deans,

dated 3 July 2013, an addendum must be added about valorization.

At any level, from pure theory to public policy and private practice, it is thought

that knowledge is at the heart of economic progress. Knowledge allows persistent

productivity increases which ensure us access to more goods, services, and free

time. These ideas often translate into formal quantitative objectives. a famous

example being the Lisbon Agenda in 2000, which aimed at making the E.U. “the

most dynamic and competitive knowledge-based economy in the world by 2010”,

by requiring that public and private Research and Development (R&D) spending

should attain a level 3% of GDP.

If, really, what matters is the accumulation of knowledge, then one must study in

detail the microeconomic dynamics of knowledge creation and diffusion. Of course,

understanding the organization of markets and the relations among aggregated

variables is relevant and useful. But once one admits the primacy of knowledge,

innovation, technological and institutional change in explaining the long-run path

of the human race, it seems imperative to try understanding the self-organization

of knowledge systems. How is knowledge created? How does it diffuse? How

does knowledge creation fuel additional creation? How does knowledge diffusion

influence the dynamics of knowledge accumulation? How do different pieces of

knowledge relate to each other?

If we understand what are the key parameters driving the evolution of knowledge

systems, we may be able to measure, predict, and control them. The relevance of

this thesis is right here: identifying the most fundamental parameters and principles

of organization and measuring them on real systems to understand the real-world

dynamics. The controllability, or normative analysis of knowledge systems has
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been only superficially touched upon in the present work. Instead, I have focused

on giving basic theoretical foundations and data-constrained empirical evidence for

the evolution of knowledge systems. Let me now highlight what types of policy-

oriented perspectives follow from this work.

First of all, understanding the structure of knowledge based on its dynamics

allows potentially to predict which type of knowledge will emerge. To a very large

extent, knowledge is created from existing knowledge, which implies that we can

think of a structure, or system, or network of ideas. In the last decades, it has

become clear that in some specific cases, we can actually describe and understand

the structure of knowledge using the powerful mathematical concept of graph (or

network). This is possible because codified knowledge items often formally refer

to other pieces of knowledge that have been influential or are epistemically re-

lated. Materially speaking, pieces of codified knowledge such as scientific papers

and patents “cite” other documents, such that the actual structure of knowledge

can be described as a citation network, where each knowledge item is a node and

each node has a directed link towards each of the knowledge items that it cites. As

it turns out, the observed empirical patterns are striking and the associated theory

is insightful: most citation networks have a power law distribution of in-degree,

which can be explained by growth and cumulative advantage (or “rich gets richer”

effects). In more mundane terms, the vast majority of knowledge items are almost

never cited, whereas a few knowledge items are referenced a very high number of

times (a popular rule of thumb for the so-called “Pareto principle” would phrase

it as “20% of the papers gather 80% of citations”, though the actual numbers are

slightly different). This observation can be explained by the fact that the number

of ideas (say scientific papers or patents) is growing, and there exists a cumulative

advantage, or rich gets richer, or Matthew effect at play: well recognized ideas tend

to diffuse even more, creating a snowballing effect or self-reinforcing process that

eventually leads to this high level of inequality among knowledge items in terms of

diffusion or being “cited”.

Understanding such processes will allow to make better predictions. For in-

stance, the study of citation networks can result in predictions of the future success

of particular items, or prediction of which knowledge domains will grow more. A

sound understanding of cause and effect may even permit to detect inefficiencies

and propose policies to correct them. Relatedly, it is important to appraise how

and why scientific and technological credit are so unevenly distributed, because they

are often used for the evaluation of individuals, laboratories, firms or projects. In

this thesis, it is shown that imitating a random idea of a random friend (indepen-

dent of the idea’s quality) leads to a structure of the citation network fairly close
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to the observed one. Of course, in reality some papers are better than others and

they receive more citations because they are better; but as a matter of fact, to a

first approximation we don’t need to invoke the quality argument to understand

why citation distributions are so unequal. Hence, this work warns evaluators that

using citations as an indicator of scientific quality can be misleading, emphasizing

that other factors, such as the social structure in which diffusion takes place, or

the allocation of attention between innovation and imitation, represents a plausible

explanation for most of the observed reality.

Another focus of this thesis has been classification systems. The analysis of

classification systems has a tremendous economic and social relevance because cat-

egorizations are pervasive, and wherever they are used, they constrain their users

and influence the future dynamics of the system being categorized. In the present

work, I analyzed the classification of US patents, arguing that the addition of new

categories reflects the fact that some patents are sui generis (of their own kind),

and as such can be considered very innovative. The dynamics of the category sys-

tem then informs us about the evolution of the degree of novelty of inventions. Of

course, this reasoning reflects the belief that patent officers are reliable at classifying

patents and creating new categories. But, presumably, other patent officers may

have made a different classification choice; different countries with different cultures

and times of entry in the industrial revolution would develop different classification

systems. Along this line of reasoning emerges the question of standardization of

classification systems or benefits of their multiplicity. By showing that patent clas-

sification systems can be used to ask macro- (or meso-)economic questions about the

dynamics of knowledge systems and their future, this work suggests that the bene-

fits of non-standardisation of classification may have been underestimated when it

was decided to merge the different patent classification systems (International, US

and EU) – currently an ongoing process. While the purpose of this work was not

to decide whether or not the risk of cognitive lock-in is higher than the benefits

of standardization, it contributes to raising the question. This thesis uncovered

how the size of patent classes (in terms of the number of patents) is distributed,

and had to propose an original, but simple and not fully explanatory model for

it. This only shows our relative ignorance of classification dynamics, and the large

amount of work which remains to be done before decision on standardization be

based on scientific arguments. Moreover, relatively recent technological trends are

transforming the way objects are classified. Information technologies, coupled with

user-driven (so called Web 2.0) dynamics, potentially change radically the way

things (material or not) are classified, because electronic classification facilitates

the assignment of multiple categories, and because users tagging objects effectively
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define categories in a decentralized way. Theses changes have potentially important

effects on society and the economy – yet if little is known on statistical properties

of existing classification systems, understanding these changes will prove difficult.

In this regard, the analysis of patent categories in chapter 6, and the technicalities

of chapter 3 and 4 (which may be used to model folksonomies) may contribute to

a better understanding and design of information systems.

Another practical domain for which this thesis is relevant concerns recommender

systems. If we start from the idea that attention is limited, and that what goes

to people’s attention is important, we have to understand the socio-economic con-

sequences of different types of recommender systems. To obtain the normative

results that would be useful for policy makers, we need to understand exactly how

the structure of user-objects systems (bipartite or two-mode networks) is influenced

by different types of recommendations (e.g, recommending the most popular item,

recommending items already used by friends, recommending completely at random,

etc.). Chapter 3 and 4 contributed to the technical literature in this area, which

was so far limited to the physics and computer science communities. Hopefully,

raising the interest of economists will ultimately lead to more rigorous positive and

normative analysis of the individual and collective welfare properties of different

recommendation algorithms, leading to potentially huge long-term welfare gains.

Finally, there is one mathematical truth, an identity, in the footnote of page

62, that has been discovered. Ironically, its discovery is fully serendipitous, and

has had almost no consequence for the scientific topics of this thesis. In principle,

it can be embodied in commercial softwares. This equality is very specific, and in

all likelihood it will not be useful to many people. Perhaps it is not even worth

the cost of the programmer who would have to implement it. Nevertheless, if it

was implemented and if people would use it, (human and machine) computing time

and energy would be saved. This point demonstrates that serendipity exists, and

serves to express the view that the social relevance of fundamental sciences should

be evaluated taking into account that real truth have to be proven only once. As

such they have a great socio-economic value, possibly more than their marginal cost

–but more theoretical work on the microeconomics of knowledge would be necessary

to establish or falsify this statement.



Bibliography

Abramovitz, M. (1956), ‘Resource and output trends in the United States since
1870’, The American Economic Review 46(2), pp. 5–23.

Adamic, L. & Huberman, B. (2000), ‘Power-law distribution of the world wide web’,
Science 287(5461), 2115–2115.

Aghion, P. & Howitt, P. (1992), ‘A model of growth through creative destruction’,
Econometrica 60(2), pp. 323–351.

Albarrán, P. & Ruiz-Castillo, J. (2011), ‘References made and citations received by
scientific articles’, Journal of the American Society for Information Science and
Technology 62(1), 40–49.

Alchian, A. A. (1950), ‘Uncertainty, evolution, and economic theory’, Journal of
Political Economy 58(3), 211–221.

Andersen, B. (1999), ‘The hunt for S-shaped growth paths in technological innova-
tion: a patent study’, Journal of Evolutionary Economics 9(4), 487–526.

Ando, A., Fisher, F. M. & Simon, H. A. (1963), Essays on the structure of social
science models, MIT Press, Cambridge, MA.

Armenter, R. & Koren, M. (2014), ‘A balls-and-bins model of trade’, American
Economic Review 104(7), 2127–2151.

Arrow, K. (1962), Economic welfare and the allocation of resources for invention,
in ‘The rate and direction of inventive activity: Economic and social factors’,
NBER, pp. 609–626.

Arrow, K. J. & Debreu, G. (1954), ‘Existence of an equilibrium for a competitive
economy’, Econometrica 22(3), 265–290.

Arthur, B. W., Ermoliev, Y. M. & Kaniovski, Y. M. (1987), ‘Path-dependent pro-
cesses and the emergence of macro-structure’, European journal of operational
research 30(3), 294–303.

Arthur, W. (1989), ‘Competing technologies, increasing returns, and lock-in by
historical events’, The Economic Journal 99(394), 116–131.

Arthur, W. (2009), The Nature of Technology: What It Is and How It Evolves, Free
Press.

119



120 BIBLIOGRAPHY

Arthur, W. B. (1994), Increasing returns and path dependence in the economy,
University of Michigan Press.

Atalay, E. (2013), ‘Sources of variation in social networks’, Games and Economic
Behavior 79, 106–131.

Atkin, R. (1977), Combinatorial connectivities in social systems, Birkhauser Verlag.

Axelrod, R. M. (1997), The complexity of cooperation: Agent-based models of com-
petition and collaboration, Princeton University Press.

Axtell, R. L. (2001), ‘Zipf distribution of US firm sizes’, Science 293(5536), 1818–
1820.

Bala, V. & Goyal, S. (1998), ‘Learning from neighbors’, Review of Economic Studies
65, 595–621.

Bala, V. & Goyal, S. (2000), ‘A noncooperative model of network formation’, Econo-
metrica 68(5), 1181–1229.

Baldwin, C. & Clark, K. (2000), Design rules: The power of modularity, The MIT
Press.

Barabási, A. & Albert, R. (1999), ‘Emergence of scaling in random networks’, Sci-
ence 286(5439), 509.

Becker, M. C., Cohendet, P. & Llerena, P. (2007), Division of labor and division of
knowledge: why the nature of the causality matters for the evolutionary theory
of the firm, in ‘Innovation, Industrial Dynamics and Structural Transformation’,
Springer, pp. 49–63.

Beguerisse-Diaz, M., Porter, M. A. & Onnela, J.-P. (2010), ‘Competition for pop-
ularity in bipartite networks’, Chaos: An Interdisciplinary Journal of Nonlinear
Science 20(4).

Berge, C. (1989), Hypergraphs: combinatorics of finite sets, North-Holland.

Bianconi, G. & Barabási, A. (2001), ‘Competition and multiscaling in evolving
networks’, EPL (Europhysics Letters) 54, 436.

Biglu, M. (2008), ‘The influence of references per paper in the SCI to Impact Factors
and the Matthew Effect’, Scientometrics 74(3), 453–470.

Bollobás, B. (1998), Modern graph theory, Vol. 184, Springer.

Bollobás, B., Riordan, O., Spencer, J., Tusnády, G. et al. (2001), ‘The degree
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Granell, C., Gómez, S. & Arenas, A. (2011), ‘Mesoscopic analysis of networks:
Applications to exploratory analysis and data clustering’, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 21(1), 016102.

Granovetter, M. (1973), ‘The Strength of Weak Ties’, American Journal of Sociol-
ogy 78(6), 1360–1380.

Grossman, G. M. & Helpman, E. (1991), ‘Quality ladders in the theory of growth’,
The Review of Economic Studies 58(1), 43–61.
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Samenvatting

De creatie en verdeling van economische welvaart berust uiteindelijk op de ontwikke-

ling en verspreiding van kennis. Als gevolg hiervan vereist het begrijpen van de dy-

namiek, de organisatie en de levensvatbaarheid van de economie een grondige anal-

yse van kennissystemen. Dit proefschrift stelt voor om kennissystemen te bestud-

eren als zelforganiserende two-mode netwerken. Two mode-netwerken hebben twee

soorten knooppunten, en de verbindingen zijn alleen tussen knooppunten van ver-

schillende types. Deze zijn zelforganiserend in de zin dat eenvoudige regels van de

evolutie leiden tot een rijke, maar gevormde dynamiek. Het proefschrift bouwt voort

op de literatuur over sociale (agent-agent) en epistemische (idee-idee) netwerken om

sociaal-epistemische co-evolutie te bestuderen door agent-idee netwerken.

Het blijkt dat: (i) stabiele kracht wet-verdelingen van de populariteit van ideen

van nature ontstaat van innovatie en face-to-face diffusie; (ii) deze dynamiek is com-

patibel met de waargenomen (verschoven) krachtwet van citaties, en (iii) de veral-

gemeende beta grootte-rank relatie waargenomen voor octrooi-klassen kan worden

verklaard door een vertraging in de groei van het aantal klassen. Een algemene

les van dit werk is dat kennissystemen vaak dynamica die niet in evenwicht is en

niet-lineaire dynamica vertonen, die twijfels kunnen veroorzaken over hun levens-

vatbaarheid op lange termijn.

Het proefschrift begint met een algemene inleiding (hoofdstuk 1), gevolgd door

een overzicht van de literatuur over de kennis en ontwikkeling (hoofdstuk 2) waarin

wordt uitgelegd waarom de studie van zelforganiserende kennissystemen een kernon-

derwerp van de economie zou moeten zijn. Vervolgens wordt een overzicht gegeven

van groeiende one-mode en two-mode netwerkmodellen (hoofdstuk 3), samen met

enkele originele resultaten. De drie belangrijkste hoofdstukken volgen.

Hoofdstuk 4 presenteert een model van ontwikkeling en verspreiding van ideen

in een sociaal netwerk. Agenten leren willekeurige ideen van willekeurige vrienden,

daarbij een zichzelf versterkende dynamiek in de diffusie van ideen crerend. Maar

deze exponentile diffusie is beperkt aangezien de bevolking begrensd is, wat leidt tot

een logistische diffusie-curve. Bij de steady-state, is de verdeling van de populariteit

van ideen (het aantal agenten dat een idee kent) een specifieke gegeneraliseerde hy-
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pergeometrische verdeling, die de neiging heeft naar de bekende Yule-Simon verdel-

ing wanneer de grootte van de populatie naar oneindig gaat. Een gemiddelde veld

zelf-consistentie vergelijking voor de partitie-factor van de bijlage-kernel benadrukt

dat een stabiele zelforganisatie plaatsvindt omdat de “ overlap ’tussen de agenten’

ideen-sets, bepalend en bepaald door welk ideen verspreiden, een stabiele toestand

bereikt .

Hoofdstuk 5 gebruikt de resultaten van hoofdstuk 4 om de structuur van citatie-

netwerken te verklaren. In hoofdstuk 5 wordt ook aangenomen dat, wanneer nieuwe

ideen (papers) verschijnen, ze willekeurige ideen citeren die eerder bekend waren bij

de uitvinder. In tegenstelling tot de bestaande modellen, die de exponent van de

machtsfunctie citaat-distributies verklaren door de relatieve prevalentie van bibli-

ografische (lezen van door andere papers geciteerde papers) en willekeurige zoekop-

drachten, toont het model dat de beperkte aandacht en face-to-face diffusie ook de

waargenomen patronen kan verklaren.

Hoofdstuk 6 onderzoekt de omvang van octrooi-categorien. De grootte-verdeling

van de Amerikaanse octrooi-subklassen is goed uitgerust met een (verschoven)

machtsfunctie. Echter, op het niveau van de Amerikaanse octrooiklassen wordt

de Zipf-wet duidelijk overtreden en de afmeting-rank relatie is goed uitgerust door

een gegeneraliseerde beta-verdeling. Om dit patroon te verklaren, wordt een niet-

lineaire aanpassing van het Yule-Simon-Naranan principe voorgesteld. Terwijl vol-

gens laatstgenoemde zowel individuele categorien als het aantal categorien exponen-

tieel groeit, wordt hier aangenomen dat het aantal categorien een asymmetrische

logistische (Richards)-curve volgt.
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