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Polynomial cases of the tarification problem

Stan van Hoesel ∗ Anton F. van der Kraaij † Carlo Mannino ‡

Gianpaolo Oriolo § Mustapha Bouhtou ¶

December 18, 2003

Abstract

We consider the problem of determining a set of optimal tariffs for an agent in a network,
who owns a subset of the arcs of the network, and who wishes to maximize his revenues on
this subset from a set of clients that make use of the network.

The general variant of this problem is NP-hard, already with a single client. This paper
introduces several new polynomially solvable special cases. An important case is the following.
For multiple clients, if the number of tariff arcs is bounded from above, we can solve the
problem by a polynomial number of linear programs (each of which is of polynomial size).
Furthermore, we show that the parametric tarification problem and the single arc fixed charge
tarification problem can be solved in polynomial time.
Subject Classification: Networks, Combinatorial Optimization, Bilevel Programs.

1 Introduction

The tarification problem in a network involves two non-cooperative groups, tariff setting agents and
tariff following clients. Each arc in the network is owned by at most one agent. Being the owner
of an arc an agent can set the price for renting capacity on the arc freely, in order to maximize
his revenues. The clients wish to route a certain demand for capacity on a path connecting two
vertices (a commodity). A selected path can involve connections belonging to different agents.
Clearly, each client will select a path with minimum cost to satisfy the demand for his commodity.

We restrict the problem to a single agent who knows the tariffs of his competitors and intends
to charge revenue-maximizing tariffs on the subset of the network arcs owned by himself. This
agent is generally referred to as the leader, while the clients are referred to as followers. The arcs
that are not owned by the leader belong to the other agents in the network.

An elegant and natural formulation of this problem is a bilevel program introduced in Labbé et
al. [4], where at the upper level the leader strives to maximize his revenue, while at the lower level
the clients seek to minimize the cost of routing their demands. In this formulation, the objective
functions of the leader and the clients are bilinear. For the tarification problem with linear pricing
of the tariff arcs, Labbé et al. [4] showed that the single agent problem is NP-hard, even for
one commodity, but with lower bounds on the tariffs. Recently, Roch et al. [5] have refined this
result and shown that the problem is NP-hard for one commodity and nonnegative tariffs. Roch
et al. [5], propose an approximation algorithm for the single-commodity case with linear pricing
strategies and a performance guarantee of 1

2 log|T |+ 1, where T is the set of tariff arcs.
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This paper focuses on polynomially solvable special cases of the tarification problem. Some
cases (all with linear pricing) have been described in earlier work. Labbé et al. [4] identified
the case with one commodity where the path in the network taken by the client in the optimal
solution is known a priori (fixed path linear tarification problem). Furthermore they show that
for multiple commodities and one tariff arc (single arc linear tarification problem) the problem is
also polynomially solvable. We generalize the latter case in three different ways.

For a linear pricing strategy, if the number of tariff arcs is upper bounded a priori, we show that
the optimal solution can be obtained by solving a number (polynomially bounded by the number
of commodities) of linear programs. We refer to this type of problem as the bounded arcs linear
tarification problem. If we restrict the tariffs to be dependent on a single parameter (parametric
tarification problem), we can solve the problem in polynomial time for an unlimited number of
tariff arcs. Parametric tarification has an interesting special case, where all tariffs are restricted
to be equal on all tariff arcs. Finally, the problem with multiple commodities and one tariff arc
for the fixed charge pricing strategy (single arc fixed charge tarification problem) is shown to be
polynomially solvable by a geometrical algorithm.

In the remainder, we first describe the general tarification problem we are dealing with and
formulate it as a bilevel program. Subsequently, the notation used and the different pricing
strategies studied are introduced. We briefly cover the properties of a remodeling of the network,
introduced by Bouhtou et al. [1], and then illustrate each polynomially solvable special case.

2 Model

The underlying structure of the tarification problem is a directed graph G = (N,A), where A is
partitioned into a set of tariff arcs T and a set of fixed cost arcs F . The clients form a set of
commodities K, where each client k ∈ K has a demand dk from node sk to node tk. The tariff
arcs belong to the leader and incur a toll for routing a client’s demand. The fixed cost arcs are
owned by other agents in the network, whose tariffs are demand dependent, but known a priori.
We denote the cost of routing a demand d on an arc a ∈ F by γa(d) ≥ 0. The pricing strategy
on a tariff arc a ∈ T is referred to by the nonnegative function ρa(d), where d is the demand to
be routed on the tariff arc. We define for a commodity k ∈ K the set of all possible paths from
source to target by Pk. Denote by Tp, respectively Fp, the set of tariff arcs, respectively the set of
fixed cost arcs, on a path p ∈ Pk. The revenue associated with a path p for a demand d is defined
by

πp(d) :=
∑
a∈Tp

ρa(d), (1)

whereas the fixed cost associated with the path p is given by:

cp(d) :=
∑
a∈Fp

γa(d) (2)

The tariffs on the arcs of T are determined such that the total revenue of the leader is max-
imized. The clients on the network route their demands from source to destination according to
the shortest path with respect to total cost, where the total cost of a path is defined as the sum of
all the tariffs and fixed costs on the arcs of the path. Define by lp(d) = cp(d) + πp(d), the length
of a path p. Whenever the client has a choice among multiple shortest paths with the same total
cost but with different revenues for the leader, we suppose the client takes the shortest path that
is most profitable to the leader. We furthermore suppose that a path using only fixed cost arcs
exists for every client k ∈ K, since the problem is otherwise unbounded.

The general multiple commodities tarification problem, which holds for all pricing strategies
studied, can be defined by the following bilevel program:
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max
∑

k∈K

πp∗k
(dk)

s.t. p∗k = arg min
p∈Pk

lp(dk) ∀k ∈ K
(3)

For the bilevel program in (3), at the upper level the revenue of the leader is maximized, while
at the lower level the clients take the shortest path, given the tariffs determined at the upper level.

For linear tarification, the cost of routing a demand d on the tariff arc a ∈ T is determined by
a variable cost only. Define for each arc a ∈ T the tariff ta ≥ 0. The pricing strategy ρa(d) on a
tariff arc a ∈ T is defined as follows:

ρa(d) = tad (4)

Linear tarification has been extensively studied in the field of transportation. See for exam-
ple Labbé et al. [4] and Brotcorne et al. [2], who have studied the optimization of tolls on a
transportation network.

When dealing with parameterized tarification, the tariffs are dependent on a single parameter
τ ≥ 0, for all tariff arcs. The pricing strategy on an arc a ∈ T is given by:

ρa(d) = (αa + βaτ)d, (5)

where αa, βa ≥ 0 are constants for all arcs a ∈ T .
In case of fixed charge tarification, clients pay a fixed cost to be able to route their demands

on the network. Furthermore, for each unit of traffic, the client incurs a cost per unit of traffic.
Define by fa ≥ 0 the fixed cost on the arc and by va ≥ 0 the cost per unit of traffic. For fixed
charge tarification, the cost of routing a demand d on an arc a ∈ T with tariffs fa and va is given
by:

ρa(d) =
{

0 if d = 0
fa + vad if d > 0 (6)

The demands are known for all clients a priori. Hence, the cost of routing a demand d on an
arc a ∈ F can be computed a priori, for any pricing strategy of the other agents in the network.
Note that both lp(d) and πp(d) are linear functions for all pricing strategies studied.

For each commodity in the network, we use a remodeling of the network, referred to as the
shortest paths graph model (SPGM), defined by Bouhtou et al. [1].

The definition of the SPGM for a customer is as follows: consider the original graph G = (N,A)
with the tariff arcs in T ⊆ A. For a client k ∈ K with demand dk from s to t, we define the graph
G∗ = (N∗, A∗) and the tariff arcs T ∗ ⊆ A∗. In this graph, the tariff arcs are separate arcs. So,
tariff arcs with a common vertex are separated. Next, we construct the following fixed cost arcs.
Note that between two tariff arcs, a client takes the shortest path using only fixed cost arcs in G.
These paths are represented by fixed cost arcs in G∗, connecting the head of one tariff arc with
the tail of another. From the source s we construct arcs to all the tail nodes of the tariff arcs,
and from all the head nodes we construct an arc to the destination t, again only if paths exist
using only fixed arcs in G. For each commodity, the path using only fixed cost arcs from s to t
is represented by the arc (s, t). Note that we have supposed that this arc is always present, since
the problem is otherwise unbounded. Any fixed cost arc in A∗ has a cost equal to the length of
the shortest path between its end vertices in G, using only fixed cost arcs in G.

As shown by Bouhtou et al. [1], both models are equivalent. Concisely, for any path in the
network G, there exists a path in the SPGM that is at least as good. Conversely, if a path exists
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Figure 1: The original network G and the shortest paths graph model G∗.

in the SPGM, then a path with identical costs exists in the network G. Hence, an optimal solution
in the SPGM has the same value in the original network. See for example the network depicted
in figure 1(a). For this network, we are dealing with three tariff arcs, represented by the dashed
arcs. The fixed cost arcs are represented by the solid arcs. The SPGM for a client with a demand
from node 13 to node 14 is given in figure 1(b). If a path does not exist between two nodes in
the original network, the corresponding fixed cost arc has infinite cost. In figure 1(b), we have
chosen not to draw these infinite cost arcs. Note that the size of the network is O(|T |2) for each
commodity.

Since the SPGM only remodels the network by replacing the fixed cost arcs of the network,
the SPGM holds not only for a linear pricing strategy, but for all pricing strategies on the tariff
arcs where the cost of routing a client’s demand on a fixed cost arc can be calculated a priori.
For example, in case of a fixed charge pricing strategy, as long as the demand is known a priori,
the cost of routing a client on a fixed cost arc can be calculated, enabling the calculation of all
necessary shortest paths. The tariff arcs are just copied to the SPGM, including their pricing
strategy.

3 Bounded Arcs Linear Tarification Problem

In this section, we study the complexity of the linear tarification problem with a bounded number
of tariff arcs. The bilevel program defined in (3) is shown to be equivalent to a class of linear
programs. Each linear program is constructed in such a way that the path taken by each client
in the solution is fixed. Together, the linear programs in the class are equivalent to the linear
tarification problem. The number of linear programs to solve is bounded by |K|f(|T |)g(|T |), while
each linear program is of size h(|T |). Note that the functions f(|T |), g(|T |) and h(|T |) depend
only on the size of the set of tariff arcs. The number of linear programs to solve is therefore
polynomially bounded by the number of commodities, whenever |T | is upper bounded a priori.
Since we can solve a linear program in polynomial time, the bounded arcs linear tarification
problem is polynomially solvable.

For any client k ∈ K, consider two paths p1, p2 ∈ Pk. If p1 is to be the shortest of the two
paths, the constraint lp1(dk) ≤ lp2(dk) must hold. Thus:

cp1(dk) + πp1(dk) ≤ cp2(dk) + πp2(dk) ⇐⇒
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πp1(dk)− πp2(dk) ≤ cp2(dk)− cp1(dk) (7)

The constraint lp1(dk) ≤ lp2(dk) is of the form:

∑
a∈T1

ta −
∑
a∈T2

ta ≤ bk(p1, p2) (8)

Here, bk(p1, p2) is a constant and T1 and T2 are disjoint subsets of T . Note that T1 contains the
tariff arcs in p1 not in p2, and T2 contains the tariff arcs in p2 not in p1. Tariff arcs on both paths
do not appear in this constraint and hence we may assume T1 ∩ T2 = ∅. The constant bk(p1, p2)
is referred to in the remainder as the switching value for the pair (p1, p2) for a client k ∈ K, since
p1 is shorter than p2 if equation (8) holds and p2 is shorter than p1 if equation (8) does not hold.
If p1 and p2 have the same set of tariff arcs, then T1 = T2 = ∅. In that case, the left hand side of
(8) evaluates to zero. Thus, the sign of bk(p1, p2) determines which of the two paths is shortest,
for all possible tariff values. We compute for each client k ∈ K, for all p1, p2 ∈ Pk, the switching
values bk(p1, p2).

We denote the set of all subsets of T by T. The set of all pairs of mutually disjoint sets of tariff
arcs is then defined as:

T2 := {(T1, T2) ∈ T × T : T1 ∩ T2 = ∅} (9)

Let B be the increasingly ordered sequence of switching values {bk(p1, p2)|p1 ∈ Pk, p2 ∈ Pk, k ∈
K} ∪ {−∞,+∞}, say B = (b0, b1, . . . , bR). For each pair (T1, T2) ∈ T2, we introduce an index in
the ordered sequence B, say r ∈ {1, . . . , R}.

For any (T1, T2) ∈ T2, we select an index, say r(T1, T2) ∈ {1, . . . , R}. We consider the following
set of constraints:

br(T1,T2)−1 ≤
∑
a∈T1

ta −
∑
a∈T2

ta ≤ br(T1,T2) ∀(T1, T2) ∈ T2 (10)

Lemma 1. Given a choice r(T1, T2) ∈ {1, . . . , R} for all (T1, T2) ∈ T2, then for each client k ∈ K
there exists a path p∗k ∈ Pk that is the shortest path for all tariffs satisfying the constraints in (10),
if (10) is not empty.

Proof. We prove that for each client k ∈ K and each pair of paths p1 ∈ Pk and p2 ∈ Pk, one of the
two is shortest for any tariffs satisfying (10). For two paths with the same set of tariff arcs this is
trivial, as noted previously, so we can restrict ourselves to paths for which this is not the case.

For any client k ∈ K take two arbitrary paths p1 ∈ Pk and p2 ∈ Pk. As we have seen previously,
the constraint lp1(dk) ≤ lp2(dk) is equivalent to the constraint:

∑
a∈T1

ta −
∑
a∈T2

ta ≤ bk(p1, p2), (11)

where bk(p1, p2) is one of the switching values in the sequence B. Denote the index of this switching
value by r̄. For the constraints in (10), the pair (T1, T2) in (11) has index r(T1, T2).

If r̄ ≥ r(T1, T2), then

br(T1,T2)−1 ≤
∑
a∈T1

ta −
∑
a∈T2

ta ≤ br(T1,T2) ≤ br̄ (12)
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implies that lp1(dk) ≤ lp2(dk). Conversely, if r̄ < r(T1, T2), then br̄ ≤ br(T1,T2)−1. Thus,

br̄ ≤ br(T1,T2)−1 ≤
∑
a∈T1

ta −
∑
a∈T2

ta ≤ br(T1,T2) (13)

implies that lp1(dk) ≥ lp2(dk). Concluding, for all tariffs satisfying the constraints in (10), there
exists therefore a complete ordering of paths according to path length per commodity. For all
k ∈ K, there is thus a path p∗k that is the shortest for all paths in Pk. The tariff arcs on this path
yield a revenue of πp∗k

(dk).

Now, consider (10) for a choice r(T1, T2) ∈ {1, . . . , R} for all (T1, T2) ∈ T2 and let the path p∗k
be the shortest for all paths in Pk for each client k ∈ K. The revenue associated with the path p∗k
is given by the linear function:

πp∗k
(dk) =

∑
a∈T∩p∗k

tadk (14)

For a choice r(T1, T2) ∈ {1, . . . , R} for all (T1, T2) ∈ T2, define the following linear program,
referred to as LP (r):

zLP (r) =


max

ta:a∈T

∑
k∈K

∑
a∈T∩p∗k

tadk

s.t. br(T1,T2)−1 ≤
∑

a∈T1

ta −
∑

a∈T2

ta ≤ br(T1,T2) ∀(T1, T2) ∈ T2 (15)

Refer to the optimal value of the multiple commodities linear tarification problem for the bilevel
program defined in (3) as zMCTP .

Theorem 1.
max

r(T1,T2)
zLP (r) = zMCTP (16)

Proof. Given B and a choice of r(T1, T2) for all (T1, T2) ∈ T2, an optimal solution (if it exists) to
LP (r) generates a feasible solution to zMCTP . Therefore:

zLP (r) ≤ zMCTP (17)

Consider the optimal solution of MCTP . This yields a set of tariffs where for all clients k ∈ K
a path p∗k ∈ Pk is the shortest path. Given the optimal set of tariffs t∗, we define α(T1,T2):∑

a∈T1

t∗a −
∑
a∈T2

t∗a = α(T1,T2) ∀(T1, T2) ∈ T2 (18)

Now, for all (T1, T2) ∈ T2, choose r̄(T1,T2) such that:

br̄(T1,T2)−1 ≤ α(T1,T2) ≤ br̄(T1,T2) ∀(T1, T2) ∈ T2 (19)

Such an r̄(T1,T2) exists for all (T1, T2) ∈ T2 and all clients k ∈ K since the sequence B has
values ranging from 〈−∞,+∞〉. Given this choice of r̄(T1,T2) for all (T1, T2) ∈ T2, the solution t∗

is feasible in LP (r̄). Thus,

zMCTP ≤ zLP (r̄) (20)

From equations (17) and (20), it follows that

zLP (r̄) = zMCTP (21)
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We have shown that the optimal solution to the bilevel formulation of the linear tarification
problem can be obtained by solving a number of linear problems as in (15). In the remainder of
this section, we will compute bounds on the number of linear programs to be solved and on the
size of each linear program.

Lemma 2. For each client k ∈ K, the number of paths in the network is bounded by e|T |!.

Proof. Given the shortest path graph model, the maximum number of paths for a client k ∈ K is
defined by selecting an ordered set (possibly empty) of tariff arcs. A set of t arcs can be ordered
in t! ways and be chosen in

(|T |
t

)
ways. Therefore, a bound on the number of paths is given by:

|T |∑
t=0

(
|T |
t

)
t! =

|T |∑
t=0

|T |!
(|T | − t)!t!

t! = |T |!
|T |∑
t=0

1
(|T | − t)!

= |T |!
|T |∑
t=0

1
(t)!

≤ e|T |! (22)

Lemma 3. The number of elements in the sequence B is bounded by |K|(e|T |!)2.

Proof. Each element of the sequence B is determined from a constraint of the form (8), where for
a client k ∈ K two paths p1 ∈ Pk and p2 ∈ Pk are compared. For a client k ∈ K, the number of
comparisons is at most |Pk|2. From lemma 2 we know that |Pk| ≤ e|T |!. Hence, the number of
elements in the sequence B is at most |K|(e|T |!)2.

Theorem 2. Define f(|T |) = 4|T |, g(|T |) = (e|T |!)8|T |
and h(|T |) = |T |4|T |. The tarification

problem with a linear pricing strategy can be solved by |K|f(|T |)g(|T |)h(|T |) linear programs, each
of which is of size at most h(|T |).

Proof. It follows from theorem 1 that we need to solve a number of linear programs as defined
in (15). Each of the constraints in the linear program LP (r), described in (15), is defined by
a choice of T1 ∈ T and T2 ∈ T , such that T1 ∩ T2 = ∅. The number of possible subsets of
(T1, T2) is bounded by 2|T |2|T | = 4|T |, hence the number of constraints for each LP (r) is bounded
by 4|T |. For each constraint there is a choice of at most |K|(e|T |!)2 right hand sides. Hence, the
number of all possible linear programs LP (r) is at most {|K|(e|T |!)2}4|T |

= |K|f(|T |)g(|T |)), where
f(|T |) = 4|T | and g(|T |) = (e|T |!)8|T |

. The size of each linear program LP (r) is defined by the
number of variables (at most |T |) and the number of constraints (at most 4|T |). Thus, the size of
each linear program is bounded by h(|T |) = |T |4|T |.

4 Parametric Tarification

Another polynomially solvable variant of the tarification problem is the parametric tarification
problem (PTP). For this problem we restrict the tariffs on all tariff arcs to a single parameter τ :
ρa(d) = (αa + βaτ)d for all a ∈ T .

Given a value for the parameter τ , we can calculate the shortest path tree for each client.
Knowing the shortest path taken by each client for this value of τ , we can determine the revenue
to the leader. To keep track of the changes of the shortest path for each client, we maintain a
shortest path tree.

Finding the breakpoints in the shortest path tree for each client k ∈ K corresponds to solving
|K| instances of the parametric shortest path problem, one for each commodity. Young and Faster
[6] and Karp and Orlin [3] studied this problem and showed that the number of breakpoints
is O(n2). They furthermore described an algorithm which finds all these breakpoints in O(nm +
n2 log m). Here, |V | = n and |E| = m. With this result, we can find all breakpoints in O(|K|(nm+
n2 log m)). Denote these breakpoints by τ1, . . . , τB and by πk(τi) the profit to the leader from client
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Figure 2: A Single Arc Fixed Charge Tarification.

k ∈ K when the value of the parameter τ is set to τi, i ∈ {1, . . . , B}. If we denote the shortest
path taken by the client k ∈ K at parameter value τi by p∗k, πk(τi) is given by the following:

πk(τi) =
∑

a∈T∩p∗k

(αa + βaτi)dk (23)

Now, let

i∗ ∈ arg max
i

{∑
k∈K

πk(τi) : i ∈ 1, . . . , B

}
(24)

The optimal pricing strategy on each tariff arc a ∈ T is given by ρa(d) = (αa + βaτi∗)d. As
(24) shows, the profit function of the leader is not necessarily continuous. Note furthermore that
an interesting application of parametric tarification occurs when ρa(d) = τd for all a ∈ T . For
this particular problem, the tariffs are restricted to be equal on all tariff arcs.

5 Single Arc Fixed Charge Tarification

Although fixed charge tarification (see (6)) is more complex than linear tarification, we can solve
the fixed charge tarification problem when dealing with a single tariff arc and multiple clients in
polynomial time, using a geometrical algorithm.

For each commodity, we consider two paths. Let pu
k denote the shortest path taken by client

k ∈ K from node sk to node tk, using only fixed arcs, whose cost cpu
k
(dk) is an upper bound on

the cost of any path from sk to tk. Furthermore, let pl
k be the shortest path taken by client k with

smallest fixed cost from node sk to node tk, taken by the client when the tariffs are equal to zero.
Clearly, cpl

k
(dk) is a lower bound on the cost of any path from sk to tk. An upper bound on the

revenue induced by each client k ∈ K is therefore cpu
k
(dk)− cpl

k
(dk). Denote this upper bound by

∆ck = cpu
k
(dk)− cpl

k
(dk). Note that we can discard clients for which ∆ck is equal to zero.

Consider figure 2. In this figure, we are dealing with six commodities. All commodities k ∈ K
are plotted as the (square) points defined by (dk,∆ck). The line in the figure represents a fixed
charge tariff function ρa(d) = fa + vad. A commodity k ∈ K yields revenue to the leader if and
only if fa + vadk ≤ ∆ck. As we can see in the figure, four commodities (which are above the line)
yield revenue to the leader, while two commodities do not. The revenue to the leader from each
commodity is given by the dots in the figure. Refer to the set of points (dk,∆ck) for all k ∈ K as
the set U . As the following lemma shows, to find the optimal fixed charge tariff function, we can
restrict ourselves to consider only those tariff functions that contain at least two points in U .
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Lemma 4. Given is a set of clients K and a single tariff arc with a fixed charge pricing strategy.
The optimal fixed charge tariff function contains at least two points in U .

Proof. Without loss of generality, we assume that the optimal fixed charge tariff function, referred
to as the function ρ∗a(d) = f∗ + v∗d, serves the clients in the set S ⊆ K. Thus, for the single tariff
arc a ∈ T , f∗ + v∗dk ≤ ∆ck for all clients k ∈ S. Suppose that the tariff function ρ∗a(d) contains
none of the points in U . In that case, we can increase f∗, yielding a higher profit. Now, suppose
the function ρ∗a(d) contains exactly one point in U , say (d∗k,∆c∗k). We will show that in that case,
there exists a tariff function which contains at least two points in U , yielding at least as much
revenue to the leader.

The tariff function ρ∗a(d) containing (d∗k,∆c∗k) is given by the line ρ∗a(d) −∆c∗k = v∗(d − d∗k).
The total revenue to the leader is thus:∑

k∈S

[∆c∗k + v∗(dk − d∗k)] (25)

If we rotate the tariff function ρ∗a(d) around (d∗k,∆c∗k) by increasing v∗ by ∆v, then the differ-
ence in revenue is given by

∑
k∈S ∆v(dk−d∗k). Now, if

∑
k∈S(dk−d∗k) ≥ 0, resp.

∑
k∈S(dk−d∗k) < 0,

then we can increase, resp. decrease, v∗ until the tariff function contains at least two points in U ,
yielding at least as much revenue to the leader.

Theorem 3. Given is a set of clients K and a single tariff arc with a fixed charge pricing strategy.
The optimal fixed charge tariff function can be found in O(n3).

Proof. Given is the set of all clients K, where |K| = n, and the set of points U . From lemma
4 we know that the optimal fixed charge tariff function goes through at least two points in the
set of points U . Since |U | = n, we therefore need to consider exactly

(
n
2

)
= n(n − 1)/2 tariff

functions. For each of these fixed charge tariff functions, we can calculate the revenue of the
leader in O(n). Evaluating the revenue for the leader at all these possible lines allows us to find
the optimal solution to our problem in O(n3).

6 Conclusion

In this paper we introduced several new polynomially solvable instances of the general tarification
problem as defined by Labbé et al. [4]. The first special case proposed is the multiple commodities
with linear pricing strategies tarification problem, where the number of tariff arcs is bounded a
priori (bounded arcs linear tarification problem). Second, we introduced the parametric tarification
problem, which has a practical special case: for all tariff arcs, all tariffs are restricted to be equal
in the optimal solution. Finally, we showed that the single arc fixed charge tarification problem is
also a polynomially solvable special case.

Further research could extend the class of polynomially solvable special cases even further.
One special case which could be interesting and extends the research presented in this paper is to
bound the number of commodities a priori. Furthermore, the case with a fixed charge tarification
pricing strategy and multiple tariff arcs, where the number of tariff arcs is upper bounded a priori
remains open.

Besides giving more insight into the problem at hand, these polynomially solvable special cases
lend themselves naturally to approximation algorithms. One further avenue of research is certainly
to investigate the use of the algorithms devised here as approximation algorithms for more general
problems. The approximation algorithm of Roch et al. [5] uses the fixed path linear tarification
problem defined in Labbé et al. [4] to achieve a 1

2 log|T |+ 1 performance guarantee for the single
commodity linear tarification problem. It would be interesting to see if this bound can be improved
for a constant factor, or whether there exists a (fully) polynomial time approximation scheme.
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