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Optimizing sterilized logistics in hospitals

This paper deals with the optimization of the flow of sterile instruments in
hospital which takes place between the sterilization department and the operat-
ing theatre. This topic is especially of interest in view of the current attempts of
hospitals to cut costs by outsourcing sterilization tasks. Oftentimes, outsourc-
ing implies placing the sterilization unit at a larger distance, hence introducing
a longer logistic loop, which may result in lower instrument availability, and
higher cost. This paper discusses the optimization problems that have to be
solved when redesigning processes so as to improve material availability and
reduce cost. We consider changing the logistic management principles, use of
visibility information, and optimizing the composition of the nets of sterile ma-
terials.

keywords: sterilized logistics, logistic design, outsourcing, optimization,
complexity
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1 Introduction

Roughly speaking, the cost of health care in developed countries amounts to 10
percent [2] of Gross Domestic Product and is expected to increase, in absolute
and in relative terms. Hence, health care costs place an increasingly heavy
burden on national and individual budgets, and many developing countries are
implementing policies to (stimulate health care providers to) cut costs.

There is a widespread believe that the cost effectiveness of health care can be
improved. Carter [2] claims that a cost cut in health care by 10 to 20 percent
is possible. For hospitals in the Netherlands, a recent report [1] written on
behalf of the secretary of health care - identifies opportunities for improvement
in logistics of goods and pharmaceuticals of 1 billion euros, and another 2 bil-
lion euro in patient logistics. This report also concludes that a 20 percent cost
reduction is possible. The larger part of the cost reduction can be achieved by
relatively straightforward measures, such as adopting uniform work processes,
standardizing materials, quantity discounts, et cetera. In addition, better plan-
ning, and appropriate use of information technology are identified as valuable
improvement opportunities.

In this paper, we explore opportunities for improvements in a specific flow of
goods in hospitals, the flow of sterile instruments. The improvements are based
on an aligned combination of improvements in work processes and information
technology.

A typical Dutch hospital - which is not different from hospitals in other
developed countries - has invested millions of euros in sterile instruments. On a
national level, the investment in sterile equipment can be estimated to exceed
500 million euro. Moreover, central sterilization service departments (CSSD’s),
are capital intensive and, at a national level, employ thousands of people. Be it
via taxes or via insurance payments, the expenses that come with the required
availability of sterile instruments are paid by the customer, the patient.

The sterile logistics processes also incur high opportunity cost. In many
hospitals, the CSSD is located near the Operating Theatre (OT), in a central
position in the hospital. Of course, using the valuable space the CSSD occupies
for care and cure rather than for the secondary sterilization processes provides
opportunities to improve the service to the customers.

The optimization of the logistics of sterilized items in hospitals has received
little attention in scientific literature. A first paper by Fineman and Kapadia
[3] deals with establishing appropriate stock levels, under the assumption of
constant demand. Although their model is different, the issue is closely related
to the topics dealt with in this paper. Fineman and Kapadia [3] consider par-
titioning the stock in two components: one part is the processing stock, which
is kept because of the replenishment costs. The other component consists of
replacement stock; stock for unanticipated use, which in their view can be due
to instrument wear, instruments being lost or damaged, et cetera.

To the best of our knowledge, there are no later works on optimization of
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sterile logistics in the scientific literature. Perhaps, the lack of scientific interest
must be explained by the lack of priority given to controlling the cost of the
secondary process of sterile logistics by hospital themselves. Instead the focus
has been on its reliability. The sterilization process may appear unimportant as
long as it is well functioning, it is nevertheless a critical process. If contaminated
instruments are not cleaned and sterilized well, they may cause serious infec-
tions on other patients. Hence the quality of the process is of prime importance.
Similarly, if a particular instrument is needed in a life saving emergency opera-
tion, but not available, bad logistics may endanger patient lives. This focus on
quality and availability has apparently long overshadowed cost efficiency.

As mentioned before, hospitals are currently under pressure to cut costs.
Moreover, it is widely recognized that cost reductions in secondary processes
free money to improve the primary processes of patient cure and care. Conse-
quently, attention for optimizing the logistic processes involved in sterile logis-
tics, centered around the CSSD and the OT, has increased. In particular, there
is much attention for outsourcing of the CSSD. Examples of such initiatives can
be found in The Netherlands, and Belgium [5].

In principle, a party specializing in sterilization services may attain the fol-
lowing cost reductions. It may attain a scale, and therefore a cost level, that
is not attainable by single hospitals. Second, specialization may lead to higher
process quality. Thirdly, personnel cost may be lower than for a hospital.

In whatever form, placing the CSSD at a distance, or even changing the
logistic principles of the sterile logistics, entails the risks of lowering sterile
item availability and increasing cost, rather than reducing them. Whether the
potential benefits are realized, depends on the extend to which the logistic
design and operation are optimized. This paper deals with these optimization
problems.

Before we start the analysis however, let us spend a few words to clarify the
current information technology situation. Of course, the demand for sterile in-
struments in the OT is determined by the surgeries taking place, some of which
may be emergencies, and some of which may be planned. Most hospitals enter
information on planned operations into the Hospital Information System (HIS).
However, it is not uncommon for CSSD activities to be executed and planned
without making use of this planning information. Moreover, many hospitals
don’t have information on the whereabouts of sterile instruments during the
day, and hence cannot use this information in the planning and execution of the
sterilization activities.

In Section 2 we will start the analysis by modelling the sterile logistics, and
considering several logistic principles to manage the flow of sterile goods. Grad-
ually we will move towards a more demand triggered process, and recalculate
optimal inventory levels. Section 3 addresses the basic, static, optimization
problems arising in this setting. The resulting cost minimization problems in-
volve transportation and inventory costs. The presented problem formulations
are akin to lot sizing and transportation problems, and are shown to be solvable
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Figure 1: Insert figure 1 here

in polynomial time by dynamic programming techniques. Section 4 extends
these results to dynamic problem settings, and in particular addresses the value
of real time information. Section 5 deals with the issue of optimally compos-
ing nets of sterile items, so as to reduce overall logistics costs. We address
the complexity of several problem variations, and show a general version of the
problem to be NP-hard. We subsequently formulate it as a mixed integer linear
programming problem, which appears to be time consuming to solve.

2 Basic Logistic Design

A rudimentary design for sterile logistics and subsequent improvements is pre-
sented in [5], [6]. For ease of exposition (and since the aforementioned publica-
tions are in Dutch), we now briefly repeat the presented design and its improve-
ments (see also Figure 1). We consider the flow starting from the sterile storage
of the operation theatre. Here the sterile instruments are placed in stock. They
are not stocked individually here, but grouped in nets. Typically, all items in
one net are exactly the items needed for a particular surgery. However in general
this need not be the case. It may be the case that the content of a net is more
general, so as to apply to several types of surgery, or that one type of surgery
requires nets of distinct types.

Shortly before an operation, the required nets are taken from the storage,
put onto a cart, and this cart will be taken to the required OT room. During
the operation, the sterile items, whether they are used or not, will become con-
taminated. When the surgery is finished, all materials will be brought to the
contaminated storage of the OT, from where they are taken to the goods receipt
of the CSSD. There they are dismounted, disinfected, perhaps precleaned, and
subsequently put into the washing machines. After washing, the materials are
regrouped to form nets. The nets are put into the autoclaves where the steril-
ization takes place. Once sterilized, the nets are placed in the sterile storage of
the CSSD. From there they are brought to the sterile storage of the OT, which
completes the closed loop.

Typically, usage plus replenishment takes more than half a day, even when
the CSSD is next to the OT. Therefore, we assume throughout this paper that
when the CSSD is outsourced, sterile nets can be used only once per day. Of
course exceptions are possible, and careful planning may utilize those possibili-
ties, but we disregard this possibility for ease and clarity of analysis.

The reader may notice that the flow of sterile instruments forms a closed
loop. Within this closed loop, the point of consumption of the sterile instru-
ments is the OT, and hence the utility of the material is highest when it is in
the sterile storage of the OT. An effective logistic control principle is therefore
to replenish all items to this sterile storage of the OT as quickly as possible.
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In reality, a basic control strategy is thus to process all instruments that are
taken from the sterile storage of the OT through the entire loop in one day,
so that at the end of the day, they are again in the sterile storage of the OT.
This basic control principle has several disadvantages. First of all, it requires
maximum storage capacity at a place in the hospital, near the OT, where space
is most needed for the primary process. Second, it may involve working extra
hours by the CSSD for materials that are not needed the next day. Thirdly, it
may incur unnecessary transportation. In redesigning the logistic process, there
are some physically implied restrictions. Disinfection and cleaning of material
cannot be postponed without limits. Processing of contaminated material must
start reasonably quickly after it has been used.

In the example below, we present a basic model to analyse the presented
logistic design and alternatives. In the analysis, we consider weekly costs. The
weekly costs have three constituents, namely the transportation costs, the OT
storage costs, and the instrument costs. The transportation costs are linear in
the number of transports to the OT. The storage costs at the OT are linear in
the required OT storage space. For ease of analysis we assume that the storage
space of a net is proportional to the number of instruments it contains. Finally
we consider the instrument unit cost which model the cost incurred by usage,
handling, and sterilization of an instrument. The instrument unit cost are linear
in the number of times an instrument is used. These three types of costs are
the cost most important to the hospital when outsourcing the CSSD. It is not
hard to see that when outsourcing the CSSD, transportation costs go up, while
at the same time storage costs at the OT might go down. The instrument unit
cost will come into play in a later stage.

Example 1 This example considers a case in which there are 5 different op-
eration types {A, B,C, D,E}. There will be dedicated nets of instruments for
each of the operation types. The operations of each of the operations require
instruments of the eight instrument types {a, b, c, d, e, f, g, h}. The requirements
are as follows:

1. Operation A:(a,f,g)

2. Operation B:(b,f,g)

3. Operation C:(c,g)

4. Operation D:(d,h)

5. Operation E:(e,h)

Planned operations take place according to the following weekly schedule:

1. Monday morning: 3A, 6D

2. Monday afternoon: 3B: 6D
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3. Tuesday morning: 3A, 6D

4. Tuesday afternoon: 3C: 6D

5. Wednesday morning:: 1C, 1E

6. Wednesday afternoon: 1B: 1E

7. Thursday morning: 3C, 6E

8. Thursday afternoon: 3B: 6E

The cost parameters are set as follows:

1. transportation cost (per transport) = 40;

2. instrument usage cost (per instrument) = 1;

3. storage costs (per capacity unit) = 9;

In the above example, the basic strategy described above requires that all sets
are being kept in storage simultaneously at the OT. Since sets can be used only
once per day, the schedule implies that 3 sets for each of A, B and C, and 12
sets for each of D and E, in total 33 sets must be kept in storage simultaneously.
For the moment we ignore the idea of keeping extra nets to cope with unplanned
activities.

The capacity requirements for the sets are one unit per instrument, yielding
a capacity requirement of 3 for nets of type A and B, and 2 for the other nets.
Thus total storage costs amount to ((3 × 3) + (3 × 3) + (3 × 2) + (12 × 2) +
(12 × 2)) × 9) = (72 ∗ 9) = 648. Transportation is required once per day, for
4 days, yielding a transportation cost of 4 × 36 = 144. Finally, the instrument
costs amount to 129, the number of instruments required to execute the weekly
schedule. Hence, we have:

• transportation cost (per transport) = 160;

• instrument usage cost (per instrument) = 129;

• storage costs (per capacity unit) = 648;

• Total cost: 937

If we assume that the setting in which the sterile storage of the OT yields
a transportation costs of zero, this setting still yields a total costs of 921-160=
761. Hence this 761 could serve as the reference cost.
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Thus, while continuing to neglect unplanned use of sterile sets for the time
being, the initial effect of outsourcing the CSSD is an increase in total costs
of 160 being the transportation costs. There are two underlying assumptions.
First of all that transportation of contaminated sets from OT to the outsourced
CSSD can be taken care of by the transportation devices that do the delivery,
or at least without incurring extra costs. Second, that the storage costs remain
unaltered. In fact, when outsourcing the CSSD, storage costs at the CSSD
may increase to keep sterile sets in storage, whereas storage capacity in the
hospital may decrease. In subsequent computations, we assume that there is an
opportunity costs involved for every unit of storage costs that is in the hospital
instead of outside of it. Hence, each unit of storage capacity that we eliminate
from the hospital has a certain value.

We conclude that in the deterministic setting considered so far, the initial
effect of outsourcing will be that the transportation times and costs increase. In
a less stylized setting, where part of the surgeries are unplanned, e.g. emergency
cases, some safety stock is required, and the amount of safety stock goes up as the
lead time goes up due to longer transportation times. This incurs extra material
costs. Van de Klundert et al. [6] report findings that roughly indicate a single
unity increase in stock levels, on a real life case, if priority replenishments can
be delivered within 2 hours, which is quite a mild assumption. Thus, without
further modifications, outsourcing leads to higher costs. We now present logistic
improvements which utilize the possibility to reduce storage space inside the
hospital.

A first change in logistic design arises when part of the inventory that is
currently kept at the sterile storage of the OT is moved to the sterile storage of
the CSSD. However, this change requires to choose an inventory replenishment
strategy for sterile storage at the OT. Most of the theory on replenishment
strategies stems from nondeterministic models. We will dive deeper into the
difficulties encountered in nondeterministic settings in later sections. The next
section first strives to minimize total costs by jointly optimizing transportation
and holding costs. This deterministic setting is akin to other deterministic
replenishment models such as Lot Sizing models, and will also be solved using
dynamic programming techniques.

3 Deterministic Optimization

The models in this section explicitly assume all surgeries and the resulting sterile
instrument usage are completely predictable. In this case, sterile storage at the
OT is not required. It is possible to deliver sterile items from the CSSD sterile
storage just in time before the surgery begins. When transportation costs are
high, this Just In Time design may lead to a cost increase. On the other hand,
a cost reduction might be attainable when using a small sterile storage at the
OT, to reduce the number of required transportations (but with an increase in
storage costs).

Notice that in our basic model storage costs at the sterile storage of the OT
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depend on the capacity of the storage, not on the inventory levels. (Nothing is to
be gained from reducing inventory levels at the OT, if it leads to higher inventory
levels in another part of the closed loop process.) Consequently, minimization
of the transportation costs for a given OT schedule, takes the sterile storage
capacity at the OT as an input parameter. We now model the resulting problem
mathematically.

As a first modelling step we notice that any reasonable delivery schedule can
be assumed without loss of generality to deliver instruments in the order in which
their corresponding operations are scheduled. Moreover, the set of moments in
time at which delivery occurs in an optimal solution can be discretized. Of
course, materials are required at the start of an operation, and hence only the
starting time moments need to be considered. However, in practice, OT rooms
are scheduled in blocks which contain sequences of operations. (Of course blocks
might consist of single operations). In this case, the delivery moments in an
optimal solution can be assumed to occur at the start of a block.

In combination with the delivery order, this discretization yields that the
joint optimization of the transportation costs and the storage costs, only needs to
consider the volume of the instruments required in each block. (We shall see later
that this is not valid when there is unplanned usage.) To see this, consider the
case where a set of delivery moments is given. Then, the instruments delivered at
each of these moments can easily be determined: simply deliver all instruments
required for the blocks whose starting time falls between the current and the
next delivery. Obviously, later delivery yields the solution to be infeasible.
Earlier replenishment can only lead to an increase of required storage capacity.
Thus, given the delivery moment, it is easy to decide when to deliver each of
the required nets. Hence, the problem boils down to selecting a set of delivery
moments which minimizes total costs.

Now, let (t1, . . . , tm) be the set of delivery opportunities for sterile nets as
implied by the OT program. We let Qi = 1 if delivery takes place at ti and
zero otherwise, for i = 1, . . . ,m. The cost per delivery are denoted by d. The
transportation capacity is modeled by Q, and qi is the volume delivered at
ti, i = 1, . . . ,m. We denote by S the storage capacity at the OT, by e the
storage costs per unit, and by qi, i = 1, . . . ,m be the volume required for the
sterile nets needed at time ti. For i = 0, . . . ,m, hi denotes the inventory po-
sition at time i. Now, the problem can be straightforwardly modelled as follows:

min C = d×
m∑

i=1

Qi + e× S (1)

Qi ×Q ≥ qi i = 1 . . . , m (2)

h0 = 0 (3)

hi = hi−1 + qi − ci i = 1, . . . ,m (4)

hi ≤ S i = 1, . . . , m (5)
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Figure 2: Insert Figure 2 here

qi, hi ≥ 0 i = 1, . . . , m (6)

Qi ∈ {0, 1} i = 1, . . . , m (7)

This model assumes that sterile nets which are used in the block immediately
after delivery, never use storage capacity. Should one prefer to model that these
nets do require storage, the storage capacity constraint 4 simply becomes

hi + ci ≤ S i = 1, . . . , m. (8)

The case in which the capacity of the transportation vehicle is unbounded
is a special case which can be modeled by setting Q sufficiently large (e.g by
setting Q =

∑m
i=1 ci).

A graph representation for the resulting problem is depicted in Figure 2.
As is clear from Figure 2, the resulting problem is a special case of the fixed

charge network flow problem, the decision version of which is in general known
to be NP-Complete [4]. If capacity of the transportation device is bounded, and
nets have non unit capacity requirements, the decision version of the delivery
problem, can easily seen to be strongly NP-Complete, since it contains the 3
Partitioning problem (see e.g. [4]) as a special case. In the remainder we consider
the case of unbounded transportation capacity. (In real life, the volume of the
sterile sets is small enough to allow sets for blocks of an entire day to fit into
a moderately sized truck, so that capacity of the transportation device is not
limiting.)

The capacitated version of the problem in which S is fixed can be easily
solved. Since storage costs have become fixed at e × S, costs C are minimized
by minimizing the number of deliveries. This is achieved by delivering a quantity
of S at the latest time moments i possible, without incurring the solution to
become infeasible. Thus, a first quantity S is delivered at t = 0, a second
delivery at the earliest time moment i for which

∑i
k=0 ck > S, et cetera. The

resulting delivery moments, and hence the resulting transportation costs, can
thus be computed in O(m) time. We denote this costs, for given storage capacity
S by C(S). Now, let S∗ be a storage capacity such that

C(S∗) = min
S

C(S). (9)

Moreover, for 1 ≤ i < i′ ≤ m define cii′ =
∑i′

k=i ck. Then it is not hard to see
that S∗ = cii′ for some 1 ≤ i < i′ ≤ m. Hence the following straightforward
procedure solves the problem of determining A∗ and a set of delivery moments
minimizing CS∗).

1. For all 1 ≤ i < i′ ≤ m set cii′ =
∑i′

k=i ck.

2. For all distinct values of cii′ compute C(cii′)
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3. C → mini,i′ C(ci,i′).

The time complexity of this procedure is O(m3).

We now briefly consider a variation where storage costs are replaced by hold-
ing costs. In this model the costs of keeping inventory at the OT doesn’t depend
on S but are modelled as f × hi for each time interval between two consecu-
tive delivery moments. The cost minimization problem can then be modelled as:

min F = d×
m∑

i=1

Qi + f × hi (10)

Qi ×Q ≥ qi i = 1 . . . , m (11)

h0 = 0 (12)

hi = hi−1 + qi − ci i = 1, . . . ,m (13)

hi ≤ S i = 1, . . . , m. (14)

qi, hi ≥ 0 i = 1, . . . , m (15)

Qi ∈ {0, 1} i = 1, . . . , m (16)

Again, we denote by F (S) the value of the optimal solution for this problem
for given S. The problem of finding F (S) once S is given, can be solved by the
following dynamic programming recursion. For every delivery opportunity ti we
define c(i, h) to be the minimum cost over all feasible replenishment strategies
that result in an inventory level of h at time t. We require h0 = 0, and we set
c(0, 0) = 0 and c(0, h) = +∞ for h = 1, . . . , S. Now, c(i, h) can be defined as
follows:

c(i, h) = min{c(i− 1, h + ci) + e× (h + ci), d+ (17)

minQ
q=1c(i− 1, h− q + ci) + e× (h− q + ci) (18)

Now let S be the maximum stock level considered (S can be the storage
capacity or any other upperbound on h). Then, the recursion yields a straight-
forward dynamic programming algorithm of O(Q×S ×m) time complexity for
the problem of finding the optimal replenishment strategy. Notice that this time
complexity is pseudopolynomial.

We conclude this session by demonstrating cost reductions by combinations
of reducing storage capacity and corresponding transportation movements in
the example below, which is a continuation of the previous example.
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Example 2 In the previous example, transportation took place once per day
at the end of the day, and all used nets are returned to sterile storage at the
OT. A first and major improvement is realized when delivering every day at the
beginning of the day, the nets required for that day. This leads to a reduction in
storage costs, while keeping transportation costs unchanged. Notice that since
we assume that storage is only needed for nets used in blocks which start later
than their delivery, storage is only needed for nets used in the afternoon. For
the problem instance under consideration, this yields the following costs:

• transportation cost = 160;

• instrument usage cost = 129;

• storage costs = max(21+18+5+21)*9 = 189 ;

• Total cost: 478

Thus, keeping transportation costs unchanged, cost are reduced by around
50% simply by switching from logistic design. Further, the thus obtained solu-
tion yields lower cost than the original setting in which transportation costs were
zero. (However, let it be noted that we don’t claim the numbers in the example
to be realistic or representative. They merely serve to demonstrate the effect of
variations and improvements.)

Further cost reduction are possible, by optimizing transportation. As a sim-
ple example, first consider the case where we deliver twice per day. We obtain:

• transportation cost = 320;

• instrument usage cost = 129;

• storage costs = 0 ;

• Total cost: 449

Finally, let us consider the case where we optimize storage costs and transporta-
tion costs simultaneously. For the example under consideration, the optimal
delivery schedule is a schedule in which the nets for Wednesday morning are
delivered Tuesday afternoon. Other days are delivered twice daily. Hence the
resulting costs are:
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• transportation cost = 280;

• instrument usage cost = 129;

• storage costs = 36 ;

• Total cost: 445

4 Nondeterministic Optimization

In this section, we dispose of our simplifying assumption that all required nets
are known precisely in advance. The unpredictable nature of OT processes is
of course an important feature, and if not dealt with appropriately, a matter of
life and death. As mentioned before, the risks at stake are a likely explanation
for logistic costs to have long been disregarded. Let us therefore consider the
uncertainties that play a role.

1. Many of the patients arrive unexpectedly, and as emergency patients who
need to be operated instantly;

2. It frequently happens that surgery of expected patients evolves in an un-
expected manner, and hence that additional sterile equipment is needed;

3. Nets of sterile equipment may be incomplete, may become unsterile be-
forehand, et cetera;

4. Different surgeons use different nets, and the actual surgeon is not the
planned surgeon.

If the variations and uncertainties regard the majority of the surgeries, and
cannot be reduced, the basic logistic design to always replenish as quickly as
possible to OT sterile storage may appear close to optimal. However, the larger
the fraction of surgeries that can be planned, and are executed as planned, the
more planning and monitoring information can be used effectively, in which case
a change of logistic design may prove to reduce cost.

We start by considering some basic replenishment models, as they are cur-
rently being used in hospital practice. The two bin system is a simple and well
known replenishment policy (see for instance [8]) which is also related to Just
In Time systems. In a two bin system, the inventory level at the sterile storage
of the OT is maximized to be two ’bins’, per net. Nets are taken from bin
one, until bin one is empty. Subsequently, nets are taken from bin two, until
it is empty. Upon being emptied, bins are replenished so that when bin two is
empty, bin one has been replenished and vice versa. Another simple policy used
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in practice is to always order the amount which has been used. More advanced
ordering policies are for instance considered in ([3]).

Essentially, the only way to deal with unplanned usage of nets is to keep
inventory for it at the sterile storage at the OT. Of course, if unplanned usage
requires the same nets as the ones which are in inventory for planned usage,
then the planned nets can be used. But these in turn might be needed shortly
before replenishment arrives, or can arrive. Hence, safety stock is needed to
anticipate unplanned usage. Safety stock must not only be kept, it might also
have to be replenished. For the issue of replenishment, which of course should
be aligned with the replenishment of planned usage, we propose four different
strategies:

1. the original planning includes only deliveries for planned usage as com-
puted using the aforementioned dynamic programming approach. Un-
planned usage for the planning period has to be delivered from designated
stock. This designated stock serves as a safety stock which should last
through the entire planning period. This strategy doesn’t require any
information exchange on unexpected use or replanning.

2. The original planning includes both planned usage as well as expected
demand for unplanned material usage. The optimal delivery schedule for
this forecast is then computed using the dynamic programming approach
described above. This approach is combined with an appropriately set
initial safety stock level. Unplanned use does however not lead to changes
in delivery schedule. Together with the safety stock, the current plan
should suffice. As it was the case for the previous strategy, no (real time)
information on usage is exchanged, and no replanning occurs

3. The idea is to schedule only delivery for planned usage of sterile nets using
the dynamic programming approach presented above, and to guard against
unplanned use by an initial safety stock. If stock reaches a level below the
safety stock level, the transportation plan is dynamically reoptimized in
such a way that immediate replenishment of net types which are below
safety stock level is scheduled.

4. Initially the plan is to schedule delivery for planned usage and for ex-
pected demand for unplanned usage of sterile nets, using the dynamic
programming approach presented above, and to guard against unplanned
use by an initial safety stock. If stock reaches a level below the safety
stock level, the transportation plan is dynamically reoptimized in such a
way that immediate replenishment of net types which are below safety
stock level is scheduled. In this reoptimization both planned usage and
expected demand for unplanned usage are taken into account.

We compare the replenishment strategies under uncertainty, in a simulation
environment, where the planned demand is fixed for a week, and in which there
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is a stochastic demand as well, which unfolds during the week. The first strategy
deals very statically with the stochastic demand, it simply arranges sufficient
safety stock. The second strategy only uses information that is a priori known,
and safety stock. The third strategy reoptimizes using real time information.
The fourth strategy uses a priori and real time information. Of course, other
strategies are possible, but we limit our analysis to these basic strategies.

Let it be noted first though, that the nondeterministic setting is essentially
different from the one discussed in the previous section, with respect to dif-
ferences in net types. In the previous section, it was shown that the types of
the nets didn’t matter, only their volumes did. However, when keeping safety
stocks, it is not the volume that counts, but also the type of the sets. Hence, the
algorithms and models developed in the previous section are only valid in this
nondeterministic setting if all nets are of a common type. This is for example
the case when a same net is used for all types of surgery. Not a common situ-
ation in a general hospital, but a possible solution in specialized centers. The
dynamic programming algorithms of the previous section can be extended to
cases with multiple net types, but the state space of the dynamic programming
methods grow exponentially with the number of set types [7].

The issue of composing nets will be taken into consideration after the con-
tinuation of our example below.

Example 3 In the comparison below, we say that during each morning and
afternoon session of four hours, there is every hour a probability of 0.5 for un-
expected changes in the OT schedule. For simplicity, we assume each unexpected
usage to result in an extra use of one capacity unit of storage. Moreover, we
have adapted the initial volume requirements of the Example 1 in such a way that
the expected usage equals the usage implied in Example 1. Hence, the costs as
computed in Example 2 can serve as a lowerbound for the minimum attainable
cost in this non deterministic case.

The results presented below are average results over 50 simulations. We de-
mand for each of the scenarios that safety stocks are such that stock outs never
occur.

1. No expected demand planned, frozen planning
In this scenario, a total storage space of 35 is needed, and a safety stock
of 26. The resulting total cost amount to 638.

2. Expected demand planned, frozen planning
In this scenario, a total storage space of 18 is needed, and a safety stock
of 7. The resulting total cost amount to 485.

3. No expected demand planned, replanning
In this scenario, a total storage space of 16 is needed, and a safety stock
of 5. The resulting total cost amount to 469.

4. Expected demand planned, replanning
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In this scenario, a total storage space of 14 is needed, and a safety stock
of 3. The resulting total cost amount to 451.

Notice that the latter scenario induces a cost for the non deterministic case
which is very close to the lowerbound of 445 which is the optimal solution in the
deterministic case.

We conclude this section by considering the issue of minimizing stock levels,
when taking differences between nets into account. To this purpose, we consider
a simple delivery strategy. Planned net usage is scheduled using the dynamic
programming algorithm, and unplanned usage is taken care of by taking extra
stock which should suffice until the end of the planning period. Three solutions
can be considered:

1. each operation type has its own net, and its own stock,

2. there is one net for all operations,

3. Each operation may require multiple nets, one dedicated net, and one net
which serves more than one operation type, perhaps all operation types.

Obviously, the second solution entails a lower number of nets in stock than the
first solution, leading to a potential decrease in storage costs, but the number
of items per net must be higher, leading to an increase in storage cost, and in
unit cost. The third solution is an unspecified combination of the first two. The
example below already demonstrates that allows to easily construct solutions
which outperform the first two simple solutions.

Example 4 Under the same settings as described before, the safety stock levels
which ensure zero stock outs are: For type A, 2 nets, for type B, 3 nets, for
type C, 3 nets, for type D, 5 nets, and for type E, 5 nets. In total this amounts
to 18 nets. If a common net type is used for all operation types, a safety stock
level of 8 nets suffices. Hence, in this example risk pooling effects [9] lead to a
reduction of the number of sets in safety stock by more than 50 percent.

It then follows that if each type has its own safety stock, costs are the storage
capacity cost per instrument, multiplied for each net type with the number of
instruments times the required stock level. For the first solution, this amounts
to 9× ((3× 2) + (3× 3) + (2× 3) + (2× 5) + (2× 5)) = 9× 41 = 369. For the
second solution this amounts to 9× (8× 7) = 504. Notice that instrument unit
cost are also much higher for this second solution.

A possible third solution is to put instruments (g, h) into a common net, and
the other instruments in separate ones. This leads to costs 9 × ((2 × 2) + (2 ×
3) + (1× 3) + (1× 5) + (1× 5)) + (2× 8)) = 9× 34 = 306. When compared to
the case of a single net per operation type, the expected extra instrument usage
cost for this solution can be computed as follows. Per operation, one additional
(obsolete) instrument is used, and the expected number of operations equals 58.
Hence, in expectation, this solution yields a small improvement over the initial
one. Further improvement is possible by putting the components of types g and
h in separate nets.
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In the next section we consider the problem of finding an optimal net com-
position from a different angle.

5 Optimizing the net composition

In the previous sections the composition of nets was fixed, and hence storage
cost, transportation cost, and instrument usage cost couldn’t be decreased by
changing the composition of the nets. In this section we will explore models for
optimizing the composition of the nets. This net optimization problem will be
called NOP. For ease and clarity of analysis we disregard transportation costs
in this section, assuming that they are not affected by the net composition.
Hence we only consider instrument usage costs, and storage costs. In addition
to instrument related storage costs, we explicitly consider net related storage
costs. This allows the model to also apply to cases in which the storage costs
are not only dependent on the number of instrument in the net, but also on a
constant term.

In the first solution proposed in the previous section every operation has its
own dedicated net type, of which one net is used per operation. In this section,
we will only consider the operations A, B and C from our previous example.
For these operations, we need nets containing at least (a, f, g) for operations
of type A, nets containing at least (b, f, g) for operations of type B, and nets
containing at least (c, g) for operations of type C.

This minimal solution: nets (a, f, g) for operations of type A, nets (b, f, g)
for operations of type B, and nets (c, g) for operations of type C, corresponds
to the first solution presented in the previous section. It minimizes instrument
usage cost, since it never happens that sets contain instruments which are not
used. However from a viewpoint of storage costs, this method is not preferable.
Many nets will be required, and since instruments are not used as frequently as
possible, many instruments are needed as well.

The second solution presented in the previous section uses one net type
for all 3 operations: nets containing (a, b, c, d, e). This leads to an increase in
instrument usage costs. The number of nets is as low as possible, yielding lower
net storage costs costs, but instrument storage costs might still be high since
even rarely used instruments are present in every set.

As mentioned before, one might expect that in between these extremes there
exist better solutions, in which several operation types share a net type. For
example, a net type (a, b, f, g) for operation types A,B, and net type (c, g) for
operation type C. A further improvement is yet possible, by using more than one
net per operation. For instance, a standard net (f, g) can be composed, which
is used for every operation type. We now give a mathematical programming
formulation for a basic version of the net composition problem, and discuss its
complexity. Variation and extensions can be found in [10].

The (additional) notation used to define the problem mathematically is as
follows. We define a set of nets j = 1, . . . , n, as before, index i = 1 . . . , m refers
to the planning period. We use k = 1, . . . , K to refer to the operations, and l =
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1, . . . , L to refer to the sterile instruments. Finally, index t, t = 1, /ldots, T refers
to the instrument types. Basically, the problem boils down to deciding which
materials go into each of of the nets, and to select nets for each of the operations
such that each required material is in one of the selected nets. The model
assumes that all instruments are unique. Moreover it assumes that instruments
of a same type are indexed consecutively. Disregarding the objective function
for the moment, a first natural formulation, uses the following decision variables:

• Mjl = 1 if net j contains instrument l where j = 1, . . . , n, l = 1, . . . , L, 0
otherwise,

• Zjik = 1 : net j is used at day i for operation k, j = 1 . . . , n, i =
1, . . . , m, k = 1, . . . ,K, 0 otherwise

Moreover, we introduce the following the parameters:

• Pl : Instrument storage costs for instruments of type t, t = 1, . . . , T ,

• H : Net storage costs

• St : Instrument usage cost for instruments of type t, t = 1, . . . , T

• mts : The lowest index for instruments of type t, t = 1, . . . , T ,

• mte : The highest index for instrument of type t, t = 1, . . . , T ,

• Nkt : The number of instruments of type t, t = 1, . . . , T needed for oper-
ation k, k = 1, . . . , K

The following constraints suffice to model the solution space.
∑

j

Mjl ≤ 1 l = 1, . . . , L, (19)

∑

k

Zjik ≤ 1 i = 1, . . . , m, j = 1, . . . , n, (20)

∑

j

{Zjik ×
lte∑

l=mts

Mjl} ≥ Nkt k = 1, . . . , K, i = 1, . . . ,m, l = 1, . . . , L (21)

The first constraint models that an instrument can be in at most one net. The
second constraint models that a net can only be used once per day. The third
constraint models that if Nkt instruments of type t are needed for operation k,
then, the sum over all nets used for this operations, of instruments of type t is
at least Nkt. This third constraint is not linear. It can be replaced by a set of
linear constraints as follows. Let variable Zjikl = 1 if instrument l is contained
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in set j and set j is used for operation k at day i, and 0 otherwise. We replace
constraint 21 by four linear constraints.

∑

j

mte∑

l=mts

Zjikl ≥ Nkt i = 1, . . . ,m, k = 1, . . . , K, t = 1, . . . , T, (22)

Zjikl ≤ Mjl j = 1, . . . , n, i = 1, . . . , m, k = 1, . . . ,K, l = 1, . . . , L (23)
Zjikl ≤ Zjikj = 1, . . . , n, i = 1, . . . , m, k = 1, . . . ,K, l = 1, . . . , L (24)

Zjikl ≥ Zjik + Mjl − 1, j = 1, . . . , n, i = 1, . . . , m, k = 1, . . . ,K, l = 1, . . . , L (25)

The first of these constraints ensures that sufficient instruments are assigned to
each operation, as did (21). The next contraint models that an instrument l
from net j can only be used for an operation if Mjl = 1, i.e. it is indeed in the
net. Next, we model that if an instrument l of net j is used for an operation
k at day i, then Zjik = 1, i.e. the net is used for the operation. The last one
ensures that if a net is used for an operation, and the instrument is in the set,
than we consider the instrument to be used as well, even if it is not needed.
This constraint is required to appropriately model the objective function of the
integer linear programming formulation below:

min
∑

j

∑
t

∑
l(Mjl × Pt

∑

j

Zj ×H
∑

j

∑

i

∑

k

∑
t

∑
lZjikl × St (26)

s.t.
∑

j

Mjl ≤ 1 l = 1, . . . , L, (27)

∑

k

Zjik ≤ 1 i = 1, . . . , m, j = 1, . . . , n, (28)

∑

j

mte∑

l=mts

Zjikl ≥ Nkt i = 1, . . . , m, k = 1, . . . , K, t = 1, . . . , T, (29)

Zjikl ≤ Mjl j = 1, . . . , n, i = 1, . . . , m, k = 1, . . . ,K, l = 1, . . . , L (30)

Zjikl ≤ Zjikj = 1, . . . , n, i = 1, . . . , m, k = 1, . . . ,K, l = 1, . . . , L (31)

Zjikl ≥ Zjik+Mjl−1, j = 1, . . . , n, i = 1, . . . , m, k = 1, . . . ,K, l = 1, . . . , L (32)

Now that NOP is properly formulated, let us first consider its complexity.

Theorem 1 NOP is strongly NP Complete.

Proof 1 The polynomial ILP formulation presented above entails that NOP
is in NP. Its completeness follows from a reduction from the NP-Complete 3-
dimensional matching problem (3DM). This problem is defined by Garey and
Johnson [4] as followed:

INSTANCE: Three sets A, B,C each containing q elements, and a ternary re-
lation R ⊆ A×B × C.
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QUESTION: Does R contain a subcollection R′ ⊆ R such that every element of
A,B and C occurs in exactly one member of R′?

Notice that the cardinality of R′ = q and hence that without loss of generality
‖R‖ >= q. In the instances of NOP constructed in the reduction below ‖R‖
corresponds with L, the number of instruments.

We polynomially construct an instance of NOP as follows. There are 3 days
(i.e. i = 1, 2, 3), and at each day q operations have to be performed. The
operations of day one are called α1 . . . αq, the operations of day two are called
β1 . . . βq and the operations of day three are called γ1 . . . γq.

To determine which instruments are needed for every operation the following
procedure will be applied. Each of the L instruments, is of a unique type, and
initially all operations need all L instruments. For each r ∈ R if αl ∈ r, then
instrument r is not needed for operation l at day one, if βl ∈ r than instrument
r is not needed for operation l at day two and if γl ∈ r then instrument r is not
needed for operation l at day three. The net storage cost is L2 and instrument
storage costs are 1.

Claim: The answer to I is yes if and only if I ′ has a solution with value
q × L2 + q × (L− 1).

Let I be a yes-instance and let R′ be the 3-dimensional matching for I. Now,
for every r ≡ (αu, βv, γw) ∈ R′, the same net is used for operation u at day 1,
for operation v at day 2 and for operation w at day 3. By definition, none of
these operations need instrument r, and together they need all other instruments.
Therefore the costs of the net consists of L2 for net holding costs, plus L− 1 for
the instrument holding costs of the instruments contained in it. Because there
are q operations every day there have to be a total of q nets and the total costs
are q ×m2 + q × (m− 1), completing the first part of the proof.

Now suppose I ′ has a solution S′ of value q × L2 + q × (L− 1). Using that
q ≤ L, we derive that this solution cannot use more than q nets because the costs
would be at least

(q + 1)× L2 >

q × L2q × (L− 1)

Any feasible solution uses at least q nets, since there are q operations each day,
which yields that the solution uses exactly q nets.

Thus each net is used every day, and for an arbitrary net, the three opera-
tions for which it is used will be called u′,v′ and w′. By construction, the net
needs to contain L − 1 instruments if (αu′ , βv′ , γw′) ∈ R, and L instruments
otherwise. If S′ has value q × L2 + q × (L − 1), then it must consist of q sets
of L − 1 instruments. But, this implies that every net is used for a triple of
operations (u′, v′, w′) corresponding to a triple (αu′ , βv′ , γw′) ∈ R. Since, the
nets cover all q operations, of each of the three days, the corresponding triples
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form a solution for I.

We have executed some computational experiments to solve instances of
NOP using the ILP formulation presented above. Even small instances already
required impractically large computation times using Cplex.

6 Summary and directions for further research

In the current quest for efficiency and effectiveness improvements in health care
processes, redesigning the sterile logistics processes is frequently considered in
practice. Despite this practical relevance, the problem of optimizing the loop
of sterile logistics in a hospital has to the best of our knowledge hardly been
studied in the scientific literature. This paper is therefore the first to explore
various logistic designs, and models and methods for the resulting optimization
problems, and to demonstrate the optimization potential.

The simplified and deterministic problems considered in Section 2 can be
solved in polynomial time using dynamic programming techniques. Moreover,
it is indicated that the potential improvements can be significant. The nonde-
terministic models in Section 3 are harder to solve. We explore and compare
various strategies which use the findings of Section 2, and a priori and real
time information. For these cases as well, we demonstrate that large improve-
ments are possible by making appropriate use of optimization techniques. In
the light of current advances in information technology, such as RFID (radio
frequency identification) tags, the conclusion that appropriate use of technolog-
ical advances yields a promising savings potential is justified. In fact is may
well be that without the use of such technology, the potential benefits of more
advanced logistic design can’t be realized. Further practical research is required
to confirm these findings.

Finally we identify and explore the issue of net composition. Again we
demonstrate that there is a huge potential for optimization. We prove that
a basic version of the problem is strongly NP-Complete. Moreover, it turns
out that the presented integer linear programming formulation is very time
consuming to solve. Nevertheless, we are in the opinion that this problem is
interesting, and worthy of further research in the direction of solving realistic
problem instances using heuristics as well as exact solution techniques.
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