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Abstract

Most panel data studies of the predictability of returns presume that the cross-sectional

units are independent, an assumption that is not realistic. As a response to this, the cur-

rent paper develops block bootstrap-based panel predictability tests that are valid under

very general conditions. Some of the allowable features include heterogeneous predic-

tive slopes, persistent predictors, and complex error dynamics, including cross-unit en-

dogeneity.
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1 Introduction

Consider the panel data variable yi,t, observable for t = 1, ..., T time series and i = 1, ..., N

cross-sectional units. Recent years have witnessed an immense proliferation of research ask-

ing whether yi,t can be predicted using the one-period lagged value of some other variable,

xi,t say. Examples of such situations are abound. The most common ones are found in fi-

nance. For example, if yi,t is stock returns, or the equity risk premium, then xi,t might be
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dividend yield, nominal interest rates, default or term spreads on bonds, inflation, valuation

ratios, the consumption-wealth ratio, stock market volatility, labor income, aggregate out-

put, output gap, or oil prices, just to mention a few (see Neely et al., 2012; Rapach and Zhou,

2012, and the references provided therein).

The conventional way in which earlier studies have been trying to test the predictability

hypothesis is to first run a time series regression of yi,t onto a constant and xi,t−1, and then to

test whether the (predictive) slope on xi,t−1 is zero by using a conventional t-test.1 This test

is then repeated for each unit in the sample, each time using only the sample information for

that particular unit (see, for example, Ang and Bekaert, 2007; Driesprong et al., 2008; Polk

et al., 2006; Rapach et al., 2012).

Hjalmarsson (2010) questions the unit-by-unit approach and suggests combining the

sample information obtained from the time series dimension with that obtained from the

cross-sectional (see also Hjalmarsson, 2008; Kauppi, 2001). Specifically, a pooled t-test is

proposed, which not only increases the power by taking the total number of observations

and their variation into account, but also increases the precision of the predictability test by

effectively reducing the noise coming from the individual time series regressions. Moreover,

where the unit-by-unit approach is likely to lead to an over-rejection of the no predictability

null, the panel approach accounts for the multiplicity of the testing problem and is therefore

correctly sized.

But while the approach of Hjalmarsson (2010) has many advantages, it also has its fair

share of drawbacks. The first problem is the formulation of the hypothesis tested. In particu-

lar, while the null hypothesis can certainly be formulated as that there is no predictability, the

alternative hypothesis that there are at least some units for which predictability holds is too

broad for any interesting economic conclusions; it could be that there is predictability for all

units, but it could also be that there is only a small fraction of units for which predictability

holds. Another problem is the way in which the test is made robust to cross-section depen-

dence. Specifically, a common factor structure is assumed, the effect of which, following the

common practice in the panel unit root literature (see Bai and Ng, 2010, page 1097, for a dis-

cussion), is removed prior to implementation of the test for predictability. Hence, with this

approach one is essentially testing for predictability in the remaining idiosyncratic compo-

1Some of the many time series tests that have been proposed include Stambaugh (1999), Lanne (2002),

Lewellen (2004), and Campbell and Yogo (2006), to mention a few.
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nent, thereby ignoring a potentially important source of predictive information, namely, the

common one. Then there is also the fact that the assumed common factor structure need not

be correct, and, even if it is, for the (cross-section dependence robust) test to be valid the pre-

dictive slopes are still restricted to be homogenous (see Hjalmarsson, 2010, Theorem 6 and

Corollary 1), an assumption that is certainly mistaken in practice. Finally, there is also the

requirement that N should go to infinity with T, which may be motivated in applications

involving highly disaggregated panels, but not in the typical large-T, small-N (financial)

cross-country study (see, for example, Rapach et al., 2012).

In this paper, we develop several procedures to ascertain the predictability of a panel.

The point of departure is a very general data generating process (DGP) that allows, for ex-

ample, heterogeneous predictive slopes, persistent predictors, and complex error dynamics,

including cross-unit endogeneity. In fact, except for some mild regulatory conditions, there

are virtually no restrictions on the forms of serial and cross-sectional dependence that can

be permitted. Given this generality, corrections aimed at achieving asymptotically pivotal

statistics are not really an option. In this paper we therefore consider the block bootstrap

as a means to obtain tests that are asymptotically valid. In doing so, we further the recent

work of Palm et al. (2011) for univariate unit root panels to a bivariate model. Two block

bootstrap-based test procedures are considered; one is appropriate when testing the above

mentioned hypothesis of full panel unpredictability versus at least some predictability, while

the other can be used to sequentially determine the units for which predictability holds. Both

procedures do not require letting N go to infinity, and in fact perform well even when N is

relatively small.

The rest of the paper is organized as follows. Section 2 introduces the model. The test

statistics and their bootstrap implementations are presented in Section 3. The asymptotic

properties of the methods are analyzed in Section 4. In Section 5 a Monte Carlo simulation

study is presented. Section 6 concludes. Proofs are provided in Appendix.
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2 The model

Consider the N-dimensional panel data variables yt = (y1,t, ..., yN,t) and xt = (x1,t, ..., xN,t)
′.

The DGP of these variables is given by

yt = α + βxt−1 + vt, (1)

xt = δ(1 − ρ) + ρxt−1 + wt, (2)

where x0 = 0, α = (α1, ..., αN)
′, β = diag(β1, ..., βN), δ = (δ1, ..., δN)

′ and ρ = diag(ρ1, ..., ρN).

This is a panel extension of the prototypical predictive regression model that has been widely

used in the time series literature, in which xt is a variable believed to be able to predict yt.

According to this literature, it is reasonable to assume that vt is correlated with wt. For

example, if xt is returns and xt is the dividend–price ratio, then an increase in the stock price

will lower dividends and raise returns. We therefore assume that

ut = Ψ(L)εt, (3)

where ut = (v′t, w′
t)
′ and Ψ(z) = ∑

∞
j=0 Ψjz

j with Ψ0 = I2N . The rest of the assumptions are as

follows.

Assumption 1.

(a) ∑
∞
j=0 j

∥

∥Ψj

∥

∥ < ∞ and all the rows of Ψ(1) are nonzero;

(b) εt is independently and identically distributed (iid) with E εt = 0, E εtε
′
t = Σεε and E ‖εt‖κ

<

∞ for some κ ≥ 4.

Assumption 2.

ρ = 1 +
cm

T
,

β =
bm

T
,

where m > 0 is a scalar such that m → ∞ as T → ∞, c = diag(c1, ..., cN) < 0 and b =

diag(b1, ..., bN).

Under Assumption 1, the long-run covariance matrix of ut is given by

Ω = lim
T→∞

T−1
E

(

T

∑
t=1

ut

)(

T

∑
t=1

ut

)′

=

[

Ωvv Ωvw

Ωwv Ωww

]

= Ψ(1)ΣεεΨ(1)′ = Σ + Λ + Λ′,
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where

Σ = E utu
′
t =

∞

∑
j=0

ΨjΣεεΨ
′
j,

Λ = E

∞

∑
k=1

utu
′
t+k =

∞

∑
k=1

∞

∑
j=0

ΨjΣεεΨ
′
j+k

are the contemporaneous and one-sided long-run covariance matrices of ut, respectively,

which are partitioned conformably with Ω. In what follows, Ωvv and Λwv = E ∑
∞
k=1 wtv

′
t+k

are going to be particularly important, and we are therefore going to use ω2
v,i = [Ωvv]ii and

λwv,i = [Λwv]ii, respectively, to denote their diagonal elements.

Remark 1. The assumption placed on ρ ensures that xt is “weakly integrated” (Park, 2003),

although not “local-to-unity”, as when m is fixed.2 The reason for this assumption is that the

validity of the bootstrap depends critically on whether or not the model can be estimated

while at the same time permitting continuity of the asymptotics. For the DGP considered

here, the asymptotics are continuous in m/T-neighborhoods (with m, T → ∞ and m/T → 0)

but not in 1/T-neighborhoods, suggesting that while consistent in the weakly integrated

case, in the local-to-unit case the bootstrap is inconsistent (see, for example, Stock, 1997,

page 55; Park, 2006, page 640). Exact unit roots (c = 0) are also excluded. While these

assumptions could be considered a limitation, we do not believe this to be the case. There

are at least two reasons for this. First, local and weak unit roots are just asymptotic concepts

designed to capture relevant features found in practice when variables are highly persistent

yet not unit root non-stationary. They therefore explain the same phenomena, and as such

choosing one over the other does not necessarily imply a restriction (at least not in finite

samples). Indeed, as Park (2006) argues, the weak unit root framework provides a good

description of observed behavior even when the true DGP is local-to-unity. Second, even if

many predictors can be highly persistent, there is little evidence to suggest that they have an

exact unit root (see, for example, Lewellen, 2004; Westerlund and Narayan, 2012).

Remark 2. Wolf (2000) considers subsampling for the purpose of predictability testing, but,

like us, has to exclude exact unit roots in order to show the validity of his subsampling ap-

proach. An importance difference when compared to the current weak unit root assumption

2The weak integration assumption is similar in spirit to the “moderate integration” assumption of Giraitis

and Phillips (2006), Phillips and Magdalinos (2007), Phillips and Magdalinos (2009), and Phillips et al. (2010).

However, in this paper, in order to facilitate the use of the bootstrap, we follow Park (2006) and assume that xt

is weakly integrated.
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is that Wolf (2000) assumes that |ρi| < 1 is fixed, and it is unknown whether his approach is

valid in the present more general setting.

Remark 3. If one believes that xt contains unit roots, then this restriction can be imposed in

the bootstrap scheme. Such a strategy is commonly pursued in cointegration analysis, and it

is not hard to show that the resulting bootstrap is valid. Unfortunately, this is only possible

if the unit root restriction is indeed true. Allowing for both near and exact unit roots is

considerably more complicated. Extensions of the current approach to cover also such cases

are currently under investigation by the authors.

Remark 4. Since the properties of the bootstrap in stationary autoregressions are well known

(see, for example, Bose, 1988; Künsch, 1989), our bootstrap approach can be easily adapted

to cover the case when |ρi| < 1 is fixed. The problem is that if |ρi| < 1 is fixed, the pres-

ence of endogeneity will render OLS inconsistent, and this is true regardless of whether the

bootstrap is used or not. However, given the persistence of many predictor candidates, this

should not be too much of an issue in the current context.

Remark 5. Unlike c, b is not restricted to be different from zero, which means that the pre-

dictability can be both “weak” (c 6= 0) and absent (c = 0). However, in analogy to the dis-

cussion in Remark 1 above, the predictability cannot be “local”, in the sense that m cannot

be fixed. Thus, while the predictability can be made arbitrarily weak, to achieve non-trivial

power the rate at which β → 0 has to be slower than when β is local-to-zero.

Remark 6. Except possibly for the relatively slow rate of shrinking (see Remarks 1 and 5

above), Assumption 2 is very general when it comes to types of predictability and persis-

tency behaviors that can be permitted. Note in particular how the elements of c (b) may

differ, which means that the extent of the predictability (persistency) may vary across the

cross-section. In fact, we could even allow m to vary across i, suggesting that the rate at

which ρ → 1 (β → 0) need not be the same.

Remark 7. The types of cross-sectional dependencies that can be accommodated within the

current DGP are more general than those that have been considered earlier in the literature

(see Hjalmarsson, 2010; Kauppi, 2001), and include Granger causality, common factors and

even “weak cointegration” between units. One way to think about the concept of weak
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cointegration is, in analogy with common factor induced cointegration in unit root panels,

that the persistency of xi,t is driven by a weak unit root common factor. By allowing Ωww,

and hence also Ω, to have reduced rank, we can allow for such weak unit root common

factors (and thus also weak cointegration within xt).

Remark 8. Even disregarding the generality of the allowable cross-section dependencies,

the current DGP is still very general when compared to existing work, in the sense that the

blocks of Ω need not be diagonal. This means that not only are the units of vt and wt allowed

to be both serially and cross-sectionally correlated in a very general fashion, but there is also

nothing to prevent the units of these variables to be correlated with each other. The types of

endogeneity that can be permitted here is therefore very general indeed.

3 The test statistics

Let us denote by p the number of units for which yi,t can be predicted using xi,t−1, that is,

p is the number of units for which βi 6= 0. The purpose of this paper is to make inference

regarding p. Let us therefore denote by 0 = p1 < ... < pK < N a set of K user-defined

numbers, representing the number predictable of units to be considered in the testing. Let

H0(pk) denote the null hypothesis that p = pk, where k = 1, ..., K, and let H1(pk+1) denote

the alternative hypothesis that p ≥ pk+1. The test statistic for testing H0(pk) versus H1(pk+1)

is henceforth going to be written in a general notation as τ(pk, pk+1), suggesting that poten-

tially there is a dependence on both pk and pk+1.

3.1 Pooled tests for testing p = 0 versus p ≥ 1

In this subsection we consider the relatively simple problem of testing H0(0) versus H1(1),

that is, the null hypothesis of no predictability (p = 0) is tested versus the alternative that

there is at least one predictable unit (p ≥ 1). The reason for considering this testing problem

separately is that under the null hypothesis all the units of the panel are unpredictable, which

makes it possible to consider pooled test statistics in the spirit of Hjalmarsson (2010). Two

such test statistics are considered; one is based on the “panel” (or “within”) principle, while

the other is based on the “group mean” (or “between”) principle. The exact forms of these
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test statistics are as follows:

τP(0, 1) =
∑

N
i=1 ∑

T
t=2 xd

i,t−1yd
i,t − Tλ̂wv

√

∑
N
i=1 ω̂2

v,i ∑
T
t=2(xd

i,t−1)
2

,

τGM(0, 1) =
N

∑
i=1

θi,

where

θi =
∑

T
t=2 xd

i,t−1yd
i,t − Tλ̂wv,i

ω̂v,i

√

∑
T
t=2(xd

i,t−1)
2

,

with xd
i,t−1 = xi,t−1 − T−1 ∑

T
s=2 xi,s−1 and an analogous definition of yd

i,t. As for the required

variance correction factors, letting ût = (v̂′t, ŵ′
t)
′, where v̂t and ŵt are the residuals obtained

by applying OLS to (1) and (2), respectively, and using 1(A), K(x) = (1 − |x|)1(|x| ≤ 1)

and J > 0 to denote the indicator function for the event A, the Bartlett kernel and the kernel

bandwidth parameter, respectively, we have

Ω̂ =

[

Ω̂vv Ω̂vw

Ω̂wv Ω̂ww

]

= Σ̂ + Λ̂ + Λ̂′,

where

Σ̂ = T−1
T

∑
t=2

ûtû
′
t,

Λ̂ =
J−1

∑
j=1

K(j/J)T−1
T

∑
t=j+1

ût−jû
′
t.

In this notation, using ω̂2
v,i and λ̂wv,i to denote the diagonal elements of Λ̂wv and Ω̂vv, re-

spectively, we have λ̂wv = tr(Λ̂wv) = ∑
N
i=1 λ̂wv,i, where tr(A) denoted the trace of the matrix

A.

In contrast to the other test statistics that we will consider, while there is a dependence

on pk = p1 being equal to zero (in the sense that the null hypothesis of β = 0 has been

imposed), τP(0, 1) and τGM(0, 1) do not really depend on the proportion of predictable units

under the alternative, pk+1 = p2. The reason for still writing the test statistics as a function

the latter is to emphasize that in case of a rejection the appropriate conclusion is that there is

at least one unit for which predictability holds.

Remark 9. Our test statistics might seem overly complicated in the sense that in many cases

one can just as well bootstrap the normalized (with respect to the sample size) OLS estimator

8



of the parameter of interest.3 The same is true here. However, since the variance correction

in the numerator cannot be dispensed with (see Remark 10 below), we can just as well boot-

strap t-statistics.

Remark 10. The reason for bothering with the variance correction in the numerator is that

otherwise the test statistics would be divergent in the case when m → ∞ (also see Theorem

3.1 in Phillips and Magdalinos, 2009). This is quite different from the conventional local-to-

unity case when m < ∞, in which the effect of this bias is “second-order”. The fact that the

test statistics diverge when m → ∞ is consistent with the conventional simultaneous equa-

tions bias in stationary regressions. One exception is when c = 0 (not considered here), in

which case m becomes irrelevant. Hence, in this case there is no need to correct the numera-

tor.

3.2 Sequential test procedure for determining p

The tests considered in the previous section are appropriate if one wishes to infer whether

there is actually any predictability at all. The problem is that in many cases one would like

to go further than just concluding that p > 0 in case of a rejection, and in this section we

therefore consider a sequential test that can be used to pinpoint p. In so doing, we will

assume that the testing numbers, p1, ..., pK, are known and that p belongs to this set; later on

we discuss how to proceed in general when p can lie between test numbers.

Let us denote by |θ|(1) ≤ ... ≤ |θ|(N) the order statistics associated with the absolute val-

ues of θ1, ..., θN. The test statistic to be used in the sequential testing, denoted τSQ(pk, pk+1),

is given by the order statistic corresponding to the alternative hypothesis to be tested;

τSQ(pk, pk+1) = |θ|(pk+1)
,

and is appropriate for testing H0(pk) versus H1(pk+1). Our proposed procedure for deter-

mining p is based on repeated use of this test statistic.

Search algorithm.

1. Use τSQ(p1, p2) to test H0(p1) against H1(p2).

3For example, when testing for a unit root in xi,t, rather than bootstrapping the associated t-statistic, one may

bootstrap T(ρ̂i − 1), where ρ̂i is the OLS estimator of ρi in the i-th equation of (2).
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2. If H0(p1) is not rejected, set p̂ = p1, whereas if H0(p1) is rejected, use τSQ(q2, q3) to test

H0(p2) against H1(p3).

3. Keep testing until H0(pk) cannot be rejected anymore, and set p̂ = pk. If all null hy-

potheses up until and including H0(pK) are rejected, set p̂ = N.

Remark 11. The reason for using |θ(pk+1)| as a test statistic and not |θ(pk)|, which might seem

like a more natural choice, is that it would not test the correct set of hypotheses. For example,

suppose that we are at the first stage of the search algorithm. In this case, it is quite clear that

in testing H0(p1) against H1(p2), since θ(p1) = θ(0) is undefined, one has to take |θ(p2)| as a

test statistic.

Remark 12. The asymptotic theory for order statistics is known to be difficult, especially

when the statistics are dependent, as in our case. The bootstrap is ideal for situations like

this, and it will be used also in the present paper.

The above search algorithm is based on the assumption that the researcher knows be-

forehand which numbers of predictable units to test, which of course need not be the case

in practice. In fact, the case with known numbers is more likely to be the exception rather

than the rule. The perhaps most natural approach is to simply add the units sequentially

one-by-one, which amounts to setting pk = (k − 1) with k = 1, ..., N. This approach has the

advantage that all possible numbers are tested. The drawback is that it is likely to suffer from

low power, especially when N is “large”. The reason is that when the units are added one-

by-one the information used when testing one number against another is relatively small

when compared to a procedure that uses wider spacing between numbers.

Fortunately, the units does not have to be added one-by-one. In fact, any pre-specified

value of pk will do. The drawback of using numbers that are further apart is that if p lies

between these values, the method will be unable to detect it. For example, if the numbers to

be tested are 10, 20 and 30, the method will obviously not be able to detect if 15 or 25 of the

units are predictable. In other words, if p̂ = pk, unless the units are added one-by-one, then

this should not be taken as evidence of p being equal to pk, but rather that p is somewhere

in (pk−1, pk+1)
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3.3 The bootstrap

For the purpose of the bootstrap algorithm, it is useful to define the following “corrected”

estimators:

β̃i =
∑

T
t=2 xd

i,t−1yd
i,t − Tλ̂wv,i

∑
T
t=2(xd

i,t−1)
2

,

ρ̃i =
∑

T
t=2 xd

i,t−1xd
i,t − Tλ̂ww,i

∑
T
t=2(xd

i,t−1)
2

,

where λ̂ww,i is the i-th diagonal element of Λ̂ww. According to Lemma 1 below, β̃i and ρ̃i are

T/
√

m-consistent for βi and ρi, respectively, which is just enough to ensure validity of the

bootstrap.4 The next algorithm describes how β̃i and ρ̃i are used in testing H0(pk) versus

H1(pk+1).

Bootstrap algorithm.

1. Let zt = (x′t, y′t)
′. Obtain zd

t = (yd′
t , xd′

t )
′ = zt − T−1 ∑

T
s=1 zs.

2. Let γ̃ = (β̃′, ρ̃′)′, where β̃ = diag(β̃1, . . . , β̃N), ρ̃ = diag(ρ̃1, . . . , ρ̃N)
′, z0 = 0, and

calculate ũt = (ṽ′t, w̃′
t)
′ = zd

t − γ̃xd
t−1 for t = 2, . . . , T.

3. Choose a block length ℓ. Draw I1, . . . , I k iid from the uniform distribution on {1, 2, . . . ,

T − ℓ}, where k = ⌈(T − 1)/ℓ⌉ is the number of blocks.

4. Construct u∗
t = (v∗′t , w∗′

t )
′ = ũIkt

+st
− (T − ℓ)−1 ∑

T−ℓ

τ=1 ũτ+st , where t = 2, . . . , T, kt =

⌈t/ℓ⌉ and st = t − (kt − 1)ℓ.

5. Let y∗t = v∗t and x∗t = ρ̃x∗t−1 + w∗
t for t = 2, . . . , T with x∗1 = xd

1 and y∗1 = yd
1.

6. Let û∗
t = (v̂∗′t , ŵ∗′

t )
′, where v̂∗t and ŵ∗

t are the residuals obtained by applying OLS to the

bootstrap versions of (1) and (2), respectively. The bootstrap versions of ω̂2
v,i and λ̂vw,i,

denoted ω̂∗2
v,i and λ̂∗

vw,i, respectively, are as before but with Ω̂ and Λ̂ replaced by

Ω̂∗ =
1

T

(

k−1

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

û∗
(m−1)ℓ+sû

∗′
(m−1)ℓ+j +

T−(k−1)ℓ

∑
s=1

T−(k−1)ℓ

∑
j=1

û∗
(k−1)ℓ+sû

∗′
(k−1)ℓ+j

)

,

Λ̂∗ =
1

T

(

k−1

∑
m=1

ℓ

∑
s=1

s−1

∑
j=1

û∗
(m−1)ℓ+s−jû

∗′
(m−1)ℓ+s +

T−(k−1)ℓ

∑
s=1

s−1

∑
j=1

û∗
(k−1)ℓ+s−jû

∗′
(k−1)ℓ+s

)

,

4By contrast, (β̂i − βi) and (ρ̂i − ρi) are Op(m/T), and therefore the algorithm cannot be based on these, as

this would invalidate the resulting bootstrap.
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respectively.

7. Calculate

θ∗i =
∑

T
t=2 x∗d

i,t−1y∗d
i,t − Tλ̂∗

wv,i

ω̂∗
v,i

√

∑
T
t=2(x∗d

i,t−1)
2

,

with x∗d
i,t−1 = x∗i,t−1 − T−1 ∑

T
s=2 x∗i,s−1 and an analogous definition of y∗d

i,t .

8. Let Sk = {i : |θi| ≥ |θ|(pk)
} be the set of units for which the null hypothesis has already

been rejected in the previous steps. Obtain θ∗i for all i ∈ Sc
k, where Sc

k is the complement

of Sk. The bootstrap test statistic is given by

τ∗
SQ(pk, pk+1) = θ∗(pk+1−pk:Sc

k)
,

that is, τ∗
SQ(pk, pk+1) is the (pk+1 − pk)-th smallest value of θ∗i ∈ Sc

k.

9. Repeat steps 3–8 B times, and select the bootstrap critical value, c∗α(pk, pk+1) say, as the

α-quantile of the ordered bootstrap statistics.

To perform τP(0, 1) and/or τGM(0, 1), simply replace τ∗
SQ(pj, pj+1) in step 8 by τ∗

P(0, 1)

and/or τ∗
GM(0, 1), the statistics based on the bootstrap sample.

Remark 13. The time-specific mean correction employed in step 4 ensures that the block

bootstrap sample always has zero mean. This demeaning procedure has better asymptotic

properties than other procedures, and actually simplifies the proofs. It is not necessary,

though. Hence, one can also demean in the usual (non-time-specific) way, as is done in, for

example, Paparoditis and Politis (2003) and Palm et al. (2011).

Remark 14. The bootstrap variance correction explicitly takes into account the known block-

wise structure of the bootstrap process. The effects of the method of studentization of block

bootstrap statistics in a stationary setting have been extensively researched (see, for example,

Härdle et al., 2003, Section 3). Götze and Künsch (1996) find that the type of correction used

in step 6 is best in terms of refinements, which is also why we use it here.5 It is, however,

by no means the only correction possible. In fact, Gonçalves and Vogelsang (2011) argue,

using fixed-b asymptotics, that the use of the sample variance estimator in the bootstrap

5One disadvantage of using the correction in step 6 is that it does not guarantee that Ω̂∗ and Λ̂∗ are positive

definite, which, if required, can be remedied by weighting with a lag window.
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ensures that the (non-negligible) effects of the chosen kernel and bandwidth can be success-

fully mimicked by the bootstrap, resulting in a better performance. In our simulations (see

Section 5), however, we find that the bootstrap tests based on the step 6 variance estimator

perform much better in finite samples than when using the sample variance estimator, which

is in agreement with the results of Götze and Künsch (1996).

Remark 15. The selection of the block length ℓ remains an open issue. It is discussed exten-

sively in Palm et al. (2011), where it found that so-called “Warp-speed calibration” performs

reasonably well. However, that method depends on the particular test statistic used, which

makes it more difficult to apply in a sequential context. But since the data are the same in

each step of the procedure, it seems natural to assume that also the block length remains

fixed in each step. A reasonable approach in practice is therefore to apply Warp-speed cal-

ibration in the first step, and to use the resulting block length throughout. An alternative

approach is to follow, for example, Gonçalves (2011) and Moon and Perron (2010), and use

bandwidth selection techniques for selecting ℓ.

4 Asymptotic distributions

Constrained by the current state of affairs of the bootstrap theory (see, for example, Palm

et al., 2011), all the results reported in this section are based on keeping N fixed and sending

T (and also m) to infinity, which means that in practice what matters for accuracy is that T

is “large enough”. This is different from the usual panel asymptotics, in which both N and

T are passed to infinity. The downside of having N fixed is that when it comes to the effect

of an increase in this quantity the results provided here are silent. The obvious advantage is

that in practice N is always finite. Results developed under the assumption that N → ∞ are

therefore more prone to small-sample bias than results based on having N fixed. Then there

is also the problem of how to interpret the sequential test when the number of cross-section

units are growing. Note in particular how the unit-by-unit test, which is perhaps the most

appealing one from an applied point of view, would be rendered invalid, as asymptotically

when N → ∞, pk = (k − 1) is indistinguishable from pk+1 = k.
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4.1 The sample statistics

We begin by reporting the asymptotic distributions of the test statistics when applied to the

sample data. The results are summarized in Theorem 1.

Theorem 1. Suppose that Assumptions 1 and 2 hold, m = o(T1/2−1/κ) and J = o(m−1
√

T ). Then

the following hold as m, J, T → ∞:

(i) Under H0(0),

τGM(0, 1) →d

N

∑
i=1

Xi,

τP(0, 1) →d
∑

N
i=1 Yi

√

tr(Ωvv ⊙ C ⊙ Ωww)
,

where Y = (Y1, . . . , YN)
′ =d (C ⊙ Ωww ⊙ Ωvv)1/2Z, with Z ∼ N(0, IN), →d and =d

signify equality in distribution and convergence in distribution, respectively, ⊙ is the Hadamard

product, C is a symmetric N × N matrix with typical element [C]ij = −1/(ci + cj), and

Xi =
√−2ciYi/ωv,iωw,i.

(ii) Under H1(1), τGM(0, 1), τP(0, 1) = Op(
√

m ).

(iii) Under H0(0),

τSQ(0, p) →d X(p).

(iv) Under H1(q) with q > p, τSQ(pk, pk+1) = Op(
√

m ).

Remark 16. The requirement that m = o(T1/2−1/κ) is the same as in Park (2006). The re-

quired expansion rate of J, which is stricter than the usual o(
√

T ) rate (see, for example,

Andrews, 1991), can be explained in the following way. As the statistic diverges with m, the

convergence rate of the estimators of β and ρ is reduced (in the stationary case they would

even become inconsistent). Therefore, ũt is a poor estimator of ut, and as a result Ω̂ and Λ̂

are poor estimators of Ω and Λ, respectively. To compensate, J must be set as a decreasing

function of m. Note also that when m increases relatively slowly, the estimation accuracy

improves and the required bandwidth expansion rate becomes less restrictive. For example,

if m ∼ ln(T), then o(m−1
√

T ) approaches the standard o(
√

T ) rate.
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Remark 17. The corrections applied to the numerators and denominators of the test statistics

ensure that the unit-specific nuisance parameters are eliminated, but not those arising from

the cross-sectional dependence. In the time series case where N = 1, it is easy to see that

X =
√
−2cY/ωvωw =

√
−2c/ωvωw(ωvωwZ/

√
−2c) = Z. Therefore, θi has a limiting

N(0, 1) distribution for each i = 1, . . . , N. However, if N > 1 the off-diagonal elements of

the covariance matrix of X are not equal to zero, but contain nuisance parameters derived

from the dependence across units, which has as consequence that the panel statistics are

not asymptotically pivotal; the only exception is the unrealistic situation where there is no

cross-sectional dependence.

4.2 The bootstrap statistics

Theorem 2. Suppose that Assumptions 1 and 2 hold, m = o(T1/2−1/κ) and ℓ = o(m−1
√

T ). Then

the following hold as m, ℓ, T → ∞:

(i) Under H0(0) and H1(q) for any 0 < q ≤ N,

τ∗
GM(0, 1) →d∗

N

∑
i=1

Xi in probability,

τ∗
P(0, 1) →d∗

∑
N
i=1 Yi

√

tr(Ωvv ⊙ C ⊙ Ωww)
in probability,

where →d∗ signifies convergence in distribution conditional on the realization of the original

sample.

(ii) Under H0(0) and H1(q),

τ∗
SQ(0, p) →d∗ X(p) in probability.

Theorem 2 shows the asymptotic validity not only of the pooled bootstrap statistics, but

also of the sequential bootstrap statistics in the first step. The properties of the sequential

approach as a whole is given in the following corollary to Theorem 2.
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Corollary 1. Under the assumptions of Theorem 2,

lim
T→∞

P( p̂ = pk) = 0 if pk+1 ≤ p,

lim
T→∞

P( p̂ = pk) ∈ [0, 1] if pk < p < pk+1,

lim
T→∞

P( p̂ = pk) = 1 − α if pk = p,

lim
T→∞

P( p̂ = pk) ∈ [α, 1] if pk−1 < p < pk,

lim sup
T→∞

P( p̂ = pk) ≤ α if pk−1 ≥ p,

where α is the chosen significance level.

Corollary 1 says that if p is among the numbers to be tested (as when the units are added

one-by-one), the sequential method is asymptotically valid in the sense that limT→∞ P(p <

pk−1) ≤ α and limT→∞ P(p > pk+1) = 0 (see, for example, Swensen, 2006, for a similar result

in the context of cointegration rank testing).

Corollary 1 also gives an insight into what happens if the true proportion is in between

selected numbers. Specifically, assuming that p̂ = pk, we have

P(p ∈ [pk−1, pk+1]) = 1 − P(p < pk−1)− P(p > pk+1) ≥ 1 − α.

Hence, if the units are not added one-by-one, so that there is a possibility that p lies between

the numbers considered in the testing, then the finding that p̂ = pk is best interpreted as

providing evidence that p ∈ [pk−1, pk+1].

Remark 18. It follows from Theorem 2 that the bootstrap correctly reproduces the first-order

asymptotic distributions of the panel statistics, including the nuisance parameters arising

because of the cross-sectional dependence. This means that the bootstrap allows for valid

and pivotal inference also in the panel case, where the asymptotic distributions are unusable

without some way to estimate and correct for the nuisance parameters.

In the time series case with N = 1, or in panels without cross-sectional dependence, the

standard normal approximation can be used, and therefore the bootstrap is not necessary.

However, also in this case it is highly recommended to use the bootstrap, as one can use

the approximation orders derived in our proofs to show along the lines of Park (2006) that

the bootstrap provides asymptotic refinements if the statistic of interest is asymptotically

pivotal.
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5 Monte Carlo simulations

5.1 Setup

In this section we investigate briefly the performance of the proposed panel tests in small

samples. The DGP used for this purpose is given by a restricted version of (1) and (2) that

sets α = δ = 0 and m = T1−γ, such that β = b/Tγ and ρ = 1 + c/Tγ. Also,

ut = λ ft + εt, (5)

where λ = (λ′
v, λ′

w)
′, λv = (λv,1, ..., λv,N)

′ with a similar definition of λw, and ft = 0.5 ft−1 +

ǫt with ǫt ∼ N(0, 1) independent of εt ∼ N(0, I2N). As for bi, the i-th diagonal element of b,

bi ∼ U[5, 15] for i = 1, . . . , p, and bi = 0 for i = p + 1, . . . , N. Here we set p = ⌊qN⌋, where

the fraction of predictable units, q, takes the values q = 0, 0.2, 0.5, 0.9. The i-th diagonal

element of c, ci, is made a draw from U[−15, 0].

Two values of γ are considered: γ = 0.9 and γ = 1. Although theoretically our bootstrap

methods are invalid when γ = 1, as a measure of robustness, we consider it in our simula-

tions. As in finite samples a near unit root is virtually indistinguishable from a weak unit

root close to it, we still expect our tests to work reasonably well in this setting. Two values

of each of N and T are considered; N = 10, 25 and T = 100, 250.

In our setup, the extent of serial and cross-sectional correlation in vi,t (wi,t) is determined

by λv,i (λw,i), as seen by writing E(vi,tvj,t−h) = λv,iλv,j E( ft ft−h) = λv,iλv,j0.5h/(1 − 0.52).

Similarly, since E(vi,twi,t−h) = λv,iλw,i0.5h/(1 − 0.52), the extent of endogeneity within unit

i is determined by both λv,i and λw,i. Three factor loading cases are considered:

1. λv = λv = 0: vi,t and wi,t are independent, both cross-sectionally and across time, and

there is no endogeneity.

2. λv,i ∼ U[−1, 3], λw = 0: While wi,t is serially and cross-sectionally uncorrelated, vi,t is

not. No endogeneity is present.

3. λv,i, λw,i ∼ U[−1, 3]: vi,t and wi,t are serially and cross-sectionally uncorrelated, and

also correlated with each other (endogeneity).

In our simulations we consider τP, τGM and τSQ. The sequential procedure is based on

setting pk = k − 1 for k = 1, . . . , K, that is, the units are added one-by-one. The block length

and bandwidth are set equal to ℓ = J = ⌊1.75T1/3⌋, a value that was also used by Palm et al.
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(2011).6 All other implementation issues, including kernel and bootstrap variance estimator,

are dealt with as explained in Section 3. All results are based on 1,000 simulations and 199

bootstrap replications. The significance level is set to 5%.

5.2 Results

The empirical rejection frequencies for τP and τGM are reported in Table 1. For q = 0 these

values represent size, for q > 0 they represent power. It can be seen that for both panel tests

size distortions are minimal. This is not only the case for the valid γ = 0.9 setting, but also

for γ = 1. Moreover, the tests continue to do well if endogeneity within units (case 3) is

present. Although there is some oversize in this case, it is fairly minor.

As one would expect, the power of the tests increases with q and N. Moreover, for γ = 0.9

it can also be seen that power increases with T, which is a consequence of part (ii) of Theorem

1. For γ = 1 this does not generally seem to be the case, which is in line with theory. On

average, it seems as that τP is somewhat more powerful than τGM, though for most cases

considered the differences are small.

INSERT TABLE 1 ABOUT HERE

Results for the sequential tests are reported in Table 2. Here we report the average pro-

portion of units incorrectly classified as predictable (ICP) and the average proportion of units

correctly classified as predictable (CP). Here ICP can be loosely interpreted as size, while CP

can be loosely interpreted as power. While for sequential/multiple testing type approaches

there are a variety of performance measures (see, for example, Smeekes, 2011), for exposi-

tional simplicity we only report these two measures.

In general the sequential test results are very similar to the panel test results. Size dis-

tortions in the individual tests are small, resulting in a very small average proportion of

units incorrectly classified as predictable. The ability of the sequential method to find the

predictable units improves with q and with T. However, it deteriorates significantly as N

increases. This is as expected from the discussion in Section 3.2, as the unit-by-unit ap-

proach does not properly utilize the cross-sectional dimension, making it more conservative

for larger N. A sequential approach with pk − pk−1 > 1 will tend to find more predictable

6For the variance estimation, we also considered automatic bandwidth selection and pre-whitening, but this

did not change our results much.
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units, but then this will also increase the risk of some units being incorrectly classified as

predictable (see Smeekes, 2011, for a more detailed discussion).

INSERT TABLE 2 ABOUT HERE

We also performed simulations in the pure time series case (with N = 1) to investigate

the performance of θi, the underlying test, in more detail. In general the conclusions from

those simulations match those of the panel setting reported here. One additional conclusion

from the time series results that is obscured in the panel setup, is that the value of c has a

significant impact of the performance of the test, in particular for small T. With c large and

T relatively small, the departure from unity is relatively large, and therefore the problem

of endogeneity becomes larger. As a result the variance correction does not work as well

as when the deviation from unit is small, resulting in relatively large size distortions in the

presence of endogeneity, though these disappear with increasing (decreasing) values of T

(c). The value of c also has an impact on power, as the larger c is, the lower power becomes.

While this might not be obvious at first, it actually follows from our theoretical results, see

the result (A.26) in particular. A final conclusion from our time series simulations is that,

even though the bootstrap is invalid in the exact unit root case (c = 0), in simulations it still

works reasonably well even if c1 = ... = cN = 0 with size generally remaining well below

15%. Hence, if some units in the panel setup are close to or at a unit root, it should not affect

the overall performance of the panel tests too much, a conclusion that is confirmed by our

panel data results. The full set of results of the time series case are available upon request.

6 Concluding remarks

The difficulty of predicting stock returns using time series data, typically for the US, has

recently motivated researchers to consider panel data as a means to increase the power of

conventional (time series) tests. Indeed, since the predictable component of stock returns

is bound to be small, if indeed one does exist, there seems to be little chance of reaching a

decisive conclusion based on US data alone. Unfortunately, the few panel data tests that do

exist are not only based on restrictive assumptions, but are also rather uninformative in the

sense that they cannot be used to identify the units for which returns can be predicted. In the

present paper we take this as our starting point to develop a block bootstrap algorithm that

can be used to infer panel predictive regressions under very general conditions. Two tests
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based on this bootstrap are proposed. One is suitable when testing the null hypothesis of no

predictability versus the general alternative, while the other can be used to identify exactly

the units for which predictability holds. The asymptotic validity of the tests is proven and

verified in samples using Monte Carlo simulations.
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A Appendix: Proofs for the sample statistics

Lemma A.1. Under Assumptions 1 and 2, uniformly in m,

√
m

T

(

T

∑
t=2

xd
t−1(v

d
t )

′ − TΛwv

)

=d

√
mAm +Op(

√
mT−1/2+1/κ) +Op(m

3/2T−1),

m

T2

T

∑
t=2

xd
t−1(xd

t−1)
′ =d mBm + Op(

√
mT−1/2+1/κ) + Op(m

3/2T−1),

where

Am =
∫ 1

0
Jd
cm(s)dBv(s)

′,

Bm =
∫ 1

0
Jd
cm(s)Jd

cm(s)
′ds,

where =d signifies equality in distribution, Jd
c (s) = Jc(s) −

∫ 1
0 Jc(r)dr, Jc(s) =

∫ s
0 exp(c(s −

r))dBw(r), B(s) = [Bw(s)′, Bv(s)′]′ = Ω1/2W(s) and W(s) is a 2N-vector standard Brownian

motion.

Proof of Lemma A.1.

Consider the first result. Write Ψ(z) = (Ψv(z)′, Ψw(z)′)′, where Ψv(z) and Ψw(z) have

dimension N × 2N. By the Beveridge–Nelson (BN) decomposition, Ψ(z) = Ψ(1) − (1 −
z)Ψ∗(z), where Ψ∗(z) = ∑

∞
j=0 Ψ∗

j zj with Ψ∗
j = ∑

∞
k=j+1 Ψk. Letting ε̃t = (ε̃′v,t, ε̃′w,t)

′ = Ψ∗(L)εt,

it follows that

ut = Ψ(z)εt = Ψ(1)εt − ∆ε̃t,

which in turn implies
√

m

T

T

∑
t=2

xd
t−1v′t =

√
m

T

T

∑
t=2

xd
t−1ε′tΨv(1)

′ −
√

m

T

T

∑
t=2

xd
t−1∆ε̃′v,t. (A.1)

Consider the first term on the right-hand side, where, ignoring the demeaning for the mo-

ment,

√
m

T

T

∑
t=2

xt−1ε′tΨv(1)
′ = Ψw(1)

√
m

T

T

∑
t=2

x̃t−1ε′tΨv(1)
′

+

√
m

T

T

∑
t=2

(xt−1 − Ψw(1)x̃t−1)ε
′
tΨv(1)

′,

(A.2)
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with εt = (ε′v,t, ε′w,t)
′ and x̃t = ∑

t
t=1 ρt−sεw,t. By using x0 = 0, the BN decomposition of Ψ(z),

summation by parts, and then ∆ρt−s = ρt−s − ρt−s−1 = (IN − ρ)ρt−s = −T−1mcρt−s,

xt =
t

∑
s=1

ρt−sws =
t

∑
s=1

ρt−sws = Ψw(1)x̃t +
t

∑
s=1

ρt−s∆ε̃w,s

= Ψw(1)x̃t + ε̃w,t −
t

∑
s=1

∆ρt−s ε̃w,s−1

= Ψw(1)x̃t + ε̃w,t +
mc

T

t

∑
s=1

ρt−s ε̃w,s−1,

from which it follows that
√

m

T

T

∑
t=2

(xt−1 − Ψw(1)x̃t−1)ε
′
tΨv(1)

′

=
√

m
T ∑

T
t=2(ε̃w,t−1 + mcT−1 ∑

t−1
s=1 ρt−1−s ε̃w,s−1)ε

′
tΨv(1)′. (A.3)

Let us denote by Ft denote the smallest sigma-field containing all past information up to

time t on εt, and define Et X = E(X|Ft). As usual, ⊗ denotes the Kronecker product and

vec(A) is the vectorization of A. Clearly, E ε̃w,t−1ε′t = E(ε̃w,t−1 Et−1 ε′t) = 0, and it also not

difficult to show that, with vec(AB′) = B ⊗ A and (A ⊗ B)(C ⊗ D) = AC ⊗ BD,

E

[

vec

(√
m

T

T

∑
t=2

ε̃w,t−1ε′t

)

vec

(√
m

T

T

∑
s=2

ε̃w,s−1ε′s

)′]

=
m

T2

T

∑
t=2

E(Et−1 εtε
′
t ⊗ ε̃w,t−1ε̃′w,t−1) =

m

T2

T

∑
t=2

(Σεε ⊗ E ε̃w,t−1ε̃′w,t−1) = O(T−1m),

suggesting that
∣

∣

∣

∣

∣

∣

∣

∣

√
m

T

T

∑
t=2

ε̃w,t−1ε′t

∣

∣

∣

∣

∣

∣

∣

∣

= O(T−1/2
√

m ).

It follows from Lemma 4.2 in Park (2006) that ||xt|| = Op(
√

Tm−1/2), which, together with

E xt−1εt = 0, implies ||∑
T
t=2 xt−1ε′t|| = Op(Tm−1/2). Asymptotically, ∑

t−1
s=1 ρt−1−s ε̃w,s−1 be-

haves like xt, and in fact satisfies an invariance principle (when suitably normalized by m

and T). Hence, in analogy to ∑
T
t=2 xt−1ε′t,

∣

∣

∣

∣

∣

∣

∣

∣

m3/2

T2

T

∑
t=2

t−1

∑
s=1

ρt−1−s ε̃w,s−1ε′t

∣

∣

∣

∣

∣

∣

∣

∣

= O(T−1m).

Consequently,
√

m

T

T

∑
t=2

xt−1ε′tΨv(1)
′ = Ψw(1)

√
m

T

T

∑
t=2

x̃t−1ε′tΨv(1)
′ +O(T−1/2

√
m ). (A.4)
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The demeaning in xd
t does not affect the order of the remainder. Hence, using x̃d

t to denote

the demeaned version of x̃t,
√

m

T

T

∑
t=2

xd
t−1ε′tΨv(1)

′ = Ψw(1)

√
m

T

T

∑
t=2

x̃d
t−1ε′tΨv(1)

′ +O(T−1/2
√

m ). (A.5)

Let W(s) = [Ww(s)′, Wv(s)′]′, Jc(s) =
∫ 1

0
exp(c(s − r))dWw(r) and Jd

c (s) = Jc(s)−
∫ 1

0
Jc(r)dr.

Then, by Lemma 3.1 of Park (2006),
√

m

T

T

∑
t=2

x̃d
t−1ε′t =d

√
m
∫ 1

0
Jd
cm(s)dWv(s)

′ + Op(
√

mT−1/2+1/κ) + Op(m
3/2T−1). (A.6)

Hence, since Op(m3/2T−1) > O(T−1/2
√

m ), defining Am =
∫ 1

0 Jd
cm(s)dBv(s)′, by the contin-

uous mapping theorem,
√

m

T

T

∑
t=2

xd
t−1ε′tΨv(1)

′ =d

√
mAm + Op(

√
mT−1/2+1/κ) + Op(m

3/2T−1). (A.7)

Next, consider
√

mT−1 ∑
T
t=2 xd

t−1∆ε̃′v,t. From ||xt|| = Op(
√

Tm−1/2),

1

T

T

∑
t=2

xd
t−1∆ε̃′t = − 1

T

T

∑
t=2

∆xt ε̃
′
t +

1

T

T

∑
t=2

(xt ε̃
′
t − xt−1ε̃′t−1)−

1

T2

T

∑
s=2

xs−1

T

∑
t=2

∆ε̃′t

= − 1

T

T

∑
t=2

∆xt ε̃
′
t +

1

T
xT ε̃′T − 1

T2

T

∑
t=2

xt−1(ε̃T − ε̃1)
′

= − 1

T

T

∑
t=2

∆xt ε̃
′
t +Op((mT)−1/2)

and by further use of (2), ρ = 1 + cmT−1 and ∑
T
t=2 xt−1ε′t = Op(Tm−1/2),

1

T

T

∑
t=2

∆xt ε̃
′
t =

1

T

T

∑
t=2

wtε̃
′
t + c

m

T2

T

∑
t=2

xt−1ε̃′t =
1

T

T

∑
t=2

wt ε̃
′
t +Op(mT−1)

=
1

T

T

∑
t=2

Ψw(L)εt ε̃
′
t +Op(mT−1).

By definition,

Λ =
∞

∑
k=1

∞

∑
j=0

ΨjΣεεΨ
′
j+k =

∞

∑
j=0

ΨjΣεε

(

∞

∑
k=1

Ψj+k

)′

=
∞

∑
j=0

ΨjΣεε

(

∞

∑
k=j+1

Ψk

)′

=
∞

∑
j=0

ΨjΣεεΨ
∗′
j ,

which is identically E ut ε̃
′
t. It follows that

1

T

(

T

∑
t=2

wt ε̃
′
v,t − TΛwv

)

= Op(T
−1/2).

Thus, by combining the results,
√

m

T

(

T

∑
t=2

xd
t−1∆ε̃′t − TΛwv

)

= Op(
√

mT−1/2) + Op(m
3/2T−1), (A.8)
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which in turn implies

√
m

T

(

T

∑
t=2

xd
t−1v′t − TΛwv

)

=

√
m

T

T

∑
t=2

xd
t−1ε′tΨv(1)

′ +Op(
√

mT−1/2+1/κ)

+Op(m
3/2T−1)

=d

√
mAm + Op(

√
mT−1/2+1/κ) +Op(m

3/2T−1).

(A.9)

It then also follows straightforwardly that

√
m

T

(

T

∑
t=2

xd
t−1(v

d
t )

′ − TΛwv

)

=

√
m

T

(

T

∑
t=2

xd
t−1v′t − TΛwv

)

+ Op(T
−1/2)

=d

√
mAm +Op(

√
mT−1/2+1/κ) +Op(m

3/2T−1).

(A.10)

The second result follows directly from the proof of Lemma 3.1 in Park (2006). �

Lemma A.2. Under the conditions of Lemma A.1, as m → ∞

diag(
√

mAm) →d Y,

mBm →p C ⊙ Ωww,

where Y = (Y1, . . . , YN)
′ =d (C ⊙ Ωww ⊙ Ωvv)1/2Z with Z ∼ N(0, IN), →d and →p signify

convergence in distribution and probability, respectively, ⊙ is the Hadamard product, and the N × N

matrix C has typical element [C]ij = −1/(ci + cj).

Proof of Lemma A.2.

Consider
√

mAm. By variable substitution of u = ms, dBw(s) =d

√
mdBw(s/m) =

√
mdBw(u).

Thus, letting v = mr,

Jcm(s) =
∫ s

0
exp(cm(s − r))dBw(r) =

1√
m

∫ u

0
exp(c(u − v))

√
mdBw(vm−1)

=d
1√
m

∫ u

0
exp(c(u − v))dBw(v) =

1√
m

Jc(u),

(A.11)

from which it follows that

Jd
cm(s) =d

1√
m

Jc(u)−
1

m3/2

∫ m

0
Jc(s)ds =

1√
m

Jc(u)−
1

m3/2

m

∑
j=1

∫ j

j−1
Jc(s)ds

(see also Phillips et al., 2010, page 275). By using this, and a central limit theorem for mar-

tingale difference processes,

√
mAm =d

1√
m

m

∑
j=1

∫ j

j−1
Jc(u)dBv(u)

′ − 1

m

m

∑
i=1

∫ i

i−1
Jc(v)dv

1√
m

m

∑
j=1

∫ j

j−1
dBv(u)

′

=
1√
m

m

∑
j=1

∫ j

j−1
Jc(u)dBv(u)

′ + Op(m
−1/2),

(A.12)
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where the remaining term is clearly mean zero. As for the covariance matrix of this term, by

using the same steps as in the proof of Lemma A.1 and E dBv(u)dBv(u)′ = Ωvvdu,

E

[

vec

(

∫ j

j−1
Jc(u)dBv(u)

′
)

vec

(

∫ j

j−1
Jc(r)dBv(r)

′
)′]

=
∫ j

j−1
E[E dBv(u)dBv(u)

′ ⊗ Jc(u)Jc(u)
′] =

∫ j

j−1
(Ωvv ⊗ E Jc(u)Jc(u)

′)du.

where

E Jc(u)Jc(u)
′ =

∫ u

0

∫ u

0
exp(c(u − r))E dBw(r)dBw(v) exp(c(u − v))′

=
∫ u

0
exp(c(u − r))Ωww exp(c(u − r))′dr.

Provided that ci < 0, letting ω2
w,i = [Ωww]ii and ωw,ik = [Ωww]ik for i 6= k, the typical element

of the above expectation is given by

ωw,ik

∫ u

0
exp((ci + ck)(u − r))dr = − ωw,ik

(ci + ck)
(1 − exp((ci + ck)u)),

suggesting that the typical element of
∫ j

j−1
E Jc(u)Jc(u)′du can be obtained as

− ωw,ik

(ci + ck)

∫ j

j−1
(1 − exp((ci + ck)u))du

= − ωw,ik

(ci + ck)

(

1 − 1

(ci + ck)
exp(j(ci + ck))(1 − exp(−(ci + ck)))

)

→ − ωw,ik

(ci + ck)
,

where the last result holds because ci < 0, and therefore exp(j(ci + ck)) → 0 as j → ∞. Now,

we are only interested in the covariance matrix corresponding to the diagonal elements of
∫ j

j−1
Jc(u)dBv(u)′, which, in view of the above, can be written as C ⊙ Ωww ⊙ Ωvv, where

C = −







1/2c1 · · · 1/(c1 + cN)
...

. . .
...

1/(cN + c1) . . . 1/2cN






.

Therefore, by a central limit theorem for martingale difference processes,

diag

(

1√
m

m

∑
j=1

∫ j

j−1
Jc(u)dBv(u)

′
)

→d (C ⊙ Ωww ⊙ Ωvv)
1/2Z (A.13)

as m → ∞.

As for mBm, by using the same trick as before,

mBm =
1

m

∫ m

0
Jd
c (u)Jd

c (u)
′du =

1

m

m

∑
j=1

∫ j

j−1
Jc(u)Jc(u)

′du +Op(m
−1), (A.14)

28



where, via the ergodic theorem,

1

m

m

∑
j=1

∫ j

j−1
Jc(u)Jc(u)

′du →p C ⊙ Ωww (A.15)

as m → ∞. �

Lemma A.3. Under the conditions of Lemma A.1, as J, T → ∞,

||Λ̂ − Λ|| = Op(
√

JT−1/2) + Op(J3/2T−1) + Op(
√

mJT−1/2),

||Ω̂ − Ω|| = Op(
√

JT−1/2) + Op(J3/2T−1) + Op(
√

mJT−1/2).

Proof of Lemma A.3.

Consider Σ̂ = T−1 ∑
T
t=2 ûtû

′
t, where ût = (ŵ′

t, v̂′t)
′, ŵt = xd

t − ρ̂xd
t−1, v̂t = yd

t − β̂xd
t−1, ρ̂ =

diag(ρ̂1, ..., ρ̂N) and β̂ = diag(β̂1, ..., β̂N). From (1),

m−1/2T(β̂i − βi) =

√
mT−1(∑T

t=2 xd
i,t−1vd

i,t − TΛ′
vw)

mT−2 ∑
T
t=2(xd

i,t−1)
2

+

√
mΛ′

vw

mT−2 ∑
T
t=2(xd

i,t−1)
2

,

which is Op(1) if m < ∞ (Lemma A.1) and Op(
√

m ) if m → ∞ (Lemma A.2). Hence, (β̂i −
βi) = Op(mT−1). This result, together with the fact that v̂t = vd

t − (β̂ − β)xd
t−1, imply that

the upper left block of Σ̂ can be written as

Σ̂vv =
1

T

T

∑
t=2

v̂t v̂
′
t =

1

T

T

∑
t=2

vd
t (v

d
t )

′ − 1

T

T

∑
t=2

vd
t (xd

t−1)
′(β̂ − β)′

− (β̂ − β)
1

T

T

∑
t=2

xd
t−1(v

d
t )

′ + (β̂ − β)
1

T

T

∑
t=2

xd
t−1(xd

t−1)
′(β̂ − β)′

=
1

T

T

∑
t=2

vd
t (v

d
t )

′ +Op(mT−1) = Σvv +
1

T

T

∑
t=2

(vtv
′
t − Σvv) + Op(mT−1)

= Σvv + Op(T
−1/2) +Op(mT−1).

Similar results apply to the other blocks of Σ̂. Hence,

Σ̂ = Σ + Op(T
−1/2) +Op(mT−1). (A.16)
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Next, consider Λ̂. In particular, let us consider Λ̂wv, which we can expand as

Λ̂wv =
J−1

∑
j=1

K(j/J)
1

T

T

∑
t=j+1

ŵt−jv̂
′
t

=
M−1

∑
j=1

K(j/J)
1

T

T

∑
t=j+1

wt−jv
′
t +

J−1

∑
j=1

K(j/J)
1

T

T

∑
t=j+1

ŵt−j(v̂t − vt)
′

+
M−1

∑
j=1

K(j/J)
1

T

T

∑
t=j+1

(ŵt−j − wt−j)v̂
′
t

−
J−1

∑
j=1

K(j/J)
1

T

T

∑
t=j+1

(ŵt−j − wt−j)(v̂t − vt)
′,

(A.17)

where the last three terms on the right-hand side are dominated by second and third terms.

Consider the second term. By the Cauchy–Schwarz inequality and then v̂t = vd
t − (β̂ −

β)xd
t−1 = vd

t + Op(
√

mT−1/2), as follows from noting that xd
i,t−1 = Op(

√
Tm−1/2) (see the

proof of Lemma A.2),

∣

∣

∣

∣

∣

∣

∣

∣

J−1

∑
j=1

K(j/J)
1

T

T

∑
t=j+1

wt−j(v̂t − vt)
′
∣

∣

∣

∣

∣

∣

∣

∣

≤
J−1

∑
j=1

K(j/J)

(

1

T

T

∑
t=j+1

||wt−j||2
)1/2(

1

T

T

∑
t=j+1

||v̂t − vt||2
)1/2

= Op(
√

mJT−1/2).

Thus, since the third term is of the same order,

Λ̂wv =
J−1

∑
j=1

K(j/J)
1

T

T

∑
t=j+1

wt−jv
′
t + Op(

√
mJT−1/2) = Λ̃wv + Op(

√
mJT−1/2), (A.18)

with an obvious definition of Λ̃wv. Observe that

E ||Λ̃wv − Λwv||2 ≤ E ||Λ̃wv − E Λ̃wv||2 + ||E(Λ̃wv − Λwv)||2 = O(JT−1), (A.19)

where we have used that, following the same lines of proof as that in Theorems 9 and 10

Hannan (1970, pages 280–283) (or Proposition 1 in Andrews, 1991), E ||Λ̃wv − E Λ̃wv||2 =

O(JT−1) and E ||Λ̃wv − Λwv|| = O(J−1). Hence, E ||Λ̃wv − Λwv|| = O(
√

JT−1/2).

It then follows from the Markov inequality that

P(
√

JT−1/2||Λ̃wv − Λwv|| > δ) ≤ δ−2 JT−1
E ||Λ̃wv − Λwv||2 = O(1),

and therefore ||Λ̃wv − Λwv|| = Op(
√

JT−1/2). Consequently,

||Λ̂wv − Λwv|| ≤ ||Λ̂wv − Λ̃wv||+ ||Λ̃wv − Λwv||

= Op(
√

mJT−1/2) +Op(
√

JT−1/2).
(A.20)
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The same is true for the other blocks of Λ̂. Moreover, since Op(
√

JT−1/2) > Op(mT−1),

we have that

||Ω̂ − Ω|| ≤ ||Σ̂ − Σ||+ 2||Λ̂ − Λ|| = Op(
√

JT−1/2) + Op(J3/2T−1)

+ Op(
√

mJT−1/2),
(A.21)

and so the proof is complete. �

Proof of Theorem 1.

From Lemmas A.1–A.3, we can deduce easily the asymptotic distribution of θi. In fact, by

using (1), βi = bim/T, Lemmas A.1 and A.2, and then summation by parts,

θi =
∑

T
t=2 xd

i,t−1yd
i,t − Tλ̂vw,i

ω̂v,i

√

∑
T
t=2(xd

i,t−1)
2

=
m3/2T−2 ∑

T
t=2 bi(xd

i,t−1)
2 +

√
mT−1(∑T

t=2 xd
i,t−1vd

i,t − Tλ̂vw,i)

ω̂v,i

√

mT−2 ∑
T
t=2(xd

i,t−1)
2

+

√
m(λ̂vw,i − λvw,i)

ω̂v,i

√

mT−2 ∑
T
t=2(xd

i,t−1)
2

=d Dm,i + Op(
√

mJT−1/2) +Op(
√

mJ3/2T−1) +Op(mJT−1/2)

+ Op(
√

mT−1/2+1/κ) +Op(m
3/2T−1),

(A.22)

where

Dm,i =
mbiBm,i +Am,i

ωv,i

√

Bm,i

.

The number of order terms can be reduced by noting that the leading ones are given by

Op(mJT−1/2) and Op(
√

mT−1/2+1/κ). For these to be o(1), we require m = o(T1/2−1/κ) and

J = o(mT−1/2). Hence, in this case, θi =d Dm,i + op(1), which, together with the continuous

mapping theorem, in turn implies

τSQ(qk+1, qk) =d D(pk+1),m + op(1),

τGM =d

N

∑
i=1

Dm,i + op(1).
(A.23)

As for τP, by using a similar expansion as the one above for θi,

τP =d
∑

N
i=1(mbiBm,i +Am,i)
√

∑
N
i=1 ω2

v,iBm,i

+ op(1) =
tr(mb ⊙Bm +Am)
√

tr(Ωvv ⊙Bm)
+ op(1), (A.24)

where ⊙ is the Hadamard product.
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In order to obtain the large-m results, we make use of Lemma A.3, from which it follows

that if bi = 0, then

θi =d
Am,i

ωv,i

√

Bm,i

+ op(1) →d

√−2ci

ωv,iωw,i
Yi = Xi (A.25)

as T, m, J → ∞, whereas if bi 6= 0, then

1√
m

θi =d

bi

√

mBm,i

ωv,i
+ op(1) →p

biωw,i√−2ciωv,i

. (A.26)

suggesting that θi = Op(
√

m ).

The results for τGM, τP and τSQ(qk+1, qk) are easily deduced from that of θi. We begin

with τSQ(qk+1, qk). If q ≥ qk+1, then

τSQ(qk+1, qk) →d X(pk+1) (A.27)

as m, J, T → ∞, whereas if q < qk+1, then τSQ(qk+1, qk) = Op(
√

m ). Similarly, if q = 0, then

τGM →d

N

∑
i=1

Xi, (A.28)

whereas if q > 0, then τGM = Op(
√

m ). As for τP, we can show that if q = 0,

τP =d
tr(

√
mAm)

√

tr(Ωvv ⊙ mBm)
+ op(1) →d

∑
N
i=1 Yi

√

tr(Ωvv ⊙ C ⊙ Ωww)
. (A.29)

On the other hand, if q > 0, then we again have that τP = Op(
√

m ). �
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B Appendix: Proofs for the bootstrap statistics

Lemma B.1. Under Assumptions 1 and 2 we have that

J∗cm,T(r) = T−1/2x∗⌊Tr⌋ =d∗ Jcm(r) +O∗
p(ℓ

1/2−1/κ T−1/2+1/κ)

+O∗
p(ℓ

−1/2) +O∗
p(mT−1) in probability.

Proof of Lemma B.1.

Let B∗
T(r) = T−1/2 ∑

⌊Tr⌋
t=1 u∗

t . We then have that

J∗0,T(r) =
1√
T

M(r)−1

∑
m=1

ℓ

∑
s=1

(

ũIm +s −
1

T − ℓ

T−ℓ

∑
τ=1

ũτ+s

)

+
1√
T

N(r)

∑
s=1

(

ũIMr +s −
1

T − ℓ

T−ℓ

∑
τ=1

ũτ+s

)

=
1√
T

M(r)

∑
m=1

ℓ

∑
s=1

(

ũIm +s −
1

T − ℓ

T−ℓ

∑
τ=1

ũτ+s

)

− R∗
T(r),

(B.1)

where M(r) = ⌈⌊Tr⌋/ℓ⌉, N(r) = ⌊Tr⌋ − M(r)ℓ− 1 and RT(r) = T−1/2 ∑
ℓ

s=N(r)+1(ũiM(r)+s −
(T − ℓ)−1 ∑

T−ℓ

τ=1 ũτ+s). Define γ = (β′, ρ′)′ and correspondingly γ̃ = (β̃′, ρ̃′)′. Letting zt =

(y′t, x′t), we have that

ũ(Im +s) = zd
Im +s − γ̃xd

Im +s−1 −
1

T − ℓ

T−ℓ

∑
t=1

(zd
t+s − γ̃xd

t+s−1)

= zIm +s − γ̃xIm +s−1 −
1

T − ℓ

T−ℓ

∑
t=1

(zt+s − γ̃xt+s−1)

= uIm +s − (γ̃ − γ)xIm +s−1 −
1

T − ℓ

T−ℓ

∑
t=1

(ut+s − (γ̃ − γ)xt+s−1) ,

which in turn implies

R∗
T(r) =

1√
T

ℓ

∑
s=N(r)+1

(

uIM(r)+s −
1

T − ℓ

T−ℓ

∑
t=1

ut+s

)

+ T−1/2(γ̃ − γ)
ℓ

∑
s=N(r)+1

(

xIM(r)+s−1 −
1

T − ℓ

T−ℓ

∑
t=1

xt+s−1

)

= R∗
1,T(r)− R∗

2,T(r),

where R∗
1,T(r) and R∗

2,T(r) are implicitly defined. By using the stationarity of ut, we can

show that R∗
1,T(r) = O∗

p(
√
ℓT−1/2). Also, R∗

2,T(r) = O∗
p(ℓT−1) as γ̃ − γ = Op(

√
mT−1) and
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xt = Op(
√

mT). Hence, R∗
T(r) = Op(

√
ℓT−1/2), which in turn implies

B∗
T(r) =

1√
T

M(r)

∑
m=1

ℓ

∑
s=1

(

uIm +s −
1

T − ℓ

T−ℓ

∑
t=1

ut+s

)

− T−1/2(γ̃ − γ)
M(r)

∑
m=1

ℓ

∑
s=1

(

xIm +s−1 −
1

T − ℓ

T−ℓ

∑
t=1

xt+s−1

)

+O∗
p(
√
ℓT−1/2)

= B∗
1,T(r)− B∗

2,T(r) + O∗
p(
√
ℓT−1/2),

(B.2)

where B∗
1,T(r) and B∗

2,T(r) are again implicitly defined. Consider B∗
2,T(r). Let us define b∗T,m =

∑
ℓ
s=1(xIm +s−1 − E

∗ xIm +s−1) = ∑
ℓ
s=1(xIm +s−1 − (T − ℓ)−1 ∑

T−ℓ

τ=1 xτ+s−1). Clearly, E
∗ b∗T,m =

0. Moreover,

E
∗ ∥
∥b∗T,m

∥

∥

2
= E

∗
[(

ℓ

∑
s=1

xIm +s−1

)′(
ℓ

∑
s=1

xIm +s−1

)]

−
(

E
∗

ℓ

∑
s=1

xIm +s−1

)′(

E
∗

ℓ

∑
s=1

xIm +s−1

)

=
1

T − ℓ

T−ℓ

∑
t=1

∥

∥

∥

∥

∥

ℓ

∑
s=1

xt+s−1

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

1

T − ℓ

T−ℓ

∑
t=1

ℓ

∑
s=1

xt+s−1

∥

∥

∥

∥

∥

2

≤ ℓ

T − ℓ

T−ℓ

∑
t=1

ℓ

∑
s=1

‖xt+s−1‖2 + Op(ℓ
2m−1T) = Op(ℓ

2m−1T).

By using this and the independence of the blocks,

E
∗
∥

∥

∥

∥

∥

1√
T

M(r)

∑
m=1

b∗2
T,m

∥

∥

∥

∥

∥

2

=
1

T

M(r)

∑
m1=1

M(r)

∑
m2=1

E
∗ b∗′T,m1

b∗T,m2

=
1

T

M(r)

∑
m=1

E
∗ ∥
∥b∗T,m

∥

∥

2
= Op(kℓ

2m−1) = Op(ℓm−1T).

It follows that

B∗
2,T(r) = O∗

p(ℓ
1/2T−1/2). (B.3)

Next, consider B∗
1,T(r). Note that B∗

1,T(r) = T−1/2 ∑
M(r)
m=1 ∑

ℓ
s=1 (uIm +s − E

∗ uIm +s). As

M(r) is asymptotically equivalent to ⌊kr⌋, we can conclude that

B∗
T(r) =

1√
T

⌊kr⌋
∑

m=1

ℓ

∑
s=1

(uIm +s − E
∗ uIm +s) + O∗

p(
√
ℓT−1/2). (B.4)

Now let E∗
m = ℓ−1/2 ∑

ℓ
s=1 (εIm +s − E

∗ εIm +s). A modification of Lemma A.3 of Palm et al.

(2011) gives

Σ∗ = E
∗ E∗

mE∗′
m =

1

ℓ(T − ℓ)

ℓ

∑
s1=1

ℓ

∑
s2=1

T−ℓ

∑
t=1

εt+s1
ε′t+s2

+ Op(ℓT−1),
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where

1

ℓ(T − ℓ)

ℓ

∑
s1=1

ℓ

∑
s2=1

T−ℓ

∑
t=1

εt+s1
ε′t+s2

=
1

ℓ(T − ℓ)

ℓ

∑
s=1

T−b

∑
t=1

εt+sε
′
t+s

+
1

ℓ(T − ℓ)

ℓ

∑
s1=1

ℓ

∑
s2=1,s1 6=s2

T−ℓ

∑
t=1

εt+s1
ε′t+s2

=
1

T

T

∑
t=1

εtε
′
t +Op((ℓT)−1/2) = Σεε + Op((ℓT)−1/2),

which holds as E

∥

∥

∥∑
ℓ
s=1 ∑

ℓ
j=s+1 ∑

T−ℓ

t=1 εt+sε
′
t+j

∥

∥

∥

2
= O(ℓ3T). Hence,

Σ∗ = E
∗ E∗

mE∗′
m = Σ +Op(

√
ℓT−1/2) (B.5)

Let us denote by Bε(r) a Brownian motion with covariance matrix Σεε and let B∗
ε,k(r) =

k−1/2 ∑
⌊kr⌋
m=1 E∗

m. Then, following Chang et al. (2006, page 714) (also see Park, 2006, Proof of

Lemma 2.4), we have that

P
∗
{

sup
0≤r≤1

∣

∣B∗
ε,k(r)− Bε(r)

∣

∣ > k−1/2ck

}

≤ Kkc−κ
k E

∗ |E∗
m|κ .

Now take ck = k1/κ M for a large M > 0 to obtain

P
∗
{

sup
0≤r≤1

∣

∣B∗
ε,k(r)− Bε(r)

∣

∣ > k−1/2+1κ

}

≤ KM−κ
E

∗ |E∗
m|κ . (B.6)

We now show that E
∗ |E∗

m|κ = Op(1). By the definition of E∗
m,

E
∗ |E∗

m|κ =
1

T − ℓ

T

∑
t=1

∣

∣

∣

∣

∣

1√
ℓ

ℓ

∑
s=1

(

εt+s −
1

T − ℓ

T−ℓ

∑
t=1

εt+s

)∣

∣

∣

∣

∣

κ

≤ 2κ−1 1

T − ℓ

T

∑
t=1

[
∣

∣

∣

∣

∣

1√
ℓ

ℓ

∑
s=1

εt+s

∣

∣

∣

∣

∣

κ

+

∣

∣

∣

∣

∣

1√
ℓ(T − ℓ)

ℓ

∑
s=1

T−ℓ

∑
t=1

εt+s

∣

∣

∣

∣

∣

κ]

= 2κ−1(E1,T + E2,T),

with implicit definitions of E1,T and E2,T. E2,T is clearly op(1). As for E1,t, note that for any

δ > 0,

P (E1,T > δ) ≤ δ−1
E E1,T = δ−1

E

∣

∣

∣

∣

∣

1√
ℓ

ℓ

∑
s=1

εt+s

∣

∣

∣

∣

∣

κ

.

Successive application of the Marcinkiewicz-Zygmund and Minkowski inequalities element-
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by-element yields

E

∣

∣

∣

∣

∣

1√
ℓ

ℓ

∑
s=1

εt+s

∣

∣

∣

∣

∣

κ

= ℓ
−κ/2

E





N

∑
i=1

(

ℓ

∑
s=1

ε i,t+s

)2




κ/2

≤ ℓ
−κ/2Nκ/2−1

N

∑
i=1

E

∣

∣

∣

∣

∣

ℓ

∑
s=1

ε i,t+s

∣

∣

∣

∣

∣

κ

≤ cκℓ
−κ/2Nκ/2−1

N

∑
i=1

E

(

ℓ

∑
s=1

ε2
i,t+s

)κ/2

≤ cκℓ
−κ/2Nκ/2−1

N

∑
i=1

[

ℓ

∑
s=1

{

E |ε i,t+s|κ
}2/κ

]κ/2

= cκℓ
−κ/2Nκ/2−1

N

∑
i=1

[

ℓ
{

E |ε i,t|κ
}2/κ

]κ/2

= cκ Nκ/2−1
N

∑
i=1

E |ε i,t|κ ≤ Cκ E |εt|κ ,

where cκ and Cκ do not depend on ℓ. It follows that E
∗ |E∗

m|κ = Op(1), and therefore

B∗
ε,k(r) =d Bε(r) + O∗

p(k
−1/2+1/κ) in probability. (B.7)

By using this and Lemma A.5 of Palm et al. (2011),

1√
T

⌊kr⌋
∑

m=1

ℓ

∑
s=1

(uIm +s − E
∗ uIm +s) = Ψ(1)B∗

ε,k(r) +O∗
p(ℓ

−1/2). (B.8)

Putting all results together, we get that

B∗
T(r) =d B(r) +O∗

p(ℓ
−1/2) + O∗

p

(

(ℓT−1)1/2−1/κ
)

in probability, (B.9)

where B(r) is as in Lemma A.1. As ρ̃i = ρi + Op(
√

mT−1) = 1 + T−1cim + op(mT−1), the

result follows directly from the proof of Lemma 2.3 and 2.4 in Park (2006). �

Lemma B.2. Under Assumptions 1–4 and B.1, we have, uniformly in m,

√
m

T

T

∑
t=2

x∗d
t−1v∗′t =d∗

√
m(Am − Λ∗

wv) + O∗
p(R∗

mT) in probability,

m

T2

T

∑
t=2

x∗d
t−1x∗d′

t−1 =d∗ mBm +O∗
p(R∗

mT) in probability,

where R∗
mT =

√
mℓ1/2−1/κT−1/2+1/κ + m3/2T−1 +

√
mℓ−1/2.

Proof of Lemma B.2.

Let F ∗
t denote the smallest sigma-field containing all past information up to time t on x∗t and
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v∗t , and write E
∗
t X = E(X|F ∗

t ) for the conditional expectation of X at time t. Now we can

construct a martingale difference sequence ε∗t with respect to F ∗
t in the same way as Hansen

(1992, Section 3):

ε∗t =
∞

∑
j=0

(E∗
t v∗t+j − E

∗
t−1 vt+j),

Let t = (kt − 1)ℓ + st. By the block-wise nature of the bootstrap sample and the indepen-

dence of the blocks, the conditional expectation of a variable in a different (future) block is

equal to the unconditional bootstrap expectation, while that of a variable within the block is

the variable itself. Hence,

E
∗
(kt−1)ℓ+st

v∗t+j =

{

E
∗ v∗(kt−1)ℓ+st+j

= E
∗ v∗t+k = 0 if j > l − st

E
∗ v∗(kt−1)ℓ+st+j = v∗(kt−1)ℓ+st+j = v̂I kt−1 +st+j if j ≤ l − st

.

Using that E
∗
t v∗t+j = E

∗
t−1 v∗t+j for any j if t and t − 1 are in the same block, we can further

show that

ε∗t = ε∗(kt−1)ℓ+st
=

ℓ−st

∑
j=0

(E∗
(kt−1)ℓ+st

v∗(kt−1)ℓ+st+j − E
∗
(kt−1)ℓ+st

v(kt−1)ℓ+st+j)

=

{

∑
ℓ
j=1(v

∗
(kt−1)ℓ+j − E

∗ v(kt−1)ℓ+j) = ∑
ℓ
j=1 v∗(kt−1)ℓ+j if st = 1

0 if st > 1
.

Define Y∗
T(r) = T−1/2 ∑

⌊Tr⌋
t=1 ε∗t . It follows directly from the proof of Lemma B.1 that

Y∗
T(r) =

1√
T

M(r)

∑
m=1

ℓ

∑
j=1

v̂(Im −1)ℓ+j →d∗ Bv(r) in probability, (B.10)

where Bv(r) is as in Lemma A.1. Application of Theorem 2.1 of Hansen (1992) now yields,

as T → ∞,

1

T

T

∑
t=2

x∗d
t−1ε∗t =

∫ 1

0
J∗d
cm,T(r)dY∗

T(r) →d∗

∫ 1

0
Jd
cm(r)dBv(r) in probability. (B.11)

To obtain the appropriate approximation orders, we proceed as in the proof of Lemma 3.1 in

Park (2006), and embed the partial sum of ε∗t into a Brownian motion with properly chosen

stopping times. This gives

√
m
∫ 1

0
J∗d
cm,T(r)dY∗

T(r) =d∗
√

m
∫ 1

0
J∗d
cm,T(r)dBv(r) +O∗

p(
√

mT−1/2) in probability. (B.12)

Clearly,

√
m
∫ 1

0
J∗d
cm,T(r)dBv(r) =d∗

√
m
∫ 1

0
Jd
cm(r)dBv(r)

+
√

m
∫ 1

0
(J∗d

cm,T(r)− Jd
cm(r))dBv(r) in probability,
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which, by using the same steps as in the proof of Lemma 3.1 in Park (2006), gives

√
m
∫ 1

0
J∗d
cm,T(r)dY∗

T(r) =d∗
√

mAm +O∗
p(
√

mℓ
1/2−1/κT−1/2+1/κ) + O∗

p(
√

mℓ
−1/2)

+ O∗
p(m

3/2T−1) in probability,

where the orders follow from Lemma B.1.

Now define ζ∗t recursively as ∆ζ∗t = ε∗t − v∗t , where ζ∗0 = 0. Clearly,

ζ∗t = ζ∗(kt−1)ℓ+st
=

kt−1

∑
m=1

ℓ

∑
j=1

∆ζ∗(kt−1)ℓ+j +
st

∑
j=1

∆ζ∗(kt−1)ℓ+j

=
kt−1

∑
m=1

(

ℓ

∑
j=1

v∗(m−1)ℓ+j −
ℓ

∑
j=1

v∗(m−1)ℓ+j

)

+
ℓ

∑
j=1

v∗(kt−1)ℓ+j −
st

∑
j=1

v∗(kt−1)ℓ+j

=
ℓ

∑
j=st+1

v∗(kt−1)ℓ+j,

suggesting that

√
m

T

T

∑
t=2

x∗d
t−1v∗t =

√
m

T

T

∑
t=2

x∗d
t−1ε∗t −

√
mΛ∗

T, (B.13)

where

Λ∗
T = − 1

T

T

∑
t=2

x∗d
t−1∆ζ∗t =

1

T

T−1

∑
t=2

ζ∗t (x∗d
t − x∗d

t−1)− T−1(ζ∗1 x∗d
1 − ζ∗Tx∗d

T−1)

=
1

T

k

∑
m=1

ℓ

∑
s=1

(x∗d
(m−1)ℓ+s − x∗d

(m−1)ℓ+s−1)

(

ℓ

∑
j=s+1

v∗(m−1)ℓ+j

)

+ O∗
p(
√
ℓ(mT)−1/2).

Substitution of x∗t − x∗t−1 = (ρ̃ − IN)x∗t−1 + w∗
t yields

Λ∗
T = T−1(ρ̃ − IN)

k

∑
m=1

ℓ

∑
s=1

x∗d
(m−1)ℓ+s−1

(

ℓ

∑
j=s+1

v∗(m−1)ℓ+j

)′

+
1

T

k

∑
m=1

ℓ

∑
s=1

w∗
(m−1)ℓ+s

(

ℓ

∑
j=s+1

v∗(m−1)ℓ+j

)′

+ o∗p(1) = Λ∗
1,T + Λ∗

2,T,

(B.14)

with implicit definitions of Λ∗
1,T and Λ∗

2,T. Now, since (ρ̃ − IN) = Op(mT−1), we have Λ∗
1,T =

O∗
p(
√

mℓT−1). It remains to show that Λ∗
2,T →p∗ Λwv in probability. For this purpose it is con-

venient to define D∗
m = ℓ−1(∑ℓ

s=1 u∗
(m−1)ℓ+s

)(∑ℓ
s=1 u∗

(m−1)ℓ+s
), Dt = (∑ℓ

s=1 u∗
t+s)(∑

ℓ
s=1 u∗

t+s)

and Ω∗
T = k−1 ∑

k
m=1 D∗

m. Note first that due to the independence of the blocks,

P
∗ (‖Ω∗

T − E
∗ Ω∗

T‖ > ǫ) ≤ ǫ−2k−2
k

∑
m=1

E
∗ ‖D∗

m − E
∗ D∗

m‖2 ,
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where, by the linear process assumption, E
∗ ‖D∗

m‖2 = (T − ℓ)−1 ∑
T−ℓ

t=1

∥

∥D2
t

∥

∥ = Op(1), and

therefore,

Ω∗
T = E

∗ Ω∗
T +O∗

p(k
−1/2),

where, by the results provided in the proof of Lemma B.1,

E
∗ Ω∗

T = E
∗ B∗

T(1)B∗
T(1)

′ = Ω +O∗
p(ℓ

−1/2) + O∗
p(
√
ℓT−1/2) in probability.

By similar arguments,

T−1
k

∑
m=1

ℓ

∑
s=1

u∗
(m−1)ℓ+su

∗′
(m−1)ℓ+j = Σ + O∗

p(ℓ
−1/2) + O∗

p(
√
ℓT−1/2) in probability.

The previous two results imply

T−1
k

∑
m=1

ℓ

∑
s=1

u∗
(m−1)ℓ+s

(

ℓ

∑
j=s+1

u∗
(m−1)ℓ+j

)′

= Λ+O∗
p(ℓ

−1/2) +O∗
p(
√
ℓT−1/2) in probability,

and therefore

B∗
2,T = Λwv + O∗

p(ℓ
−1/2) +O∗

p(
√
ℓT−1/2) in probability. (B.15)

Hence,

Λ∗
T = Λwv +O∗

p(ℓ
−1/2) +O∗

p(
√
ℓT−1/2) + O∗

p(
√

mℓT−1). (B.16)

and so the proof is complete. �

Lemma B.3. Under the conditions of Lemma B.1

∥

∥Λ̂∗ − Λ
∥

∥ = O∗
p(ℓ

−1/2) +O∗
p(
√

mℓT−1/2) in probability,
∥

∥Ω̂∗ − Ω
∥

∥ = O∗
p(ℓ

−1/2) +O∗
p(
√

mℓT−1/2) in probability.

Proof of Lemma B.3.

Since the contribution of the final (partial) block is of order O∗
p(ℓT−1), we may assume that
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T = kℓ. Note that, since û∗
t = u∗

t − (γ̂∗ − γ∗)x∗d
t−1,

1

T

k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

û∗
(m−1)ℓ+sû

∗′
(m−1)ℓ+j

=
1

T

k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

u∗
(m−1)ℓ+su

∗′
(m−1)ℓ+j

+ T−1(γ̂∗ − γ∗)
k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

x∗d
(m−1)ℓ+s−1u∗′

(m−1)ℓ+j

+ T−1
k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

u∗
(m−1)ℓ+sx

∗d′
(m−1)ℓ+j−1(γ̂

∗ − γ∗)′

+ T−1(γ̂∗ − γ∗)
k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

x∗d
(m−1)ℓ+s−1x∗d′

(m−1)ℓ+j−1(γ̂
∗ − γ∗)′.

By the Cauchy-Schwartz inequality the second term on the right-hand side can be written as
∥

∥

∥

∥

∥

T−1(γ̂∗ − γ∗)
k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

x∗d
(m−1)ℓ+s−1u∗′

(m−1)ℓ+j

∥

∥

∥

∥

∥

≤ T−1 ‖γ̂∗ − γ∗‖
ℓ

∑
s=1

(

ℓ

∑
j=1

k

∑
m=1

∥

∥

∥
x∗d
(m−1)ℓ+s−1

∥

∥

∥

2
)1/2(

k

∑
m=1

∥

∥

∥
u∗
(m−1)ℓ+j

∥

∥

∥

2
)1/2

,

which is O∗
p(
√

mℓT−1/2), as x∗t = O∗
p(m

−1/2
√

T) and ‖γ̂ − γ‖ = O∗
p(mT−1) (see Lemmas B.1

and B.2, respectively). The same reasoning can be applied to show that the third and fourth

terms are O∗
p(
√

mℓT−1/2) and O∗
p(mℓT−1), respectively. Therefore,

1

T

k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

û∗
(m−1)ℓ+sû

∗′
(m−1)ℓ+j =

1

T

k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

u∗
(m−1)ℓ+su

∗′
(m−1)ℓ+j +O∗

p(
√

mℓT−1/2).

It follows directly from the proof of Lemma B.2 that

1

T

k

∑
m=1

ℓ

∑
s=1

ℓ

∑
j=1

u∗
(m−1)ℓ+su

∗′
(m−1)ℓ+j = Ω + O∗

p(ℓ
−1/2) +O∗

p(
√
ℓT−1/2) in probability. (B.17)

The proof for
∥

∥Λ̂∗ − Λ
∥

∥ is analogous. �

Proof of Theorem 2.

The proof follows from Lemmas B.1 and B.2, and by using the same steps as in the proof of

Lemma A.2 and Theorem 1. �

Proof of Corollary 1.

The proof follows directly from that of Corollary 1 in Smeekes (2011), and is therefore omit-

ted. �
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Table 1: Empirical rejection frequencies of τP and τGM.

q = 0 q = 0.2 q = 0.5 q = 0.9

γ N T Case τP τGM τP τGM τP τGM τP τGM

0.9 10 100 1 0.051 0.040 0.175 0.113 0.836 0.808 0.999 1.000

2 0.053 0.038 0.157 0.077 0.889 0.885 0.998 0.998

3 0.069 0.059 0.487 0.484 0.991 0.982 1.000 1.000

250 1 0.061 0.042 0.370 0.341 0.838 0.894 1.000 1.000

2 0.048 0.035 0.544 0.504 0.956 0.951 1.000 1.000

3 0.068 0.068 0.837 0.774 1.000 0.997 1.000 1.000

25 100 1 0.035 0.027 0.663 0.494 1.000 1.000 1.000 1.000

2 0.039 0.021 0.611 0.480 0.999 0.994 1.000 1.000

3 0.052 0.048 0.825 0.714 1.000 1.000 1.000 1.000

250 1 0.055 0.044 0.711 0.664 1.000 1.000 1.000 1.000

2 0.052 0.048 0.744 0.635 1.000 1.000 1.000 1.000

3 0.073 0.055 0.884 0.854 1.000 1.000 1.000 1.000

1 10 100 1 0.049 0.040 0.062 0.063 0.706 0.688 0.989 0.977

2 0.044 0.031 0.201 0.148 0.588 0.535 0.993 0.981

3 0.082 0.045 0.716 0.538 0.890 0.855 0.998 0.997

250 1 0.059 0.049 0.133 0.105 0.790 0.755 0.989 0.987

2 0.039 0.035 0.188 0.148 0.749 0.660 0.984 0.976

3 0.073 0.063 0.676 0.593 0.956 0.942 1.000 1.000

25 100 1 0.039 0.031 0.349 0.237 0.980 0.959 1.000 1.000

2 0.033 0.025 0.450 0.348 0.996 0.981 1.000 1.000

3 0.067 0.044 0.858 0.797 0.996 0.993 1.000 1.000

250 1 0.036 0.040 0.438 0.361 0.985 0.976 1.000 1.000

2 0.038 0.047 0.311 0.304 0.971 0.971 1.000 1.000

3 0.083 0.051 0.797 0.801 0.991 0.993 1.000 1.000

Notes: q refers to the fraction of predictable units and γ is such that m = T1−γ. Cases 1–3 refer

to the extent of serial and cross-sectional correlation, and endogeneity.

41



Table 2: Average proportions of correctly and incorrectly selected predictable units using

τSEQ.

q = 0 q = 0.2 q = 0.5 q = 0.9

γ N T Case ICP CP ICP CP ICP CP ICP CP

0.9 10 100 1 0.001 – 0.001 0.091 0.001 0.149 0.004 0.186

2 0.001 – 0.001 0.037 0.001 0.210 0.004 0.165

3 0.002 – 0.001 0.487 0.004 0.596 0.019 0.523

250 1 0.003 – 0.004 0.501 0.005 0.312 0.004 0.508

2 0.004 – 0.003 0.675 0.003 0.369 0.008 0.501

3 0.007 – 0.006 0.589 0.004 0.655 0.085 0.864

25 100 1 0.000 – 0.000 0.006 0.000 0.001 0.000 0.003

2 0.000 – 0.000 0.001 0.000 0.000 0.000 0.002

3 0.000 – 0.000 0.090 0.000 0.192 0.000 0.076

250 1 0.000 – 0.000 0.122 0.000 0.130 0.000 0.098

2 0.000 – 0.000 0.076 0.000 0.127 0.000 0.119

3 0.000 – 0.000 0.261 0.000 0.264 0.001 0.490

1 10 100 1 0.001 – 0.001 0.025 0.002 0.114 0.000 0.092

2 0.002 – 0.001 0.159 0.001 0.066 0.000 0.106

3 0.001 – 0.002 0.546 0.002 0.304 0.009 0.346

250 1 0.005 – 0.005 0.069 0.004 0.214 0.004 0.174

2 0.003 – 0.004 0.137 0.003 0.156 0.004 0.138

3 0.012 – 0.007 0.496 0.011 0.717 0.047 0.576

25 100 1 0.000 – 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 – 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 – 0.000 0.236 0.000 0.074 0.000 0.061

250 1 0.000 – 0.000 0.021 0.000 0.034 0.000 0.025

2 0.000 – 0.000 0.017 0.000 0.018 0.000 0.032

3 0.001 – 0.002 0.490 0.000 0.276 0.000 0.358

Notes: CP and ICP refer to the average proportion of units correctly and incorrectly

classified as predictable, respectively. See Table 1 for an explanation of the rest.
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