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Rectal cancer 

Cancer is a disease causing uncontrolled division of abnormal cells in a certain part of 

the body. When cells in the human body become old or damaged, they are replaced 

with new cells. However, DNA (genetic material) of a cell can become damaged or 

changed, producing mutations that affect normal cell growth and division. As a 

consequence superfluous cells may form a mass of tissue called a tumor. A tumor can 

be benign or malignant. Only malignant tumors are called cancerous and they are a 

threat to the patient’s health since they may invade other adjacent organs, are more 

prone to grow back after treatment (local recurrence) and their cells can spread to 

other parts of the body through the blood and lymph systems (metastasis).   

 

Malignant tumor growth in and from the inner wall of the distal part of the large 

intestine is called rectal cancer. Colorectal cancer (cancer of the colon and rectum 

combined) is in the modern western world the 3rd cancer, both with respect to 

incidence rate and mortality rate (about 9% of all cancer cases and cancer related 

mortalities).
1,2

 Only prostate and lung cancer for men and breast and lung cancer for 

women have a higher incidence, and lung cancer heads the list of mortality. In the 

Netherlands, colorectal cancer is even the 2nd cancer in men for both incidence and 

mortality and the 2nd in women for incidence.
1
 In the year 2011 a total of 21463 

patients were alive in the Netherlands with rectal cancer (http://www.iknl.nl/). Rectal 

cancer is more common in men and the incidence rates increased the last 20 years 

from 21.8 to 25.2 for men and from 13.4 to 14.2 for women (per 100.000 inhabitants 

standardized with the European standardized rate). Currently, 59% of the rectal cancer 

patients survive the first 5 years after diagnosis. This survival rate increased by 20% 

over the last 40 years due to improvements of the treatment, mainly related to 

changes and standardization of the surgical approach, better imaging and optimal use 

of chemo- and radiotherapy before and/or after surgery. Factors that affect the 

prognosis of rectal cancer are among others the degree of penetration of the tumor 

through the rectal wall, the possible involvement of the tumor into regional lymph 

nodes and the presence of distant metastasis.
3
 The circumferential margin (CRM) after 

surgery is also an important predictor of local and distant recurrence and patient 

survival.
4
 

 

In general, two classifications are often distinguished in rectal cancer: non-locally 

advanced rectal cancer (NLARC) and locally advanced rectal cancer (LARC). There are 

various clinical definitions for LARC and NLARC depending on the country of issue, but 

in general NLARC patients present a clear margin between tumor and mesorectal 
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Treatment of rectal cancer  

Surgery is the major component of the treatment for rectal cancer patients. However, 

until 10 years ago, without any other treatment, conventional surgery alone resulted in 

a high probability of local recurrence.
6
 Another surgical technique was introduced and 

standardized over the last 10 years called the total mesorectal excision (TME). 

Compared to conventional surgery, this technique resulted in a significant decrease in 

the number of local recurrences and consequently improved disease free survival.
7,8

 

The efficacy of TME is however also found to be highly dependent on the specific 

experience of the surgeon with the technique.
9,10

 Radiotherapy (RT) is a treatment 

modality that can be administered before surgery for rectal cancer to decrease the 

local recurrence rate. Patients undergoing RT receive ionizing radiation generated by a 

linear accelerator. The treatment beams are directed and shaped by dedicated 

treatment planning software in such a way that the tumor receives sufficient dose, 

while the dose to surrounding healthy tissue and organs is limited. Certain 

chemotherapy agents help sensitizing radiation in the neoadjuvant setting so that it 

works better. In order to kill rapid dividing cells, antineoplastic drugs are administered 

to the patient. These drugs are designed to impair the mitotic part of the cell cycle, 

required for cell division. The downside is that chemotherapy also affects the cell cycle 

of healthy rapidly dividing cells like cells in bone marrow, digestive tracts and hair 

follicles. 

 

In the Netherlands, patients diagnosed with NLARC are treated with either TME 

surgery alone or surgery after a RT scheme of 5 fractions of 5 Gy (Gray, units or RT 

dose). This short RT scheme was proven to further significantly reduce probabilities of 

local recurrence compared to TME alone.
11

 The group of patients diagnosed with LARC 

follows a protocol of long-course scheme of radiotherapy in 28 fractions of 1.8 Gy 

combined with the chemotherapeutic agent 5-fluorouracil (5FU). This agent is in these 

fascia (MRF) on magnetic resonance (MR) images. LARC on the other hand is referring 

to the status in which the tumor invaded the MRF or when the tumor is involved into 

regional lymph nodes. In other countries, T3 and/or N1 is a common definition for LARC 

(60-70% of rectal cancer patients), while in the Netherlands one of the definitions is 

positive margins and/or N2 status (about 15-20% of the tumors). Generally, LARC 

patients have a worse prognosis with 5-year survival rates of 28% to 59% than NLARC 

patients with 5-year survival rates of 67% to 74% after treatment.
5
 In this thesis only 

LARC patients have been studied. 
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cases administered as capecitabine (Xeloda), which is enzymatically converted into 

5FU. In Europe, variations in this long-course treatment schemes are present, for 

example the RT administration of 45 Gy with a 10 Gy boost and/or a combination of 

the chemotherapeutic agents capecitabine (a prodrug of 5FU) and oxaliplatin. 

However, in general it was found that a long-course chemoradiotherapy (CRT) scheme 

results in significant downstaging and downsizing of the primary tumor.
8,12

 In 15-30% 

of the LARC patients treated with CRT, the response to treatment is excellent, resulting 

in a complete response confirmed by pathology (pCR). For those patients a less 

invasive surgical approach or even a watchful waiting approach can be optional to 

avoid complications and/or a decrease in quality of life due to sphincter loss. In 

contrast, patients who are the least sensitive to the CRT might benefit from treatment 

intensification. Therefore it would be useful to identify groups of patients who respond 

differently to treatment as early as possible, to be able to adapt treatment in an early 

phase. This is an approach towards individualized medicine for rectal cancer, which will 

be the central theme in this thesis. 

Individualized treatment and decision tools 

In order to identify different risk groups accurately it is important to consider all the 

information available on a patient. Currently, treatment decisions are based on general 

guidelines and implicit experience, often only taking into account tumor stage and 

physical condition of the patient (http://oncoline.nl). This limited assessment leads to 

over-treatment for some patients and inadequate therapy for others, which results not 

only in a burden to the patient but also to healthcare expenses. However, the amount 

of available medical information has expanded rapidly over the last few years and will 

continue to increase due to the development of new (diagnostic) tools like genomic 

profiling and more advanced imaging techniques. Because of this information 

expansion, the opportunities for the physician to make a detailed assessment of risk 

and benefits associated with a specific combination of tumor, patient and treatment 

characteristics are limited. Computers, and more specifically dedicated decision tools, 

are better able to deal with these large amounts of information. Therefore, these tools 

are inevitable in the future with the aim to assist in treatment decision making for 

cancer.  

 

For locally advanced rectal cancer the treatment decisions will most likely be based on 

the probability of a patients’ response to CRT and the probability that the complete 

treatment cycle will reduce recurrence rates and therefore increase overall survival in 
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the long term. To assess individual response in rectal cancer, positron emission 

tomography (PET) is an important imaging technique. Making a PET scan involves 

injection of a positron emitting radionuclide into the bloodstream of the patient and 

the measurement of photons resulting from the interactions between these positrons 

and electrons within the patients’ body. The most commonly used radionuclide in 

oncology is 18F-fluorodeoxyglucose (FDG). This glucose analog is heavily consumed by 

brain, kidney and cancer cells. The PET scan reveals functional information and is 

usually made in combination with a computed tomography (CT) scan for the 

anatomical information. Many studies have been performed assessing treatment 

response using PETCT imaging, and it was shown that accurate predictions can be 

made, especially when assessing PET pre-treatment and during/after the treatment.
13

 

However, these studies rarely combined PETCT-imaging with clinical factors and they 

lack external validation. Previously, also blood biomarkers such as carcinoembryonic 

antigen (CEA), osteopontin (OPN) and interleukin-6 have been studied for rectal cancer 

and found to be prognostic for outcome.
14-16

 A holistic approach in which variables 

from different sources are combined is expected to generate the most accurate 

predictions for outcome, as for example has been shown for lung cancer, combining 

clinical variables with blood biomarkers to predict survival.
17

 If in rectal cancer 

accurate predictions for tumor response can be made by for example using clinical, 

imaging and biomarker information, treatment decisions can be guided with those 

predictions. For excellent responders there is an option to avoid surgery to maintain 

the quality of life for the patient. This decision requires a strong indication that tumor 

disappeared after treatment, which is mainly assessed using endoscopy. Excellent 

results have been reported for this wait-and-see approach.
18

 In the context of this 

decision, the prediction models can assist to administer for example a radiotherapy 

boost when it is predicted that the patient will only respond moderately to CRT. 

Predicting outcomes that occur later, such as local recurrences, distant metastases and 

survival, can also be very useful to tailor treatment, especially because these are often 

the primary outcomes of clinical trials. However, these predictions are hard to make 

because of the noisy nature of these outcomes, resulting in the requirement that the 

prediction data have to hold large numbers of patients.    

Objectives and outline of the thesis 

The main aim of this thesis is to study the prognostic and predictive value of clinical 

factors, imaging and blood biomarkers for pathologic complete response and follow-up 

outcome related to recurrences and survival of patients with locally advanced rectal 
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cancer. The focus of this work is on the development of multivariate prediction models 

which are able provide a prediction score for every individual patient. To provide 

sufficient confidence for these predictions all these models are based on large 

databases with high quality data, externally validated and based on state-of-the-art 

statistical models. Accurate prediction of response and follow-up outcome would allow 

treatment modifications in an early stage for certain risk groups, which is expected to 

reduce toxicity and mortality for these patients. This work is a first step towards 

computer assisted decision making for rectal cancer.  

 

In Chapter 2 a general overview of predicting outcome in radiotherapy is given. This 

involves an introductory section on methodological aspects of outcome prediction and 

a literature overview of published examples of clinical, treatment, imaging and 

molecular factors related to outcome. Furthermore, it is described how prediction 

models should be interpreted and how they can be used as a part of decision making 

tools in clinical practice. The following chapters are divided into two parts, related to 

the outcome of subject in rectal cancer. These chapters are put in context of the 

treatment schedule of LARC in Figure 1.1.   

Part 1: Tumor response prediction using PETCT-imaging and biomarkers  

The first part focusses on the prediction of pathological complete response in locally 

advanced rectal cancer patients. In Chapter 3, an externally validated prediction model 

is developed for pCR using clinical factors and sequential PETCT imaging just before 

radiochemotherapy and just before surgery. This would allow assistance in making the 

decision for a wait-and-see policy or reduced surgery for patients with a very high 

probability of complete response. With the same motivation pCR is also predicted in 

the prospective sequential PETCT imaging study described in Chapter 4 but in this case 

the second PETCT scan is already made after two weeks of radiochemotherapy. This 

early prediction with the developed model would allow for treatment modifications 

like radiotherapy boosts or chemotherapy intensification, to increase the number of 

responding patients. Chapter 5 describes a prospective study showing that blood 

biomarkers have an added value to clinical and imaging factors when predicting 

response. 

Part 2: Predicting long-term follow-up outcomes for decision support 

This part involves studies which focus on outcomes recorded in the follow-up time 

after surgery. These outcomes are important because they are considered as measures 

for effectiveness of the treatment in elongating patients’ lives, reducing the number of 
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recurrences and improving the quality of life for patients. Knowing which set of 

combined factors affect these outcomes allows decision making for additional 

treatment after surgery. Chapter 6 describes the development of prediction models 

for the risk of local and distant recurrences and the probability of survival for LARC 

based on a large clinical dataset containing pooled data from five European 

randomized clinical trials. This same cohort of patients was used in Chapter 7 to show 

the benefits of being two years free of disease and if this is of value to tailor treatment 

when combined with the knowledge of being a complete responder just after 

treatment.     

 

 
 

Chapter 8 includes a general discussion on the developed prediction models and 

places them into perspective with other related studies. An outlook is provided on how 

these decision tools may be implemented into daily clinical practice. 

Figure 1.1 Representation of the relationship between the thesis chapters and the treatment scheme of 

LARC patients. Red data represent evaluated or predicted outcomes. CH: chapter, FU: follow-up, pCR: 

pathological complete response, PETCT: positron emission tomography combined with computed 

tomography, pTN: pathological tumor and nodal staging, CRT: chemoradiotherapy, wk: weeks, yr: years  
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Abstract 

With the emergence of individualized medicine and the increasing amount and 

complexity of available medical data, a growing need exists for the development of 

clinical decision support systems based on prediction models of treatment outcome. In 

radiation oncology, these models combine both predictive and prognostic data factors 

from clinical, imaging, molecular and other sources to achieve the highest accuracy to 

predict tumor response and follow-up event rates. In this Review, we provide an 

overview of the factors that are correlated with outcome—including survival, 

recurrence patterns and toxicity—in radiation oncology and discuss the methodology 

behind the development of prediction models, which is a multistage process. Even 

after initial development and clinical introduction, a truly useful predictive model will 

be continuously re-evaluated on different patient datasets from different regions to 

ensure its population-specific strength. In the future, validated decision support 

systems will be fully integrated in the clinic, with data and knowledge being shared in a 

standardized, instant and global manner.  
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Introduction  

Over the past decade, we have witnessed advances in cancer care, with many new 

diagnostic methods and treatment modalities becoming available,
1
 including advances 

in radiation oncology.
2
 The abundance of new options and the progress in 

individualized medicine has, however, created new challenges. For example, achieving 

level I evidence is increasingly difficult given the numerous disease and patient 

parameters that have been discovered, resulting in an ever-diminishing number of 

‘homogeneous’ patients.
3
 This reality contrasts to a certain extent with classical 

evidence-based medicine, whereby randomized trials are designed for large 

populations of patients. Thus, new strategies are needed to find evidence for 

subpopulations on the basis of patient and disease characteristics.
4
  

 

For each patient, the clinician needs to consider state-of-the-art imaging, blood tests, 

new drugs, improved modalities for radiotherapy planning and, in the near future, 

genomic data. Medical decisions must also consider quality of life, patient preferences 

and, in many healthcare systems, cost efficiency. This combination of factors renders 

clinical decision making a dauntingly complex, and perhaps inhuman, task because 

human cognitive capacity is limited to approximately five factors per decision.
3
 

Furthermore, dramatic genetic,
5
 transcriptomic,

6
 histological

7
 and 

microenvironmental
8
 heterogeneity exists within individual tumors, and even greater 

heterogeneity exists between patients.
9
 Despite these complexities, individualized 

cancer treatment is inevitable. Indeed, intratumoral and intertumoral variability might 

be leveraged advantageously to maximize the therapeutic index by increasing the 

effects of radiotherapy on the tumor and decreasing those effects on normal tissues.
10-

12
  The central challenge, however, is how to integrate diverse, multimodal information 

(clinical, imaging and molecular data) in a quantitative manner to provide specific 

clinical predictions that accurately and robustly estimate patient outcomes as a 

function of the possible decisions. Currently, many prediction models are being 

published that consider factors related to disease and treatment, but without 

standardized assessments of their robustness, reproducibility or clinical utility.
13

 

Consequently, these prediction models might not be suitable for clinical decision 

support systems for routine care. 

 

In this Review, we highlight prognostic and predictive models in radiation oncology, 

with a focus on the methodological aspects of prediction model development. Some 

characteristic prognostic and predictive factors and their challenges are discussed in 

relation to clinical, treatment, imaging and molecular factors. We also enumerate the 
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steps that will be required to present these models to clinical professionals and to 

integrate them into clinical decision support systems (CDSS). 

Methodological aspects  

Factors for prediction 

The overall aim of developing a prediction model for a CDSS is to find a combination of 

factors that accurately anticipate an individual patient’s outcome (Figure 2.1).
14

 These 

factors include, but are not limited to, patient demographics as well the results of 

imaging, pathology, proteomic and genomic testing, the presence of key biomarkers 

and, crucially, the treatment undertaken. ‘Outcome’ can be defined as tumor response 

to radiotherapy, toxicity evolution during follow up, rates of local recurrence, 

evolution to metastatic disease, survival or a combination of these end points. 

Although predictive factors (that is, factors that influence the response to a specific 

treatment) are necessary for decision support, prognostic factors (that is, factors that 

influence response in the absence of treatment)
15

 are equally important in revealing 

the complex relationship with outcome. Herein, we refer to both of these terms 

generically as ‘features’ because, for a predictive model, correlation with outcome 

must be demonstrable. 

Model development stages 

The procedure for finding a combination of features correlated with outcome is 

analogous to the development of biomarker assays.
16

 In that framework, we can 

distinguish qualification and validation. Qualification demonstrates that the data are 

indicative or predictive of an end point, whereas validation is a formalized process 

used to demonstrate that a combination of features is both reliable and suitable for 

the intended purpose. That is, we need to identify features, test whether they are 

predictive in independent datasets and then determine whether treatment decisions 

made using these features improve outcome. The complete cycle of model 

development entails several stages (Figure 2.2). 

 

In the hypothesis-generation stage, one must consider the end point to predict, the 

timing of the treatment decision and the available data at these time points. In the 

data-selection step, a review of potential features is first conducted, ideally by an 

expert panel. A practical inventory of the available data and sample size calculations 

are recommended, especially for the validation phase.
17,18

 Data from both clinical trials 
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(high quality, low quantity, controlled, biased selection) and clinical practice (low 

quality, high quantity, unbiased selection) are useful, but selection biases must be 

identified in both cases and the inclusion criteria should be equivalent. For all features, 

including the characteristics of the treatment decision, data heterogeneity is a 

requirement to identify predictive features and to have the freedom to tailor 

treatment.  

 
 

Next, performance measures for models are determined, and include the area under 

the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity and 

c-index of censored data.
19

 AUC, which has values between 0 and 1 (with 1 denoting 

the best model and 0.5 randomness), is the most commonly used performance 

measure. However, for time-to-event models the c-index and hazard ratio are more 

appropriate because both can handle censored data. The preprocessing stage deals 

with missing data (imputation strategies; that is, replacing missing values by calculated 

estimates),
20

 identifying incorrectly measured or entered data
21

 as well as discretizing 

(if applicable) and normalizing data to avoid sensitivity for different orders of data 

Figure 2.1 Several data sources for the prediction of outcome after cancer treatment. It is believed that a 

combination of all the available data with a high variety of sources will predict outcome more accurately 

than data from individual sources. 
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scales.
22

 If an external, independent dataset is not available for validation, the 

available data must be split (in a separate stage) into a model training dataset and a 

validation set, the latter of which is used subsequently in the validation step. In the 

feature selection stage, the ratio of the number of evaluated features to number of 

outcome events must be kept as low as possible to avoid overfitting. When a model is 

overfitted, it is specifically and exclusively trained for the training data (including its 

data noise) and, as a result, performs poorly on new data. Data-driven preselection of 

features is, therefore, recommended.
23

 Univariate analyses are commonly used to 

prioritize the features—that is, testing each feature individually and ranking them on 

their strength of correlation with outcome. 

Predicting outcomes 

In the next stage, the input data are fed into a model that can classify all possible 

patient outcomes. Traditional statistical
24

 and machine-learning models
25

 can be 

considered. For two or more classes (for example, response versus no response), one 

might consider logistic regression, support vector machines, decision trees, Bayesian 

networks or Naive Bayes algorithms.
26,27

 For time-to-event outcomes, whether 

censored or not, Cox proportional hazards models
28

 or the Fine and Gray model
28

 of 

competing risks are most common. The choice of model depends on the type of 

outcome (for example, logistic regression for two or more outcomes, or Cox regression 

for survival-type data) and the type of input data (for example, Bayesian networks 

require categorized data, whereas support vector machines can easily deal with 

continuous data). In general, several models with similar properties can be tested to 

find the optimal model for the available data. A simple model is, however, preferred 

because it is expected to be robust to a wider range of data than a more complex 

model. 

 

Performance on the training dataset is upwards-biased because the features were 

selected. Thus, external validation data must be used, which can be derived from a 

separate institute or independent trial. When data are limited, internal validation can 

be considered using random split, temporal split or k-fold cross-validation 

techniques.
29

 The developed model should have a benefit over standard decision 

making, and must be assessed prospectively in the clinic in the penultimate stage of 

development. Models must be compared against predictions by clinicians
30,31

 and to 

standard prognostic and predictive factors.
32

 Critically, to demonstrate the 

improvement of patient outcome, quality of life and/or reduced toxicity,
33

 clinical trials 

must be conducted whereby the random assignment of patients is based on the 

prediction model output.  
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Figure 2.2 Schematic overview of methodological processes in decision support system development, 

describing model development, assessment of clinical usefulness and what ideally to publish. The colored, 

parallel lines represent heterogeneous data, which have been split early for independent validation (but 

without internal cross-validation). 
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Fulfilling this requirement will generate the final evidence that the model is improving 

healthcare by comparing, in a controlled way, the tailored treatments with standard 

treatments in the clinic.  

 

Finally, the prediction models and data can be published, enabling the wider 

oncological community to evaluate them. Full transparency on the data and 

methodology is the key towards global implementation of the model into CDSSs. This 

suggestion is similar to clinical ‘omics’ publications for which the raw data, the code 

used to derive the results from the raw data, evidence for data provenance (the 

process that led to a piece of data) and a written description of nonscriptable analysis 

steps are routinely made available.
34

 In practice, this cycle of development usually 

begins by identifying clinical parameters, because these are widely and instantly 

available in patient information systems and clinical trials. These clinical variables also 

form the basis for extending prediction models with imaging or molecular data. 

Clinical features 

Decision making in radiotherapy is mainly based on clinical features, such as the 

patient performance status, organ function and grade and extent of the tumor (for 

example, as defined by the TNM system). In almost all studies, such features have 

been found to be prognostic for survival and development of toxicity.
35-37

 

Consequently, these features should be evaluated in building robust and clinically 

acceptable radiotherapy prognostic and predictive models. Moreover, measurement 

of some clinical variables, such as performance status, can be captured with minimal 

effort. 

 

Even the simplest questionnaire, however, should be validated as is the case for 

laboratory measurements of organ function or parameters measured from blood.
38,39

 

Furthermore, a standardized protocol should be available to ensure that comparisons 

are possible between centers and questionnaires over time.
40

 Moreover, why specific 

features were chosen for measurement should be clearly explained. For example, if 

haemoglobin measurements were only taken in patients with fatigue, the resulting 

bias would demand caution when including and interpreting the measurements. Only 

when clinical parameters are recorded prospectively with the same scrutiny as 

laboratory measurements will observational studies become as reliable as randomized 

trials.
41,42
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Toxicity measurements and scoring should also build on validated scoring systems, 

such as the Common Terminology Criteria for Adverse Events (CTCAE), which can be 

scored by the physician or patient.
43,44

 Indeed, a meta-analysis showed that high-

quality toxicity assessments from observational trials are similar to those of 

randomized trials.
45,46

 However, a prospective protocol must clarify which scoring 

system was used and how changes in toxicity score were dealt with over time with 

respect to treatment.  

 

Finally, to ensure a standardized interpretation, the reporting of clinical and toxicity 

data and their analyses should be performed in line with the STROBE (Strengthening 

the Reporting of Observational Studies in Epidemiology) statement for observational 

studies and genetic association studies, which is represented as checklists of items that 

should be addressed in reports to facilitate the critical appraisal and interpretation of 

these type of studies.
47,48

  

Treatment features 

Currently, image-guided radiotherapy (IGRT) is a highly accurate cancer treatment 

modality in delivering its agent (radiation) to the tumor.
49

 Furthermore, very accurate 

knowledge of the effects of radiation on normal tissue has been obtained.
50

 With 

modern radiotherapy techniques, such as intensity-modulated radiotherapy, 

volumetric arc therapy or particle beam therapy, the treatment dose can be sculpted 

around the target volume with dosimetric accuracy of a few percentage points. IGRT 

ensures millimeter precision to spare the organs at risk as much as possible.
51

 

 

For prediction modeling, recording features that are derived from planned spatial and 

temporal distribution of the radiotherapy dose is crucial. Additionally, features must 

be recorded that describe the efforts undertaken during treatment to ensure that the 

dose is delivered as planned (that is, in vivo dosimetry); a delicate balance exists 

between tumor control and treatment-related toxicity.
52

 Additional therapies, such as 

(concurrent) chemotherapy, targeted agents and surgery, and their features must also 

be recorded because these have various effects on outcome.
32,53

 An example is the 

difference between concurrent versus sequential chemoradiation, which has a major 

influence on the occurrence of acute oesophagitis that induces dysphagia.
54
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With respect to the spatial dimension of radiotherapy, how to combine information 

about the spatially variable dose distribution for every subvolume of the target tumor 

(or organ) with the global effect to the tumor or adjacent normal tissue remains 

indeterminate. Dose-response relationships for tumor tissues are often reported in 

terms of mean (biologically equivalent) dose, although voxel-based measures have also 

been reported.
55

 Mean doses or doses to a prescription point inside the tumor are 

easily determined and reported and may suffice for many applications. However, 

spatial characteristics might be more relevant in personalized approaches to ensure 

radioresistant areas of the tumor receive higher doses.
55

 For normal tissue toxicity, 

dose features including the mean and maximum dosage, as well as the volume of the 

normal tissue receiving a certain dose, are important. For example, V20 <35% is a 

common threshold to prevent lung toxicity.
56

 

Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-

small-cell lung cancer was first described in 1991.
57

 In 2010, a series of detailed 

reviews of all frequently irradiated organs (the QUANTEC project) was described,
50

 

showing that, as for the tumor, care must be taken when assessing dose at the organ 

level. For example, in some organs, the volume receiving a certain dose is important 

(such as the oesophagus or lung) because of their proximity to other vital structures, 

whereas the maximum dose to a small region of other organs might be most important 

(such as for the spinal cord) because preserving its post-treatment function is crucial. 

Predicting complications to normal tissue is an active research area in ongoing, large, 

prospective multicentric projects, including ALLEGRO
58

, and others.
59-61

 

 

Although important, in general one must be careful about relying completely on 

planned-radiotherapy dose-based predictions because patients display wide variability 

in toxicity development. The reasons for this variability include many known clinical 

and molecular-based features as well as the quality of the treatment execution. The 

focus on the planned radiotherapy dose distribution as the prime determinant of 

outcome is perhaps the most common pitfall in prediction models because deviations 

from the original plan during the time of treatment frequently occur.
62

 The accuracy of 

prediction models is expected to increase when measured dose is used, as this 

measure reflects the effect of radiotherapy most accurately. Figure 2.3 shows an 

example of these variations in a patient with prostate cancer. Dose reconstructions (2D 

and 3D), Gamma Index calculations and dose–volume histograms during treatment can 

help in identifying increasingly accurate dose-related features
63,64

 such as radiation 

pneumonitis
65

 and  oesophagitis
66

. 
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The temporal aspect of fractionated radiotherapy is also an active area of research. 

The fact that higher radiation doses are required to control a tumor when treatment is 

prolonged is well-known, and increasing evidence suggests that accelerated regimens 

giving the same physical dose can improve outcome.
67,68

  

 

 
A multicentric analysis of patients with head-and-neck cancer treated with 

radiotherapy alone showed that the potential doubling time of the tumor before 

Figure 2.3 The importance of considering measured dose for outcome prediction for a patient with prostate 

cancer. (A) Original planning CT scan that includes contours of the prostate (red), bladder (yellow), exterior 

wall of the rectum (blue) and seminal vesicles (green). (B) Contoured CT scan after 16 fractions of 

radiotherapy. (C) Reconstructed 3D dose after 16 fractions of radiotherapy. (D) Calculated dose differences 

(expressed as a 3D Gamma Index) after 16 fractions of radiotherapy. (E) Dose–volume histograms at 

fractions 1, 6, 11, 16, 21 and 26 (dashed lines) as well as pre-treatment histograms (solid lines). Clear 

deviations are visible from the planned dose–volume histogram for the rectum and bladder. 
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treatment was not a predictor for local control.
69

 Alongside the classic explanation of 

accelerated repopulation,
70

 changes in cell loss, hypoxia and selection of radioresistant 

stem cells have each been suggested as underlying causes of this observation, the 

possible implications of which include shorter overall treatment times with higher 

doses per fraction and the avoidance of breaks during treatment.
71,72

 Overall, 

treatment time is an accessible feature that is correlated with local failure in several 

tumor sites.
73,74

 

 

Ideally, the spatial and temporal dimensions of radiotherapy would be exploited by 

showing a fractional dose distribution in a tumor radioresistance (and normal-tissue 

radiosensitivity) map that is continuously updated during treatment. However, such an 

image of radioresistance does not yet exist. If it did, CDSSs would guide the planning 

and modification of the spatial and temporal distribution of radiation in such a way as 

to maintain or improve the balance between tumor control and the probability of 

normal tissue complications continuously during treatment, instead of the current 

approach that delivers radiation as planned with an identical dose to the tumor as a 

whole.   

 

Imaging features 
 

Medical imaging has a fundamental role in radiation oncology, particularly for 

treatment planning and response monitoring.
75,76

 Technological advances in 

noninvasive imaging—including improved temporal and spatial resolution, faster 

scanners and protocol standardization—have enabled the field to move towards the 

identification of quantitative noninvasive imaging biomarkers.
77-79

 

 

Metrics based on tumor size and volume are the most commonly used image-based 

predictors of tumor response to therapy and survival,
80-87

 and rely on CT and MRI 

technology for 3D measurement.
88-90

 Although used in clinical practice, tumor size and 

volume measurements are subject to interobserver variability that can be attributed to 

differences in tumor delineations.
91,92,85-87

 Moreover, the optimal measurement 

technique and definitions of appropriate response criteria, in terms of changes in 

tumor size, are unclear.
93

 Additionally, tumor motion and image artifacts are additional 

sources of variability.
94,95

 To overcome these issues, automated tumor delineation 

methods have been introduced,
96-99

 on the basis of, for example, the selection of 

ranges of Hounsfield units (which represent the linear attenuation coefficient of the X-

ray beam by the tissue) on CT that define a certain tissue type, or calculation of the 

gradient of an image (mathematical filter) to reveal the borders between tissue types. 
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Extensive evaluation, however, is needed before these methods can be used routinely 

in the clinic.
100-102

   

 

A commonly used probe for the metabolic uptake of the tumor is 
18

F-fluorodeoxyglucose (FDG) for PET imaging.
103,104

 The pre-treatment maximum 

standardized uptake value (SUV, which is the normalized 
18

F-deoxyglucose uptake for 

an injected dose according to the patient’s body weight) is strongly associated with 

overall survival and tumor recurrence in a range of tumor sites, including the lung, 

head and neck, rectum, oesophagus and cervix.
105-111

 Furthermore, several studies 

have shown that changes in SUV during and after treatment are early predictors of 

tumor recurrence.
112-115

 FDG-PET measurements, however, are dependent on a 

number of factors, including injected dose, baseline glucose concentration, FDG 

clearance, image reconstruction methods used and partial-volume effects.
116,117

 

Standardization of these factors across institutions is, therefore, fundamental to 

enable comparisons and validation of data from FDG–PET imaging.
118,119

 

 

Multiple studies have shown that diffusion-weighted MRI parameters, such as the 

apparent diffusion coefficient (ADC), which is a measure of water mobility in tissues, 

can accurately predict response and survival in multiple tumor sites.
120-124

 However, 

lack of reproducibility of ADC measurements, due to lack of standardization of 

instruments between vendors and to lack of internationally accepted calibration 

protocols, remains a bottleneck in these types of studies.
125

 Evaluations of different 

time points in dynamic contrast-enhanced MRI have also been used to describe tumor 

perfusion.
90,126-128

 Indeed, hypothesis-driven preclinical
129

 and xenograft studies 

support these clinical studies. For example, assessment of the correlation of features 

from imaging (such as lactate level and the extent of reoxygenation) with tumor 

control is possible.
130,131

 

 

Increasingly advanced image-based features are currently being investigated. For 

example, routine clinical imaging can capture both tumor heterogeneity and post-

treatment changes, which can be analyzed to identify functional biomarkers (Figure 

2.4). Changes in Hounsfield units in contrast-enhanced CT are directly proportional to 

the quantity of contrast agent present in the tissue and have been used as a surrogate 

for tumor perfusion.
132,133

 Indeed, reductions of Hounsfield units following treatment 

have been used to evaluate treatment response in rectal, hepatic and pulmonary 

cancers.
134,135
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Standardizing the extraction and quantification of a large number of traits derived 

from diagnostic imaging are now being considered in new imaging marker 

approaches.
79

 Through advanced image-analysis methods, we can quantify descriptors 

of tumor heterogeneity (such as variance or entropy of the voxel values) and the 

relationship of the tumor with adjacent tissues.
136-138

 These analytical methods enable 

high-throughput evaluation of imaging parameters that can be correlated with 

treatment outcome and, potentially, with biological data. Indeed, qualitative imaging 

parameters on CT and MRI scans have been used to predict mRNA abundance 

variation in hepatocellular carcinomas and brain tumors.
139-141

 Furthermore, a 

combination of anatomical, functional and metabolic imaging techniques might be 

used to capture pathophysiological and morphological tumor characteristics in a 

noninvasive manner, including apparent intratumoral heterogeneity.
142

 

Molecular features 

Biological markers are also valuable clinical decision support features; these include 

prognostic and predictive factors for outcomes, such as tumor response and normal-

tissue tolerance. Despite these strengths, trials of molecular biomarkers are prone to 

experimental variability; for this reason standardizing assay criteria, trial design and 

analysis are imperative if multiple molecular markers are to be used in predictive 

modeling.
16

 

Figure 2.4 Axial 18F-deoxyglucose–PET and CT images of two different patients with non-small-cell lung 

cancer. Tumor imaging biomarkers describing, for example, textural heterogeneity, FDG uptake and tumor 

size can be assessed noninvasively before, during and after radiotherapy and associated with treatment 

outcome. Abbreviations: FDG, 18F-fluorodeoxyglucose; NSCLC, non-small-cell lung cancer.  
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Tumor response 

Next to tumor size, tumor control after radiotherapy is largely determined by three 

criteria: intrinsic radiosensitivity, cell proliferation and the extent of hypoxia.
143

 In 

addition, large tumors intuitively require higher doses of radiation than small tumors 

because there are simply more cells to kill; this requirement is true even if intrinsic 

radiosensitivity, hypoxia and repopulation rates are equal. Several approaches have 

been developed to measure these additional three parameters to predict tumor 

response to radiotherapy. 

Intrinsic radiosensitivity 

Malignant tumors display wide variation in intrinsic radiosensitivity, even between 

tumors of similar origin and histological type.
144

 Attempts to assess the radiosensitivity 

of human tumors have relied on determining the ex vivo tumor survival fraction.
145

 

Those studies and others have shown that tumor cell radiosensitivity is a significant 

prognostic factor for radiotherapy outcome in both cervical
146

 and head-and-neck
147

 

carcinomas. However, these colony assays suffer from technical disadvantages, that 

include a low success rate (<70%) for human tumors and the time needed to produce 

data, which can be up to several weeks. 

 

Other studies have included assessments of chromosome damage, DNA damage, 

glutathione levels and apoptosis.
148

 Indeed, some clinical studies using such assays 

have shown correlations with radiotherapy outcome, whereas others have not.
149

 

However, these cell-based functional assays only have limited clinical utility as 

predictive assays, despite being useful in confirming a mechanism that underlies 

differences in the response of tumors to radiotherapy. For example, some studies have 

provided encouraging data showing that immunohistochemical staining for -histone 

H2AX, a marker of DNA damage, might be a useful way to assess intrinsic 

radiosensitivity very early after the start of treatment.
150,151

 Double-stranded breaks 

are generated when cells are exposed to ionizing radiation or DNA-damaging 

chemotherapeutic agents, which rapidly results in the phosphorylation of -histone 

H2AX. -histone H2AX is the most sensitive marker that can be used to examine the 

DNA damage and its subsequent repair, and it can be detected by immunoblotting and 

immunostaining using microscopic or flow cytometric detection. Clinically, two 

biopsies (one before and one after treatment) are needed to assess the -histone 

H2AX status, which is not always easy to implement in practice. 
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Hypoxia 

Tumor hypoxia is the key factor involved in determining resistance to treatment and 

malignant progression; it is a negative prognostic factor after treatment with 

radiotherapy, chemotherapy and surgery.
152,153

 Indeed, some data show that hypoxia 

promotes both angiogenesis and metastasis and, therefore, has a key role in tumor 

progression.
154

 Although a good correlation has been demonstrated between 

pimonidazole (a chemical probe of hypoxia) staining and outcome after radiotherapy 

in head-and-neck cancer,
155

 the same relationship has not been found in cervical 

cancer.
156

 In light of these contrasting results, one of the hypotheses put forward to 

explain this is that hypoxia tolerance is more important than hypoxia itself.
157

  

 

The use of fluorinated derivatives of such chemical probes also enables their detection 

by noninvasive PET.
158-160

 Although this approach requires administration of a drug, it 

does benefit from sampling the whole tumor and not just a small part of it. Another 

possible surrogate marker of hypoxia is tumor vasculature; the prognostic significance 

of tumor vascularity has been measured as both intercapillary distance (thought to 

reflect tumor oxygenation) and microvessel density (the ‘hotspot’ method that 

provides a histological assessment of tumor angiogenesis). Some studies have found 

positive correlations with outcome, mainly using microvessel density in cervical cancer, 

whereas others have shown negative correlations.
161

 Some concerns have been raised 

about the extent to which biopsies taken randomly truly represent the usually large, 

heterogeneous tumors. 

Proliferation 

If the overall radiotherapy treatment time is prolonged, for example, for technical 

reasons (breakdown of a linear particle accelerator) or because of poor tolerance by 

the patient to the treatment, higher doses of radiation are required for tumor control, 

clearly indicating that the influence of tumor proliferation is important.
162

 Although 

proliferation during fractionated radiotherapy is clearly an important factor in 

determining outcome, reliable measurement methods are not yet available. To 

understand why radiation leads to an accelerated repopulation response in some 

tumors and not in others, a greater understanding of the response at both the cellular 

and molecular level is required. 
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Normal-tissue tolerance 

Inherent differences in cellular radiosensitivity among patients dominate normal-tissue 

reactions more than other contributing factors.
163

 That is, the radiation doses given to 

most patients might in actuality be too low for an optimal cure because 5% of patients 

are very sensitive; these 5% of patients are so sensitive that they skew what is 

‘optimal’ radiotherapy to the lower end of the spectrum, to the detriment of the 

majority of patients who are not as sensitive. Future CDSSs should be able to 

distinguish such overly sensitive patients and classify them separately so they receive 

different treatments to the less-sensitive patients. 

 

Several small
164

 and large
165

 in vitro studies found a correlation between 

radiosensitivity and severity of late effects, namely radiation-induced fibrosis of the 

breast, but these findings were not consistent because no standardized quality 

assurance exists for radiotherapy in vivo.
166,167

 Similar discrepancies were later found 

using rapid assays that measure chromosomal damage,
168

 DNA damage
169

 and 

clonogenic cell survival.
170

 For example, the lymphocyte apoptosis assay has been used 

in a prospective trial as a stratification factor to assess late toxicity using letrozole as 

radiosensitizer in patients with breast cancer.
171

 Cytokines such as TGF- which 

influences fibroblast proliferation and differentiation are known to have a central role 

in fibrosis and senescence.
172,173

 Currently, the relationships between the lymphocytes 

predictive assay, TGF- and late complications are purely correlative and a clear 

molecular explanation is lacking. Genome-wide association studies (GWAS) and the 

analysis of single nucleotide polymorphisms (SNPs) in candidate genes have also 

shown promise in identifying normal-tissue tolerance,
174,175

 although these do not 

often validate results from independent studies.
176

 In general, the problem with all 

these studies has been the wide experimental variability rather than interindividual 

differences in radiosensitivity. Normal tissue tolerance is the dose-limiting factor for 

the administration of radiotherapy, and therefore any CDSS should be based on 

predictors of tumor control and the probability of complications. 

Representation of predictions 

Although the decisions made in the process of developing predictive models will 

determine the characteristics of a multivariate model (for example, which features are 

selected and the overall prediction accuracy), the success of the model depends on 

other factors, such as its availability and interactivity, which increases the 
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acceptability. Even models based on large patient populations, with proper external 

validation, can fail to be accepted within the healthcare community if the model and 

its output are not easily interpretable, if there is a lack of opportunity to apply the 

model or if the clinical usefulness is not proven or reported.
177

 

 

 
Although some models, such as decision trees, implicitly have a visual representation 

that is somewhat interpretable, most models do not. One highly interpretable 

representation of a set of features is the nomogram.
178

 The nomogram was originally 

used in the early 20
th

 century to make approximate graphical computations of 

mathematical equations. In medicine, nomograms have experienced a revival, 

reflected by the increasing number of studies reporting them.
179-183

 Figure 2.5 shows 

Figure 2.5 A published nomogram for local control in patients with cancer of the larynx treated with 

radiotherapy. Clinical and treatment variables are associated with local control status at follow-up durations 

of 2 and 5 years. The predictors are age of the patient (in years), haemoglobin level (in mmol/l), clinical 

tumor stage (T-stage), clinical nodal stage (N-stage), patient’s sex and equivalent dose (in Gy). A probability 

for local control can be calculated by drawing a vertical line from each predictor value to the score scale at 

the top—‘points’. After manually summing up the scores, the ‘total points’ correspond to the probability of 

local control, which are estimated by drawing a vertical line from this value to the bottom scales to estimate 

local control.180 
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an example of a published clinical nomogram of local control in larynx cancer in which 

values for the selected features directly relate to a prediction score. The sum of these 

scores corresponds to a probability of local control within 2 or 5 years.
180 

 

Another idea for increasing acceptability of computer-assisted personalized medicine 

is to make prediction models available on the internet. If interactive, peer-reviewed 

models are provided with sufficient background information, clinicians can test them 

using their own patient data. Such a system would provide retrospective validation of 

the multiple features by the wider community, as well as provide an indication on the 

clinical usefulness of the methodology. The best-known website with interactive 

clinical prediction tools is Adjuvant! Online.
184

 This website provides decision support 

for adjuvant therapy (for example, chemotherapy and hormone therapy) after surgery 

for patients with early-stage cancer. Many researchers have evaluated the models 

available on this prediction website, thereby refining them with additional predictors 

and updated external validations.
185,186

 A prediction website that focuses on decision 

support for radiotherapy was recently established.
187

  The aim of this website is to let 

users work with and validate the interactive models developed for patients with cancer 

treated with radiotherapy, which contributes to CDSS development in general by 

demonstrating the potential of these predictions and raising the awareness of their 

existence and limitations. 

 

Future prospects 
 

The major focus of this Review, thus far, has been model development, validation and 

presentation (including the features from different domains that might be considered 

as predictive and prognostic). Although an accurate outcome prediction model forms 

the basis of a CDSS, additional considerations must be made before a new CDSS can be 

used in daily radiation oncology practice.  

 

First, any decision a patient or physician makes is based on a balance between its 

benefits (survival, local control and quality of life) and harms (toxic effects, 

complications, quality of life and financial cost). For example, an increased radiation 

dose usually results in both a higher probability of tumor control, but a concomitant 

higher probability of normal-tissue complications. Identifying the right balance 

between harm and benefit is a deeply personal choice that can vary substantially 

among patients. Thus, a CDSS should simultaneously predict local control, survival, 

treatment toxicity, quality of life and cost. The system should represent these 
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predictions and the balance between them in a way that is not only clear to the 

physician, but also to the patient, to achieve shared decision making. 

 

Additionally, any prediction using a CDSS should be accompanied by a confidence 

interval. Accurately evaluating the confidence interval is an active and challenging area 

of research because uncertainties in the input features, missing features, size and 

quality of the training set and the intrinsic uncertainty of cancer must be incorporated 

to specify the uncertainty in the prediction for an individual patient. Without knowing 

if two possible decisions have a statistically significant and clinically meaningful 

difference in outcome, clinical decision support is difficult. Always sharing the data on 

which the model was based is a crucial prerequisite for this effort.  

Current prediction models for decision support can only assist in distinguishing very 

high-level decisions—such as palliative versus curative treatment, sequential versus 

concurrent chemoradiation, surgery versus a wait-and-see approach. The radiation 

oncology community, however, is probably more interested in decisions such as 

intensity-modulated radiotherapy versus 3D-conformal radiotherapy or accelerated 

versus non-accelerated treatment. The current prediction models are simply not 

trained on datasets with these detailed subgroups and are not, therefore, accurate 

enough to support these decisions. Whether learning from increasingly diverse patient 

groups and adding other features will sufficiently improve the current models is 

unclear. As a result, tightly controlled studies using evidence-based medicine 

approaches are still crucial to guide clinical practice. 

 

Finally, CDSSs should be seen as medical devices that require stringent acceptance, 

commissioning and quality assurance by the local institute. The key part of the 

commissioning and subsequent quality assurance is to validate the accuracy of the 

prediction model in the local patient population. Indeed, local patient data should be 

collected and the predicted outcomes compared with actual outcomes to convince 

local physicians that the support system works in their local setting. This ‘local 

validation’ should be done at the commissioning stage, but should be repeated to 

ensure the decision support remains valid, despite changes in local practice. Validation 

studies need to indicate what will be the required commission frequency.  

This required quality assurance also enables the improvement of the system as more 

patient data becomes available. Using routine patient data to extract knowledge and 

apply that knowledge immediately is called ‘rapid learning’.
3,188

 Rapid learning via 

continuously updated CDSSs offers a way to quickly learn from retrospective data and 

include new datasets (such as randomized controlled trial results) to adapt treatment 

protocols and deliver personalized decision support. 
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As a data-driven discipline with well-established standards, such as DICOM–RT (digital 

imaging and communications in medicine in radiotherapy), radiotherapy offers an 

excellent starting point for adopting these rapid-learning principles (Figure 2.6). Aside 

from the importance of local data capture, which is still often lacking for (patient-

reported) outcome and toxicity in particular, the quantity and heterogeneity of data 

that is necessary for rapid learning requires the pooling of data in a multi-institutional, 

international fashion.
189,190

 One method of pooling data is to replicate routine clinical 

data sources in a distributed de-identified data warehouse, such as what is done in an 

international Computer-Aided Theragnostics network.
191

 Examples of initiatives that 

create large centralized data and tissue infrastructures for routine radiation oncology 

patients are GENEPI,
192

 the Radiogenomics Consortium,
193

 ALLEGRO
58

 and ULICE
194

. 

These initiatives also facilitate studies for external validation, reproducibility and 

hypothesis generation (Figure 2.7).
189  

 

As datasets become larger (both in number of patients and in number of features per 

patient) high-throughput methods, both molecular
195-200

 and imaging-based,
79

 can 

produce large numbers of features that correlate with outcome.
68,70,201-203

 A limited 

Figure 2.6 Knowledge-driven health-care principles using a clinical decision support system in conjunction 

with standard evidence and regulations to choose the optimal treatment. In learning from follow-up data, 

knowledge is fed back to improve the clinical decision support system and adapt regulations. 
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application of these techniques has already transformed our understanding of 

radiotherapy response. For example, GWAS have associated SNPs with radiation 

toxicity.
204,205

 Similarly, mRNA-abundance microarrays have been used to predict 

tumor response and normal-tissue toxicity in both patient and in vitro studies,
206-210

 as 

well as to create markers that reflect biological phenotypes that are important for 

radiation response, such as hypoxia
211,212

 and proliferation.
213

 Both the data analysis 

and validation are important but challenging aspects of model development.
195,214

 For 

example, the studies described above suffer from the substantial multiple-testing 

problem (that is, a large number of measured features compared with the sample 

number), which renders their results preliminary.
206-213

 Human input and large, robust 

validation studies are, therefore, needed before features from high-throughput 

techniques can be included in CDSSs.
215-217

 
 

 
Although studies on a single feature can be informative, only its combination into 

multimodal, multivariate models can be expected to provide a more holistic view of 

the response to radiation.  

Figure 2.7 Illustration of the data handling paradigms. In the current paradigm the datasets are lost to the 

scientific community after collection, analysis and publication. In the future paradigm all the data will be 

shared in a standardized way and reused for e.g. reproducibility studies, validation studies, and studies 

testing new hypotheses. Pooling of multiple datasets may also improve accuracy of future predictions. This 

illustration is inspired on Deasy et al.189 
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By combining events at different levels using systems-biology-like approaches, creating 

tumor-specific and patient-specific models of the effects and implications of radiation 

therapy should become possible (Figure 2.8). 

Figure 2.8 A simplified schematic representation of systems biology applied to radiotherapy. (A) On the basis 

of in-vitro, in-vivo and patient data, modules representing the three biological categories (gene expression, 

immunohistochemical data and mutation data) important for radiotherapy response can be created. (B) For 

an individual patient, appropriate molecular data will be accumulated. (C) Combining the individual patient 

data with the modules will provide knowledge on specific module alterations (such as a deletion [X], 

upregulation [red] or downregulation [blue]), which can be translated to information on relative 

radioresistance and the molecular ‘weak’ spots of the tumor. This information will subsequently indicate 

whether dose escalation is necessary and which targeted drug is most effective for the patient. Part b used 

with permission from the National Academy of Sciences © Dubois, L. J. Proc. Natl Acad. Sci. USA 108, 14620–

14625 (2011). 
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Indeed, future studies will not only need to identify the individual components related 

to radiation response, but will also need to establish the interactions and relations 

amongst them.
218

 Although this approach has not yet been applied to model 

radiotherapy responses, at least one study has demonstrated that combining multiple 

high-throughput data types can be used to map molecular cancer characteristics.
219

 

Combining models at different levels (societal, patient, whole tumor or organ, local 

tumor or organ, and cellular) is expected to lead to an increasingly holistic and 

accurate CDSS for the individual patient. Evidence that longitudinal data have added 

value to predicting outcome in, for example, repeated PET-imaging
220

 and tumor 

perfusion
221

 studies is growing, implying that this data need to be taken into account 

as candidates for future CDSSs. 

Despite the challenges that remain, the vision of predictive models leading to CDSSs 

that are continuously updated via rapid learning on large datasets is clear, and 

numerous steps have already been taken. These include universal data-quality 

assurance programs and semantic interoperability issues.
222

 However, we believe that 

this truly innovative journey will lead to necessary improvement of healthcare 

effectiveness and efficiency. Indeed, investments are being made in research and 

innovation for health-informatics systems, with an emphasis on interoperability and 

standards for secured data transfer, which shows that ‘eHealth’ will be among the 

largest healthcare innovations of the coming decade.
222,223 

Conclusions 

Accurate, externally validated prediction models are being rapidly developed, whereby 

multiple features related to the patient’s disease are combined into an integrated 

prediction. The key, however, is standardization—mainly in data acquisition across all 

areas, including molecular-based and imaging-based assays, patient preferences and 

possible treatments. Standardization requires harmonized clinical guidelines, regulated 

image acquisition and analysis parameters, validated biomarker assay criteria and 

data-sharing methods that use identical ontologies. Assessing the clinical usefulness of 

any CDSS is just as important as standardizing the development of externally validated 

accurate prediction models with high-quality data, preferably by standardizing the 

design of clinical trials. These crucial steps are the basis of validating a CDSS, which, in 

turn, will stimulate developments in rapid-learning healthcare and will enable the next 

major advances in shared decision making. 
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Review criteria 

The PubMed and MEDLINE databases were searched for articles published in English 

(not restricted by date of publication) using a range of key phrases, including but not 

limited to: “PET imaging”, “heterogeneity in imaging”, “tumor response in 

radiotherapy”. 
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Abstract 

Purpose 

To develop and validate an accurate predictive model and a nomogram for pathologic 

complete response (pCR) after chemoradiotherapy (CRT) for rectal cancer based on 

clinical and sequential PETCT data. Accurate prediction could enable more 

individualized surgical approaches, including less extensive resection or even a wait-

and-see policy.   

 

Methods and materials 

Population based databases from 953 patients were collected in four different 

institutes and divided into three groups: clinical factors (training: 677 patients, 

validation: 85 patients), pre-CRT PETCT (training: 114 patients, validation: 37 patients) 

and post-CRT PETCT (training: 107 patients, validation: 55 patients). A pCR was defined 

as ypT0N0 reported by pathology after surgery. The data were analyzed using a linear 

multivariate classification model (support vector machine), and the model’s 

performance was evaluated using the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve.  

 

Results     

The occurrence rate of pCR in the datasets was between 15% and 31%. The model 

based on clinical variables (AUCtrain=0.61 ± 0.03, AUCvalidation=0.69 ± 0.08) resulted in the 

following predictors: cT- and cN-stage, and tumor length. Addition of pre-CRT PET data 

did not result in a significantly higher performance (AUCtrain=0.68 ± 0.08, 

AUCvalidation=0.68 ± 0.10) and revealed maximal radioactive isotope uptake (SUVmax) and 

tumor location as extra predictors. The best model achieved was based on the addition 

of post-CRT PET-data (AUCtrain=0.83 ± 0.05, AUCvalidation=0.86 ± 0.05) and included the 

following predictors: tumor length, post-CRT SUVmax and relative change of SUVmax. 

This model performed significantly better than the clinical model (ptrain<.001, 

pvalidation=.056). 

 

Conclusions  

The model and the nomogram developed based on clinical and sequential PETCT data 

can accurately predict pCR, and can be used as a decision support tool for surgery after 

prospective validation. 
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Introduction 

Over the past decades, treatment outcomes for rectal cancer have changed 

dramatically. A better surgical technique, total mesorectal excision (TME), and the 

introduction of neoadjuvant treatments in locally advanced rectal cancer (LARC) have 

significantly decreased the risk of locoregional relapse.
1,2

 In the last nine years at least 

seven published phase III trials have evaluated the role of adjuvant radiotherapy in 

rectal cancer.
3
 These have provided an evidence base demonstrating the efficacy of 

both preoperative radiotherapy and preoperative concurrent chemotherapy (CRT). 

CRT has been reported to induce significant tumor downsizing and downstaging,
4-6

 

with a pathologic complete response (pCR) after CRT observed in 10% - 30% of 

patients.
2,4-8

 Although some studies showed no correlation,
9
 many others reported 

that patients showing a pCR following preoperative CRT have improved long-term 

outcomes including excellent local control rates and disease-free survival, regardless of 

their initial clinical T- and N-stages.
10-13

  

However, despite the often phenomenal downsizing and sometimes even complete 

pathological responses after CRT, these patients are still operated with a standard 

extended surgical procedure due to the lack of reliable accurate preoperative 

diagnostic tools. However, it may be questioned whether a standard resection is still 

necessary, considering the good outcome of these patients reported with less invasive 

treatments.
14,15

 If accurately selected, patients with a complete response (no residual 

tumor) may undergo a less extensive resection or even a so called ‘wait-and-see’ 

policy. Compared to standard surgery, the benefits of these treatments are reduced 

morbidity and mortality (e.g., anastomotic leakage, relaparotomy, wound and pelvic 

infection, abscess, colostomy, chronic wound healing disturbances, faecal or urinary 

incontinence and sexual dysfunction), improved quality of life and reduced treatment 

costs.  

Thus, an accurate prediction of pCR can help in the selection of patients for more 

optimized treatment, sphincter-preserving surgery, less extensive resection, more 

intense radiation treatment, or even delayed surgery with a wait-and-see policy.
2,3,16

 

These considerations led to the overall goal of this study: to develop an accurate, data-

driven model to predict pathologic complete response for rectal cancer patients as 

decision support for more individualized treatment approaches in the future. 

 

The clinical variables associated with a better response to preoperative CRT include 

circumferential tumor extent, tumor differentiation, preoperative classification, 

carcinoembryonic antigen (CEA) level, distance from anal verge, and time to 

surgery.
6,17,18

 Recently, it has also been suggested that PET imaging might be correlated 
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with tumor response after CRT in locally advanced rectal cancer. However, the studies 

involved used only a small number of patients, which meant that contradictory results 

were found. Further, only semi-quantitative PET measurements were used and 

analyzed with univariate statistics.
4,5,7,19-26

 Multivariate analysis was performed in only 

one study, whose results lacked statistical significance.
27

 Notably, no studies verified 

and validated their results with external datasets, despite the fact that this represents 

an important prerequisite for the generalizability of prediction models for other 

institutes.  

In the current study, population based data from four different institutes were 

collected and used to train and validate predictive models for pCR. We hypothesized 

that the addition of PET imaging data to clinical variables significantly increases the 

performance of prediction models for pCR after CRT as compared to models based on 

clinical data alone.    

 

The study was performed within the framework of a decision support system based on 

centralized datasets. The increasing amount of available patient information requires 

automatic methods for model building and analysis. Machine learning methods can be 

used to update the models continuously by feeding them with information of new 

patients. The increasing complexity of prediction models, too, means that the 

representation and interpretation of the results also become more important. Tools to 

enhance interpretation for the clinic include visualization techniques such as 

nomograms and graphical networks. Nomograms are statistical tools that enable users 

to calculate the overall probability of a specific clinical outcome for an individual 

patient.
28

 In this study, the nomogram with the highest accuracy for the prediction of 

pCR is provided.    

Methods and materials 

Study population 

Six population based datasets were collected in four institutes: Maastro Clinic (GROW, 

MUMC, Maastricht, the Netherlands), Università Cattolica del S.Cuore (Rome, Italy), S. 

Maria della Misericordia Hospital (Rovigo, Italy) and University Hospital Gasthuisberg 

(Leuven, Belgium). In total, 953 patients met the criteria for inclusion: long-course RT 

with neoadjuvant chemotherapy and the availability of pathological outcome for pCR. 

Of these, 276 patients underwent a pre-CRT PET scan (one week before the start of 

CRT), and 169 patients had both pre- and post-CRT PET scans (one week before 
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surgery, and six to eight weeks after the end of CRT). The sequential PET data from 

Rovigo have already been published as a prospective study,
20

 the Leuven data were 

collected prospectively for the BioCare project (LSHC-CT-2204-505785) and the rest of 

the data were gathered for a population-based study registered in the Dutch Trial 

Register (NTR2166). All compositions of the cohorts were approved by the local IRB 

committees. The patient characteristics are reported in Table 3.1. The datasets were 

divided into three groups, based on PET data availability: 1. clinical variables only, 2. 

clinical variables with pre-CRT PET variables (PET-pre), 3. clinical variables with both 

pre- and post-CRT PET variables (PET-post). For each group, a training set and an 

external validation set were defined. The training sets were used to identify the pCR 

predictors, while the validation sets were used to test the performance of the models 

in other centers. Datasets from a single center with the highest number of patients 

were used for training. A dataset was deemed not useful for external validation if it 

originated from the same center as the corresponding training set. The definition of 

the different combined training and validation sets is explained in Table 3.2, based on 

the datasets in Table 3.1.  

 

The available clinical variables were age, gender (0: female, 1: male), clinical tumor (cT) 

and nodal (cN) stage, and two variables based on MRI (or endoscopy if MRI was 

unavailable): tumor location categorized in three levels (1: low, 0–5 cm from anal 

verge; 2: mid, 5–10 cm from anal verge; 3: high, >10 cm from anal verge) and tumor 

length (cm). For the patients who had PETCT scans, the tumors were semi-

automatically contoured at Maastro Clinic using dedicated software (TrueD, Siemens 

Medical, Erlangen, Germany). Standardized uptake-value (SUV) thresholding was 

based on the tumor-to-background signal ratio, with the gluteus muscle as reference 

background.
29,30

 From the resulting tumor contour, maximal tumor diameter (MaxD), 

gross tumor volume (GTV), and maximal and mean SUV values within the GTV were 

calculated. If the post-CRT PETCT scan was available, the same variables were scored, 

and a response index (RI) for each variable was calculated. For variable X, the response 

index is the relative percent difference between the value of the post-CRT and pre-CRT 

and it was defined as RI = (Xpre –Xpost) / Xpre x100%. Thus, six variables were evaluated 

for the clinical dataset, 10 for the PET-pre dataset and 18 for the PET-post dataset. 

From these sets, the models selected subgroups of variables with significant predictive 

value for pCR.      

 

All patients underwent surgery. Pathological complete response was defined as 

ypT0N0, extracted from the pathologic reports of surgical specimens. All other cases 

(ypT+ and/or ypN+) were considered non-responders, making the pCR a binary 
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outcome (0/1). The specimens were not re-evaluated centrally but the pathology 

protocols were very similar between institutes (3-5 mm slices of rectum tumor, 

intensified evaluation on several blocks of tissue at the tumor site, evaluation on 2-3 

sublevels when no tumor tissue was found in initial block).  

 

 

Table 3.1 Patient characteristics for six datasets from four different institutes. Clinical, PET-pre and PET-post 

groups are defined. Percentages of the total patient numbers are given for binary or ordinal variables. Mean 

and standard deviation (SD) are given for continuous variables. x denotes missing values. RT = Radiotherapy, 

PF = per fraction. 

Center Maastricht Rome Rovigo Leuven 
Dataset M1 M2 R1 R2 C1 L1 
Period 2004–2006 2004–2006 1984–2008 2007–2008 2003–2007 2005–2007 

# Patients 114 21 677 18 107 16 
Clinical  Validation - Training - - - 
PET-pre Training - - Validation - Validation 
PET-post - Validation - Validation Training Validation 

Gender (%)       
Male 63 67 63 83 74 81 
Female 37 33 37 17 26 19 

Age (years)       
Mean 65.6 66.1 61.3 60.4 66.3 58.6 
SD 10.0 10.6 10.2 7.1 10.8 10.1 

cT-stage (%)       
1 0 0 0 0 0 0 
2 1 0 3 11 0 0 
3 68 81 86 56 90 94 
4 30 14 11 33 10 6 
x 1 5 0 0 0 0 

cN-stage (%)       
0 25 38 23 17 51 0 
1 48 48 45 33 38 62 
2 26 10 30 50 10 38 
x 1 4 2 0 1 0 

cM-stage (%)       
0  73 71 100 94 100 100 
1 25 19 0 6 0 0 
x 2 10 0 0 0 0 

ypT0N0 (%)       
No 85 81 80 78 76 69 
Yes 15 19 20 22 24 31 

RT dose       
Mean 50.4 50.4 49.0 52.7 55.7 45.7 
SD 0 0 5.5 3.3 3.1 1.8 

RT dose PF        
(Gy) 1.8 1.8 1.8 1.8 2.2 1.8 

Chemo Types       
(number) 1 1 11 2 1 1 
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Statistical analysis 

Missing values in the dataset were substituted by the mean.
31

 This method performed 

similarly to other, more complex substitution methods for small percentages of 

missing values (e.g., expectation-maximization imputation, regression estimation). No 

variables in the datasets exceeded 5% of missing values. Patients who missed tumor 

location and length in the clinical datasets (Roma: n = 132 and Maastricht: n = 29) were 

excluded because of too large amounts of missing data for these variables. All patient 

numbers stated in this paper were extracted after the missing value procedure. To 

compare the weights of significance assigned to the variables by the model, all 

variables were normalized by subtracting the mean, and then divided by the standard 

deviation.   

 

To classify the complete responders and non-responders, a linear multivariate method 

suitable for binary classification from the machine learning field was used: the support 

vector machine (SVM).
32

 The SVM variant used (proximal SVM or pSVM) performs 

equally accurately but much faster than normal support vector machines.
33

 The 

different datasets’ performances in predicting pCR were evaluated by analyzing the 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve.
34

 The 

maximum value of the AUC is 1.0, indicating a perfect prediction model; a value of 0.5 

indicates a random chance of correct prediction.          

To select the variables that contribute to pCR prediction, an exhaustive feature search 

was performed, with all possible variable combinations used as input for the pSVM 

model. The set of variables resulting in the highest AUC was selected as the final 

predictive set. To avoid over-fitting of the model through selection of the highest AUC, 

the variable sets resulting in AUCs that deviated less than 5% from the maximal AUC 

were compared to the final variable set. If conflicts occurred or if variables did not 

contribute significantly, selected variables were interchanged by considering their 

prevalence in the highly predictive sets, the factor analysis and the Spearman 

correlation coefficient (i.e., highly correlated and dependent variables are not present 

in the same predictive set). Furthermore, an extra univariate analysis was performed 

using the Wilcoxon rank sum test. 

 

Classification methods normally require at least several hundred cases. Because of the 

relatively small number of available patients, two extra evaluation methods were used. 

The first was leave-one-out (LOO) cross-validation, used to calculate an AUC for the 

training set. In LOO cross-validation, a single patient is selected from the original 

training dataset and used as the validation dataset, while the data from the remaining 
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patients are used to train the model. This is repeated until all patients have been 

selected once for validation. However, no LOO cross-validation was used for the 

external dataset. The second evaluation method was bootstrapping, which results in a 

more accurate approximation of the real dataset distribution.
35

 This means that 1000 

datasets are generated from the original dataset containing n patients by selecting 

these n patients, but with resampling (i.e., patients can be present in the dataset more 

than once). For every bootstrapped dataset, an AUC was calculated. The mean AUC 

with the corresponding standard deviation was then calculated with size 1000. This 

non-parametric method allows comparison of the confidence intervals of the AUCs of 

different datasets without making assumptions about the AUC distributions.
36

 The 

distribution of the difference in mean AUC (AUC) between the datasets was tested by 

calculating the two-sided p-value, i.e., the fraction of AUC samples smaller or larger 

than zero (depending on the dominant sign of AUC).  

 

Nomograms can reduce statistical predictive models to a single numerical estimate of 

the probability of an event, and visualize the effect of each selected variable on this 

probability.
37

 The model output of the pSVM models consists of assigned weights for 

each variable and an offset. The probability of a patient having a pCR can be calculated 

using logistic regression on the pSVM output.
38

 The complete procedure to convert 

SVM output to a nomogram is described in detail elsewhere.
39

 Developing a 

nomogram requires threshold selection in the ROC curve. For response prediction 

specificity is most important, because it is not preferred to predict non-responders as 

responders, which would result in under-treatment. Therefore, the threshold was 

selected in such a way that at least 90% of non-responders were correctly predicted. 

Partial ROC curve optimization has been tested but it had no gain for specificity 

compared to overall AUC maximization.
40

 Calibration of the nomogram, i.e., the 

agreement between predicted probability of complete response and true probability in 

the population, was performed by an assessment of the overall agreement and the 

Hosmer-Lemeshow statistic in four subgroups of patients in the validation data. The 

nomogram algorithm was implemented in MATLAB (version 7.1, MathWorks Inc., 

Natick, MA), as were all algorithms described in this section. 

Results 

The occurrence of pCR in the patient population varied between 15% and 31% (mean: 

21.8%, SD: 5.4%) depending on the dataset (Table 3.1). A first evaluation of CRT’s 

effect on the tumor demonstrated significant downsizing of the tumor in the PETCT, 
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and a significant decrease in metabolic activity within the tumor (Figure 3.1). Both 

gross tumor volume and maximal SUV decreased significantly between the pre- and 

post-CRT PETCT scans (p<.001).  

 
Table 3.2 shows the predictor selection results and the ROC curve analysis. For the 

clinical dataset, the univariate analysis reveals three variables significantly associated 

with pCR (95% confidence interval): tumor length (p<.001), cN-stage (p=.001), and cT-

Figure 3.1 (A) Tumour contour in a fused FDG-PETCT made pre-CRT. (B) Corresponding post-CRT FDG-PETCT 

scan with tumour contour. (C) Boxplot of SUVmax on PET-scans made pre-CRT and post-CRT; significant 

decrease: p<.001 (D) Boxplot of the GTV for the case of pre-CRT and post-CRT; significant decrease: p<.001. 
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stage (p=.001). These variables were also selected in the multivariate analysis. The 

normalized weights assigned to them by the pSVM model are tumor length (-0.085), 

cT-stage (-0.074), and cN-stage (-0.060). The selected variables were ranked in 

importance (i.e., weights). The sign of the weights can be interpreted by the effect on 

the probability of a pCR. For a negative sign, this probability decreases when the 

variable increases. For the clinical dataset, this means that the probability of a pCR 

increases for small tumor lengths and low cT- and cN-stages. The predictive 

performance of the clinical dataset for pCR, expressed by the AUC of the ROC curve, is 

0.61 ± 0.03 (mean ± SD) for the training set and 0.69 ± 0.08 for the external validation 

set.     

 

Table 3.2 Predictor selection and ROC analysis. Predictive variables are given with their corresponding 

assigned normalized weights from multivariate analysis (MVA). For each variable the p-value from univariate 

analysis (UVA) is given. Mean AUC and standard deviation (SD) are given for each variable set. RI = response 

index, SUV = standard uptake value, MaxD = maximal diameter (PETCT).  

Variable set 

 

Type Size Predictors (MVA) Weights 

(MVA) 

p-value 

(UVA) 

AUC SD 

Clinical 

 

  

  

  

Training 

(R1) 

677 Tumor length -0.085 <.001 0.61 0.03 

cT-stage -0.074 .001 

cN-stage -0.060 .001 

Validation 

(M1) 

85 - - - 0.69 0.08 

Clinical +  

PET-pre 

  

  

  

Training 

(M1) 

114 MaxDpre -0.12 .003 0.68 0.08 

cN-stage -0.12 .001 

Tumor location 0.094 .84 

SUVmax-pre -0.087 .29 

Validation 

(R2, L1) 

34 - - - 0.68 0.10 

Clinical +  

PET-pre + 

PET-post 

Training 

(C) 

107 RISUVmax 0.20 <.001 0.83 0.05 

Tumor length -0.20 <.001 

SUVmax-post -0.14 <.001 

Validation 

(M2, R2, L1) 

55 - - - 0.86 0.05 

 

For the dataset with pre-CRT PET data, the multivariate analysis selected these 

variables (ranked by weight): maximal diameter (-0.12), cN-stage (-0.12), tumor 

location (0.094), and SUVmax (-0.087). This resulted in a high probability of pCR for 

patients with small maximal tumor diameters, low cN-stage, high tumor locations, and 

small maximal metabolic activity. Maximal diameter (p=.003) and cN-stage (p=.001) 

were selected by univariate analysis, while the other two variables were not.  
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The AUCs for the training and validation set were both 0.68, but the SD differed (0.08 

and 0.10 respectively). The dataset including the post-CRT PET data resulted in the 

highest performance: AUCtrain = 0.83 ± 0.05 and AUCvalidation = 0.86 ± 0.05. The response 

index for SUVmax (0.20), tumor length (-0.20), and the post-CRT SUVmax were found to 

be predictive for pCR and significantly associated with pCR in the univariate analysis 

(p<.001).  

 

Figure 3.2 ROC curves of training and validation datasets for the clinical set (A), the PET pre-CRT set (C) and 

the PET post-CRT set (D). The straight dashed line represents a random prediction model. The bar plot (B) 

shows the corresponding mean AUC for each dataset and the standard deviation (error bars). There was a 

significant difference with clinical datasets of (*) p<.05 and (#) p<.06.    
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In evaluating the predictive value of the additional PET data to the clinical data, only 

the AUCs of the post-CRT PET data differed significantly from the clinical dataset AUC 

(Figure 3.2). The p-value for the AUC difference for the training set was <0.001, while 

that for the validation sets was 0.056 (just outside the 95% confidence interval). When 

only post-CRT PET data were used for the models (i.e., no clinical variables), the 

significant difference between the AUCs and the clinical dataset was no longer 

observed (training: p=.47, validation: p=.58). This indicated that a combination of both 

clinical and PET data was required to reach a significantly higher performance when 

using PET as a predictive imaging modality.      

 

 
 

The assigned weights for all the predictors formed the basis for the construction of the 

nomogram. The nomogram based on the post-CRT dataset is provided in Figure 3.3. 

The nomogram performs with a sensitivity of 0.62 and a specificity of 0.88 for the 

validation data. In the training phase these were respectively 0.65 and 0.90. The 

calibration of the nomogram (Figure 3.4) with the validation data reveals that the 

overall predicted and the actual probability are equal (23.6%, OR=1.0). If the validation 

data are divided into four equally numbered groups, the Hosmer-Lemeshow test 

results in a p-value of 0.78, which means a good calibration in this test (p>.05). The 

Figure 3.3 Nomogram for PET post-CRT dataset. A score for each predictor can be read out at the top scale 

(Score). All summed scores (Sum of scores scale) can be converted directly to the probability of responding 

with a pCR (ypT0N0). The probability scale is the only logarithmic scale.     
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linear fit through these probabilities results in a slope of 1.02 with R
2
 of 0.99, 

confirming a good balance between calibration and discrimination.  

 

 

Discussion 

We have developed predictive models based on clinical and PET-based data for 

pathologic complete response in patients diagnosed with rectal cancer. The 

performance of these models was externally validated using patient cohorts from 

different institutes treated with long-course preoperative chemoradiotherapy. The 

models showed that the accuracy of the predictions increased over time, i.e., when 

more information became available. Information from PETCT scans significantly 

improved the performance of the models.  

 

The significant difference in AUCs that we reported between the performance of the 

clinical model and the post-CRT PET data model reflects what others have found in 

Figure 3.4 Calibration of the nomogram for the validation data. For the four equally numbered subgroups 

(vertical lined intervals in figure), the predicted probability of a pCR and the actual fraction in the population 

were evaluated. The dashed line represents perfect calibration and the solid line is the linear fit of the 

calibration data. Pa: actual probability, Pp: predicted probability, R2: coefficient of determination 
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their post-treatment PET analyses; like us, some have reported (significant) indications 

that the response index and post-treatment SUVmax are predictive for response, while 

the pre-treatment PET data do not provide enough predictive power.
12,19,27

 However, 

our PET-based models also contain clinical variables, which appeared to be necessary 

to obtain the high performance provided in Table 3.2. The most important clinical 

variables were tumor length and maximal diameter, which were selected in the models 

and are significantly correlated (spearman  = 0.55, p<.001). Overall, this means that 

the dominant tumor dimension in combination with (differences in) the maximal 

metabolic activity inside the tumor is the most predictive variable set for pCR, which 

was confirmed in the external datasets.  

Whether the corresponding AUC of 0.86 is accurate enough for clinical practice 

depends on the choice of the threshold in the ROC curve. A high specificity is preferred 

over a high sensitivity to avoid possible under-treatment (less surgery when surgery is 

required) rather than over-treatment (standard treatment when less surgery could 

have been considered). The provided nomogram focuses on specificity (training: 0.90, 

validation 0.88). Selecting higher specificities results in fast decreasing sensitivities. 

Careful follow-up is therefore necessary for the patients selected for a ‘wait-and-see’ 

policy to detect any possible local recurrences early on. To gain more specificity in the 

future, the addition of new variables and the other classification methods would have 

to be considered.  

 

The nomogram performs well, i.e., the distribution of the probability of a pCR provided 

by the nomogram represents the true distribution in the data, confirmed by overall 

calibration, calibration of the slope and Hosmer-Lemeshow test (Figure 3.4). Because 

of the number of events and the division of the patient cohorts into few probability 

intervals, the higher probabilities occur much less frequently and are thus the least 

accurate. Therefore, prospective validation of the model and the nomogram is 

required to ensure sufficient statistical power for clinical application of the models. 

Besides the number of patients to increase the models’ accuracy, more predictors 

could be added to increase the models’ performance, including biological variables 

such as gene signatures
41

 and blood biomarkers, and also more imaging variables from 

(perfusion) CT and (diffusion) MRI. The first indications have also appeared that PETCT 

data during CRT may be highly predictive for response.
25,26,42

 This time point is more 

favorable than post-CRT because of the possibility of earlier treatment changes and 

the decreased presence of inflammatory rectum cases, potentially causing impaired 

evaluation of fused PETCT scans. After prospective validation of the model, an 

intervention trial with less surgery for patients with a high probability for pCR will be 

performed.         
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The population based collected datasets date back five years, except for the clinical 

Roma database, which was collected from 1984 onward. Therefore, this dataset shows 

a higher variety in treatment schemes than the other datasets. This could explain the 

discrepancy of the higher prediction performance of the clinical validation set. On the 

other hand, the validation set is much smaller, implying that the distribution of data 

could not be representative of the true distribution. The consequence of population 

based data collection is that treatment protocols are not well tuned. This results in, for 

example, small differences in irradiation schemes and deviations in the evaluation of 

pathology outcome. Ideally, pathology is reviewed centrally to reduce the intra- and 

inter-observer variabilities for the outcome measure. However, in this study the 

quality of pathology is acceptable because of the prospective nature of most datasets 

and because the outcome was limited to only complete response evaluation. Also, 

glucose correction for SUV values was not applied to all datasets. However, minor 

variation in treatment schemes can be seen as an advantage because it leads to higher 

generalizability for other centers. In other words, the model still performs well, despite 

the disparities mentioned here.  

  

In conclusion, we have shown that sequential PETCT data in combination with clinical 

variables significantly increase the performance of prediction models for pathologic 

complete response. So far, this is the largest study of its kind and the only one that 

used external datasets for validation. The dominant tumor dimension and the maximal 

uptake of radioactive isotopes in the tumor as well as its relative difference between 

PET scans were found to be the best predictors for pCR resulting in very good overall 

performance AUC’s of 0.83 and 0.86 for training and validation, respectively. Including 

also biological and other imaging variables will probably further improve the 

performance. When prospectively validated, the model and the nomogram therefore 

provide a valuable decision support for more individualized treatment approaches in 

the future.  

  

Note: The predictive models in this paper are published on the website 

http://www.predictcancer.org 
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Abstract 

Purpose 

To develop and externally validate a predictive model for pathologic complete 

response (pCR) for locally advanced rectal cancer (LARC) based on clinical and early 

sequential 
18

F-FDG PETCT imaging.    

 

Methods and materials 

Prospective data (including the THUNDER trial) was used to train (N=112, Maastro 

clinic) and validate (N=78, Gemelli Hospital) the model for pCR (ypT0N0). All patients 

received long-term chemoradiotherapy (CRT) and surgery. Clinical parameters were 

age, gender, clinical tumor (cT) stage and clinical nodal (cN) stage. PET parameters 

were SUVmax, SUVmean, metabolic tumor volume (MTV) and maximal tumor diameter, 

for which response indices between pre-treatment and intermediate scan were 

calculated. Using multivariate logistic regression, three probability groups for pCR were 

defined.   

 

Results  

The pCR rates were 21.4% (training) and 23.1% (validation). The selected predictive 

features for pCR were cT-stage, cN-stage, response index of SUVmean and maximal 

tumor diameter during treatment. The models’ performances (AUC) were 0.78 

(training) and 0.70 (validation). The high probability group for pCR resulted in 100% 

correct predictions for training and 67% for validation.   

 

Conclusions 

The developed predictive model for pCR is accurate and externally validated. This 

model may assist in treatment decisions during CRT to select complete responders for 

a wait-and-see policy, good responders for extra RT boost and bad responders for 

additional chemotherapy. 
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Introduction 

An early prediction of pathologic complete response (pCR) for a locally advanced rectal 

cancer (LARC) patient is valuable because it allows for individualized treatment 

reorientation.
1,2

 The standard treatment for LARC patients is preoperative 

chemoradiotherapy (CRT) followed by surgery. The neo-adjuvant treatment, intended 

to control pelvic disease and improve the chance of sphincter preservation, results in a 

pathological complete response (pCR) in 15-30% of the patients.
3,4

 For these complete 

responders a wait-and-see policy after CRT is a possibility in order to reduce 

treatment-related morbidity and mortality, for which excellent results are reported.
5
 

This decision requires however a very accurate prediction and assessment of complete 

response. Other treatment options under consideration are a radiotherapy boost after 

CRT for good responding patients to achieve more pCRs
6
 and additional chemotherapy 

administration after CRT for the worst responding patients.
7
 Both these options 

require an early assessment of response even during CRT. Currently the leading 

candidate predictive marker for histopathological response prediction in LARC is 
18

F-

fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging. A meta-

analysis from 2012 confirmed the added value of PET imaging, especially for 

intermediate PET imaging (during CRT).
8
 However, most studies evaluated pre-CRT 

versus post-CRT PET imaging. Besides that an early prediction is preferred for 

treatment reorientation, later predictions may also be affected by CRT-induced 

inflammatory tissue, which presents tumor equivalent signal on FDG-PET scans.
9
 This 

recognition resulted in more early response assessment studies in the last few years 

(Table 4.1). The limitations of these studies were their small sample sizes (N=20-42), 

the main focus on good versus bad responders (not pCR), the univariate setting in 

which analyses were performed and the lack of validation. To increase the clinical 

applicability of these decision making tools, they need to be based on more evidence 

(i.e. larger number of patients and external validation), be trained on several data 

sources
10

 and they require focus on outcomes that are more relevant in terms of 

decisions, like pCR for a possible wait-and-see policy. We hypothesize that models with 

these requirements are the most suitable for decision making in clinical practice. The 

aim of this study is therefore to develop an externally validated multivariate predictive 

model for pCR combining clinical, pre-treatment and intermediate FDG-PETCT imaging 

parameters based on a prospective study. After development of a nomogram and the 

evaluation of its accuracy, risk group definition based on these predictions may 

provide decision support to clinicians for LARC patients (Figure 4.1). 
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Methods and materials 

Study population 

All data were prospectively collected (with written informed consent) between January 

2007 and March 2012 within two institutes: Maastro Clinic (GROW, MUMC, 

Maastricht, the Netherlands) and Università Cattolica del S.Cuore (Rome, Italy). The 

following prospective observational studies were involved: a study (2007-2009) 

involving 47 patients from Maastricht,
11,12

 a pilot study (2007-2009) with 19 patients 

from Rome and a multicentre study (2009-2012) involving one protocol for both 

institutes (Maastro: 65 patients, Rome: 59 patients) with acronym THUNDER 

(THeragnostic Utilities for Neoplastic DisEases of the Rectum, NCT00969657). All 

patients from Maastricht were pooled and used to train a prediction model for pCR 

(N=112). The pooled datasets from Rome were used for external validation of the 

model (N=78). The study inclusion criteria were: histological proven rectal cancer 

(primary tumors), UICC stage I-III, no recurrences, only concurrent chemoradiotherapy 

treatment, minimal age of 18 years, and no previous radiotherapy to the pelvis. The 

Figure 4.1 Schematic overview of prediction model development (top) and the proposed application of the 

model in clinical practice after it has been tested in a clinical trial with a control arm (bottom). 
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available clinical variables used as candidate prognostic and predictive factors were 

age, gender, clinical tumor (cT) and nodal (cN) stage. The criteria followed to consider 

tumor nodal involvement at MRI were related to border contour (sharply demarcated 

or irregular border) and signal intensity characteristics (homogeneous or 

inhomogeneous) or size >8 mm.
13,14

 All patients from Maastricht were treated 

preoperatively with radiotherapy (28 fractions of 1.8 Gy, 5 fractions/week) and 

concomitant chemotherapy (capecitabine, 825 mg/m2, twice daily), followed by a total 

mesorectal excision 6-8 weeks after the end of CRT. A minority of the thunder patients 

(N=11) with a clinical complete response (assessed using post-CRT MRI and endoscopy) 

were enrolled in a parallel study where a surgical wait-and-see policy was applied.
5
 

Some patients from Rome were also treated with 50.4Gy schedule, but 78.2% of the 

patients were treated with 25x1.8Gy schedule and a RT boost of 10Gy. The majority of 

the Rome patients (N=62) received a combination of capecitabine (1300 mg/m2 daily) 

and oxaliplatin (60 mg/m
2
 once a week for 5 weeks with 55.0Gy RT or 130 mg/m

2
 at 3 

time points with 50.4Gy RT), and the others capecitabine only (1650 mg/m
2
 daily with 

50.4Gy RT or 1300 mg/m
2
 daily with 55 Gy RT, N=14) or raltitrexed (3 mg/m

2 
at 3 time 

points, N=2). 

PETCT imaging 

All patients underwent a pre-CRT PET scan (one week before the start of CRT) and an 

intermediate PET scan (two weeks after the start of CRT). All Maastricht PETCT scans 

were performed by use of a dedicated Siemens Biograph 40 TruePoint PETCT simulator 

(Siemens Medical, Erlangen, Germany). Rome scans were performed with a 3D GEMINI 

GXL PETCT scanner with 16 channels CT (Philips Healthcare, Cleveland, OH). The PET 

acquisition settings were reported before and were calibrated for both institutes.
12

 

PET-based semi-automatically tumor contours were made by one observer using 

dedicated software (TrueD, Siemens Medical, Erlangen, Germany). Contours were 

defined by a threshold for the standardized uptake-value (SUV) based on the tumor-to-

background signal ratio, with the gluteus muscle as reference background.
15,16

 From 

the resulting tumor contour, maximal tumor diameter (MaxDiam), metabolic tumor 

volume (MTV), and maximal and mean SUV values within the MTV were calculated. 

SUV measures were corrected for blood glucose level.
17

 The same variables were 

scored for the intermediate CRT PETCT scan and for each variable a response index (RI) 

was calculated. The RI is the relative difference between the value of the intermediate 

scan and pre-CRT scan and defined as (Xpre – Xintermediate) / Xpre x100%.  
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Pathological assessment 

Pathological complete response was defined as ypT0N0, extracted from the pathologic 

reports of surgical specimens. All other cases (ypT+ and/or ypN+) were considered 

non-responders. The specimens were not re-evaluated centrally but the pathology 

protocols were very similar between institutes (3-5 mm slices of rectum tumor, 

intensified evaluation on several blocks of tissue at the tumor site, evaluation on 2-3 

sublevels when no tumor tissue was found in initial block).  For the 11 wait-and-see 

patients, a pCR was assigned if the patient was locally recurrence free after 12 months 

of follow-up.   

Statistical analysis 

All statistical analyses were implemented and performed in MATLAB (version 7.1, 

MathWorks Inc., Natick, MA). Any missing values (Maastricht: 1.1%, Rome: 1.9%) in the 

datasets were substituted using the Expectation-Maximization method.
18

 Datasets 

were pooled per institute on an individual patient level. Wilcoxon rank-sum tests were 

performed to test for association between a single variable and pCR. In the 

multivariate setting, logistic regression was applied to classify complete responders 

and non-responders, using the significant predictors from the univariate analysis as 

inputs. In the case of two very highly correlated input variables, only one was selected 

(using Spearman’s correlation matrix, p<.05). The model’s accuracy was evaluated with 

the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.
19

 

The maximum value of the AUC is 1.0, indicating a perfect prediction model while a 

value of 0.5 indicates a random chance of correct prediction. Predictors were only 

selected if their addition resulted in a sufficient AUC change (>.01). For the final 

accuracy assessment, a bootstrapping scheme was applied (sampling with 

replacement, N=1000), resulting in 95% confidence intervals for AUC. A nomogram 

was generated to represent a visualization of the final predictive model in which three 

risk groups were defined by applying two thresholds for the estimated probability for 

pCR. To define the low probability group for pCR, first the (weighted) average rate of 

non-responders (TRG3-4) was calculated from literature and thereafter a threshold 

was selected that resulted in this percentage of non-responders.
12,20-24

 The threshold 

for the high estimated probability of pCR was calculated using decision curve 

analysis.
25

 This method optimizes the threshold by calculating the net benefit of 

applying such a model and comparing it to the situations in which none or all patients 

are treated with a wait-and-see policy.    
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Table 4.2 Patient characteristics of the training dataset (Maastricht) and the validation dataset (Rome). 

 
 

Maastricht Rome 
  N [%] N [%] 

Clinical Sex     

Female 2

9 

[25.9] 2

8 

[35.9] 

Male 8

3 

[74.1] 5

0 

[64.1] 

Age (years) 
    Median 65.0 66.3 

Range 44.0 – 81.1 27.0 - 82.7 

Clinical tumor stage 
    2  1

7 

[15.2] 5 [6.4] 

3 8

6 

[76.8] 4

9 

[62.8] 

4 9 [8.0] 2

4 

[30.8] 

Clinical nodal stage 
    0 1

5 

[13.4] 4 [5.1] 

+ 9

7 

[86.6] 7

4 

[94.9] 

PET imaging Time between PET scans (days) 

    Mean 21.9 28.5 

Standard deviation ± 2.5 ± 10.5 

Time 1st PET injection to acquisition (minutes) 

    Mean 82.6 80.2 

Standard deviation ± 18.1 ± 21.3 

Time 2nd PET injection to acquisition (minutes) 

    Mean 69.2 81.9 

Standard deviation ± 15.2 ± 23.0 

Treatment Total radiotherapy dose (Gy) 

    <50.4 5 [4.5] 2 [2.6] 

50.4 1

0

7 

[95.5] 1

5 

[19.2] 

55.0 0 [0.0] 6

1 

[78.2] 

Time last RT fraction to surgery (days) 

    Mean 73.6 72.9 

Standard deviation ± 18.8 ± 13.2 

Outcome 

 

Pathologic complete response 

    yes 2

4 

[21.4] 1

8 

[23.1] 

no 

 

 

8

8 

[78.6] 6

0 

[76.9] 
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Results 

Dataset characterization 

Pooling the clinical and PETCT imaging data per institute resulted in similar cohort 

characteristics (Table 4.2). The validation dataset from Rome had in general: less males 

(64.1% vs 74.1%, p=.187), higher clinical tumor stages (cT4: 30.8% vs 8.0%, p<.001), and 

more nodal involvement (94.9% vs 86.6%, p=.10). Almost all Maastricht patients 

received 50.4Gy of RT (95.5%) while the majority of the Rome patients received 55.0Gy 

(78.2%). There was also a small but non-significant difference in the number of 

pathologic complete responders (23.1% vs 21.4%, p=.927). The average time from last 

RT fraction to surgery was equal (73.6 ± 18.8 vs 72.9 ± 13.2 days, mean ± SD). Despite 

harmonization of the PET protocols in the THUNDER study, the time between the PET 

scans was on average lower for the Maastricht dataset (21.9 ± 2.5 vs 28.5 ± 10.5 days). 

Also the time between tracer injection and PET acquisition showed was lower for the 

intermediate PET scan in Maastricht (69.5 ± 15.2 vs 81.9 ± 23.0 minutes).    

Predictor selection 

Univariate analyses (Table 4.3) showed that age, pre-treatment SUV measures, 

intermediate SUVmean, and response index for maximal diameter have no significant 

predictive value for pCR (=.05). Negatively correlated significant predictors (i.e. 

increasing value results in lower pCR rate) were cT-stage, cN-stage, pre-treatment and 

intermediate metabolic tumor volume (MTV) and maximal diameter, and intermediate 

SUVmax. Positively correlated significant predictors (i.e. increasing value results in 

higher pCR rate) were the response indices for SUVmean, SUVmax and MTV. Female 

gender was also found to be significantly associated with high pCR rate.    

In multivariate logistic modeling only cT-stage was found significant in the total group 

of input predictors (p=.027*). However, highly correlated input variables increase p-

values in a multivariate setting (Figure 4.2). The following decisions were made based 

on the analyses to select the final set of predictors: 

 Gender was excluded: non-significant p-value and no other correlations with 

inputs 

 cN-stage was included: significance near decision boundary (p=.056) 

 The MTV measures were excluded: many outliers were detected (pre-

treatment: N=11 with MTV differences up to 4 times the average volume, 

intermediate: N=12 with MTV differences up to 10 times the average volume). 

These measures also didn’t have an added predictive value to the final 

selection.  
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 RI of SUVmean was included at the expense of RI of SUVmax: literature reported 

sufficient evidence for both of them (Table 4.1). However, these measures are 

highly correlated (Figure 4.2). Univariate RI of SUVmean had highest 

discriminative ability (p=.022* vs p=.030*) and was therefore selected.  

 From the other predictors, pre-treatment and intermediate maximal diameter 

and intermediate SUVmax, only intermediate maximal diameter was selected 

because it showed an AUC increase >0.02 when added to the final set (and 

significance < 0.1).    

Hence, the final selected predictors in the multivariate model were cT-stage (p=.007*), 

cN-stage (p=.032*), intermediate maximal diameter (p=.078) and RI of SUVmean 

(p=.025*).  

 

 

Figure 4.2 Spearman correlation matrix to identify significant (boxed + inner circle) correlations between 

model input variables. Red indicates positive correlation, blue indicates negative correlation.   
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Table 4.3 Prediction results. For each variable, the distributions are compared between training and 

validation dataset and a univariate analysis is performed (training set only). Multivariate analysis including 

feature selection are included.    

      Univariate  Multivariate Predictor selection 

    p pCR ↑  OR [95% CI]    p    OR [95% CI]   p 

Gender .048* Female  0.65 [0.19-2.23] .495    

Age .523 -        

cT-stage .002* ↓  0.20 [0.05-0.83] .027* 0.19 [0.06-0.64] .007* 

cN-stage .001* ↓  0.21 [0.04-1.04] .056 0.23 [0.06-0.88] .032* 

SUVmean0 .747 -        

SUVmax0 .617 -        

MTV0 .002* ↓  1.08 [1.00-1.17] .061    

MaxDiam0 .004* ↓  0.90 [0.42-1.90] .778    

SUVmean15 .067 -        

SUVmax15 .030* ↓  0.96 [0.83-1.10] .545    

MTV15 <.001* ↓  0.82 [0.67-1.02] .072    

MaxDiam15 .005* ↓  0.95 [0.58-1.56] .849 0.74 [0.53-1.03] .078 

RI_SUVmean .022* ↑  1.01 [0.90-1.13] .893 1.04 [1.00-1.07] .025* 

RI_SUVmax .030* ↑  1.01 [0.91-1.13] .839    

RI_MTV .017* ↑  0.99 [0.96-1.03] .757    

RI_MaxDiam .544 -        

 

Validation of the nomogram 

The multivariate model with the four selected predictors to estimate the probability of 

a pCR was visually represented by a nomogram (Figure 4.3A). Bootstrapped AUCs were 

0.78 (95% CI: 0.65-0.89) for the training dataset and 0.70 (95% CI: 0.55-0.84) for the 

validation dataset. With the aim of estimating three probability groups for pCR, two 

probability thresholds were defined to separate these groups. The 12.8% threshold 

(<12.8% low probability on pCR, >12.8% medium probability of pCR) was defined based 

on literature in which on average 49.2% of the patients are non-responders (weighted 

for number of patients). The other threshold was calculated at 53% based on decision 

curve analysis where the optimal net benefit of applying a wait-and-see policy was 

maximized (Figure 4.4). These three probability groups (low, medium, high) resulted in 

significantly increasing pCR rates (training data: respectively 7.3%, 21.3%, 100% pCR; 

validation data: 13.0%, 30.8% and 66.7% pCR). The highest probability groups 

contained 8.9% (training) and 7.7% (validation) of the total number of patients, while 

the lowest probability groups contained respectively 49.1% and 59.0% (Figure 4.3B).     
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Figure 4.3 (A) Nomogram of pathologic complete response based on the multivariate analysis. Three 

probability groups are defined and pCR rates of those groups are plotted. (B) Actual pCR rates in the training 

and validation set plotted for three probability groups from the model, which are defined by low: P <= 

12.8%, medium: 12.8% < P < 53%, high: P >= 53%. Relative number of patients in the group (%) is shown 

above the bars.  
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Discussion 

In this study a multivariate nomogram with clinical parameters and early sequential 

PETCT imaging markers predicting pCR in LARC was developed based on a large 

prospective study and validated prospectively within another institute. Good 

performances were measured for both training and validation dataset. After risk group 

identification a subgroup of just below 10% of the patients with high estimated 

probability for complete response was identified.       

Model predictors 

The selected predictive factors for pCR were cT-stage, cN-stage, SUVmean and 

intermediate maximal tumor diameter. A recent large analysis of 3105 patients found 

that cT-stage was predictive for pCR (p<.0001) but that cN-stage shows only a trend 

(p=.10).
4
 This study contained however also old cases where CT was used for cN-stage 

scoring. Another analysis of 677 patients associated both cT-stage (p<.001) and cN-

stage (p<.001) with pCR.
10

 The same study also found that pre-treatment (metabolic) 

tumor size was predictive (p=.003), but others show that only changes in metabolic 

volume in the pre-post treatment setting were significant for pCR and not the 

intermediate case (p=.010).
26

 In the presented study’s univariate analysis, it is clear 

that tumor size is important for pCR. The change in SUVmean at the intermediate time 

Figure 4.4 Clinical usefulness assessment for the model to determine the optimal threshold to define the 

high probability group. This group is a candidate for the wait-and-see policy. Net benefit of the model is 

compared to the situations in which all patients or no patients are treated with a wait-and-see policy (left). 

The threshold with the optimal benefit of the model is 53% (right).  
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point was found predictive in earlier studies for responders versus non-

responders,
12,20,21

 but SUVmax is stronger when predictions for pCR changes are 

made.
22,27

 In our study the response index of SUVmean was a stronger predictor than the 

RI of SUVmax. These two measures are also highly correlated, especially since our PET 

contouring was semi-automatic and calibrated for both institutes, resulting in less 

variation in SUVmean due to contouring.
28 

A variable selection scheme was chosen based on univariate analysis, correlation 

between input variables and contribution to multivariate prediction performance. 

Other strategies such as penalized feature selection are also common when dealing 

with highly correlated variables, but in general these results in interpretability issues 

for the (shrunken) coefficients.
29

        

Model performance  

The performance of the nomogram measured by AUC of 0.78 (95% CI: 0.65-0.89) for 

the training dataset and 0.70 (95% CI: 0.55-0.84) for the validation dataset are lower 

than the ones reported by single PET parameters in literature (0.70,
30

 0.83,
23

 0.87
12

). 

However, these studies predict response (TRG1-2) instead of pCR. Response prediction 

is in practice more accurate because the number of events for good response (45-55%) 

is much higher than those of pCR (15-30%). Identifying the complete responders in an 

early phase is useful to avoid additional treatments and related toxicity for these 

patients. Another possible reason for a lower overall performance can be the noisy 

pathology outcome (decentralized), but this is compensated by the high number of 

patients. The current studies reported in literature with low number of samples are 

sensitive to positive (or negative) findings by mere chance, and therefore it is reasoned 

that this large study’s performance is expected to reflect reality better.  

When stratifying the patients in three risk groups, the performance is acceptable: 

100% accuracy for high probability for pCR group for the training dataset (N=10) and 

67% for the validation dataset (N=6). The two misclassified patients in the validation 

set have TRG 2, ypT1N0 or ypT2N0 status and a clinical response on the PETCT scan two 

months after the end of CRT, thus they are considered as good responders.  

The difference in performance between training and validation dataset is likely to be 

based on differently distributed data with respect to the predictors. The validation set 

has lower model estimates for the probabilities of pCR due to significantly higher 

number pre-treatment cT-stages (p=.007), and significantly lower RIs of SUVmean 

(p<.001). The latter difference may be explained by the higher times between tracer 

injection and the intermediate PET acquisition in the validation institute in comparison 

to the training institute, resulting in higher intermediate SUVmean values (p<.001), 

despite PET protocol harmonization.       
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Model applicability  

As suggested, the developed model can be used to assist in decision making for LARC 

already during CRT (Figure 4.1). However, three notes have to be made. First, this 

model is only useful for decisions made during or immediately after CRT, like RT boost 

or additional chemotherapy. The decision for a wait-and-see approach can better be 

made just before surgery by using both specialized prediction models
10

 and careful 

assessment of imaging, endoscopies and biopsies.
5
 The advantages of an earlier 

estimate of pCR are avoidance of overtreatment of complete responders, a possible 

increase of the number of complete responders with a RT boost for good responders 

and perhaps a change in treatment strategy for non-responding patients. 

Secondly, any developed model requires prospective validation by means of a 

randomized trial, comparing an arm with standard treatment for all (CRT+surgery) to 

an arm receiving individualized treatment based on the prediction model. Such a study 

is currently being set up.    

And last, other predictors from different sources might be considered to further 

improve accuracy. Diffusion-weighted magnetic resonance imaging (DW-MRI) at 

different time points is reported as a promising candidate which increases the 

prediction accuracy significantly in combination with PETCT imaging.
27

 Blood 

biomarkers also can have additional value as for example has been reported for serum 

carcinoembryonic antigen (CEA).
31

 For all these additional sources however, cost-

benefit analyses are advised because saturation of the prediction accuracy can become 

an issue.   

Conclusions 

We have developed an externally validated and accurate prediction model for 

pathologic complete response in locally advanced rectal cancer based on large 

prospective studies. This nomogram can be used to distinguish three types of patients, 

i.e. complete responders, good responders and non-responders, for which respectively 

a wait-and-see policy, radiotherapy boost and additional chemotherapy can be 

administered. This personalized treatment approach is expected to promote more 

complete responders, reduce the number of surgeries and related complications, and 

to avoid unnecessary toxicity.     
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Abstract 

Purpose 

Chemoradiation (CRT) has been shown to lead to downsizing in an important part of 

rectal cancers. In order to tailor treatment at an earlier stage during treatment, 

predictive models are being developed. Adding blood biomarkers may be attractive for 

prediction, as they can be collected very easily and determined with excellent 

reproducibility in clinical practice. The hypothesis of this study was that blood 

biomarkers related to tumor load, hypoxia and inflammation can help to predict 

response to CRT in rectal cancer. 

 

Methods and materials 

295 patients with locally advanced rectal cancer who were planned to undergo CRT 

were prospectively entered into a biobank protocol (NCT01067872). Blood samples 

were drawn before start of CRT. Nine biomarkers were selected, based on a previously 

defined hypothesis, and measured in a standardized way by a certified lab: CEA, CA19-

9, LDH, CRP, IL-6, IL-8, CA IX, osteopontin and 25-OH-vit D. Outcome was analyzed in 

two ways: pCR vs. non-pCR and responders (defined as ypT0-2N0) vs. non-responders 

(all other ypTN stages).  

 

Results 

276 patients could be analyzed. 20.7% developed a pCR and 47.1% were classified as 

responder. In univariate analysis CEA (p=.001) and osteopontin (p=.012) were 

significant predictors for pCR. Taking response as outcome CEA (p<.001), IL-8 (p<.001) 

and osteopontin (p=.004) were significant predictors. In multivariate analysis CEA was 

the strongest predictor for pCR (OR 0.92, p=.019) and CEA and IL-8 predicted for 

response (OR 0.97, p=.029 and OR 0.94, p=.036). The model based on biomarkers only 

had an AUC of 0.65 for pCR and 0.68 for response; the strongest model included 

clinical data, PET-data and biomarkers and had an AUC of 0.81 for pCR and 0.78 for 

response. 

 

Conclusions 

CEA and IL-8 were identified as predictive biomarkers for tumor response and pCR 

after CRT in rectal cancer. Incorporation of these blood biomarkers lead to an 

additional accuracy of earlier developed prediction models using clinical variables and 

PET-information. The new model could help to an early adaptation of treatment in 

rectal cancer patients. 
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Introduction 

Combined treatment is the cornerstone of rectal cancer treatment. In case of locally 

advanced rectal cancer, defined as a tumor with a predicted positive circumferential 

resection margin (CRM) or four or more positive lymph nodes, chemoradiotherapy 

(CRT) has become standard of care.
1
 Pathological complete response (pCR) rates 

typically lie between 15 and 20% after CRT depending on the radiotherapy dose given 

and the interval between CRT and surgery.
2,3

 The group of patients that develop a pCR 

is of particular interest, because they have a better prognosis
2
 and may be offered less 

invasive surgery
4
 or surgery may be completely omitted

5,6
. Therefore it would be an 

advantage if the pCR rate could be increased. There are several possible strategies, of 

which early response prediction during CRT, leading to treatment adaptation, is very 

attractive. 

In the past, clinical parameters as well as information from PET-scans before and 

during treatment have been found to be predictive for treatment outcome.
7-9

 A 

prediction model based on tumor length, cT- and cN-stage had a predictive 

performance of of 0.61 as expressed by the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve. A second model including maximal standardized 

uptake value (SUV) of the tumor derived from a PET-scan before the start of 

treatment, maximal tumor diameter as measured on PET-scan, tumor location and cN-

stage, resulted in an AUC of 0.68.
9
 PET-scan after 2 weeks of CRT has been shown to be 

very predictive for response (tumor regression grade (TRG) 1-2 vs TRG 3-5 according to 

Mandard).
8
  

It is attractive to consider the addition of blood biomarkers to these predictors, since 

samples can be collected easily, are relatively cheap to measure, and they contain 

information about different aspects of tumor biology.  Furthermore, they can be 

measured accurately and precisely using standardized methods. Reports on the 

predictive value of blood biomarkers are limited to studies mainly evaluating 1 or 2 

biomarkers.
7,10-13

 The most studied biomarker for response to CRT in rectal cancer is 

carcinoembryonic antigen (CEA) and one study analyzed the predictive value of 

osteopontin and interleukin-6. Based on these data combined with data of prognostic 

studies in colorectal cancer and our experience with a blood biomarker model in lung 

cancer,
14

 we decided to include 9 biomarkers. CEA and CA19-9 are related to tumor 

load, interleukin-6 and -8 (IL-6 and IL-8) and C-reactive protein (CRP) are markers of 

inflammation, lactate dehydrogenase (LDH) is a marker of cell death, carbonic 

anhydrase IX (CA IX) and osteopontin are hypoxia markers and 25-OH-vitamin D may 

induce growth arrest and apoptosis of tumor cells. 
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In this prospective study we tested the hypothesis that these biomarkers are helpful in 

the prediction of response to CRT in rectal cancer. 

Methods and materials 

Patient population 

We identified 295 patients who were treated with CRT with curative intent for locally 

advanced rectal cancer between January 2005 and December 2009.  All gave written 

informed consent to be included in a biobank protocol (NCT01067872). Nineteen 

patients were ineligible for different reasons (1 patient was treated with short course 

radiotherapy 5x5 Gy, 5 patients were not operated on and entered in a wait&see study 

so no ypTN stage could be determined, 2 patients underwent a TEM resection so no 

ypN-stage was available, 6 patients had metastases and were treated with palliative 

intent, 1 patient died during treatment, in 1 patient all biobank material was hemolytic 

and in 3 patients the PA report could not be retrieved), resulting in 276 patients for 

analysis. In 9 patients there were technical problems with the biomarker 

measurements, so that 267 patients were available for the biomarker analysis. Locally 

advanced disease was defined as a distal T3 tumor and/or N2 status and/or a mid- or 

upper-rectal tumor with a predicted circumferential resection margin <2 mm, or any T4 

tumor. Locoregional staging for clinical tumor and nodal stage was based on MRI. In 

198 patients for whom biomarkers were available a PETCT was made for radiotherapy 

planning. Treatment consisted of 28 fractions of 1.8 Gy on the primary tumor, 

mesorectum, presacral area and external iliac lymph nodes in combination with 

capecitabine 825 mg/m
2 

BID. Patients were operated on 8-10 weeks after the end of 

CRT. Pathology reports were collected from the referring hospitals.  

Blood samples 

Blood samples were collected before the start of treatment. Samples were processed 

and stored using a standard protocol. All biomarkers were measured in serum, except 

for osteopontin and CA IX, which were measured in EDTA plasma. Biomarker 

measurements were done in one single, certified laboratory, using commercially 

available kits. All samples were analyzed simultaneously. Measurements were 

performed using the following kits: CEA was measured using a solid-phase, two-site 

sequential chemoluminescent immunometric assay (Siemens Medical Solutions 

Diagnostics, LA, USA), IL-6 and IL-8 were determined with a solid phase, enzyme 

labeled, chemoluminescence sequential immunometric assay (Siemens Medical 
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Solutions Diagnostics, LA, USA).  (LDH (Beckman Coulter, Fullerton, CA), CRP (Beckman, 

Coulter Fullerton, CA) CA 19-9 has been determined on Brahms Kryptor (Brahms, 

ThermoFisher, Hennigsdorf, Germany) with a sandwich immuno-fluorescent assay.  25-

OH-Vitamine-D was measured with a commercially available radioimmunoassay (IDS, 

Frankfurt am Main, Germany). CA IX is measured by an enzyme-linked immunosorbent 

assay (Wilex (OncogenScience), Cambridge, MA, USA), and OPN was measured by an 

enzyme-linked immunosorbent assay (Quantikine Human Osteopontin Immuno assay; 

R&D Systems, Minneapolis, MN, USA). OPN, 25-OH-vitamin-D and CA IX were 

measured using manual methods in duplicate. All other biomarkers were measured in 

singletons. 

Statistical analysis 

Outcome after CRT was analyzed in 2 different ways: 1) pCR, defined as the absence of 

any tumor cells in the operative pathologic specimen, at the primary site, or in lymph 

node regions, versus non-pCR and 2) good responders, defined as ypT0-2N0, versus poor 

responders, defined as ypT3 and/or ypN1-2. Missing values were completed using 

expectation-maximization imputation. Correlations between biomarkers were 

analyzed by calculating Spearman’s rho. Because the biomarkers showed a skewed 

distribution, the Mann-Whitney U test was used to determine significant univariate 

predictors of response. Logistic regression analysis was used to identify the significant 

multivariate predictors of response. The next step was to combine blood biomarkers 

with clinical data and PET parameters. For this analysis clinical and PET-variables were 

selected manually, based on an earlier predictive model for pCR.
9
 The included clinical 

variables were tumor length, clinical T and N stage, all based on MRI. Included PET-

features were maximum SUV, pre-treatment metabolic volume and maximum 

diameter. The two latter variables were measured using a source-to-background ratio 

method as has been described earlier.
15

 ROC curves were constructed and the AUC 

was calculated. In order to approximate the true AUC and calculate confidence 

intervals bootstrapping (n=1000) was used. A perfect prediction model results in an 

AUC of 1.0, while an AUC of 0.5 indicates that response is predicted correctly in 50% of 

cases (i.e. as good as chance). Statistical analyses were performed using Matlab, 

release 2010b (The MathWorks, Natick, MA). 

Ethics 

The biobank study was conducted according to the Dutch law and approved by the 

local medical ethics committee. All patients gave written informed consent before 

collection of the blood samples. 
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Results 

The patient characteristics are shown in Table 5.1. The majority of patients had a 

tumor penetrating through the bowel wall and predicted positive lymph nodes on MR. 

In the total database 20.7% of patients developed a pCR and 47.1% of patients were 

classified as responder. Table 5.2 shows the results of the biomarker measurements 

for the different outcome groups, as well as the PET-parameters that were included in 

the model. In general lower serum levels for blood biomarkers were seen in the poor 

responding groups (except for 25-OH-vitamin-D).  Additional analysis (not shown in the 

table) revealed significant positive correlations between IL-6, IL-8, CRP and 

osteopontin and between CEA and CA19-9. 

 

Table 5.1 Patient characteristics (N = 276)  

Characteristic N [%] 

Age [years]   
median 65.8  

range 23.0 - 92.2  

Gender   

male 179 [64.9] 

female 97 [35.1] 

Clinical tumor stage (cT)   

2 26 [9.4] 

3 207 [75.0] 

4 43 [15.6] 

Clinical nodal stage (cN)   

0 47 [17.0] 

1 114 [41.3] 

2 115 [41.7] 

WHO performance index   

0 218 [79.0] 

1 53 [19.2] 

2 5 [1.8] 

Tumor length [cm]  

median 5.0  

range 2.0 - 13.0  

pCR (ypT0N0)   

no 219 [79.3] 

yes 57 [20.7] 

Good response (ypT012N0)   

no 146 [52.9] 

yes 130 [47.1] 
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Univariate analysis 

Univariate analysis indicated that CEA and osteopontin were significant predictors for 

pCR (p=.001, p=.012 respectively) and that CEA, IL-8 and osteopontin were significant 

predictors for response (p<.001, p<.001, p=.004 respectively) as shown in Table 5.3. 

Lower serum levels of these markers correlated with a higher chance of response to 

chemoradiation. Of the clinical parameters clinical N-stage was predictive for pCR 

(p=.026) and response (p=.001) in univariate analysis and tumor length (p=.02) and 

clinical T-stage (p=.004) for response only. The pre-treatment metabolic volume and 

maximum diameter based on PET were predictive for both outcome measures (p=.016 

and 0.009 for pCR and p=.006 and .005 for response respectively). 

 

Table 5.2 Biomarker levels and PET parameters (average ± standard deviation) compared for the 

subpopulations of pCR vs no pCR and good response vs no good response   

  pCR (ypT0N0) Good response (ypT012N0) 
  no yes no yes 

Biomarkers CEA 14.7 ± 28.4 8.7 ± 22.9 18.1 ± 33 8.5 ± 18.5 

(N = 267) IL-6 4.0 ± 8.4 2.9 ± 2.7 4.8 ± 10.1 2.7 ± 2.4 

 IL-8 15.8 ± 9 14.0 ± 7.4 17.3 ± 10 13.4 ± 6.4 

 LDH 181.3 ± 43.8 176.2 ± 33.9 181.9 ± 46.7 178.5 ± 36.1 

 CRP 11.5 ± 24.5 7.8 ± 8 13.8 ± 29.1 7.5 ± 9.2 

 CA 19-9 26.9 ± 29.1 25.1 ± 31.9 28.3 ± 28.8 24.6 ± 30.6 

 vitD-25 53.2 ± 20.9 55.5 ± 18.8 52.6 ± 22.4 54.8 ± 18.2 

 CA-9 282.5 ± 275 274.4 ± 302.9 282.0 ± 238.4 279.6 ± 320.9 

 OPN 79.2 ± 28.9 68.2 ± 16 81.6 ± 30.9 72 ± 21.3 

PET 

parameters 

SUVmax 15.3 ± 6.3 13.6 ± 5.2 14.3 ± 5.6 15.6 ± 6.7 

(N =198) SUVmean 8.2 ± 3.1 7.4 ± 2.7 7.8 ± 2.7 8.4 ± 3.3 

 MTV [cc] 33.8 ± 33.5 25 ± 20.2 37.6 ± 39.1 25.7 ± 17.6 

 Max diam [cm] 6.5 ± 1.9 5.8 ± 1.6 6.7 ± 2.1 5.9 ± 1.4 

 

Multivariate biomarker model 

Table 5.3 shows the results of the multivariate analysis for the total set of parameters 

as well as a selection of biomarkers and clinical and PET-parameters. In the complete 

set of parameters IL-8 was the only significant predictor for response (p=.05), while 

osteopontin was borderline significant for pCR prediction (p=.056). As a next step a 

manual selection of the most promising predictors was made. Blood biomarkers that 

had a significant predictive value in either univariate or multivariate analysis were 

included and IL-6, although not significant, was included because it had a predictive 

value in a prognostic model for lung cancer.
14

 In this selection of biomarkers consisting  
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Figure 5.1 ROC curves for prediction models for pCR and response including biomarkers and clinical variables 

(A and A*) and biomarkers, clinical variables and PET-data (B and B*) and resulting AUC for the different 

prediction models (C and C*).  
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of CEA, IL-6, IL-8 and osteopontin, CEA was the only significant predictor of pCR in 

multivariate analysis (p=.019) and CEA and IL-8 significantly predicted response 

(p=.029, p=.021 respectively). Including all biomarkers resulted in an AUC of 0.65 (95% 

CI 0.57-0.73) for pCR prediction and 0.68 (95% 0.61-0.75) for response prediction. 

Table 5.3 shows the odds ratios for all tested biomarkers as well as the clinical and 

PET-based parameters.  

Combination of blood biomarkers with clinical and PET data 

The biomarker selection was then added to the parameters that were predictive for 

response in an externally validated prediction model based on clinical and PET-scan 

data.
9
 The final model consisted of eight variables: tumor length, clinical T stage, 

clinical N stage, CEA, IL-6, IL-8, osteopontin, and maximal SUV on PET before start of 

treatment. In the current dataset tumor length was not a significant predictor for 

response to chemoradiation, but cT and cN were. Maximal SUV was only predictive for 

response, not for pCR. In Figure 5.1 the ROC curves for the combined models based on 

biomarkers and clinical data (Figure 5.1A and 5.1A*) and biomarkers, clinical data and 

PET information (Figure 5.1B and 5.1B*) are depicted, as well as the resulting AUCs 

Figure 5.1C and 5.1C*). The model based on biomarkers only resulted in an AUC that 

was more or less comparable to the clinical model.  

 
 

Figure 5.2 Nomogram for response prediction. A score for each predictor can be read out at the top scale 

(Score). All summed scores (Sum of scores scale) can be converted directly to the probability of response.  
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The AUC of the clinical model was 0.64 (95% CI 0.56-0.71) for pCR and 0.66 (95% CI 

0.60-0.72) for response. Combining clinical parameters and biomarkers (AUC 0.69 (95% 

CI 0.62-0.77) for pCR and 0.73 (95% CI 0.65-0.79) for response) made the model 

stronger than the model based on biomarkers only or clinical data only. This effect was 

most pronounced for prediction of response. Addition of information obtained from a 

PET-scan acquired before the start of treatment lead to strongest models for the 

prediction of both pCR and response, resulting in AUCs of 0.81 (95% CI 0.73 - 0.88) for 

pCR and 0.78 (95% CI 0.71-0.85) for response.  

The data of the combined prediction model were used to build a hypothesis generating 

nomogram, which is depicted in Figure 5.2. 

Discussion 

To the best of our knowledge this is the first prospective study evaluating the 

predictive value of a broad range of blood biomarkers analyzed in a standardized way 

for response prediction to CRT in rectal cancer. CEA turned out to be a significant 

predictor for pCR and CEA and IL-8 were predictive for response. Including these blood 

biomarkers in models based on clinical parameters and PET-based parameters resulted 

in an increased performance of the prediction models. 

Osteopontin is a glycophosphoprotein secreted by different cell types, that has been 

shown to be associated not only with malignancies but also with acute and chronic 

inflammatory processes. It influences adhesion, migration, invasion, chemotaxis and 

cell survival
16

 and is a marker of tumor aggressiveness and early progression
17

. 

Although the role of osteopontin as a prognostic factor has been studied extensively in 

a broad range of solid tumors, only one study looked at the predictive value of 

osteopontin levels and response to CRT in rectal cancer.  Debucquoy et al. found an 

association between lower osteopontin levels and better response in 30 rectal cancer 

patients, which is in line with our findings, but this did not reach statistical 

significance.
13

 In our patient group it was a significant predictor in univariate analysis, 

but it lost significance in multivariate analysis. This could be explained by the fact that 

osteopontin and IL-8 showed a positive correlation. 

CEA is an antigen produced by the normal fetus and only in very low concentrations by 

normal cells of the adult body. In the tumor environment it plays a role in intercellular 

recognition and attachment. It has been shown to be of prognostic value in colorectal 

cancer independent of clinical stage and differentiation grade.
18

 Although preoperative 

CEA levels cannot be used to make treatment decisions in colorectal cancer, they 

consistently have a prognostic value. Patients having a CEA level >5 μg/l have a 
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significant worse disease free and overall survival than patients with lower CEA levels. 

Three studies looked at the predictive value of CEA levels for response to CRT in rectal 

cancer. Das et al. studied a group of 562 rectal cancer patients treated with CRT.
7
 In 

their patient group CEA was only predictive for pCR in univariate analysis. However, 

they chose to dichotomize CEA levels (below and above 2.5 μg/l), while in our model 

CEA was incorporated as a continuous variable. Yoon et al. did an analysis in a group of 

351 rectal cancer patients.
12

 In multivariate analysis CEA levels ≤5 μg/l were predictive 

for downstaging and complete regression. Park et al. did a retrospective analysis in 352 

rectal cancer patients.
11

 CEA was analyzed as a continuous variable and had a 

significant predictive value for responders vs. non-responders. A higher CEA was an 

independent predictor of poor response to CRT and a worse disease free survival.  

IL-8 is a pro-inflammatory chemokine that plays a role in attracting neutrophils. 

Through the activation of phosphatidyl-inositol-3-kinase (PI3-K) and phospholipase C it 

can activate the Akt/mTOR and Raf/Mek/Erk pathways, leading to the promotion of 

angiogenesis, proliferation and survival and the migration of cancer cells.
19

 

Polymorphisms in IL-8 have been described to be related to an increased risk of 

recurrence in rectal cancer
20

 and the risk of nodal involvement,
21

 indicating a possible 

relationship with tumor biology of IL-8 in rectal cancer. However, until now there are 

no reports of a potential value of IL-8 in the prediction of response to CRT.   

In this study response was measured in two ways: pCR and ypT0-2N0. Of these 2 

endpoints pCR is the most robust, although the definition of pCR can be difficult. In this 

cohort routine pathological examination was performed and reported in a 

standardized way. A recent comparison between routine pathological examination and 

additional step sections in resection specimens showing no viable tumor cells at initial 

examination, showed no differences in outcome.
22

 Furthermore, pooled analysis of a 

large series of patients included in different studies, showed a clear prognostic value of 

pCR after CRT for long-term outcome, even if pooled from different studies, indicating 

that pCR as scored in routine pathology procedures is a valuable endpoint.
2
 The most 

frequently used method to distinguish responders from non-responders is by means of 

a tumor regression grade (TRG). However, for this cohort TRG was not scored routinely 

and we chose to use ypT0-2N0 as definition of response. It makes sense to predict the 

group of good responders, because they could be suitable for less invasive surgery, like 

transanal resection or TEM-surgery. 

Blood biomarkers give information about tumor biology in an indirect way. A more 

direct insight can be gained from genetic alterations within the tumor. An overview of 

these molecular biomarkers is given in the review of Kuremsky et al.
23

 A possible 

problem related to molecular biomarkers is the heterogeneity in tumors, making it 

necessary to collect a representative sampling of tumor material and the invasive 
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procedure needed to collect material. Blood biomarkers have the advantage that they 

are easy to collect and that they provide information about the “average” tumor. This 

makes blood biomarkers useful for daily practice. However translation of the results of 

this study should be done cautiously, because all biomarkers in this study were 

measured in a standardized way in one single laboratory, using the same kits. Less 

thorough and sensitive procedures might influence negatively the added value of 

biomarkers. 

Ideally response prediction takes place before the start of a treatment, so that a 

patient can be offered the treatment with the highest success rate. In the case of 

response prediction for rectal cancer, clinical factors and pre-treatment PET-scan have 

been shown to have predictive value before the start of treatment,
9
 but the 

performance of predictive models based exclusively on pre-treatment data typically 

lies between 0.65 and 0.70. The predictive value of biomarkers only is in the same 

range, but the combination of biomarkers and other pre-treatment data results in a 

stronger prediction model.  

The data presented here can be seen as a proof of principle that biomarkers contain 

predictive information for rectal cancer, but external validation of this prediction 

model is necessary for a better estimation of the performance and reproducibility of 

the model.
24

 For use in clinical practice a stronger performance is desirable. A 

possibility to strengthen the predictive model is to incorporate response data obtained 

early during CRT. If this time point lies early in the treatment course, it is still possible 

to modify treatment. For PETCT it has already been shown that changes in glucose 

metabolism after 2 weeks of CRT resulted in a stronger prediction model.
8
 An 

intriguing question is whether early changes in blood biomarker levels during CRT can 

further enhance the performance of this model. This question will be subject of future 

research. 

In conclusion, pre-treatment CEA levels help to predict pCR after CRT for rectal cancer 

and CEA and IL-8 levels are helpful in the prediction of response to CRT. These blood 

biomarkers have added value to earlier published prediction models based on pre-

treatment clinical- and PET-data and can be used in decision support systems for 

tailored therapy.
25
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Abstract 

Purpose 

The purpose of this study was to develop accurate models and nomograms to predict 

local recurrence, distant metastases and survival for patients with locally advanced 

rectal cancer treated with long-course chemoradiotherapy (CRT) followed by surgery 

and to allow for a selection of patients who may benefit most from postoperative 

adjuvant chemotherapy and close follow-up.  

 

Methods and materials 

All data (N = 2795) from the five major European clinical trials for rectal cancer were 

pooled and used to perform an extensive survival analysis and to develop multivariate 

nomograms based on Cox regression. Data from one trial was used as an external 

validation set. The variables used in the analysis were sex, age, clinical tumor stage, 

tumor location, radiotherapy dose, concurrent and adjuvant chemotherapy, surgery 

procedure and pTNM-stage. Model performance was evaluated by the concordance 

index (c-index). Risk group stratification was proposed for the nomograms.   

  

Results 

The nomograms are able to predict events with a c-index for external validation of 

local recurrence (LR; 0.68), distant metastases (DM; 0.73) and overall survival (OS; 

0.70). Pathological staging is essential for accurate prediction of long-term outcome. 

Both preoperative CRT and adjuvant chemotherapy have an added value when 

predicting LR, DM and OS rates. The stratification in risk groups allows significant 

distinction between Kaplan–Meier curves for outcome. 

 

Conclusions 

The easy-to-use nomograms can predict LR, DM and OS over a 5-year period after 

surgery. They may be used as decision support tools in future trials by using the three 

defined risk groups to select patients for post-operative chemotherapy and close 

follow-up (http://www.predictcancer.org). 
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Introduction  

The improvement in locoregional control reported in recent randomized studies 

resulting from the combination of preoperative chemoradiotherapy (CRT) and 

standardized surgical technique (total mesorectal excision, TME) in locally advanced 

resectable rectal cancer has not been associated with improved survival.
1-5

 In these 

trials, the incidence of distant metastases (DM) was 24%-28%, although local 

recurrence (LR) rates were only 7%-10%. New treatment strategies must therefore 

include focus on distant control.  

Randomized trials showed that certain patient subsets benefit from postoperative 

adjuvant chemotherapy after preoperative CRT, but the total patient group showed no 

reduction in DM or improvement in survival.
1,6

 A recent European Consensus 

Conference failed to reach consensus about the benefit of postoperative 

chemotherapy after CRT because of insufficient evidence.
7
 

To improve survival of patients with locally advanced rectal cancer (LARC), a reduction 

of the current 25% DM rate is needed. However, treating all patients with 

postoperative chemotherapy means potential exposure to unnecessary chemotherapy 

for the remaining 75%.
7
 An accurate predictive nomogram would therefore be greatly 

beneficial. Our primary goal was to develop a nomogram that would predict distant 

metastasis rate and survival for patients with LARC who are treated by neoadjuvant 

long-course CRT, and to help select patients who may benefit from the addition of 

postoperative adjuvant systemic treatment.   

The optimal follow-up recommendations after radical resection for colorectal cancer 

are still undefined, with little level 1 evidence.
7
 Many cohort and case-control studies 

have supported the effectiveness of follow-up, but few randomized controlled trials 

have correlated follow-up and cancer mortality.
8,9

 Identifying subgroups of patients at 

different risks for LR and DM can help identify the appropriate timing and imaging 

techniques in a more individualized fashion. Thus, our secondary goal is to develop a 

nomogram for local recurrence and distant metastases to aid selection of follow-up 

type and intensity based on an individual’s risk of both relapse types.  

There are many studies in the literature in which the development of nomograms 

leads to a successful application for oncology prognostics. Nomograms for predicting 

follow-up outcome for colorectal cancer are scarce.
10-12

 Providing nomograms based 

on five randomized trials, also allows classification of patients according to risk group 

to define treatment arms in future randomized trials. 
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Methods and materials 

Study population 

The mathematical models were developed by using data (N = 2795) from five large 

European randomized clinical trials for LARC (Table 6.1). These trials evaluated 

different treatment schemes with similar inclusion criteria and similar accrual times 

(1992-2003). All patients received preoperative radiotherapy (RT, 34–39 days of 

treatment time on average; 1.8 Gy per fraction) and surgery (36–47 days after the end 

of radiotherapy on average) and the fluorouracil (FU)-based adjuvant chemotherapy 

was the same in all patients who received it. There was heterogeneity for RT dose, 

surgery procedure and the use of preoperative and postoperative chemotherapy 

(chemo). Metastases at diagnosis were an exclusion criterion for all datasets. Patients 

with local excision were also excluded because the group was too small (24 patients) 

to include statistically.  

 

Table 6.1 Characteristics of the five European randomized trials (N = 3458) for training the prediction 

models. *: Only the pre-operative long-course radiotherapy arm was used for this study. Abbreviations: 

WHO: World Health Organization performance index, arv: anorectal verge.    

Name Study design Inclusion criteria Accrual Pts Ref 

EORTC  Preop. RT 

 Preop. CRT 

 Preop. RT + postop. chemo 

 Preop. CRT + postop. chemo 

 T3 or resect.T4M0 

 No history of cancer 

 Age <80 

 WHO 0–1 

 Tumor within 15cm arv  

‘93–‘03 

 

1011 1 

French   Preop. RT 

 Preop. CRT 

 T3,T4,M0 

 Age<75  

 WHO 0–1 

‘93–‘03 733 3 

German  Preop. CRT 

 Postop. CRT 

 cT3-4, or cN+ 

 No history of cancer 

 Age<75  

 Tumor within 16cm arv  

‘95–‘02 823* 18 

Polish  Preop. RT (5x5 Gy) 

 Preop. CRT (50.4 Gy) 

 cT3–4,resectable tumor 

 Age<75 

 WHO 0–2 

 No sphincter involvement 

‘99–‘02 312* 2,39 

Italian  Preop. CRT 

 Preop. CRT + postop. chemo 

 cT3–4 

 No history of cancer 

 Age<75  

 Tumor within 15cm arv 

‘92–‘01 579 38 
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The variables evaluated at diagnosis include sex, age at the date of random 

assignment, clinical tumor (cT) stage and tumor location. Location was categorized on 

the basis of the tumor distance measured from the anorectal verge (arv): low, less than 

5 cm; mid, 5 to 10 cm; high: more than 10 cm. Clinical nodal stage (cN) was not 

included in the multivariate models, because of its absence in certain datasets (69%) 

and the low reliability of the imaging-based nodal staging.
7
 Treatment factors included 

in the analysis were RT dose (<45 Gy, 45 Gy and >45 Gy), administration of concurrent 

chemotherapy (yes/no), the surgical procedure (low anterior resection [LAR] and 

abdominoperineal resection [APR]) and administration of adjuvant chemotherapy 

(yes/no). Data from pathology included tumor (ypT) and nodal (ypN) stages. Predicted 

outcomes were the presence of LR, DM and overall survival (OS), accompanied by 

corresponding time-to-event in months. LR was defined as tumor in the pelvis or 

perineum, or in the anastomosis as diagnosed by histology. DM was defined as 

evidence of a tumor in any other area given by at least two imaging exams. All causes 

of death were included.  

Statistical analysis 

To compare the contributions of the evaluated factors, all variables were standardized 

by subtracting the mean and dividing by the standard deviation. Any missing covariate 

values (for each covariate less than 10%) were imputed by expectation-maximization 

(EM) imputation.
13

 First, we provided pooled Kaplan-Meier estimates of 5- and 10-year 

event rates and compare curves for different variable values by using log-rank tests.
14

 

Secondly, the data were split into a training set and an external validation set. The 

Italian trial was used for external validation because it is the most recent trial reported. 

With the ratio of training (N=2242) and validation set size (N=553) it is expected that 

this split will provide balanced statistical power to find and evaluate the predictors.
15

  

An additional property of the Italian patient cohort is that all patients received long-

course RT and chemotherapy (with optional adjuvant chemotherapy) which is 

currently the standard treatment for LARC.  

The nomograms focus on 5-year event rates, as well as the reports of the pooled 

randomized trials, and the majority of the patients were followed during this period 

(54% to 74%). Multivariate analyses were performed by using the Cox proportional 

hazards model. Hazard ratios were calculated from the model coefficients. The model 

performance for predicting outcome was evaluated by calculating the concordance 

index (c-index), which is a generalization of the area under the curve (AUC) of the 

receiver operating characteristic (ROC) curve and can be applied to continuous 

outcome and censored data.
16

 The maximum value of the c-index is 1.0, indicating a 
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perfect discrimination, whereas 0.5 indicates a random chance to correctly 

discriminate outcome with the model.  

 

Significant predictors for outcome were selected by training the Cox model (training 

data) and selecting the variables that have a significant effect (p<.05). The models 

were trained again with the found predictors as input. In these reduced models, all 

predictors were still significantly contributing. All model performances were calculated 

by using bootstrapping, in which the evaluated dataset was tested 1000 times, and 

each time, the data were randomly resampled (patients can occur in the dataset more 

than once). The model output was converted into a nomogram.
17

  

Three risk groups were defined on the basis of the estimated probability for each event 

using thresholds on the basis of clinical expertise from literature. For LR, the thresholds 

chosen were 8%, representing the value of the LR rates in the CRT arms of European 

Organisation for Research and Treatment of Cancer (EORTC) 22921
1
, Fédération 

Francophone de Cancérologie Digestive (FFCD) 9203
3
 and CAO/ARO/AIO 94 [Working 

Group of Surgical Oncology/ Working Group of Radiation Oncology/Working Group of 

Medical Oncology of the Germany Cancer Society]
18

 studies and 20% in the surgery 

alone arm of the Dutch TME trial for stage III patients.
4
 For DM and OS, the probability 

thresholds were 15% and 25%, based on DM-free survival in a recent pathologic 

complete response (pCR) pooled analysis
19

 and in the CRT randomized studies
1,3,18

 

respectively. The model was calibrated using the Wald statistic for the calibration slope 

with the three risk groups as bins on the validation dataset and calibration-in-the-

large.
15

 The Cox model and nomogram algorithm were implemented by using Matlab 

version 7.1 (MathWorks, Natick MA) and Kaplan-Meier analyses were performed in 

SPSS version 15.0 (SPSS, Chicago IL). 

Results 

Follow-up analysis  

Of the 3458 patients accrued in the five randomized trials (Table 6.1), 2795 had pre-

operative long-course RT with or without chemotherapy and were eligible for analysis 

(clinical metastasis stage of 0; surgery; known follow-up time). Event rates at 5 years of 

follow-up were 12.9% for LR, 30.8% for DM and 30.4% for OS. Median follow-up times 

were 52.4 months for LR, 47.4 months for DM and 55.2 months for OS. Table 6.2 

(Kaplan–Meier analyses) shows that sex and age have a significant impact only on OS 

time, although tumor location affects both DM and OS. The variables clinical stage,  
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Table 6.2 Event free rates at 5- and 10-years for the complete randomized pooled dataset, stratified for each 

variable. Significant differences between the stratified Kaplan–Meier curves are indicated by the p-value. 

* Significant overall difference: p<.05 

 

   Local control Distant control Overall survival 
  N 5y 10y p 5y 10y 

yrs 

p 5y 10y p 

 Total 2795 87.1 85.7 - 69.2 65.8 - 69.6 57.3 - 

C
lin

ic
al

 d
ia

gn
o

si
s 

Sex           
Male 1961 87.4 85.1 

.466 
67.9 64.8 

.138 
67.6 54.1 

<.001* 
Female 843 88.7 87.0 72.1 68.1 74.1 64.9 

Age [years]           

<50 379 84.5 83.9 

.170 

68.0 64.5 

.191 

71.9 63.1 

<.001* 
50–60  751 86.9 85.9 70.1 66.6 72.9 65.2 

60–70 1135 88.7 85.4 67.3 64.5 67.0 54.6 

>70 539 89.8 87.4 72.8 68.3 68.8 46.9 

Tumor loc.           

Low 953 86.0 84.8 
.127 

64.3 60.1 
.001* 

64.7 52.6 
.001* Mid 1461 88.2 85.4 70.9 68.1 71.5 60.8 

High 369 90.8 88.6 75.4 72.5 74.3 55.6 

cT-stage           

2 18 94.4 94.4 
<.001* 

65.8 65.8 
.134 

83.0 83.0 
<.001* 3 2228 89.0 87.0 70.1 67.0 71.3 59.9 

4 275 77.5 77.5 64.3 62.0 56.7 39.2 

cN-stage           

0  309 93.2 92.6 
.776 

78.4 767 
.009* 

77.6 74.4 
.006* 

1+2 544 93.6 89.6 71.5 68.4 73.7 62.1 

cStage           

II 733 94.4 92.3 
.003* 

75.4 73.3 
.007* 

76.3 68.7 
.001* 

III 57 83.5 83.5 63.2 55.6 64.8 43.4 

Tr
e

at
m

e
n

ts
 

RT dose[Gy]           
<45 50 84.3 84.3 

.019* 
60.3 56.0 

.268 
53.1 39.2 

.001* 45  2205 86.7 85.4 68.9 65.7 68.3 56.6 

>45 547 92.2 87.6 70.8 66.8 75.3 61.5 

Conc.chemo           

No 868 81.1 80.2 
<.001* 

66.2 63.2 
.033* 

66.6 52.2 
.019* 

Yes 1933 90.7 88.2 70.5 67.0 70.8 59.2 

Surg. proc.           

LAR 1600 91.6 89.1 
<.001* 

74.0 70.9 
<.001* 

76.2 65.0 
<.001* 

APR 1071 84.6 83.2 63.3 59.8 63.2 49.0 

Adj. chemo           

No 1209 85.9 84.9 
.020* 

68.3 65.5 
.404 

66.1 53.1 
<.001* 

Yes 1572 89.2 86.6 70.0 66.3 72.3 60.4 

P
at

h
o

lo
gy

 

ypT stage           
0  299 96.7 94.5 

<.001* 

85.1 80.4 

<.001* 

82.2 71.5 

<.001* 
1+2 1008 93.7 92.0 81.4 78.6 80.6 69.8 

3 1329 83.0 80.8 57.9 54.7 62.1 48.0 

4 74 66.2 66.2 50.7 46.1 40.2 35.9 

ypN stage           

0  1879 91.3 89.6 
<.001* 

79.0 75.9 
<.001* 

77.9 65.7 
<.001* 

1+2 833 80.6 76.8 47.6 44.2 53.1 40.2 
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concurrent chemotherapy, surgical procedure, ypT-stage and ypN-stage have 

significant impact on all outcomes in this analysis. The clinical tumor (cT) stage, RT 

dose and adjuvant chemotherapy have the same impact, although not for DM. 

Pathologic staging seems essential in further nomogram development (p<.001 for all 

outcomes). The effects of all four different treatments on outcome (Figure 6.1) are 

significant, but RT dose and adjuvant chemotherapy do not have a significant effect on 

distant metastasis rates.  

Nomograms 

For the development of the nomograms, all patients in the training dataset were 

included (N = 2242). Some predictive variables in the Kaplan-Meier analysis (Table 6.2) 

were not significant anymore in the multivariate models (Table 6.3). Local recurrence 

prediction performed with a c-index of 0.68, with a 95% confidence interval (CI) for 

external validation of 0.59–0.76. For distant metastasis, the final model’s c-index was 

0.73 (95% CI: 0.68-0.77). The nomogram for OS had a c-index of 0.70 (95% CI: 0.65-

0.74). These validation performances are not significantly lower than the performances 

on the training dataset, which makes overfitting by the model less evident. 

The resulting nomograms (Figure 6.2) are able to estimate outcome probability by 

assigning a score (upper scale “Score”) to each predictor value. The sum of these 

scores corresponds to an event probability (bottom two scales). In all nomograms, 

pathologic staging (ypT and ypN) is the most important factor. Kaplan-Meier estimates 

of the event rates over time for the validation dataset showed statistically different 

outcomes for the three proposed risk groups (Figure 6.3); p=.010 for LR, p<.001 for DM 

and p<.001 for OS. Model calibration was good when applied to the training data, but 

never significant. In the calibration for external validation it appeared that probabilities 

were slightly overestimated by the model (LR, 6.4%; DM, 5.7%; OS, 3.7%). Calibration-

in-the-large (total average probability) was acceptable for external validation (3.0% - 

5.5% probability differences). 
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Figure 6.1 Kaplan–Meier curves stratified for the treatment factors: radiotherapy dose, concurrent 

chemotherapy, surgery procedure and adjuvant chemotherapy. Exact event rates and p-values are listed in 

Table 6.2. Dashed line indicates 60 months of follow-up. 
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Table 6.3 Model development of five-year outcome: multivariate analyses (Cox proportional hazards 

regression, hazard ratio HR with confidence intervals and p-value), to determine the final predictors for the 

nomograms. The c-index (mean and confidence interval) for the training and external validation dataset are 

given for the derived nomograms as a performance measure.  

$ Hazard ratios are calculated in the following framework: sex (female vs male), cT-stage (cT4 cT12), tumor 

location (high  low), radiotherapy dose (>45 Gy  < 45 Gy), concurrent chemotherapy (yes vs no), surgery 

procedure (APR vs LAR), pT-stage (pT4 pT0), pN-stage (pN2 pN0), adjuvant chemotherapy (yes vs no). 

Age is continuous. 

* p-value < .05, selected as predictor for nomogram   

 

  Cox regression Nomogram 

 Variable Hazard ratio (C.I.) $ p-value Performance (c-index) 

Lo
ca

l r
e

cu
rr

e
n

ce
s 

Sex 0.98 (0.87 - 1.10) .703 

Training: 0.71 

95% CI: 0.67– 0.74 

  

Validation: 0.68 

95% CI: 0.59 – 0.76  

Age 0.87 (0.78 - 0.97) .016* 

cT-stage 1.18 (1.06 - 1.31) .002* 

Tumor location 0.97 (0.84 - 1.12) .644 

RT dose 0.98 (0.85 - 1.12) .732 

Conc. chemo 0.81 (0.72 - 0.91) .001* 

Surgery procedure 1.15 (1.00 - 1.33) .057 

pT-stage 1.64 (1.38 - 1.95) <.001* 

pN-stage 1.26 (1.13 - 1.40) <.001* 

Adj. chemo 0.81 (0.72 - 0.92) .001* 

D
is

ta
n

t 
m

e
ta

st
as

es
  

Sex 0.94 (0.87 - 1.01) .100 

Training: 0.71 

95% CI: 0.69 - 0.74 

  

Validation: 0.73 

95% CI: 0.68 - 0.77 

Age 1.00 (0.93 - 1.08) .941 

cT-stage 0.99 (0.91 - 1.06) .723 

Tumor location 0.92 (0.84 - 1.00) .062 

RT dose 0.95 (0.88 - 1.03) .193 

Conc. chemo 1.05 (0.97 - 1.13) .238 

Surgery procedure 1.12 (1.03 - 1.23) .010* 

pT-stage 1.42 (1.28 - 1.57) <.001* 

pN-stage 1.54 (1.44 - 1.64) <.001* 

Adj. chemo 0.90 (0.83 - 0.97) .006* 

O
ve

ra
ll 

su
rv

iv
al

 

Sex 0.87 (0.81 - 0.94) .001* 

Training: 0.68 

95% CI: 0.66 – 0.71 

  

Validation: 0.70 

95% CI: 0.65 – 0.74 

Age 1.13 (1.05 - 1.22) .001* 

cT-stage 1.13 (1.06 - 1.21) <.001* 

Tumor location 0.98 (0.90 - 1.07) .710 

RT dose 0.91 (0.85 - 0.98) .016* 

Conc. chemo 1.04 (0.97 - 1.12) .302 

Surgery procedure 1.18 (1.08 - 1.28) <.001* 

pT-stage 1.33 (1.21 - 1.46) <.001* 

pN-stage 1.35 (1.26 - 1.44) <.001* 

Adj. chemo 0.82 (0.76 - 0.88) <.001* 
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Figure 6.2 Nomograms developed for five year prediction of (A) local recurrence, (B) distant metastases, (C) 

overall survival. Each variable value is assigned a score, and the sum of scores is converted to a probability in 

the lowest scale. Calculated probabilities are assigned to a risk group (low, medium, high).  
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Discussion 

We have developed prediction models for LR, DM and OS for LARC patients based on 

clinical, treatment and pathological data. Our analysis is based on individual patient 

data accrued in five European randomized trials that tested preoperative CRT against 

preoperative RT or postoperative CRT and adjuvant chemotherapy. By pooling the 

long-course preoperative CRT/RT arms, heterogeneity in the data allowed the models 

to support decision making in daily practice. However, further external validation of 

our nomograms by using contemporary patient series is needed.    

Distant metastases prediction 

Our primary goal was to develop a nomogram to predict metastasis rates and select 

patients for postoperative adjuvant chemotherapy. Adding adjuvant chemotherapy to 

our pooled analysis improved the DM figures in the metastasis nomogram, but the 

benefit is small. The best model for DM resulted in the following predictors: ypN-stage, 

ypT-stage, surgery procedure, and adjuvant chemotherapy (in order of relevance).  
 

According to many studies, patients who achieve a pathologic complete response 

(ypT0N0) after preoperative CRT have improved local control rates and improved 

metastases-free survival rates.
19-21

 However, single randomized trials fail to confirm 

this, possibly because of lack of statistical power.
1,2

 Our analysis shows that responding 

patients had a lower risk of developing metastases. 

Pathological studies of the circumferential resection margins (CRMs) at the level of the 

anorectal junction and anal canal show a high risk of tumor involvement. The quality of 

surgery in the levator/anal canal area below the mesorectum varies between 

surgeons, because they may operate in different surgical planes.
22

 The higher risk of a 

residual tumor after an APR related to the more distal location of these cancers could 

partly explain the impact of the surgical procedure and tumor location in our 

nomogram. Prospective studies on the reliability of the levator plane (cylindrical APR) 

in reducing positive CRMs are currently under clinical evaluation.
23-25

 

Although the estimated probabilities by the nomograms are on a continuous scale, we 

proposed three risk groups of DM. Different treatment strategies could be followed for 

each of these categories (wait and see, 5FU-based regimens and combination of more 

drugs), and tailored schedule could be randomly tested for any category to test the 

value of multidrug schedules.  
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Figure 6.3 Kaplan–Meier curves of risk group stratification for A. Local control, B. distant control and C. 

overall survival for validation dataset (N=793). All curves are statistically different (pooled log-rank test,   = 

0.05). 
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Overall survival prediction  

Survival is more dependent on the incidence of DM (24% - 28%) than LR rates (7% - 

10%). The most predictive model for survival was based on predictors similar of those 

for LR and DM: ypT-stage and ypN-stage were most relevant, followed by cT-stage, 

age, adjuvant chemo, surgery procedure, RT dose and sex. Although 50% - 90% of cT4 

patients will be able to undergo a resection with negative margins, depending on the 

degree of tumor fixation, many still develop a LR as was observed in the univariate 

analysis and in different phase II studies.
26-28

 The selected randomized trials did not 

report the CRMs and the mesorectal fascia involvement before treatment, so the cT3 

stage could not be stratified. The few cT1-2 patients were accrued in the randomized 

trials for the evidence of involved nodes at the staging work-up. 

Biologic responses and compliance to cancer treatment seem to change with age: 

elderly patients showed a worse survival than younger patients, even if the LR 

nomogram supported less aggressive presentation, with lower LR rates.
29

 In any case, 

even if the randomized studies did not primarily select elderly patients, they 

demonstrated less favorable compliance with respect to survival when compared with 

patients in good physical and mental condition, as was also confirmed recently (short-

course preoperative RT and TME).
30

  

The RT dose affected survival and was related to a better local control (Table 6.2). The 

association between higher RT dose and better local control and worse sphincter 

function has been well recognized, although the combination of different radiation 

doses with concomitant chemotherapy means this topic continues to be debated.
31

  

Better survival in females was observed in a postoperative trial of the National Surgical 

Adjuvant Breast and Bowel Project (NSABP) group
32

 some time ago, but it barely 

reached significance in any subsequent randomized preoperative and postoperative 

randomized trials. In this analysis, survival associated more favorably with the female 

gender. Understanding of this difference is worthy of further investigation.  

Local recurrence prediction  

Our secondary goal was to develop a nomogram for LR to aid selection of follow-up 

type and intensity. A recent consensus conference recommended the selection of 

patients for individualized intensified follow-up, on the basis of age and tumor stage.
7
 

The best predictive model for LR was based on ypT-stage, cT-stage, age, ypN-stage, 

concomitant and adjuvant chemotherapy.  

Pathological downstaging remains the most relevant predictor of a low risk of LR. 

Concomitant chemotherapy has confirmed its contribution to ameliorating local 

control rates as shown in the EORTC 22921
1
 and FFCD 9203

3
 randomized trials. 
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Pending the long-term outcome of oxaliplatin-based randomized trials
33,34

 at present, 

infusional 5FU and oral fluoropyrimidines remain the standard agents to combine with 

preoperative RT.
7
 

5FU-based adjuvant chemotherapy reduced the risk of LR in the randomized dataset. 

To improve survival, the effect of this modality on LR incidence seems to be more 

important than for DM (Figure 6.1). This observation was also reported by a recent 

multicenter retrospective analysis.
35

 Thus, the nomograms can help clinicians 

recommend adjuvant chemotherapy according to the improvement in local control 

rather than for DM prevention.  

 

The nomograms allow identification of the contribution of adjuvant chemotherapy to 

the estimated outcome risk for any patient. When a responder patient (ypT0N0) of age 

65 years after LAR is compared with a non-responder patient (ypT3N1) after APR, the 

nomogram shows the small contribution of adjuvant chemotherapy for responders: 

For LR, the risk decreases from 3% to 2% for responders and from 20% to 12% for non-

responders. For DM, the risk decrease is 11% to 9% for responders and 51% to 36% for 

non-responders. For OS, the risk decreases from 11.5% to 9.5% for responders and 

68% to 57% for non-responders.  

 

Comparing our nomograms to the nomogram for recurrence in colon cancer from the 

Memorial Sloan-Kettering Institute,
10

 reveals that the number of nodes ratio is found 

as the most important factor in the colon nomogram, which was only recently 

proposed for rectal cancer.
36

 The addition of preoperative carcinoembryonic antigen 

(CEA) level is predictive, as reported earlier for rectal cancer.
37

 Despite the fact that 

the colon nomogram is based on retrospective data and is not validated, sample size is 

significant, and the model’s performance of 0.76 shows that these factors may be 

useful for further model development. The other nomogram by Massacesi et al
12

 

predicting survival, also confirms the importance of tumor response and, in addition, 

has CEA levels, number of metastatic sites and overall performance status.  

Statistical analysis  

The proposed nomograms have reliable c-indices for external validation (LR, 0.68; DM, 

0.73; OS, 0.70). This performance is good for clinical assistance, but is still not optimal. 

Adding other knowledge domains to the prediction model, such as traditional and 

molecular imaging, tumor biology and patient immune competence, is expected to 

increase model accuracy. Access to population-based registries for further validation 

will also increase model reliability. At present, the models represent a way to manage 
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subgroup-level evidence from the available randomized trials by number and to 

support the design of tailored studies according to different risk categories. 

This analysis did not overcome all uncertainties related to surgical quality control, 

treatment heterogeneity, missing values, unknown treatment compliance, and the 

unknown salvage treatment required for any pooled analysis. The trial effect was 

present for adjuvant chemotherapy; studies
1,38

 randomized for adjuvant 

chemotherapy showed no adjuvant chemotherapy effect on outcome, although the 

pooled dataset did. However, this may have been caused partly by the increase in 

number of patients. Future meta-analyses may provide more insight on the trial effect, 

but to achieve data heterogeneity, pooled data were preferred. The current statistical 

design does not account for competing risk of death for LR and DM prediction. 

Therefore, small overestimation of LR and DM risk is expected. However, 

interpretability and comparability with prognostic literature were motivations to use 

the framework of Kaplan-Meier method and the Cox proportional hazards model. 

 

In conclusion, our analyses suggest that a set of clinical, treatment and pathological 

variables after preoperative CRT or RT and surgery allows the development of 

nomograms to predict LR, DM and OS in patients with LARC. We propose a 

stratification in three risk groups that facilitates the selection of patients for clinical 

trials with different treatment approaches. Therefore, the nomograms provide 

decision support for the delivery of postoperative adjuvant chemotherapy for patients 

with a predicted risk of DM, LR, and OS and a rationale for more individualized follow-

up for patients based on the risk of LR and DM. 

Acknowledgements 

 To all the groups who provided data 

 The contribution of Laurence Collette to this research was supported by the EORTC 

Charitable Trust 



Long-term follow-up outcome prediction  121 

References 

1. Bosset JF, Collette L, Calais G, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N 

Engl J Med 2006; 355:1114-23 

2. Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al. Long-term results of a randomized trial 

comparing preoperative short-course radiotherapy with preoperative conventionally fractionated 

chemoradiation for rectal cancer. Br J Surg 2006; 93:1215-23 

3. Gerard JP, Conroy T, Bonnetain F, et al. Preoperative radiotherapy with or without concurrent 

fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol 2006; 24:4620-5 

4. Peeters KC, Marijnen CA, Nagtegaal ID, et al. The TME trial after a median follow-up of 6 years: 

increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. 

Ann Surg 2007; 246:693-701 

5. Sebag-Montefiore D, Stephens RJ, Steele R, et al. Preoperative radiotherapy versus selective 

postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a 

multicentre, randomised trial. Lancet 2009; 373:811-20 

6. Quasar Collaborative G, Gray R, Barnwell J, et al. Adjuvant chemotherapy versus observation in 

patients with colorectal cancer: a randomised study. Lancet 2007; 370:2020-9 

7. Valentini V, Aristei C, Glimelius B, et al. Multidisciplinary Rectal Cancer Management: 2nd European 

Rectal Cancer Consensus Conference (EURECA-CC2). Radiother Oncol 2009; 92:148-63 

8. Jeffery GM, Hickey BE, Hider P. Follow-up strategies for patients treated for non-metastatic colorectal 

cancer. Cochrane Database Syst Rev 2002:CD002200 

9. Rosen M, Chan L, Beart RW, Jr., et al. Follow-up of colorectal cancer: a meta-analysis. Dis Colon 

Rectum 1998; 41:1116-26 

10. Weiser MR, Landmann RG, Kattan MW, et al. Individualized prediction of colon cancer recurrence 

using a nomogram. J Clin Oncol 2008; 26:380-5 

11. Kattan MW, Gonen M, Jarnagin WR, et al. A nomogram for predicting disease-specific survival after 

hepatic resection for metastatic colorectal cancer. Ann Surg 2008; 247:282-7 

12. Massacesi C, Norman A, Price T, et al. A clinical nomogram for predicting long-term survival in 

advanced colorectal cancer. Eur J Cancer 2000; 36:2044-52 

13. Schafer JL: Analysis of incomplete multivariate data, 1997, Chapman & Hall, London 

14. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 

53:457-81 

15. Steyerberg EW: Clinical Prediction Models, 2009, Springer, New York 

16. Harrell FEJ: Regression modeling strategies, 2001, Springer, New York 

17. Iasonos A, Schrag D, Raj GV, et al. How to build and interpret a nomogram for cancer prognosis. J Clin 

Oncol 2008; 26:1364-70 

18. Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for 

rectal cancer. N Engl J Med 2004; 351:1731-40 

19. Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete 

response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet 

Oncol 2010;  

20. Capirci C, Valentini V, Cionini L, et al. Prognostic value of pathologic complete response after 

neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. Int J 

Radiat Oncol Biol Phys 2008; 72:99-107 



      Chapter 6 

 

122 

21. Vecchio FM, Valentini V, Minsky BD, et al. The relationship of pathologic tumor regression grade (TRG) 

and outcomes after preoperative therapy in rectal cancer. Int J Radiat Oncol Biol Phys 2005; 62:752-60 

22. Quirke P, Steele R, Monson J, et al. Effect of the plane of surgery achieved on local recurrence in 

patients with operable rectal cancer: a prospective study using data from the MRC CR07 and NCIC-

CTG CO16 randomised clinical trial. Lancet 2009; 373:821-8 

23. Holm T, Ljung A, Haggmark T, et al. Extended abdominoperineal resection with gluteus maximus flap 

reconstruction of the pelvic floor for rectal cancer. Br J Surg 2007; 94:232-8 

24. Marr R, Birbeck K, Garvican J, et al. The modern abdominoperineal excision: the next challenge after 

total mesorectal excision. Ann Surg 2005; 242:74-82 

25. West NP, Finan PJ, Anderin C, et al. Evidence of the oncologic superiority of cylindrical 

abdominoperineal excision for low rectal cancer. J Clin Oncol 2008; 26:3517-22 

26. Janjan NA, Crane CN, Feig BW, et al. Prospective trial of preoperative concomitant boost radiotherapy 

with continuous infusion 5-fluorouracil for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 

2000; 47:713-8 

27. Mohiuddin M, Winter K, Mitchell E, et al. Randomized phase II study of neoadjuvant combined-

modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0012. J Clin 

Oncol 2006; 24:650-5 

28. Myerson RJ, Valentini V, Birnbaum EH, et al. A phase I/II trial of three-dimensionally planned 

concurrent boost radiotherapy and protracted venous infusion of 5-FU chemotherapy for locally 

advanced rectal carcinoma. Int J Radiat Oncol Biol Phys 2001; 50:1299-308 

29. Valentini V, Morganti AG, Luzi S, et al. Is chemoradiation feasible in elderly patients? A study of 17 

patients with anorectal carcinoma. Cancer 1997; 80:1387-92 

30. Rutten HJ, den Dulk M, Lemmens VE, et al. Controversies of total mesorectal excision for rectal cancer 

in elderly patients. Lancet Oncol 2008; 9:494-501 

31. Tepper JE, Wang AZ. Improving local control in rectal cancer: radiation sensitizers or radiation dose? J 

Clin Oncol 2010; 28:1623-4 

32. Fisher B, Wolmark N, Rockette H, et al. Postoperative adjuvant chemotherapy or radiation therapy for 

rectal cancer results from NSABP protocol R-01. J Natl Cancer Inst 1988; 80:21-9 

33. Aschele C, Pinto C, Cordio S, et al. Preoperative fluorouracil (FU)-based chemoradiation with and 

without weekly oxaliplatin in locally advanced rectal cancer: Pathologic response analysis of the 

Studio Terapia Adiuvante Retto (STAR)-01 randomized phase III trial. J Clin Oncol 2009; 27 

34. Gerard JP, Azria D, Gourgou-Bourgade S, et al. Comparison of two neoadjuvant chemoradiotherapy 

regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J 

Clin Oncol 2010; 28:1638-44 

35. Kusters M, Valentini V, Calvo FA, et al. Results of European pooled analysis of IORT-containing 

multimodality treatment for locally advanced rectal cancer: adjuvant chemotherapy prevents local 

recurrence rather than distant metastases. Ann Oncol 2009; 21:1279-84 

36. Dekker JW, Peeters KC, Putter H, et al. Metastatic lymph node ratio in stage III rectal cancer; 

prognostic significance in addition to the 7th edition of the TNM classification. Eur J Surg Oncol 2010; 

36:1180-6 

37. Nissan A, Stojadinovic A, Shia J, et al. Predictors of recurrence in patients with T2 and early T3, N0 

adenocarcinoma of the rectum treated by surgery alone. J Clin Oncol 2006; 24:4078-84 

38. Cionini L, Sainato A, De Paoli A, et al. Radiot Oncol in press;  

39. Bujko K, Nowacki MP, Kepka L, et al. Postoperative complications in patients irradiated pre-

operatively for rectal cancer: report of a randomised trial comparing short-term radiotherapy vs 

chemoradiation. Colorectal Dis 2005; 7:410-6 



Clinical intermediate endpoints  123 

 

 
 
 
 
 
 
 
 
Two-year disease-free and pathological 
complete response as clinical intermediate 
endpoint using pooled data of randomized 
trials for locally advanced rectal cancer  

 

Chapter 7 

 Clinical intermediate endpoints 

 

 

 

 

 

 

Ruud van Stiphout*, Vincenzo Valentini*, Guido Lammering, Maria Antonietta 

Gambacorta, Maria Cristina Barba, Marek Bebenek, Franck Bonnetain, Jean-Francois 

Bosset, Krzysztof Bujko, Luca Cionini, Jean-Pierre Gerard, Claus Rödel, Aldo Sainato, 

Rolf Sauer, Bruce Minsky, Laurence Collette, Philippe Lambin 

 

Submitted 



      Chapter 7 

 

124 

Abstract 

Purpose 

Personalized treatments require early characterization of a rectal cancer patient’s 

sensitivity to treatment. This study has two aims: (1) identify the main patterns of 

recurrence and response to the treatments (2) evaluate pathologic complete response 

(pCR) and two-year disease-free survival (2yDFS) as intermediate endpoints for 

predictive modeling. 

 

Methods and materials 

Pooled and treatment subgroup analyses were performed on five large European 

rectal cancer trials (2795 patients), who all received long-course radiotherapy with or 

without concomitant and/or adjuvant chemotherapy. The ratio of distant metastasis 

(DM) and local recurrence (LR) rates was used to identify patient characteristics that 

increase the risk of recurrences.  

 

Results 

The DM/LR ratio decreased to a plateau in the first two years, revealing it to be a 

critical follow-up period. Three patient groups were identified: 5%-15% had pCR and 

were disease free after 2 years (good prognosis), 65%-75% had no pCR but were 

disease free (medium prognosis) and 15%-30% had neither pCR nor 2yDFS (bad 

prognosis).  

 

Conclusions 

Compared with pCR, 2yDFS is a stronger predictor of overall survival. To adapt 

treatment most efficiently, accurate prediction models should be developed for pCR to 

select patients for organ preservation and for 2yDFS to select patients for more 

intensified treatment strategies. 
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Introduction  

To improve cancer treatment, new hypotheses need to be tested faster in a suitable 

cohort of patients to avoid diluting treatment for insensible patients. Common 

methods include the use of large databases
1
 and development of reliable surrogate 

endpoints. A typical example of such an endpoint is the finding that two-year disease-

free survival (DFS) is correlated with six-year overall survival (OS) for stage III colon 

cancer patients treated with adjuvant chemotherapy.
2
 Such surrogate endpoints can 

be identified early and have a high predictive value for survival. By treating them not 

as prognostic factors but as intermediate outcomes that can be predicted by statistical 

models, future clinical trials could evaluate individualized treatment strategies, with 

treatment randomization differentiated according to these predictions. An example of 

this strategy is model based decision making by using imaging based tumor response 

predictions, which has potential for radiotherapy boost decisions.
3
    

Patients with rectal cancer exhibit heterogeneous responses to treatment; Studies 

identified a subpopulation of patients who have a medically inoperable disease or who 

refused surgery but were cured with a low dose of radiotherapy.
4
 This subpopulation is 

characterized by slow growth and long regression time of rectal cancer. Patients who 

achieved a pCR are considered to be a more favorable subpopulation with less LR and 

DM as well as better OS.
5,6

 While the prediction of early intermediate endpoints (e.g. 

pCR) is less prone to uncertainties and may therefore be more accurate for 

individualizing treatment, these endpoints may be weaker prognosticators of long-

term outcome. 

 

In this study the value of both DFS and pCR is reported as intermediate endpoints for 

overall survival in locally advanced rectal cancer patients. The first aim of this study is 

to identify the optimal time point to assess DFS to best separate the population 

response-wise. A combination of treatment heterogeneity and a large number of 

patients in the pooled trial dataset allowed for sub group analyses of recurrence and 

response patterns. Inspired by Gelman et al.,
7
 patterns of recurrence are analyzed by 

calculating the ratio of DM rate and LR rate (which are competing risks)  over time to 

identify a subset of patients with more versus less aggressive disease.  

The second aim of the study was to evaluate pathologic complete response (pCR) and 

two-year disease-free survival (2yDFS) as intermediate endpoints in order to build 

predictive models which are able to identify patient subgroups before and during 

treatment. The rate of pCR may be a suitable endpoint to identify a subset of patients 

who could be successfully treated with more conservative surgery or a non-operative 

approach. In this setting, prediction of 2yDFS status may be useful to identify 
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subpopulations with the most aggressive tumors. The two-year timeframe was chosen 

based on initial inspection of the data, and may allow for selection of different 

chemotherapeutic regimens to reduce DM rates for this subpopulation by using an 

accurate prediction for 2yDFS status. If these two intermediate endpoints are able to 

separate the rectal cancer population in several risk groups accurate models predicting 

these endpoints may allow for better selection of personalized treatments along the 

treatment scheme (Figure 7.S1). It is beyond the scope of this paper to deliver accurate 

prediction models for pCR and 2yDFS, but the focus is on exploration of their role as 

intermediate endpoints in order to assist future prediction model generation.  

 

 

Methods and materials 

Study population 

The analyses were performed on data from five large European randomized clinical 

trials for locally advanced rectal cancer (N=2795) which were pooled on an individual 

patient level. This included the EORTC trial
8
 comparing preoperative radiotherapy with 

preoperative chemoradiation and observation with postoperative chemotherapy in a 

2x2 factorial design, the French trial
9
 comparing preoperative radiotherapy with 

preoperative chemoradiation, the German trial
10

 comparing preoperative 

chemoradiation with postoperative chemoradiation, the Polish trial
11

 comparing 

preoperative short-course radiation with chemoradiation, and the Italian trial
12

 

comparing observation with postoperative chemotherapy. The study designs, inclusion 

criteria, number of patients per trial, and accrual times of the pooled dataset were 

described in Valentini et al.
13

 All patients in the pooled dataset received preoperative 

radiotherapy (RT) with an average total treatment time of 34-39 days at 1.8 Gy per  

Figure 7.S1 Schematic overview of proposed time points along the treatment to predict pCR and 2yDFS 

(blue) and their possible corresponding treatment decision (red). 
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Table 7.1 Clinical and treatment characteristics of the pooled database and the four chemotherapy 

subgroups: no chemotherapy at all (i.e. only radiotherapy, RT), additional concomitant chemotherapy only, 

additional adjuvant chemotherapy only and both of these additional chemotherapies. Characteristics are 

given in number of patients N and as a percentage of the total number of patients in the selected group. 

Dataset Pooled RT only RT+Conc.chemo RT+Adj.chemo RT+both chemo 

 N [%] N [%] N [%] N [%] N [%] 

Patients 2795 [100] 366 [100] 839 [100] 501 [100] 1067 [100] 

Sex           

Male 1952 [69.8] 268 [73.2] 584 [69.6] 343 [68.5] 740 [69.4] 
Female 843 [30.2] 98 [26.8] 255 [30.4] 158 [31.5] 327 [30.6] 

Age           

Median 62.5  63.0  62.9  62.6  62.0  
Range 22.0 - 81.5 23.0 – 79.0 28.4 – 79.0 27.0 - 78.4 22.0 - 81.5 

cT-stage           

1+2 18 [0.6] - - 6 [0.7] 1 [0.2] 11 [1.0] 
3 2224 [79.6] 309 [84.4] 628 [74.9] 434 [86.6] 841 [78.8] 
4 274 [9.8] 41 [11.2] 90 [10.7] 51 [10.2] 92 [8.6] 
no data 279 [10.0] 16 [4.4] 115 [13.7] 15 [3.0] 123 [11.5] 

cN-stage           

0 311 [11.1] 1 [0.3] 230 [27.4] - - 80 [7.5] 
+ 551 [19.7] 3 [0.8] 154 [18.3] - - 377 [35.4] 
no data 1933 [69.2] 362 [98.9] 455 [54.2] 501 [100] 610 [57.2] 

RTdose           

<45 Gy 115 [4.1] 18 [4.9] 39 [4.6] 18 [3.6] 40 [3.7] 
45-47 Gy 2135 [76.4] 342 [93.4] 645 [76.9] 477 [95.2] 670 [62.8] 
>47 Gy 543 [19.4] 6 [1.6] 154 [18.4] 5 [1.0] 357 [33.5] 
no data 2 [0.1] - - 1 [0.1] 1 [0.2] - - 

Conc.chemo           

no 867 [31.0] 366 [100] - - 501 [100] - - 
yes 1925 [68.9] - - 839 [100] - - 1067 [100] 
no data 3 [0.1] - - - - - - - - 

Localization           

Proximal 1598 [57.2] 184 [50.3] 491 [58.5] 261 [52.1] 645 [60.4] 
Distal 1068 [38.2] 150 [41.0] 319 [38.0] 205 [40.9] 389 [36.5] 
no data 129 [4.6] 32 [8.7] 29 [3.5] 35 [7.0] 33 [3.1] 

pT-stage           

0 299 [10.7] 21 [5.7] 140 [16.7] 18 [3.6] 120 [11.2] 
1 191 [6.8] 25 [6.8] 64 [7.6] 37 [7.4] 64 [6.0] 
2 816 [29.2] 99 [27.0] 266 [31.7] 133 [26.5] 312 [29.2] 
3 1324 [47.4] 185 [50.5] 319 [38.0] 289 [57.7] 520 [48.7] 
4 74 [2.6] 15 [4.1] 25 [3.0] 11 [2.2] 22 [2.1] 
no data 91 [3.3] 21 [5.7] 25 [3.0] 13 [2.6] 29 [2.7] 

pN-stage           

0 1879 [67.2] 233 [63.7] 617 [73.5] 309 [61.7] 707 [66.3] 
+ 827 [29.6] 116 [31.7] 201 [24] 176 [35.1] 328 [30.7] 
no data 89 [3.2] 17 [4.6] 21 [2.5] 16 [3.2] 32 [3.0] 

Adj.chemo           

no 1206 [43.1] 366 [100] 839 [100] - - - - 
yes 1568 [56.1] - - - - 501 [100] 1067 [100] 
no data 21 [0.8] - - - - - - - - 
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fraction, followed by surgery 36–47 days after the end of RT. RT dose and the possible 

addition of preoperative and postoperative chemotherapy (chemo) introduced 

treatment heterogeneity into the database. No patients had metastatic disease at the 

beginning of treatment. A total of 24 patients who underwent a local excision were 

excluded in advance.  

Although many variables were collected in individual clinical trials, this analysis was 

restricted to assessing the long-term outcome of four subpopulations: 1) those who 

achieved a pCR and were disease free after 2 years (N=246, 9.2%), 2) those with pCR 

but also a recurrence (N = 21, 0.8%), 3) no pCR but disease free after 2 years (N = 1868, 

70,1%) and 4) no pCR and also a recurrence (N = 528, 19,8%). Additional variables 

included RT dose (<45 Gy, 45 Gy and >45 Gy), administration of concurrent and/or 

adjuvant chemotherapy (yes/no), the post-RT tumor localization used to determine the 

surgery strategy (proximal or distal, depending on the tumor’s location from the anal 

verge with 10 cm cut-off), and the interval between the last fraction of RT and surgery 

(<28 days, 28-42 days and >42 days).   

PCR was defined as the absence of tumor cells in the resected specimen (ypT0N0). LR 

was defined as tumor presence in the pelvis or perineum, or in the anastomosis as 

confirmed by histology. DM was defined as evidence of extrapelvic tumor tissue 

confirmed by at least two imaging exams. The cumulative incidence of both of these 

outcomes was reported separately. The absence of both LR and DM within two years 

was defined as disease free. Patients with less than two years of follow-up time and 

without occurrence of an event (death or recurrence) were excluded from the DFS 

analysis (excluded: N=301).  

Statistical analysis 

Treatment heterogeneity was accounted for by performing subgroup analyses for the 

patients receiving different chemotherapy regimens in addition to RT: no chemo, 

concomitant or adjuvant chemo, or a combination of both chemotherapies. The 

analyses:   

  

1. The risk ratio at time t was defined as the ratio of cumulative rate of DM at time t 

divided by the cumulative rate of LR at time t. By calculating the risk ratio for each year 

during the follow-up period, a time trend of the risk ratio was characterized. 

Confidence intervals were calculated by bootstrapping the ratio of the two rates from 

the estimated and normal assumed distributions to arrive at the ratio distribution.  

2. The long-term outcome between the non-pCR and pCR populations and between 

non-2yDFS and 2yDFS, as well as five- and ten-year rates for the cumulative incidence 

of LR, DM, and OS, were reported
14

 and confidence intervals were based on the log-log 
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transform.
15

 All time intervals were measured from the date of randomization, except 

for the analyses presented in analysis 4 described below. 

3. Logistic regression was used to study the impact of characteristics such as sex, age, 

tumor localization, cT-stage, RT dose, and time to surgery on the odds ratios for the 

three clinical outcomes of interest: pCR, 2yDFS, and five-year overall survival status 

(5yOS).  

4. The long-term outcomes of the subpopulations defined by their pCR and two-year 

disease-free status were compared by log-rank test, including the four chemotherapy 

group stratification. The landmark approach
16

 was used to avoid the bias of death 

within two years affecting the outcome of investigation (2yDFS).  

The analyses were conducted in line with the intention-to-treat principle, and 

performed using SPSS (version 15.0) and MATLAB (version R2010b, MathWorks Inc.).   

Results 

The database characteristics (Table 7.1) are similar in the four subgroups, with the 

exception of roughly 4% more males in the RT-only subgroup, a higher RT dose in the 

subgroups with concurrent chemo and both chemotherapies, more pT0 in the 

concurrent chemo subgroups compared to the RT-only groups (16.7% and 11.2% vs 

5.7% and 3.6%, respectively), and roughly 8% more pN0 for the concurrent chemo 

subgroup.  

Risk ratio  

The overall risk ratio between the rates of DM and LR (Figure 7.1A) revealed that, at 1-

year follow-up, six times more patients had developed DM than LR (between 4.2 and 

7.5, taking 95% confidence intervals into account). This number decreases to 

approximately 2.5 at two years and remains relatively constant thereafter, with a slight 

negative slope. Figure 7.1B shows that approximately 80% of the recurrences occur 

within the first four years, while deaths occur later. For the risk ratios of different 

chemo treatment schemes (neoadjuvant vs adjuvant), similar curves as in Figure 7.1 

are observed (Figure 7.2). These plots show that adding concomitant chemo to RT 

results in a higher DM/LR risk ratio over time compared to no concomitant chemo, 

suggesting that concomitant chemo may result in LR reduction without affecting DM 

incidence (after 2 years concomitant chemo reduces DM by 14.2% and LR by 49.0% 

compared to the non-concomitant chemo population).  
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Figure 7.1 Risk ratio, cumulative rate of distant metastases / cumulative rate of local recurrences, for A. All 

the patients including 95% confidence interval, and B. Histograms for the percentages of local recurrence 

and distant metastases occurrences (100%=event occurrence at 10 years) for the total population (N=2795) 

for each year of follow-up.  
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In addition, the population given chemo both adjuvant and neoadjuvant show 

different behavior on those curves than the other chemo schemes, with the ratio 

staying relatively constant and decreasing slowly over time. These differences before 

and after two years are confirmed by the results shown in Figure 7.S2, indicating that 

aggressiveness of disease is increased for early recurrences, resulting in poor survival, 

mainly associated with administration of adjuvant chemo. For this reason we consider 

2yDFS a reliable intermediate endpoint to stratify the population.  

Figure 7.2 Risk ratio, cumulative rate of distant metastases / cumulative rate of local recurrences, for 

different combinations of given concomitant and adjuvant chemotherapy, including 95% confidence 

intervals over 10 years of follow-up. 
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Characterization of populations according to pCR and 2yDFS status 

The pCR status was known for 2682 patients; of these, 11.1% had a pCR (N=298). There 

were significant differences in long-term outcome between the pCR and non-pCR 

populations (Table 7.2). After ten years, the non-pCR population had a 10.7% higher LR 

incidence than the pCR population (14.8% vs 4.1%). DM was more frequent in the non-

pCR group by 17.1% after ten years (35.2% vs 18.1%). The pCR population had 73.3% 

overall survivors versus 57% in the non-pCR population (16.6% difference). All 

differences were significant (log-rank p-values <.001). In the non-2yDFS population 

43.1% had LR and 94.8% had DM at five years, and only 12.9% survived. These 

numbers are far more favorable for the 2yDFS population (6.1%, 16.5%, and 85.3%, 

respectively). 

 

Table 7.2 Event rates for pathologic complete response (pCR) vs non-pCR populations and disease free 

survival at 2 years (2yDFS) vs non-2yDFS at 5 and 10 years of follow-up, including confidence intervals (CI) 

and p-values for the log-rank test to test if these two populations are significantly different (= .05).    

   5 years 10 years    
Outcome  N Rate [95% CI](%) Rate  [95% CI] (%)    p  HR [95% CI] 

LR rate          
Non-pCR  2415 12.8 [11.5-14.2] 14.8 [12.9-16.9] <.001 0.32 [0.15-0.68] 

pCR  267 1.6 [0.6-4.2] 4.1 [1.9-8.7]    

          

Non-2yDFS  611 43.1 [37.6-49.0] 46.0 [39.1-53.5] <.001 10.9 [8.5-14.0] 

2yDFS  2184 6.1 [5.0-7.4] 8.3 [6.9-10.0]    

DM rate          

Non-pCR  2415 32.3 [30.4-34.3] 35.2 [33.1-37.4] <.001 0.59 [0.42-0.83] 

pCR  267 13.0 [9.3-18.0] 18.1 [12.2-26.5]    

          

Non-2yDFS  611 94.8 [90.8-97.5] 94.8 [90.8-97.5] <.001 21.7 [18.3-25.6] 

2yDFS  2184 16.5 [14.8-18.4] 20.5 [18.4-22.8]    

OS rate          

Non-pCR  2415 69.5 [71.4-67.5] 57.0 [59.5-54.4] <.001 0.73 [0.54-0.98] 

pCR  267 84.3 [88.4-78.9] 73.3 [80.5-64.0]    

          

Non-2yDFS  611 12.9 [10.0-16.2] 6.5 [4.1-9.6] <.001 14.1 [12.2-16.4] 

2yDFS  2184 85.3 [83.7-86.8] 71.3 [68.5-73.9]    
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Multivariate analyses  

When considering the odds ratios for several predictors (Figure 7.3), 2yDFS better 

resembles OS than pCR as an outcome, which is significant for sex in the pooled 

population and for tumor localization in the adjuvant chemo populations. Longer 

delays between RT and surgery have an increasing effect on pCR rate but not on 

survival rate.  

 

 

Figure 7.S2 Overall survival for recurred patients for two groups with different time periods of the 

occurrence of first recurrence: within 2 years (N=681) and after 2 years (N=277). Starting point for 

measuring overall survival is the date of first recurrence. 
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Figure 7.3 Odds ratio’s (OR) based on the early multivariate prediction of pathologic complete response 

(pCR), disease free survival at 2 years (2yDFS) and overall survival at 5 years of follow-up (5yOS) with 

corresponding 95% confidence interval represented by the vertical lines. OR axes are on the same scale for 

all variables. Six pre-surgical factors were evaluated for their OR: Sex, age, tumor localization, cT-stage, 

radiotherapy dose and time from last RT fraction to surgery. Beside the pooled database, the four 

chemotherapy subgroups described in Table 7.1 are also evaluated. Dashed lines describe OR of 1. The 

direction of the OR is indicated in italic; the direction of the OR indicated a positive effect on outcome (more 

pCR, more 2yDFS, more 5yOS). White markers represent non-significant difference from 1 and black markers 

represent a significant different OR from 1.     
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pCR vs 2yDFS 

Figure 7.4 shows that disease-free status at two years appears to be a better predictor 

of OS than pCR. The landmark analysis shows that achieving a pCR is significantly 

beneficial when there is no recurrence within two years of follow-up. In the case of 

early recurrence, pCR status appears to be statistically irrelevant for OS. The greater 

effect for OS of achieving 2yDFS than pCR holds for all chemo subgroups. Due to the 

low number of patients in the subgroup pCR + recurrence within 2 years and the 

similarity in OS curve development with the no pCR + recurrence group these are 

considered as one group in the results. This results in three risk groups: 1) pCR + 2yDFS 

in 246 patients (9.3%, with an interval of 2.7-14.9% depending on treatment group), 2) 

no PCR + 2yDFS in 1868 patients (70.7% with interval 64.2-76.6%) and 3) no 2yDFS in 

528 patients (20% with interval 17.5-29.3%).    

Discussion 

This study identified different subpopulations of locally advanced rectal cancer based 

on their intermediate outcomes in a pooled database of five large European 

randomized trials. We identified three broad clinical patient subgroups:  

 Excellent (~10% with interval 5-15%): curable patients, highly treatable, organ 

preservation to be pursued, identified by a pCR and 2yDFS.  

 Good (~70% with interval 65-75%): curable patients, require effective local 

treatment, identified by no pCR- and 2yDFS; for some, the role of combined 

treatment is questionable.   

 Poor (~20% with an interval of 17.5-30%): ongoing treatment strategies do not 

lead to cure or patients having an early and late-occurring recurrent disease; 

They are identified by having no pCR and no DFS within 2 years.  

The overall longer-term aim of the identification of these three identified groups is to 

develop accurate prediction models for the two intermediate outcomes pCR and 

2yDFS with data before and along the treatment. Combined predictions of pCR and 

2yDFS (3 risk groups) using clinical, imaging and biomarkers would allow for 

personalizing treatment. 

    

Variables related to pathological staging after treatment (pT stage and pN stage) were 

recently found to be the main clinical predictors of LR, DM, and OS,
13

 with patients 

achieving a pCR having an OS benefit of 14.7% at five years and 16.3% at ten years. 

This is consistent with previous analyses suggesting better outcomes for patients with  
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Figure 7.4 Overall survival plots for population stratified for their combined status of pCR and 2yDFS. The 

time is measured from the chosen landmark of 2 years of follow-up to avoid bias of already deceased 

patients before that time. The five plots represent the pooled database and the subgroups based on 

administered concomitant and/or adjuvant chemotherapy. Encircled letters A, B, C and D indicate the 

represented subgroup. Letters with an asterisk indicate which curves are significantly different from the 

indicated one with =.05.  
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a pCR.
5,6

 These studies reported higher five-year survival rates of 91.6% and 87.6% 

respectively for patients who achieve a pCR, compared with 84.3% in the present 

study. However, Maas et al.
6
 reported a lower survival benefit of 11.2% at five years 

for patients achieving a pCR. In contrast to our pooled database, both studies used 

prospective and retrospective results, and almost all patients received concomitant 

chemo. Therefore, higher absolute rates for the pCR and non-pCR populations are 

expected. Also, the studies in Maas et al. were more recent, and the results may 

reflect improved treatment regimens and pathology assessment. In this regard, our 

study shows the long-term benefits of a pCR. In the current study we did not explore 

formal analyses of surrogacy, as there were too few trials and the treatments were too 

heterogeneous to perform a valid meta-analysis. Previously, the EORTC 22921 and the 

FFCD 9203 rectal cancer trials, which are both included in the current pooled dataset, 

explored the surrogacy of pCR and progression-free survival (PFS),
17

 finding that pCR 

was not a qualified surrogate endpoint for PFS and OS, while PFS was a surrogate 

endpoint for OS.  

For the pCR subgroup with favorable outcomes, lower RT doses or more conservative 

surgical strategies might be applied to improve their quality of life. To individualize 

these treatment decisions, reliable prediction models need to be developed to 

distinguish between these pCR subgroups. 

In the pCR group, 61% of the LR cases are reported after five years post treatment (5y 

LR: 1.6%, 10y LR: 4.1%). To our knowledge, this has not yet been reported in the 

literature, though it supports Habr-Gama et al.
18

 These findings indicate that patients 

with pCR require prolonged observation. 

Two-year disease-free status was associated with an OS benefit of 45.5% and 64.8% at 

five and ten years respectively, compared to patients with recurrence within two 

years. This supports the identification of a population of patients with aggressive 

disease that recurs early and leads to poor survival rates, regardless of treatment.
8
 

While not being the aim of this study, we identified some prognostic factors, such as 

sex, cT-stage, and tumor localization (Figure 7.3), but more imaging and biological 

markers should be explored to predict 2yDFS reliably. pCR status is a plausible 

candidate for 2yDFS based on the studies described above. The comparison between 

OS according to pCR and 2yDFS showed that the latter had a stronger prognostic 

impact (Table 7.2, Figure 7.4). A similar result was seen for patients who received 

either chemoradiotherapy alone or who received both chemoradiotherapy and 

adjuvant chemo (Figure 7.4).  

DFS is superior at predicting survival and should be used as an intermediate endpoint 

for new prediction models, with the added benefit that the outcome is clear at only 



      Chapter 7 

 

138 

two years follow-up. Accurate prediction of 2yDFS is recommended to select patients 

for adjuvant chemo regimens. 

To decide on more or less aggressive treatments and/or more QoL-oriented 

treatments, it is important to identify the subgroup of patients with early recurrence, 

because inclusion in prospective randomized trials may negatively affect the findings. 

Also, the recurrence analysis of the DM/LR ratios (Figure 7.1) showed a prevalence of 

metastases in the first two years, indicating a patient group with aggressive disease in 

whom 5FU based treatment does not appear to reduce the metastasis rate. The not 

previously reported finding that the DM/LR ratio remained flat after two years, 

identifies a second group of patients with tumors which can become active after a long 

follow-up time and have a very slow growth rate. This may be due to an immunological 

response, and suggests that patients should be followed up for an extended period of 

time. It appears that for patients receiving concomitant chemo the DM/LR ratio is 

higher than for the patients without, mainly as a result of the overall reduction of LR 

induced by concomitant chemo, resulting in improved local effectiveness without 

corresponding reduction of DM (Figure 7.2). This effect is seen to a lesser extent for 

DM.  

It should be emphasized that, in three trials (N=1244), adjuvant chemo was not 

randomized or mandated; 73% did receive adjuvant chemo, and the percentage of 

these patients with pN+ stage was significantly higher than in the group without 

adjuvant chemo. While this introduces a possible bias, it is likely to be small given the 

patient numbers involved (14% of the total population had pN+ combined with 

adjuvant chemo). 

Conclusions 

This study identified different populations of rectal cancer patients: highly responsive 

patients (pCR and disease free after 2 years), good responsive curable patients (no pCR 

but disease free thereafter), and patients with early and late recurrence regardless of 

pCR status (poor prognosis). While both intermediate outcomes are prognostic 

(confirming our hypotheses), 2yDFS is stronger than pCR for OS. pCR predictions may 

identify a minority of highly responsive patients for whom surgery can be tailored, 

organ preservation promoted, and quality of life or other patient-reported outcomes 

improved, whereas 2yDFS predictions identify less responsive patients who may 

benefit from more aggressive chemo. Therefore, 2yDFS should also be considered as 

an intermediate endpoint in future trials, focusing on identifying and evaluating early 

predictors for pCR and 2yDFS in order to adapt treatment most efficiently. 
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The main goal of this thesis was to study the prognostic and predictive value of clinical 

factors, imaging and blood biomarkers for pathologic complete response and follow-up 

outcome related to recurrences and survival of patients with locally advanced rectal 

cancer (LARC). Multivariate prediction models were developed, i.e. trained and 

validated on large databases. These models can be used as clinical tools that allow for 

treatment modifications in an early stage based on individual predictions. This 

assistance in decision support requires predictions with high accuracy, which can be 

only achieved by a holistic approach in which various data sources, multiple time-

points and validated statistical methods are used. This chapter summarizes the studies 

and findings in this thesis and discusses them in a broad perspective and with respect 

to relevant literature. Furthermore, the implications of this work for the future of 

individualized medicine are presented.     

Response prediction 

The main motivation to assess tumor response to treatment in locally advanced rectal 

cancer is the ability to tailor treatment for certain risk groups. For example, an early 

prediction during chemoradiotherapy (CRT) would allow for tumor response 

improvement by giving a radiotherapy (RT) boost to patients for which a good but not 

complete response is predicted.
1
 For patients with a high chance of a complete 

response no additional treatment would be required, reducing also unnecessary 

toxicity. For these complete responder candidates a wait-and-see policy after CRT is a 

possibility in order to reduce treatment-related morbidity and mortality, for which 

excellent results are reported.
2
 Alternatively, reduced surgery with for example a 

transanal excision is an option if there is still evidence for a small remaining lesion. 

These organ sparing approaches increase the quality of life for patients because 

possible consequences of surgery, like permanent stomas, faecal incontinence and 

sexual dysfunction, can be avoided. For patients undergoing a wait-and-see approach 

or reduced surgery an intensified follow-up is however required to track down possible 

local recurrences as early as possible. Because of the focus on identifying patients with 

high probability of a complete response, pathologic complete response (pCR) was used 

as the predicted outcome in all presented response prediction studies. Three sources 

of data were used for tumor response assessment and prediction in this thesis: pre-

treatment clinical data like demographics and tumor stage, 
18

F-fluorodeoxyglucose 

(FDG) positron emission tomography (PET) imaging and blood biomarker data.  

 



General discussion and future perspectives  143 

Clinical predictors 

When assessing clinical data for response assessment TNM-staging is often firstly 

considered because of its availability and dominance in making treatment decisions. All 

patients included in the response prediction studies in this thesis were metastasis free 

(M0). Clinical tumor (cT) stage and clinical nodal (cN) stage were found to be associated 

with pCR in all three studies (chapter 3-5) when evaluating only pre-treatment data. A 

recent analysis with large amount of patients found that cT-stage was predictive for 

pCR but that cN-stage shows only a trend.
3
 This study contained however also old 

cases where computed tomography (CT) imaging was used for cN-stage scoring. The 

cT-stage and cN-stage stayed significantly associated with pCR when PET-imaging data 

before and during treatment was added, but dropped out of the equation when PET 

information just before surgery was added. It is expected from prediction theory that 

data measured at this late time point have more impact than the data measured pre-

treatment (like cT- and cN-stage). Another finding was that the tumor dimensions are 

associated with pCR. In all the models the tumor length, assessed by mainly MRI 

imaging at diagnosis, or the maximum diameter in the metabolic tumor volume (MTV) 

were predictive for pCR in a multivariate setting. Although tumor length shows a high 

correlation with tumor volume, the latter was never selected by the models. Others 

have found that changes in metabolic volume in the pre-post treatment setting were 

significant for pCR but not the intermediate case (between pre-treatment and during 

treatment, two weeks after start of CRT).
4
 Changes in tumor volume or length over 

time were however not found to be significant in the presence of PET activity data. 

This can be explained by the high correlation between this tumor dimension change 

and reduction in PET activity (chapter 4). However, clinical data pre-treatment alone 

has low prediction accuracy; area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve was only 0.61 (N=677, chapter 3) or 0.63 (N=267, chapter 5). 

For that reason, other sources of data were taken into account.  

PET imaging 

Currently, the leading candidate predictive marker for histopathological response 

prediction in LARC is FDG-PET
 
imaging. A meta-analysis confirmed the added value of 

PET imaging, especially for intermediate PET imaging (during CRT).
5
 The majority of the 

included studies evaluated pre-CRT versus post-CRT PET imaging and only some assess 

pre-CRT PET versus intermediate-CRT PET. Both analyses are important for different 

reasons, as explained above. During CRT, additional treatment decisions like a RT boost 

can be made based on the available information. Predictions made after CRT are more 

useful to tailor surgery (reduction or wait-and-see). The decision for a wait-and-see 



      Chapter 8 

 

144 

approach can better be made as late as possible by using both specialized prediction 

models like the one in chapter 3 and careful assessment of imaging, endoscopies and 

biopsies.
2
 The limitations of the PET studies in the literature are their small sample 

sizes (numbers of patients are 20-42 for early PET, with a maximal number of patients 

of 78 for the pre-post setting), the main focus on good versus bad responders (not 

pCR), the univariate setting in which analyses were performed and the lack of 

validation. This thesis presented two studies assessing PET imaging in the pre-post 

setting (chapter 3) and during CRT (chapter 4). These studies aim to increase the 

clinical applicability of the developed decision making tools by using larger numbers of 

patients, external validation datasets, and multiple sources of data and focusing on 

pCR. 

 

For the first model taking into account clinical and PET data pre-CRT and post-CRT, the 

response index of the pre-treatment tumor length, the relative difference (response 

index, RI) of maximal standard uptake value (SUV) and the SUVmax value in the tumor 

just before surgery were predictive. Others have also reported (significant) indications 

that the response index and post-treatment SUVmax are predictive for response, 

whereas pre-treatment PET data do not provide sufficient predictive power.
6-8

 The 

second model (pre-CRT + intermediate-CRT) shows similarity in predictor choice for 

SUV and tumor dimensions: cT-stage, cN-stage, SUVmean and intermediate maximal 

tumor diameter. The change in SUVmean at the intermediate time point was found 

predictive in earlier studies for responders versus non-responders,
9-11

 but SUVmax was 

usually stronger when predictions for pCR changes are made.
12,13

 In our study the 

response index of SUVmean was a stronger predictor than the RI of SUVmax. These two 

measures are also highly correlated, especially since our PET contouring was semi-

automatic and calibrated for both institutes, resulting in less variation in SUVmean due 

to contouring.
14

 

 

The significant difference in performances that we reported between the performance 

of the clinical model and the post-CRT PET data model reflects what others have found 

in their post-treatment PET analyses. Addition of pre-treatment PET only increases 

AUC from ~0.6 to ~0.7, whereas addition of repeated PET increases performances to 

acceptable levels; AUC was 0.83 for training and 0.86 for validation for the pre-post 

model and respectively 1.0 and 0.78 for the pre-intermediate model. The studies that 

report AUC in general predict good versus no response instead of pCR, which has often 

higher accuracy.
11,13

 Response prediction is in practice more accurate because the 

number of events for good response (45-55%) is much higher than those of pCR (15-

30%). Furthermore, small studies, although very controlled, might be biased towards a 
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positive outcome by chance. One might also expect that the accuracy of predictions at 

a later stage (post-CRT) should be more accurate than during CRT, but this is not 

always the case.
11

 The first reason for this can be that the radiotherapy leads in some 

cases to peritumoral inflammatory tissue, which also avidly consumes FDG.
15

 This can 

result in underestimation of the metabolic response in the post-CRT scan. Measuring 

inflammation requires for example dynamic FDG-PET imaging, which is discomforting 

for the patient and more complex and more time-consuming to analyze.  Another 

reason for unreliable assessment of post-CRT PET scans is the partial volume effect 

(PVE).
16

 The PVE could lead to an underestimation of FDG uptake levels, in particular in 

small tumor volumes. Because CRT shrinks tumors, PVE will affect assessment of post-

CRT scans more than early repetitive scans.    

 

There are diverse factors influencing the quantification of PET imaging, like for 

example the used equipment, scanning protocol, uptake time of the radioactive tracer, 

the patient blood glucose level (BGL) and the time of scan acquisition (relative to the 

time of tracer injection). Several factors have been corrected for in the presented 

studies. Correcting SUV measures for the measured blood glucose level was previously 

shown to have a positive effect on response prediction.
17

 In the presented studies SUV 

measures were corrected for blood glucose, but most studies do not correct for it, 

even when it is known that glucose is in competition with FDG in metabolically active 

tissues.
18

 The time between tracer injection and acquisition is also an important factor 

because after 60 minutes, which is the guideline in most protocols, FDG is still 

accumulating in the tumor at fast rates. This means that large variations of SUV 

measures are present for deviations in acquisition time. Scanning after 90 minutes 

would be better but that will reduce patient throughput on the scanner.
19

 In the 

prospective THUNDER trial (chapter 4) it was difficult to harmonize protocols for e.g. 

acquisition time and reconstruction algorithms, also because different scanner types in 

different countries were involved. However, the semi-automatic contouring of the 

tumor on PETCT was standardized by performing phantom studies in the involved 

institutes, thereby calibrating the background corrected SUV thresholds.
20

 When 

interpreting multicentric PET studies one is advised to take the above described 

differences into account and to acknowledge any standardization.      

Blood biomarkers 

Blood biomarkers as additional predictors are attractive because the measurements 

are accurate, standardized, cost-effective and not discomforting for the patient. 

Previous studies on the predictive value of blood biomarkers are limited to studies 

mainly evaluating one or two biomarkers. The most studied biomarker for response to 
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CRT in rectal cancer is carcinoembryonic antigen (CEA).
21-23

 Only one other study 

analyzed the predictive value of osteopontin and interleukin-6.
24

 This thesis presented 

a study in which the added predictive value of 9 pre-treatment blood biomarkers for 

response was evaluated (chapter 5). The most significant predictor for pCR was CEA, 

because it remained significant after adding the biomarkers to PET related and clinical 

data. In this study also good response was predicted (ypT0-2N0) for which CEA and IL-8 

were predictive in the multivariate setting. For CEA its association with response to 

CRT is reported in LARC, but for IL-8 it is not.
21-23

 Including these blood biomarkers in 

models based on clinical parameters and pre-treatment PET-based parameters 

resulted in an increased AUC of 0.5 on average, however this increase was not 

significant. The presented data provided a proof of principle that biomarkers contain 

predictive information for rectal cancer, however extra time points for PET imaging in 

combination with (repeated) blood biomarker measurements and external validation 

of the prediction models are required to substantiate this additive value.    

 

The limitation of the presented response prediction studies is the lack of centralized 

pathology scoring to determine the predicted outcome ypTN-staging. However, a 

recent comparison between routine pathological examination and additional step 

sections in resection specimens showing no viable tumor cells at initial examination, 

showed no differences in outcome.
25

 Furthermore, pooled analysis of a large series of 

patients included in different studies, showed a clear prognostic value of pCR after CRT 

for long-term outcome, even if pooled from different studies, indicating that pCR as 

scored in routine pathology procedures is a valuable endpoint.
3
  

As suggested, the developed models for pCR can be used for either additional 

treatment when predictions are made during CRT or to tailor surgery for predictions 

made post-CRT. Whether the found AUCs between 0.8 and 0.9 are accurate enough for 

clinical practice depends on the cut-off values for the risk groups. In post-CRT response 

prediction specifically, the focus should be on high specificity to avoid possible under-

treatment (less surgery when surgery is required) rather than overtreatment (standard 

treatment when less surgery could have been considered). In chapter 4 this was 

considered for the threshold determination to avoid false positives for pCR. To 

conclude the discussion on response prediction in this thesis, it was found that 

repeated PET in combination with clinical factors resulted in the highest accuracy and 

blood biomarkers are a promising addition for response prediction. To our knowledge 

these are the first studies for rectal cancer showing that a holistic approach for 

response prediction is required.    
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Predicting long-term follow-up outcomes  

Five years of follow-up 

In recent trials it was found that locoregional control alone is not sufficient to improve 

survival and therefore distant control must also be taken into account for new 

treatment strategies.
26-30

 Administration of postoperative chemotherapy for all 

patients is hazardous for the 75% of the patients that do not require additional 

chemotherapy to improve survival. Therefore, prediction models for distant 

metastases (DM) and overall survival (OS) are useful to select patients who may 

benefit from the addition of postoperative adjuvant systemic treatment. The reason to 

predict local recurrences (LR) on the other hand, might be very helpful in deciding the 

appropriate intensity of follow-up. High risk patients require intense follow-up in order 

to reduce mortality rates.
31,32

 Chapter 6 of this thesis presented a high-impact study in 

which LR, DM and OS after 5 years of follow-up were predicted for a large group of 

patients who were pooled from 5 large European trials. As described in the response 

prediction section, variables scored later in the treatment scheme were more 

predictive as is found also in the follow-up models. The found DM predictors were the 

yielded pathological nodal-stage (ypN), yielded pathological tumor-stage (ypT), surgery 

procedure, and adjuvant chemotherapy. This means that response (ypTN), as 

predicted outcome in chapter 3-5, is now one of the main predictors for further 

prognosis of the patient. The reason why adjuvant chemotherapy was added as 

candidate predictor is the ability to calculate its effect for a specific patient. The higher 

risk of a residual tumor after an abdominoperineal resection (APR) related to the more 

distal location of these cancers could partly explain the impact of the surgical 

procedure and tumor location in our nomogram. Prospective studies on the reliability 

of resecting in different surgical planes for reducing positive CRMs are currently under 

clinical evaluation.
33-35

 The same predictors were found for overall survival but with the 

addition of cT-stage, age, RT dose and sex. Literature confirmed also these predictors 

for age
36

 and sex
37

, but even though the effect of RT on local control is recognized, the 

effect of different RT doses (in combination with chemotherapy) remains debated.
38

 

The nomogram for LR contains the predictors ypT-stage, cT-stage, age, ypN-stage, 

concomitant and adjuvant chemo. It was also found that a recommendation of 

adjuvant chemo is even more motivated by improvement in local control rather than 

for DM prevention, implying that all three nomograms need to be considered when 

making treatment decisions. In another published nomogram
39

 nodal involvement was 

the most important factor for recurrence, which was only recently proposed for rectal 

cancer.
40

 This nomogram and another one for survival
41

, also included 
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carcinoembryonic antigen (CEA) levels, resulting in nomogram accuracies of 0.76, 

which confirms the importance of blood biomarkers once more. In the referred 

survival model, tumor response was equally dominant for further prognosis as was the 

case in the presented nomograms.     

The proposed nomograms have reliable but suboptimal c-indices for external 

validation (LR, 0.68; DM, 0.73; OS, 0.70). Uncertainties related to surgical quality 

control, treatment heterogeneity, missing values, unknown treatment compliance 

might be contributing to these suboptimal performances. Although the estimated 

probabilities by the nomograms are on a continuous scale, we proposed three risk 

groups for the outcomes. These predicted risk groups may assist clinicians in selecting 

different treatment strategies, especially for the combination of more 

chemotherapeutic drugs and tailored follow-up schedule. 

Two years of follow-up 

By choosing earlier clinical endpoints than 5 or 10 years, new hypotheses can be tested 

faster which is beneficial for improving cancer treatment. Patients who achieved a pCR 

are considered to be a more favorable subpopulation with less LR and DM as well as 

better OS. pCR is expected to be more accurate for individualizing treatment, however 

this endpoint was found to be a weak prognostic factor of OS. Two-year disease-free 

survival (2yDFS) is an alternative endpoint having a high correlation with five year 

survival. In this thesis (chapter 7) this surrogate endpoint was not treated as a 

prognostic factor for survival but as an intermediate outcome that could potentially be 

predicted by a statistical model. This chapter explored the role of 2yDFS and pCR as 

intermediate endpoints in order to assist future prediction model generation. Three 

subgroups of patients were identified: 1. curable patients with a pCR and 2yDFS (5%-

10%, highly treatable, organ preservation to be pursued), 2. curable patients with no 

pCR but a 2yDFS (65%-75%, requiring effective local treatment), and 3. insensitive 

patients with no pCR or 2yDFS (17.5%-30%). 

Better outcomes for patients with a pCR are reported already in chapter 6 and in 

recent studies.
3,7

 However, pCR did not qualify to be a surrogate endpoint for 

progression-free survival and overall survival.
42

 An interesting and never reported 

finding (although supported by Habr-Gama et al.
43

) is that of the patients in the pCR 

group with a recurrence, 61% of the recurrences occur after five years of follow-up. 

This implies that even patients with pCR require prolonged observation. The status of 

being alive and disease-free after 2 years showed a clear benefit in overall survival and 

was also a stronger prognostic factor than pCR, even in subanalyses on different 

chemotherapy schemes. The risk ratio (DM rate/LR rate) over time shows also the 

clear cut-off point at 2 years of follow-up. In the first two years this ratio was high and 
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decreasing, implying the occurrence of relatively more metastases, which corresponds 

to the worst responding group of patients. After two years this risk ratio was 

approximately flat, which identifies a second group of patients with recurring tumors 

with a very slow growth rate. In conclusion of this study, pCR predictions may identify 

a minority of highly responsive patients for whom surgery can be tailored, organ 

preservation promoted, and quality of life or other patient-reported outcomes 

improved, whereas 2yDFS predictions identify less responsive patients who may 

benefit from more aggressive chemo. Therefore, 2yDFS should also be considered as 

an intermediate endpoint in future trials, focusing on identifying and evaluating early 

predictors for pCR and 2yDFS in order to adapt treatment most efficiently.    

Clinical impact of prediction models 

Despite the high regulation in the oncology field, both treatment and technology are 

surrounded by uncertain factors. Evidence is primarily generated by the outcomes of 

randomized clinical trials. This evidence is however often unavailable, inconclusive, 

valid for only a subgroup of patients, outdated or of insufficient quality. Furthermore, 

there still exists a translational gap between scientific discoveries and clinical practice. 

Personalized medicine can exist alongside evidence-based medicine and would allow 

for fast and efficient testing of new treatment strategies. The presented nomograms in 

this thesis are incremental steps towards the clinical application of this personalized 

medicine framework. 

 

In general and also in this thesis, the performance of the developed prediction models 

is evaluated by discrimination measures, like AUC and c-index, and calibration (i.e. 

predicted outcome probabilities vs real outcome probabilities). However, when 

assessing the potential impact of these models in clinical practice, these measures 

alone are not sufficient. Decision curve analysis can reveal the consequences of using a 

model in terms of net benefit.
44

 To do this, it is required to quantify the harms and 

benefits of a decision, which is tedious because of the lack of data. Another issue 

which arises is the selection of the weights for false-positives and false-negatives, 

which are dependent on the hypothesis and they may even differ from patient to 

patient. As a first step it is advised to carefully design clinical trials with the purpose of 

validating the prediction models and assessing their impact. In chapter 4 such a trial 

was already proposed in which one arm with standard treatment for all (CRT+surgery) 

is compared to an arm receiving individualized treatment based on the prediction 

model. 
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In the meantime, the use of the currently published prediction models can and should 

be promoted among medical professionals. They are the end-users and they will 

decide if a prediction model provides sufficient assistance in decision making. The 

success of the model depends on multiple factors, such as its availability and 

interactivity, which are expected to increase the acceptability. Even models based on 

large patient populations, with proper external validation, can fail to be accepted 

within the healthcare community if the model and its output are not easily 

interpretable, if there is a lack of opportunity to apply the model or if the clinical 

usefulness is not assessed. The reason the studies presented in this thesis focused on 

the nomogram representation of the models, is its high degree of interpretation. 

However, most insight of the model usefulness is gained by frequent application of 

models, which can be promoted by making them available on the internet. The most 

well-known online website with interactive prediction tools is Adjuvant!Online 

(http://www.adjuvantonline.com). This website aims to provide decision support for 

adjuvant therapy (chemotherapy, hormone therapy, etc.) after surgery for early cancer 

patients. A prediction website which focuses more on decision support for 

radiotherapy was previously set up by Maastro clinic (http://www.predictcancer.org).  

The last issue with the acceptance of these models is the statistical methodology 

barrier. In traditional statistics there is a subset of methods which are used most 

frequently for cancer related prognostic and predictive studies. In general, alternative 

methods are not easily accepted in the medical community, as for example methods 

from machine learning. These methods, like support vector machines, Bayesian 

networks and random forests, have the potential to predict the classification of clinical 

outcomes very accurately, as discussed in chapter 2. It is the responsibility of the 

medical community to consider these methods in clinical publications, but it is also a 

responsibility of the model developers to clearly explain the motivation for using a 

particular method, what inputs are required and how to interpret the output of these 

methods.  

Future perspectives 

The future of clinical decision making for rectal cancer using prediction models is 

dependent on a few crucial developments. The first step is to improve existing models 

by mining more sources of data, making more data available for training, validating 

and updating the models, and achieving higher data quality. Next, the assessment of 

the models’ clinical impact is required, with methods like the decision curve analysis 
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but certainly also with prediction model based clinical trials, as discussed in the 

previous section. Third, integration of the prediction models within the hospital IT 

systems is important for daily use in clinical practice. These aspects will be highlighted 

for this future outlook; the improvement of models using additional data and the 

implementation of prediction models within the emerging rapid learning healthcare 

framework.        

Data enrichment for model improvement 

Besides PET-imaging, other functional imaging techniques have shown to be helpful in 

assessing tumor response. Pre-treatment tumor perfusion or changes in tumor 

perfusion have been correlated before with pathological tumor response.
13,45

 Dynamic 

contrast enhanced magnetic resonance imaging (DCE-MRI) is most frequently used to 

measure tumor perfusion, but perfusion-CT (pCT) shows comparable results for 

perfusion quantification for rectal cancer.
46

 Quantifying the compactness, or cellularity 

of the tumor, to assess the diffusion process within the tumor, can be measured by 

diffusion-weighted imaging (DWI).
47

 Also diffusion-related parameters show high 

correlation with tumor response after treatment.
48

 In combination with PET measures, 

DWI even reached very high accuracies for a small group of patients.
13

 This finding 

indicates the potential of combining different (functional) imaging techniques. 

Although DWI is non-invasive, which is an advantage over PET-imaging, the protocols 

for calibration of DWI measures are not standardized to the same degree as for PET. 

When extra scans (generated outside the current treatment protocol) from different 

image modalities are suggested by a certain decision support system, cost-

effectiveness studies are required to assess if the benefits in model accuracy outweigh 

the costs. A less expensive and also promising imaging analysis development is the 

application of radiomics: the high-throughput extraction of large amounts of image 

features from radiographic images.
49

 Radiomics can be applied to scans from clinical 

routine like diagnostic and treatment-planning scans, which would increase the 

amount of extracted data, and thereby evidence.   

 

Alongside imaging, outcome prediction will gain more and more from biological 

markers in either the blood or in (tumor)-tissues, because of reducing measurement 

and analysis costs. In chapter 5, initial results of pre-treatment blood biomarkers were 

presented, but it was argued that measurements at multiple time-points would be 

more predictive, based on the analogy with the repeated PET findings. A more direct 

insight can be gained from genetic alterations within the tumor tissue collected with 

biopsies. A possible problem related to molecular biomarkers is the heterogeneity in 

tumors, making it necessary to collect a representative sample of tumor material, 
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requiring an invasive procedure to do so. An overview of these molecular biomarkers 

for rectal cancer is given in the review of Kuremsky et al.
50

 Gene expression analyses 

and genomic profiling through sequencing have also a promising prognostic and 

predictive value for (colo)rectal cancer. Although several validated prognostic gene 

expression signatures have been successfully developed, there is little overlap 

between them.
51

 Methodological and technical variances may explain this 

inconsistency, but it also seems evident that colorectal cancer is an extremely 

heterogeneous disease at the molecular level. Next-generation sequencing further 

improves our understanding of the biological mechanisms underlying rectal cancer and 

may provide additional prognostic information in the near future.
52

 

Clinical infrastructure  

The current development of a rapid learning healthcare system may be very effective 

to achieve clinical decision support in daily practice.
53

 In such a system, data is 

routinely generated through patient care and clinical research and fed into an ever-

growing databank or set of coordinated databases. High quality data should be 

available in real time, simultaneously used to improve clinical care, yield quality 

measures, and focus on research. This system would also expand the pace and 

magnitude of evidence generation. Developing a rapid learning healthcare system 

requires transformation of IT infrastructure, standardization of electronic health 

records and semantic interoperability between data sharing systems (the ability of any 

communicating system to share unambiguous meaning). Technical changes are 

however not sufficient for a successful implementation of the system. First of all, 

several cultural changes should be induced, like commitment across organizations, 

community participation for infrastructure development, persuasion of stakeholders to 

open up information silos, leadership, data governance, patient privacy and lastly that 

top research journals and grant funding bodies will request open source data sharing. 

Also, by promoting patient activation and empowerment, patient participation in both 

decision making and care delivery will be increased.  

 

Clinical decision making using prediction models would benefit greatly from such a 

rapid learning system. Not only will there be more variety in the data and are higher 

numbers of patients available to train the classifiers, the classifiers can also be 

validated across different institutes in a more automated and standardized manner. 

Also, the frequency of updating the models will increase due to constant monitoring of 

new data. Because of these promising developments, the medical doctor in the 21
st

 

century will be assisted by up-to-date tools that can predict multiple patient outcomes 

with high accuracy with just a single click on a button.    
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Biology 

CA IX Carbonic anhydrase 9 

CA19-9 Carbohydrate antigen 19-9 

CEA Carcinoembryonic antigen 

CRP C-reactive protein  

DNA Deoxyribonucleic acid 

GWAS Genome-wide association studies  

IL-6 Interleukin-6  

IL-8 Interleukin-8 

LDH Lactate dehydrogenase  

mRNA Messenger ribonucleic acid 

OPN Osteopontin 

SNP Single nucleotide polymorphism  

Clinical 

DFS Disease free survival 

DM Distant metastasis 

LARC Locally advanced rectal cancer 

LR Local recurrence  

NLARC Non-locally advanced rectal cancer 

OS Overall survival 

pCR Pathological complete response 

TRG Tumor regression grade 

Imaging  

5FU 5-fluorouracil  

ADC Apparent diffusion coefficient 

CT Computed tomography 

DICOM Digital imaging and communications in medicine 

DW-MRI Diffusion-weighted magnetic resonance imaging 

FDG 18F-fluorodeoxyglucose  

MRI Magnetic resonance imaging 
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MTV Metabolic tumor volume 

PET Positron emission tomography  

SUV Standardized uptake value  

Methodology 

AUC Area under the curve 

ROC Receiver operating characteristic  

SD Standard deviation 

SVM Support vector machine 

LOO Leave-one-out 

pSVM Proximal support vector machine 

CI Confidence interval 

Treatment  

APR Abdominoperineal resection  

CRM Circumferential margin  

CRT Chemoradiotherapy 

Gy Gray 

IGRT Image-guided radiotherapy  

LAR Low anterior resection  

MRF Mesorectal fascia 

TEM Transanal endoscopic microsurgery 

TME Total mesorectal excision 

APR Abdominoperineal resection  

Miscellaneous 

CDSS Clinical decision support system 

EORTC European organisation for research and treatment of cancer  

FFCD Fédération francophone de cancérologie digestive  

THUNDER Theragnostic utilities for neoplastic diseases of the rectum 

WHO World health organization 
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Summary 

The epidemiology and the treatment of rectal cancer were briefly discussed in chapter 

1. Preferably, the response to treatment and the consequence for a patients’ prognosis 

is assessed as early as possible in order to be able to adapt treatment accordingly. This 

concept of individualized medicine requires the development of specific computational 

tools to predict outcome after treatment because over the last few years the amount 

of available medical information has expanded rapidly. The opportunities for the 

physician to make a detailed assessment of risk and benefits associated with a specific 

combination of tumor, patient and treatment characteristics are expected to be 

greatly increased with the use of these tools. Eventually, these tools will be 

implemented within the infrastructure of hospitals and used in daily care. This thesis 

provided a first step towards these clinical decision support systems (CDSS) for rectal 

cancer.    

 

All the studies presented in this thesis focused on locally advanced rectal cancer 

(LARC), which is often treated with long course chemoradiotherapy (CRT) followed by 

surgery (TME). For LARC, the options to individualize treatment are highlighted 

throughout the thesis. One option is to predict pathologic complete response (pCR) in 

order to identify patients that respond excellent to the CRT. These patients are 

possible candidates for a wait-and-see policy in the surgical setting. Patients who 

respond less well might benefit from an extra boost of radiotherapy to promote more 

pCR cases. The worst responding group can be selected for additional chemotherapy. 

On the other hand, prediction of long-term follow-up outcomes, generally assessed in 

a 5-year time frame after treatment, may assist in the planning of follow-up strategies.  

For example, a high estimated risk for a local recurrence (LR) motivates an 

intensification of the follow-up, i.e. making the time shorter between hospital visits. 

High estimated risks for distant metastases (DM) and events for overall survival (OS), 

on the other hand, promotes the administration of adjuvant chemotherapy.  

 

The main aim of this thesis was to study the predictive value of clinical factors, imaging 

and blood biomarkers for response to treatment and follow-up outcome related to 

recurrences and survival for patients with locally advanced rectal cancer.   

   

In chapter 2 a review about predicting outcomes in the field of radiation oncology is 

presented. An overview of clinical, treatment, imaging and molecular factors that are 

associated with outcomes in radiation oncology is provided. Furthermore, the 

methodology behind the development of statistical prediction models is discussed. 
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This development does not only involve finding the relevant factors that influence 

outcome but also the training of a statistical model that is able to make predictions for 

new patients. To train models accurately and to validate them independently, datasets 

of large populations of representative patients are required. Integration of these 

validated decision support systems in the clinic that are constantly updated using new 

data (“rapid learning”) requires harmonization of data infrastructures and the 

willingness to accept these systems in healthcare organizations, so that data and 

knowledge are being shared in a standardized, instant and global manner. 

 

Tumor response prediction using PETCT-imaging and blood biomarkers 

 

Prediction of pathological complete response (15-30% of the patients) after CRT using 

clinical factors and sequential positron emission tomography (PET) combined with 

computed tomography (CT) imaging was described in chapter 3. This study involved 

large datasets from four different European centers. For the patients with imaging, a 

PETCT scan was made one week before and another scan around 8 weeks after 

treatment. It was found that the addition of the post-treatment PETCT scan 

information to the clinical data and the first PETCT scan resulted in a significant 

increase in prediction performance with acceptable levels of accuracy with area under 

the ROC curve (AUC) of around 0.85. The dominant tumor dimension and the maximal 

uptake of radioactive isotopes in the tumor as well as its relative difference between 

PET scans were found to be the best predictors for pCR. 

 

The time point at which the actual prediction of pCR is calculated is favored at an 

earlier stage to be able to adapt treatment. For this reason a large prospective study 

with PETCT imaging before and during CRT was presented in chapter 4. Tumor 

dimensions and change in PET activity within the tumor, together with clinical stage of 

the tumor, were found to be predictive for pCR. The model was externally validated 

and performed well (100% accuracy for the training set and 67% in validation).  

 

We are convinced that a holistic approach of combining multiple sources for data 

greatly improves the accuracy of prediction models for response to treatment. Blood 

biomarkers and their relationship with tumor response were studied in chapter 5 in a 

prospective study of 276 patients. Pre-treatment carcinoembryonic antigen (CEA) level 

is a significant predictor for pCR after CRT for LARC. For good response, i.e. yielded 

pathological tumor stage of 0-2 and no nodal involvement (ypT0-2N0), CEA and IL-8 

levels were both predictive. These blood biomarkers also had an added value to the 
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model with pre-treatment clinical- and PETCT-data. These results suggest that blood 

biomarkers have predictive potential for tailored therapy in rectal cancer. 

 

Predicting long-term follow-up outcome for decision support 

 

In chapter 6 a large study with 2795 patients from five European institutes aimed at 

the development of accurate prediction models for local recurrence, distant 

metastases and survival, based on only clinical data. The trained models were 

presented as nomograms, which can assign a new patient to one of the three 

proposed risk groups. This facilitates the selection of patients for clinical trials with 

different treatment approaches. External validation of the nomograms resulted in 

AUCs of 0.68 for LR, 0.73 for DM, and 0.70 for OS. Pathological staging was essential 

for accurate prediction of long-term outcome. 

 

The intermediate clinical outcomes pCR and 2-year disease free survival (2yDFS) were 

evaluated in chapter 7. Based on these intermediate endpoints which are both 

prognostic, different populations of rectal cancer patients were identified: highly 

responsive patients, responsive curable patients, and patients with early and late 

recurrence regardless of pCR status. pCR predictions may identify a minority of highly 

responsive patients for whom surgery can be tailored, organ preservation promoted, 

and quality of life or other patient-reported outcomes improved, whereas 2yDFS 

predictions identify less responsive patients who may benefit from more aggressive 

chemotherapy. Therefore, 2yDFS should also be considered as an intermediate 

endpoint in future trials, focusing on identifying and evaluating early predictors for pCR 

and 2yDFS in order to adapt treatment most efficiently. 

 

Finally, in chapter 8 the results presented of this thesis and areas of future research 

were discussed. The clinical impact of prediction models does not only depends on 

prediction accuracy, but also on the validation of these models in clinical trials and the 

dissemination of the acquired knowledge and developed tools. For the future, data 

enrichment using more advanced imaging techniques and analyses and adding 

biological markers from for example the genomic domain are expected to improve the 

quality of outcome predictions even more. If those improved models are integrated 

into a rapid learning healthcare system with suitable IT infrastructures and seamless 

interconnection between data systems, personalized treatment can and is expected to 

be fully embraced.   
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Samenvatting 

In hoofdstuk 1 wordt de epidemiologie en de behandeling van endeldarmkanker kort 

beschreven. Bij voorkeur wordt de respons op de behandeling en de consequenties op 

de prognose van een patiënt in een zo vroeg mogelijk stadium ingeschat, om de 

behandeling daarop aan te passen. Dit noemt men ook wel een geïndividualiseerde 

behandeling. Het kiezen van de optimale behandeling voor een patiënt is voor artsen 

echter steeds ingewikkelder geworden omdat de laatste jaren de hoeveelheid 

informatie betreffende de patiënt en specifieke kenmerken van de tumor is 

toegenomen. Ook zal het aantal behandelingsopties en combinaties van 

behandelingen alleen maar stijgen in de toekomst. Daarom is er een behoefte aan 

beslissingsmodellen die gebruik maken van de capaciteit van computers om al deze 

informatie te combineren en te koppelen aan behandelingsuitkomst. Het ontwikkelen 

van deze modellen is een eerste stap naar een Decision Support systeem, dat in de 

toekomst volledig geïntegreerd zal zijn in het ziekenhuis. In deze thesis zijn 

wetenschappelijk gefundeerde voorspellingsmodellen voor endeldarmkanker 

ontwikkeld. 

 

Alle studies in de thesis richten zich op lokaal gevorderd endeldarmkanker (locally 

advanced rectal cancer, LARC) dat meestal wordt behandeld met een langdurige 

chemoradiotherapie (CRT) gevolgd door een operatieve ingreep (TME). De opties om 

voor LARC de behandeling te individualiseren zijn beschreven in de thesis. Een optie is 

om pathologische complete respons (pCR) te voorspellen met als doel patiënten te 

selecteren die uitstekend reageren op de CRT. Deze patiënten zijn mogelijke 

kandidaten voor een beleid waarin een chirurgische ingreep vermeden kan worden 

(“wait-and-see”) en hebben dan ook geen extra behandeling nodig. Patiënten die 

echter minder goed reageren, zouden een extra dosis radiotherapie kunnen krijgen 

met als doel het aantal complete responders te vergroten. Als de respons echter 

afwezig lijkt te zijn, dan kunnen de betreffende patiënten een extra chemotherapie 

ondergaan. Daarnaast is het ook mogelijk om voorspellingen te doen over 

behandelingsuitkomsten gedurende het nazorg traject, waarbij een termijn van 5 jaar 

klinisch relevant is. Een hoog berekend risico op lokaal recidief (terugkeren van de 

tumor), bijvoorbeeld, pleit voor een intensievere nazorg. Hoge risico’s voor 

uitzaaiingen (metastasen) of overlijden van de patiënt pleiten voor het voorschrijven 

van adjuvante chemotherapie.  
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Het hoofddoel van deze thesis was het bestuderen van de waarde van klinische 

factoren, beeldvorming en bloed biomarkers voor het voorspellen van respons op de 

behandeling en nazorg gerelateerde uitkomsten als recidieven en overleving voor 

patiënten met lokaal gevorderde endeldarmkanker. 

 

In hoofdstuk 2 wordt een algemeen overzicht gegeven over de huidige stand van 

zaken met betrekking tot het voorspellen van uitkomsten in de radiotherapeutische 

oncologie. Daarbij worden klinische, behandeling gerelateerde, beeldvorming 

gerelateerde, en moleculaire factoren bediscussieerd waarvan bekend is dat ze 

geassocieerd zijn met de behandelingsuitkomst. Ook wordt de methodologie 

besproken die nodig is om statistische voorspellingsmodellen te ontwikkelen. Deze 

ontwikkelingen omvatten niet alleen het vinden van relevante factoren die klinische 

uitkomsten beïnvloeden, maar ook het trainen van een statistisch model dat in staat is 

om voor nieuwe patiënten een voorspelling te doen. Om deze modellen nauwkeurig te 

trainen en onafhankelijk te valideren zijn grote representatieve datasets nodig met 

medische informatie over patiënten en tumor karakteristieken. Het integreren van 

deze voorspellingsmodellen in de kliniek vraagt om een hoge mate van 

beschikbaarheid van nieuwe data. Hiervoor zijn de juiste infrastructuren en 

beleidsmanagement nodig. Eenmaal geïntegreerd, kan data en kennis op een 

gestandaardiseerde, snelle en wereldwijde wijze gedeeld worden.   

 

Tumor respons voorspellingen met PETCT beeldvorming en bloed biomarkers  

 

Het voorspellen van pathologische complete behandelingsrespons (in 15-30% van de 

patiënten) met behulp van herhaalde beeldvorming met PETCT 

(positronemissietomografie in combinatie met computertomografie) is beschreven in 

hoofdstuk 3. Deze studie bevat data uit vier verschillende Europese centra. Voor de 

patiënten die beeldvorming ondergingen werd 1 scan gemaakt in de week vóór de 

behandeling en 1 scan 8 weken na de behandeling. De gevonden resultaten laten zien 

dat de informatie uit de klinische gegevens en de PETCT scan van vóór de behandeling 

significant verbeteren wanneer PETCT informatie van na de behandeling wordt 

toegevoegd. Dit leidt tot een nauwkeurigheid van het model met acceptabele waarden 

voor de AUC van 0.85. De voorspellende factoren voor pCR zijn de tumor grootte, de 

maximale opname van de PET tracer (FDG) in de tumor en de relatieve afname van 

deze opname gemeten tussen de twee PETCT scans.  

 

Bij voorkeur is het tijdstip waarop de voorspelling voor pCR wordt gedaan zo vroeg 

mogelijk in het behandelingstraject om de mogelijkheid te behouden om de 
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behandeling aan te passen. Om deze reden is een grote prospectieve studie opgezet 

met PETCT beeldvorming vóór en tijdens CRT die is beschreven in hoofdstuk 4. De 

tumor grootte en de verandering van PET tracer opname in de tumor in combinatie 

met klinische classificatie waren in deze studie voorspellend voor pCR. Het model werd 

extern gevalideerd en presteerde goed (100% nauwkeurigheid voor de 

trainingsdataset en 67% voor externe validatie).  

 

We zijn overtuigd dat een holistische benadering met een combinatie van 

verschillende data bronnen de accuraatheid van voorspellingsmodellen sterk kan 

vergroten. Daarom zijn ook bloed biomarkers en de relatie met tumor respons 

onderzocht in hoofdstuk 5 in een prospectieve studie met 276 patiënten. Carcino-

embryonaal antigen (CEA) waarden vóór de behandeling hadden een significante 

associatie met pCR. Voor een goede response (tumor classificatie van 0-2 en geen 

betrokkenheid van lymfklieren, ypT0-2N0), waren de bloedwaarden van CEA en IL-8 

voorspellend. De bloed biomarkers hadden ook een toegevoegde voorspellende 

waarde in het model met klinische en PETCT factoren. Deze bevindingen wijzen erop 

dat bloed biomarkers belangrijke kandidaten zijn om therapie op maat voor 

endeldarmkanker te optimaliseren. 

  

Het voorspellen van uitkomsten tijdens de langdurige nazorg  

 

In hoofdstuk 6 is een grote studie beschreven met 2795 patiënten die behandeld zijn 

in vijf Europese instituten. Op basis van klinische data zijn nauwkeurige 

voorspellingsmodellen ontwikkeld voor lokaal recidieven, metastasen en overleving. 

De getrainde modellen zijn gepresenteerd als nomogrammen, die in staat zijn om voor 

één enkele patiënt een risico groep voor de betreffende uitkomst te berekenen. Zo een 

nomogram faciliteert ook de selectie van patiënten in klinische trials met verschillende 

behandelingsopties. Externe validatie van de nomogrammen resulteerde in AUCs van 

0.68 voor lokaal recidieven, 0.73 voor metastasen en 0.70 voor overleving. 

Pathologische tumor en lymfklier classificaties na behandeling hadden hierbij de 

grootste voorspellende waarde.  

 

De tussentijdse klinische uitkomsten pCR en ziekte vrije overleving binnen twee jaar 

(2yDFS) zijn geëvalueerd in hoofdstuk 7. Deze tussentijdse uitkomsten waren 

prognostisch in de data en op basis hiervan werden verschillende populaties 

endeldarmkanker patiënten geïdentificeerd: uitstekend reagerende patiënten, goed 

reagerende behandelbare patiënten en patiënten met vroeg of laat een recidief, 

ongeacht de status van pCR. Voorspellingen voor pCR kunnen een minderheid van de 
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patiënten identificeren voor wie een operatie op maat kan worden gegeven, orgaan 

preservatie kan worden gepromoot en de kwaliteit van leven kan worden verbeterd. 

Slecht reagerende patiënten kunnen beter met de voorspellingen voor 2yDFS 

geïdentificeerd worden en komen in aanmerking voor agressievere chemotherapie. 

Mede daarom, zou overwogen kunnen worden om 2yDFS als tussentijds eindpunt te 

evalueren in toekomstige klinische trials met als doel om vroege predictoren voor pCR 

en 2yDFS te vinden en behandelingsaanpassingen efficiënter maken. 

 

Ten slotte worden in hoofdstuk 8 de resultaten uit de gehele thesis besproken en met 

elkaar in verband gebracht. De klinische impact van voorspellingsmodellen hangt niet 

alleen af van de nauwkeurigheid van voorspellingen maar ook van een betrouwbare 

validatie in klinische trials en van de verspreiding van de opgedane kennis en 

modellen. Voor de toekomst wordt verwacht dat voorspellingsmodellen zullen 

verbeteren door het toevoegen van extra relevante data afkomstig van geavanceerde 

beeldvormingstechnieken en -analyses maar ook het toevoegen van moleculaire 

biomarkers uit bijvoorbeeld het genomica domein. Deze verbeterde modellen kunnen 

uiteindelijk pas volledig omarmd worden als ze geïntegreerd gaan worden in de snel 

lerende zorg systemen die de juiste IT infrastructuur hebben en zorgen voor een 

naadloze verbinding tussen de data systemen. 
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