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Abstract

Mixed model assembly systems assemble products (parts) of different
types in certain prespecified quantities. A minimal part set is a small-
est possible set of product type quantities, to be called the multiplicities,
in which the numbers of assembled products of the various types are in
the desired ratios. It is common practice to repeatedly assemble minimal
part sets, and in such a way that the products of each of the minimal
part sets are assembled in the same sequence. Little is known however
regarding the resulting throughput rate, in particular in comparison to the
throughput rates attainable by other input strategies. This paper inves-
tigates throughput and balancing issues in repetitive manufacturing envi-
ronments. It considers sequencing problems that occur in this setting and
how the repetition strategy influences throughput. We model the prob-
lems as a generalization of the traveling salesman problem and derive our
results in this general setting. Our analysis uses well known concepts from
scheduling theory and combinatorial optimization.

Keywords: Manufacturing: performance, productivity; Production/sche-
duling: approximations, line balancing, sequencing; Networks/graphs: traveling
salesman.



1 Introduction

Mass customization continues to place new demands on manufacturers. These
new demands concern manufacturing technology, as well as planning and schedul-
ing issues. The customization is often achieved by offering a choice of (optional)
parts on a generic product. In manufacturing terms, this comes down to being
able to customizing the generic product during the assembly stage, using various
components. This concept has become known as assemble to order. Together
with lean manufacturing requirements, assemble to order techniques pose chal-
lenging new planning and scheduling problems for manufacturers.

In a mass customization environment, demand for products is not entirely
handled at the customer level. For several stage of the production process, de-
mand is rather dealt with at the level of product variations, for instance because
the figures are (partly) forecasts. The idea is that there is one product variation
for each possible choice of components (or several closely resembling choices com-
bine into one variation). In this paper we refer to the variations as types. Further,
we deal with a situation where the assembly process is executed on an assembly
line. As is customary in such settings, we assume that demand is specified at
the level of product types: expected number of products per type for the next
planning period, e.g. a month. The question that we would like to answer is:
how to sequence all products of the various types through the assembly process?

Of course, this question has been studied before in several different contexts.
First of all, there is a line of research dealing with so-called assembly line balanc-
ing problems (see e.g. Aigbedo and Monden (1997), Miltenburg (1989), Kubiak
et al. (1997). This research originates from car assembly line scheduling problems
at Toyota. Mostly, these papers assume that each assembly step takes a same,
constant, amount of time. The task might now be to sequence the cars in such
a way that the output levels are at any time proportional to the demand ratios.
Alternatively, the sequencing problem might be to sequence the cars in such a
way that the lines feeding the assembly line have a balanced work load.

Another line of research, having its roots in a variety of different manufac-
turing applications, also deals with related sequencing problem. These problems
may again assume a linear production system, but the sequencing objective is
now to optimize throughput rather than the the line balance. Related models
can be found in maintenance and data broadcast scheduling Zhang and van der
Veen (1996), Anily et al. (1998), Kenyon et al. (2000); Bar-Noy et al. (1998).

The problem under investigation can be further defined and specified as fol-
lows. We denote by J = {1, 2, . . . , N} the set of product (job) types. For each
product (job) type j ∈ J there is a nonnegative integer dj describing the demand
of the j-th product for the next planning period, which specifies the number of
type j jobs to be assembled. Further, we denote by ci,j the time interval re-
quired between inputting a type i job and a type j job, i, j ∈ J , into the system.
These ci,j’s can be considered as sequence dependent processing times in a sin-
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gle machine scheduling problem, as sequence dependent switch over times, or as
the waiting times between inputting parts into a permutation no-wait flowshop.
Such a permutation no-wait flowshop system is often an adequate model for an
assembly system. Notice that this problem specification is quite general. (For
instance it contains scheduling problems in which the processing times are not
sequence dependent as a special case.)

When dj = 1 for all j ∈ J , and interpreting the ci,j as the distance between a
city i and a city j, the sequencing problem that minimizes the sum of the sequence
dependent ci,j is the classic traveling salesman problem (TSP). For reasons that
will become clear soon, we refer to scheduling problems in which dj = 1 for all
job types as single multiplicity problems. In the classical, single multiplicity, TSP
there is an explicit input parameter ci,j for each pair of cities. Hence, the length
of the encoded input is O(N2×maxi,j∈{J×J} ci,j). In the sequencing problem that
we investigate in this paper there are multiplicities dj, j ∈ J, of jobs having the
same processing requirements. Therefore, in any natural and compact encod-
ing the input is of length O(N2 ×max(maxj∈J dj, maxi,j∈{J×J} ci,j)). Scheduling
(and sequencing) problems in which the input is specified this way, have become
known as high multiplicity scheduling problems. Other high multiplicity schedul-
ing problems can be found for instance in Hochbaum and Shamir (1991), and in
Clifford and Posner (1996).

From a complexity perspective, high multiplicity scheduling problems have
lead to several characteristic questions. Let us demonstrate this by considering
high multiplicity sequencing problems with a makespan minimization objective.
First of all, note that explicitly specifying a high multiplicity sequence of jobs
requires an amount of space that is not polynomial in the input size. Therefore, it
is not a priori clear that high multiplicity sequencing problem are in P-SPACE, let
alone in NP. Hence, researchers have investigated whether optimal sequences can
be compactly encoded. In particular, a question that has attracted attention are:
Can polynomial algorithms for single multiplicity problem be extended so as to
solve in polynomial time, the high multiplicity version (see e.g. Agnetis (1997))?
Another question that has been researched is: for problems that are known to be
NP-Complete in the single multiplicity version, is the high multiplicity version
solvable in polynomial time if the number of types is fixed? This question is
especially interesting since in many practical applications, the number of different
types will be small compared to the numbers of multiplicities.

In practical settings in which the above high multiplicity scheduling problems
arises, makespan optimization is important but not necessarily the dominant
objective function. In addition, managers and planners think it to be desirable
to have the output over time more or less in proportion to the multiplicities of
the types. Among the advantages of such a policy are low inventories and a
smooth work load. Consequently, it has become standard practice to repeatedly
execute a short assembly sequence in which the jobs are produced in the required
relative quantities. The concept of minimal part sets builds on this idea Hitz
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(1979), Hitz (1980). A minimal part set is constructed as follows. Let d0 be
the greatest common divisor of the set of multiplicities {d1, d2, . . . , dN}. Further
let kj = dj/d0, for j ∈ J . The minimal part set (MPS) is described by the
vector {k1, k2, . . . , kN}. A popular approach to finding a good sequence is now
to find a sequence for the MPS, that when repeatedly executed, yields among
all such sequences for MPSs the highest throughput rate. Alternatively, we shall
formulate the problem in terms of finding an MPS sequence with shortest cycle
time.

In assembly or production systems, the approach described above ideally re-
sults in low inventories, balanced workloads, and a simple and stable schedule,
which is not too complicated to find. However, this approach may well yield
sub-optimal throughput rates. In this paper we investigate high multiplicity se-
quencing problems with a cycle time minimization objective. In particular we
are interested in the trade-off between long run cycle time versus the length of
the sequence that is repeatedly executed. Indeed, a basic question that we will
address is whether for a given instance there exists a finite repetitive cyclic policy
that yields the optimal throughput rate.

The permutation no-wait flowshop scheduling problem F |no − wait|Cmax in
the representation scheme of Graham et al. (1979), is an important application
for the research presented in this paper. We therefore quickly review its (high
multiplicity) complexity status. It is well known, see e.g. Wismer (1972), that
the permutation no-wait flowshop scheduling problem can be modeled as a trav-
eling salesman problem (TSP). For the case of two machines, the resulting TSP
instances have a distance matrix with a special structure, and, in the single mul-
tiplicity case, the cycle time minimization problem can be solved in polynomial
time by the algorithm of Gilmore & Gomory Gilmore and Gomory (1964). Ag-
netis in Agnetis (1997) shows that the high multiplicity version of the two machine
no-wait flowshop scheduling problem can also be solved in polynomial time, by
an extension of the Gilmore & Gomory algorithm. From Röck (1981) we know
that for three and more machines the decision versions of permutation no-wait
flowshop scheduling problems are NP-complete in the strong sense as well as the
traveling salesman problem in general.

The idea of finding an optimal sequence for an MPS is encountered in various
other settings, such as the literature on assembly line balancing, or the literature
on maintenance scheduling. Another previously investigated problem that fits in
this framework is the the high multiplicity TSP (HMTSP), which is sometimes
referred to as ”the traveling salesman problem with many visits to few cities”.
We derive several results that can be applied to HMTSP. In this respect, our
work extends earlier work on the HMTSP, as it can be found in Cosmadakis and
Papadimitriou (1984), Papadimitriou and Kanellakis (1980), Psaraftis (1980),
Zhang and van der Veen (1996), Van de Klundert (1995).
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2 Problem Statement and Formulations

In this paper we consider a general high multiplicity scheduling problem with
sequence dependent processing times. In fact, we will not be interested so much
in the actual scheduling of tasks, i.e. specifying starting times, but rather in se-
quencing jobs, i.e. determining the order in which they are to be processed. More
specifically, we will be interested in what we call the high multiplicity traveling
salesman problem, since it is general enough to serve as a model for a variety
of scheduling applications (see e.g. Remark 1 or Cosmadakis and Papadimitriou
(1984); Zhang and van der Veen (1996)).

Definition 2.1 The high multiplicity traveling salesman problem (HMTSP):

P : min
x

∑
i∈J

∑
j∈J

ci,jxi,j (i)

subject to ∑
i∈J

xi,j = kj, j ∈ J ; (ii)∑
j∈J

xi,j = ki, i ∈ J ; (iii)∑
i∈J ′

∑
j∈J\J ′

xi,j ≥ 1, ∀ J ′ ⊂ J such that J ′ 6= ∅; (iv)

xi,j ∈ Z+, i ∈ J, j ∈ J. (v)

For a generic instance we will refer to this formulation as P , and to the value
of its optimal solution as F (P ).

Remark 1. Consider the high multiplicity formulation of the permutation no-
wait flowshop for a single MPS with cycle time minimization objective. For each
ordered pair of types (i, j) ∈ J×J it is possible to compute a number ci,j which is
the time that must elapse between consecutively sequenced products (jobs, parts)
of type i and type j respectively. That is

ci,j = p1,i + max
m=1,...,M−1

(
0,

m∑
n=1

(pn,j − pn+1,i)

)
.

It is well known (see e.g. Wismer (1972)) that using the parameters ci,j, i ∈
J, j ∈ J , the classical, single multiplicity, no-wait flowshop problem can be
straightforwardly formulated as TSP. Indeed, letting the jobs correspond to cities,
and letting ci,j, i ∈ J, j ∈ J , be the distance between cities i and j, the task is to
find a closed walk through all cities such that visiting every city exactly once and
total length of which is minimal overall such walks.

The HMTSP is also known as the traveling salesman problem with many vis-
its to few cities. From its definition as an integer linear program we conclude
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that the decision version of the HMTSP, is in NP (despite the exponential num-
ber of constraints). Moreover, using Lenstra’s algorithm Lenstra (1983) it can
be solved in polynomial time when the number of cities (types) is fixed. In fact
combinatorial, strongly polynomial, algorithms for the case where the number of
cities is bounded from above by a constant have been developed by Cosmadakis,
Kanelakis, Papadimitriou and Van de Klundert in Cosmadakis and Papadim-
itriou (1984); Papadimitriou and Kanellakis (1980); Van de Klundert (1995).

We now explain how an (optimal) sequence can be constructed from an (optimal)
solution x0 to P (see for instance Zhang and van der Veen (1996); Eiselt et al.
(1995); Van de Klundert (1995)). Let [x0

i,j]N×N be an (optimal) solution to (P ).
We are going to describe a procedure ConvertToSequence that can be repeatedly
executed to convert the solution and matrix [x0

i,j]N×N into a closed walk that
traverses arc (i, j), exactly xi,j times (i, j ∈ J), and which represents a high
multiplicity sequence in which to visit the cities.

We denote by G(J, A) the multigraph in which the nodes correspond to
the cities in the HMTSP, and each arc (i, j) occurs with multiplicity x0

i,j. In
the procedure ConvertToSequence we use the phrase ”simple cycle”, which is
to be understood as a simple cycle in G. More precisely, we define a cycle
c = ((i1, i2), (i2, i3), . . . , (it, i1)) , ik ∈ J, k ∈ 1, 2, . . . , t to be a simple cycle if
it doesn’t contain any subcycle, i.e. if iq 6= ir for q, r ∈ 1, . . . , T and q 6= r.

Definition 2.2 Procedure ConvertToSequence

Input: [x0
i,j]N×N .

Output: A closed walk, represented by a collection C of pairs (i, c), where i is
an integer and c a simple cycle.

1. C := ∅, n = 1.

2. Find a cycle cn = ((i1, i2), (i2, i3), . . . , (it, i1)) , ik ∈ J, k ∈ 1, 2, . . . , t, such
that xn−1

ik,ik+1
> 0, k ∈ {1, 2, . . . , t− 1} and xn−1

it,i1
> 0.

3. Let mn = min{xn−1
i,j |(i, j) ∈ cn}, C := C ∪ {mn, cn} and xn

i,j := xn−1
i,j − mn

for (i, j) ∈ cn and xn
i,j := xn−1

i,j otherwise.

4. If [xn
i,j]N×N = [0]N×N , output: C and stop, else set n := n+1, and goto step

2.
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The reader may verify that this algorithm can be read as an high multiplicity
extension of the text book algorithm to find a eulerian trail in a eulerian graph
in the following way. We construct a eulerian walk by traversing the first edge
i1, i2 of the first simple cycle c1. Then, we check whether city i2 is the first city in
any other cycle cl. If this is is the case we continue by recursively traversing cl.
Otherwise, or after having recursively traversed cl, we continue by traversing the
second edge of c1, i.e. (i2, i3). For city i3, again we look whether there is some
simple, and yet untraversed cycle ck that starts in i3. If so, we start traversing
ck, and otherwise, or after having recursively traversed ck, we continue traversing
c1. When c1 is completely traversed, i.e. after having traversed the arc (it, i1),
and recursively all cycles starting at i1, we finish by traversing c1 m1 − 1 times
without making recursive traversals. In general, when during the construction
of the eulerian walk some simple cycle ck is completely traversed, we traverse it
mk − 1 times, without making the recursive traversals.

The graph G(J, A) is a eulerian graph, and therefore must contain a eulerian
walk. For the correctness of the procedure ConvertToSequence we refer to Eiselt
et al. (1995)). A few words on its complexity are in order here. First of all, it
is not hard to verify that step 2 can be executed in O(N) time. Further, xn

i,j

contains at least one more zero element than xn−1
i,j , by definition of step 3. Hence

steps 2 to 4 are executed O(N2) times. This leaves the overall time complex-
ity of ConvertToSequence to be O(N3). In addition, this reasoning implies that
the collection C consists of at most O(N2) pairs (i, c). Since i and c are also
polynomially bounded in the input size, the output of it ConvertToSequence is
a polynomial encoding of an optimal solution. Hence we have two compact en-
coding schemes of optimal solutions: C, and x0

i,j. In subsequent sections these
compact encoding schemes will be contrasted with not necessarily polynomial en-
coding schemes in which solutions are more explicitely specified. An example of
such an encoding scheme is to disregard the multiplicities and completely specify
the sequence in which the cities are to be visited.

We now continue by considering some relaxations and extensions of Definition
2.1. For a generic instance we define T to be the problem that results from P by
relaxing the subtour elimination constraints (iv):

Definition 2.3

T : min
x

∑
i∈J

∑
j∈J

ci,jxi,j

subject to ∑
i∈J

xi,j = kj, j ∈ J ;∑
j∈J

xi,j = ki, i ∈ J ;

xij ∈ Z+, i ∈ J, j ∈ J.
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We denote the value of the optimal solution of T by F (T ). Problem T is
a transportation problem, and therefore always has an integral optimal solution
that can be found in polynomial time.

Finally, we introduce a more general problem formulation of the cycle time
minimization problem. Since the research aims to find input sequences that yield
maximum throughput, we propose a formulation that allows more general input
sequences, not just input sequences for MPSs:

Definition 2.4

P (l) : min
x,l

1
l

∑
i∈J

∑
j∈J

ci,jxi,j

subject to ∑
i∈J

xi,j = l × kj, j ∈ J ;∑
j∈J

xi,j = l × ki, i ∈ J ;∑
i∈J ′

∑
j∈J\J ′

xi,j ≥ 1, ∀ J ′ ⊂ J such that J ′ 6= ∅;

xi,j ∈ Z+, i ∈ J, j ∈ J ;
l ∈ Z++.

Problem P (l) contains the decision variable l. Let (l∗, x∗) be some optimal
solution, then it encodes a sequence in which each city j ∈ J is visited

∑
i∈J x∗i,j =

l∗×kj times. Hence the resulting sequence contains l∗ MPSs. Since the aim is to
maximize throughput rate, this formulation minimizes the minimum cycle time
achievable by a sequence for the jobs in l MPSs, over all natural numbers l.
Thus, in a scheduling context, and letting l be infinity, the optimal solution value
specifies the maximum throughput rate attainable while producing all types in
the prespecified ratios.

We shall again refer to the objective function of P (l) by F (P (l)), or F (l) for
short. Notice that P (l) is not a linear program. However, for fixed l it is, and
as before P (l) can be solved in polynomial time when both l and N are fixed
Lenstra (1983).

As before, we define T (l) to be the problem that results from P (l) after re-
laxing the subtour elimination constraints:
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Definition 2.5

F (T (l)) = 1
l
min

x

∑
i∈J

∑
j∈J

ci,jxi,j

subject to ∑
i∈J

xi,j = l × kj, j ∈ J ;∑
j∈J

xi,j = l × ki, i ∈ J ;

xi,j ∈ Z+, i ∈ J, j ∈ J.

Notice that by defining yi,j = xi,j/l, T (l) can be rewritten as

F (T (l)) = min
x

∑
i∈J

∑
j∈J

ci,jyi,j

subject to ∑
i∈J

yi,j = kj, j ∈ J ;∑
j∈J

yi,j = ki, i ∈ J ;

yi,j ∈ Z+, i ∈ J, j ∈ J.

Hence, we conclude that T (l) and T are identical transportation problems.
By consequence for any natural number l the value F (T ) yields a lower bound
for F (l).

3 General Properties of Optimal Solutions

In this section we derive some basic properties of the problem P (l). We derive
some results on how the optimal value F (l) decreases when l increases. All of
these results are based on the following inequality:

Theorem 3.1 For any natural number l, the following inequality holds

F (l + 1) ≤ l

l + 1
F (l) +

1

l + 1
F (T ). (1)

Proof. Let xl+1 and xl, l ∈ Z++, denote optimal solutions for P (l+1) and P (l)
respectively, and let xT denote an optimal solution for T . Now, notice first that
the vector xl+xT is a feasible solution for P (l+1). Thus, for any number l ∈ Z++
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we have

F (l + 1) =
1

l + 1

∑
i∈J

∑
j∈J

ci,jx
l+1
i,j

≤ 1

l + 1

∑
i∈J

∑
j∈J

ci,jx
l
i,j +

1

l + 1

∑
i∈J

∑
j∈J

ci,jx
T
i,j

=
l

l + 1

(
1

l

∑
i∈J

∑
j∈J

ci,jx
l
i,j

)
+

1

l + 1

∑
i∈J

∑
j∈J

ci,jx
T
i,j

=
l

l + 1
F (l) +

1

l + 1
F (T )

as required. 2

Corollary 3.1 F (l) ≥ F (l + 1) holds for any l ∈ Z++.

Proof. Using Theorem 3.1 we straightforwardly derive,

F (l + 1) ≤ l

l + 1
F (l) +

1

l + 1
F (T )

=
l

l + 1
F (l) +

1

l + 1
F (T (l))

≤ l

l + 1
F (l) +

1

l + 1
F (l)

= F (l),

where the second inequality follows from the fact that T (l) is obtained from P (l)
by relaxation of the sub-tour elimination constraints. 2

Theorem 3.2 F (l) > F (l + 1) if and only if F (l) > F (T ).

Proof. If F (l) > F (T ), then it must hold that

F (l) =
l

l + 1
F (l) +

1

l + 1
F (l)

>
l

l + 1
F (l) +

1

l + 1
F (T )

≥ F (l + 1)

by 3.1. Conversely, if F (l) = F (T ), it must hold that

F (l + 1) ≥ F (T (l + 1))

= F (T )

= F (l).
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Combined with 3.1 this yields that F (l + 1) = F (l). 2

By consequence we also have the following corollary:

Corollary 3.2 If there exists l0 such that F (l0) = F (T ) then F (l) = F (T ) for
any number l ≥ l0.

Hence, the question rises whether for a given instance there exists l0 such
that F (l0) = F (T )? Moreover, in case the answer is affirmative, one would like to
efficiently compute or at least estimate a smallest number l0 such that the equality
holds. These questions will be discussed and answered in the Sections 4 and 5.
In case the answer is negative, there might still be some long run stabilization
worthy of characterization (which in turn might be efficiently computable).

Pursuing this direction, we first consider the following theorem, which is an
extension of Theorem 3.1.

Theorem 3.3 For any fixed natural number l∗ and any natural number l ≥ l∗

the following inequality holds

F (l) ≤ l∗

l
F (l∗) +

l − l∗

l
F (T ). (2)

Proof. We shall prove by induction on l from the basis l∗. For any natural
number l∗ it holds that F (l∗) ≤ l∗ × F (l∗)/l∗ + (l∗ − l∗) × F (T )/l = F (l∗), and
hence 2 holds for l = l∗.

Now, suppose that for some number l ≥ l∗ property 2 holds. We prove
that based on this induction hypothesis the validity of this property for l + 1
can be derived. From 3.1 we obtain, for every natural number l, F (l + 1) ≤
l × F (l)/(l + 1) + F (T )/(l + 1). Hence, by induction we have that

F (l + 1) ≤ l

l + 1
F (l) +

1

l + 1
F (T )

≤ l

l + 1

(
l∗

l
F (l∗) +

l − l∗

l
F (T )

)
+

1

l + 1
F (T )

=
l∗

l + 1
F (l∗) +

l + 1− l∗

l + 1
F (T )

and the proof is complete. 2

Finally, we prove that the value F (l) converges to F (T ) when l goes to infinity.

Theorem 3.4 If there exists a (finite) natural number l∗ such that F (l∗) < ∞
then

lim
l→∞

F (l) = F (T ). (3)
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Proof. Using Theorem 3.3, and letting l > l∗ we derive

F (T ) ≤ F (l)

≤ l∗

l
F (l∗) +

l − l∗

l
F (T )

= F (T ) +
l∗

l
F (l∗)− l∗

l
F (T ).

Hence,

F (T ) = lim
l→∞

F (T )

≤ lim
l→∞

{F (T ) +
l∗

l
F (l∗)− l∗

l
F (T )}

= F (T ).

which yields the desired result. 2

In Section 5 we obtain a much stronger result which improves Theorems 3.1
and 3.3. Namely, we shall find that for a very general class of instances, and for
all l ≥ N −1, it holds that F (l) = F (N −1)× (N −1)/l + F (T )× (l−N +1)/l.

We finish this section by demonstrating how optimal solutions and objective
function values change with l.

Example 3.1 Consider the following instance:

Let J = {1, 2, 3};
k1 = 1, k2 = 1, k3 = 1;
c1,3 = c3,1 = a, (a > 1);
ci,j = 1 for (i, j) /∈ {(1, 3), (3, 1)}.

The reader is encouraged to verify that

• For the transportation problem T it holds that F (T ) = 3, xT
i,j = 0 for i 6= j

and xT
i,j = 1 for i = j. The collection C as output by ConvertToSequencein

this case is C = {(1, (1, 1)), (1, (2, 2)), )1, (3, 3))}.

• For the problem P (1) we have F (P ) = a + 2. An optimal solution for this
problem is x1

i,j = 1 for (i, j) ∈ {(1, 2), (2, 3), (3, 1)} and x1
i,j = 0 for any

other arcs. In this case is : C = (1, ((1, 2), (2, 3), (3, 1))).

• For any natural number l ≥ 2 we get F (l) = 3. An optimal solution is
specified by xl

1,2 = xl
2,3 = xl

3,2 = xl
2,1 = 1; xl

1,1 = xl
3,3 = l − 1; xl

3,1 =
xl

1,3 = 0 and xl
2,2 = l − 2. Further, C = ((1, (1, 2)(2, 3), (3, 2), (2, 1)), ((l −

1), (1, 1)), ((l − 2), (2, 2)), ((l − 1), (3, 3))).

12



In this example it holds that F (l) = F (T ), for l ≥ 2. This example also
demonstrates that the ratio between F (P ) and F (l) can be extremely bad, namely
F (P )/F (l) = (a + 2)/3, where a may be chosen arbitrarily.

Example 3.2 Now, consider another instance which is identical to the one de-
scribed in Example 3.1, but for the following arc lengths: c1,2 = c2,1 = b, where
1 < b < a.

It can be checked that in all cases discussed in Example 3.1 the same solutions
are optimal ones, but the objective function values are different. More specifically,

• For the transportation problem T it holds that F (T ) = 3, xT
i,j = 0 for i 6= j

and xT
i,j = 1 for i = j. The collection C as output by ConvertToSequence

in this case is C = {(1, (1, 1)), (1, (2, 2)), )1, (3, 3))}.

• For the problem P (1) we have F (P ) = a + b + 1. An optimal solution for
this problem is x1

i,j = 1 for (i, j) ∈ {(1, 2), (2, 3), (3, 1)} and x1
i,j = 0 for any

other arcs. In this case is : C = ((1, (1, 2)), (1, (2, 3)), (1, (3, 1))).

• For any natural number l ≥ 2 we get F (l) = (3l + 2b − 2)/l = 3 + (2b −
2)/l. An optimal solution is again specified by xl

1,2 = xl
2,3 = xl

3,2 = xl
2,1 =

1; xl
1,1 = xl

3,3 = l − 1; xl
3,1 = xl

1,3 = 0 and xl
2,2 = l − 2. Further, C =

((1, (1, 2)(2, 3), (3, 2), (2, 1)), ((l− 1), (1, 1)), ((l− 2), (2, 2)), ((l− 1), (3, 3))).

In this example, F (l) strictly decreases when l increases, and indeed there
doesn’t exist l0 such that F (l0) = F (T ). Nevertheless, the optimal solution dis-
plays the same (stable) behavior as in the previous example.

4 Optimal Sequences of Bounded Length in the

Stable Case

Definition 4.1 Consider an instance for which there exist a number l0 ∈ Z++

such that F (l) > F (T ) for any l < l0 and F (l) = F (T ) for any l ≥ l0. Such an
instance is called stable and l0 is called the stabilization number.

Theorem 4.1 For every stable instance, the stabilization number l0 ≤ (N +
1)2/4.

Proof. Consider a stable instance and corresponding stabilization number
l0. Let M = (J, A) be a complete directed multigraph on the set of nodes J . In
M let us consider a closed walk W 0 = ((i1, i2), (i2, i3), . . . , (it, i1)) , ik ∈ J, k ∈
{1, . . . , t}, which represents an optimal solution for the problem P (l0). Call to
mind that any closed walk which represents a feasible solution of the problem
P (l) passes through all cities j ∈ J exactly l × kj times.
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In addition, let S = (s1, s2, . . . , sw), sk ∈ A, k ∈ {1, . . . , w} be any closed
walk in the graph M . Recall that by definition, for a closed walk it holds that
there exists i, j, k such that s1 = (i, j) and sw = (k, i). We say closed walk S is
complete if it passes through all vertices in G. More formally, we define:

Definition 4.2 Given a multigraph M(J, A) and a closed walk S = (s1, s2, . . . , sw),
sk ∈ A, k ∈ {1, . . . , w} in M . We say S is complete if for every j ∈ J there
exists k ∈ {1, . . . , w} and i ∈ J for which (i, j) = sk.

Definition 4.3 Given a multigraph M(J, A), closed walk = S(s1, s2, . . . , sw), sk ∈
A, k ∈ {1, . . . , w} in M , let S ′ = (si, si+1, . . . , sj−1, sj), where 1 ≤ i < j ≤ w be
a closed walk which is contained as a subsequence in S. We say S is a minimal
complete walk if, for every S ′ = (si, si+1, . . . , sj−1, sj), where 1 ≤ i < j ≤ w, the
closed walk S \ S ′ = (s1, s2, . . . , si−1, sj+1, . . . , sw) is not complete.

If closed walk S ′ is contained as a subsequence in S and S \ S ′ is complete,
we call S ′ ommissable.

Consider a minimal complete walk W ′ = ((j1, j2), (j2, j3), . . . , (jt, jt+1)) where
j1 = jt+1 which is obtained from the complete closed walk W 0 by removing
ommissable closed walks from it as described above. We are going to prove that
W ′ contains at most (N +1)2/4 arcs. To see this, let f be the number of vertices
that are passed in W ′ exactly once. More formally, f is the number of vertices j
for which there is exactly one arc (jk, jk+1), k ∈ 1, . . . , t in W ′ such that jk = j.

First, we make clear that f ≥ 2. Consider an arbitrary cycle C that is
contained as a subsequence in W ′. If no such cycle C exists, we are done since
W ′ is complete and hence f = N . Thus let us assume C exists. Then C (and
also W ′ \ C) consists of at least two arcs, since otherwise it forms a loop, and
therefore is ommissable, which contradicts the minimality of W ′.

Now, let C1 be a cycle that is contained as a subsequence in C with minimum
number of arcs and let C2 be defined analogously with respect to W ′ \C. There
are two cases for C1.

Assume first that all vertices passed in the cycle C1 are represented in W ′

more than once. If all vertices passed in C1 are passed also in W ′ \ C1, C1 is
ommissable contradicting the minimality of W ′. Hence at least one vertex must
be passed more than once in C1. Thus C1 contains a cycle. Again we have reached
a contradiction since by definition of C1 it doesn’t contain any cycles contained
in it as a subsequence. Thus, we conclude that there is at least one vertex passed
in C1 which is passed in W ′ only once. Applying the same reasoning to C2, we
conclude that f ≥ 2.

Now let i and j be two vertices that are passed once in W ′ and such that the
part Q of the closed walk from i to j doesn’t contain any other vertex that is
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passed once in W ′. (We will say that i and j are neighboring.) It can be seen as
follows that in Q no vertex is passed more than once. If there exist a vertex that
is passed twice in Q we have found a cycle. By definition of i,j and Q, this cycle
doesn’t contain vertices that are passed once in W ′. Hence, the cycle must be
ommissable contradicting the minimality of W ′. Thus all vertices that are passed
in Q are passed once in Q.

Now we know that in the walk there are f ≥ 2 vertices which are passed
exactly once and that between pairs of neighboring such vertices, no other vertices
occur more than once. This allows us to bound the total number of vertices in
W ′. Indeed, it must hold that the total number of vertices and hence arcs in W ′

does not exceed f +f(N−f). Maximizing f +f(N−f) over f = 2, . . . , N yields
fmax = (N + 1)/2. It then follows that fmax + fmax(N − fmax) = (N + 1)2/4 and
therefore W ′ has length at most (N + 1)2/4.

Using that the length t of W ′ is less than or equal to (N + 1)2/4, we now
finish the proof by constructing a solution to P (t) such that F (t) = F (T ).

Since we consider a stable instance, by definition F (l0) = F (T ). Therefore
the walk W 0 is also an optimal solution for the problem T (l0). Let x0

i,j be the
number of times arc (i, j) is traveled in W 0, for all i, j ∈ J . Then, x0

i,j/l
0 is a

fractional optimal solution for problem T . Since the transportation problem has
a totally unimodular constraint matrix, the polyhedron of problem T is integral.
By consequence, any fractional optimal solution can be represented as a convex
combination of integer optimal solutions. Hence, we have that for every arc (i, j)
contained in the walk W 0, there exists an integer optimal solution for T for which
xi,j > 0.

Now let us consider the walk W 0 and a corresponding minimal complete
closed walk W ′. Recall that for every arc (i, j) ∈ W ′ there exists a solution xi,j

of the problem T which contains this arc. Let x′ be obtained by summing all
xi,j, (i, j) ∈ W ′. Since W ′ is a complete walk, x′ satisfies the subtour elimination
constraints, and hence it is an optimal solution to P (t).

Since x′ is obtained by summing t solutions for problem T , x′ is a solu-
tion for P (t). Therefore F (t) = F (T ) and thus t ≤ l0. It then follows that
l0 ≤ t ≤ (N + 1)2/4 as required. 2

With Theorem 4.1 at hand, we are now able to address a computational
complexity issue. Despite the fact that even for fixed l the decision version of
P (l) is a generalization of the TSP and therefore NP -complete, we have the
following theorem:

Theorem 4.2 The problem of deciding whether an instance is stable can be
solved in polynomial time.

Proof. Firstly, we are going to check for each arc (i′, j′) ∈ J×J whether there
exists an optimal solution of T that contains this arc. This can be achieved by
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solving a modification of T , where the modification consists of decreasing ki′ by
one in the outflow contraint (iii) for city i′, and decreasing kj′ by one in the inflow
constraint (ii) for city j′. Let us call this modified problem Ti′,j′ . Obviously, Ti′,j′

is in turn a transportation problem that can be easily solved in polynomial time.
The aforementioned optimal solution exists if and only if F (T ) = F (Ti′,j′) + ci′j′ .

We subsequently construct a directed multigraph D = (J, A) as follows. For
all (i′, j′) such that F (T ) = F (Ti′,j′) + ci′j′ , let xi′j′

be obtained by slightly mod-

ifying an optimal solution to Ti′,j′ . The modification consists of increasing xi′j′

i′j′

by one. Now, the arc set A of D is obtained as follows. For all (i, j), the mul-

tiplicity of arc (i, j) is defined to be the sum of the xi′j′

ij over all (i′j′) for which
F (T ) = F (Ti′,j′) + cij.

Now, if D is strongly connected then it contains a Eulerian tour ( see e.g.
Eiselt et al. (1995)), i.e. a closed walk visiting every arc in this directed multi-
graph. Clearly this tour visits every vertex as well and hence satisfies the subtour
elimination constraints. But then this Eulerian tour contains a solution to P (l)
with value l × F (T )/l = F (T ).

Conversely, suppose that D is not strongly connected. Thus, there exists
a subset J ′ ⊂ J, J ′ 6= ∅, such that D doesn’t contain any arc (i, j) such that
i ∈ J ′, j ∈ J \ J ′. Now, for contradiction, assume that there is some number
l such that F (l) = F (T ) and let xl be an optimal solution to P (l). Define
yl

i,j = xl
i,j/l, (i, j) ∈ J×J . Note, that yl is an optimal solution for T . Notice also,

that xl is a feasible solution to P (l) and hence satisfies the subtour elimination
constraints. Then for J ′ there must exist an arc (i, j) such that i ∈ J ′, j ∈ J \ J ′,
and yl

i,j > 0. Then, in some optimal solution zl of the transportation problem
T (l) it holds that zl

ij > 0. By total unimodularity, there must exists an optimal
solution z0 for T in which z0

i,j is a positive integer. But then, by definition of A,
it holds that (i, j) ∈ A. Since arc (i, j) connects J ′ and J \ J ′ we have arrived at
a contradiction.

Thus, we conclude that an instance I is stable if and only if the directed
multigraph D is strongly connected. As described above, D can be constructed
in polynomial time. Further, it is easy to check in polynomial time, whether D is
strongly connected (see e.g. Ahuja and Orlin (1994)), which completes the proof.
2

We finish this section by giving a tight example for the bound derived in
Theorem 4.1.
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Example 4.1 Consider the following instance. J = {1, 2, 3, 4, 5, 6}, and

C =


a a a +1 a a
a a a a +1 a
a a a a a +1
a a +1 +1 +1 +1

+1 a a +1 +1 +1
a +1 a +1 +1 +1


where a > 1, kT = (1, 1, 1, 3, 3, 3). This instance has minimal complete closed
walk and also optimal sequence [1, 4, 5, 6, 2, 5, 6, 4, 3, 6, 4, 5] :

It is straightforward to generalize example 4, in particular the distance matrix
C to the case where J = {1, . . . , n} and a corresponding minimal complete closed
walk W ′ of length (n+1)2/4 exists that entails the optimum solution value. let it
be noted however that this doesn’t mean that every optimal solution necessarily
results in a minimal closed walk of length (n + 1)2/4. Indeed we shall see in the
next Section, that a better bound can be obtained when using linear programming
techniques. Nevertheless, if we only encode solutions as sequences and consider
resulting closed walks, Theorem 4.1 is tight. Hence the section title. Indeed,
the next section goes to show that it pays to consider and encode solutions for
this high multiplicity sequencing problem in a different way then by explicit
sequences.

5 Optimal Solutions of Bounded Length

For further investigations it will be convenient to define for the given vector
δ ∈ ZN

+ the following transportation problem T (l, δ)

F (T (l, δ)) = min
x

∑
i∈J

∑
j∈J

ci,jxi,j

subject to ∑
i∈J

xi,j = l × kj − δj, j ∈ J ;∑
j∈J

xi,j = l × ki − δi, i ∈ J ;

xi,j ∈ Z+, i ∈ J, j ∈ J.

Theorem 5.1 Consider an instance of the problem such that the following holds
simultaneously

• F (N − 1) is finite;
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• The problem T (N−1, α) has a finite optimal solution where the i-th compo-
nent from the vector α ∈ ZN

+ represents the number of times city i is passed
in a minimal complete closed walk obtained from an optimal solution of the
problem P (N − 1) (see theorem 4.1).

Then, for any natural number l ≥ N − 1 the following holds:

F (l + 1) =
l

l + 1
F (l) +

1

l + 1
F (T ) (4)

and

F (l) = F (N − 1)
N − 1

l
+ F (T )

l −N + 1

l
(5)

and the solution xl = xN−1 + (l−N + 1)xT is an optimal solution of the problem
P (l).

Proof. To prove the theorem we have to show that equation 4 holds. Equa-
tion 5 then follows by induction as in Theorem 3.3.

To prove equation 4, we show that (l + 1)F (l + 1) ≥ lF (l) + F (T ) for any
natural number l ≥ N − 1. Together with Theorem 3.1 this yields the desired
result.

Consider an optimal solution x0 of the problem P (l+1), l ≥ N−1. As before,
let W 0 be a corresponding closed walk, and let W ′ be a minimal complete closed
walk obtained from W 0 by deleting ommissable cycles. Let α be the vector such
that αi is the number of times city i is passed in W ′. It can be seen that since
W ′ is minimal and complete, 1 ≤ αi ≤ N − 1 for all i ∈ J .

Now consider a solution xl of P (l) which is constructed as follows: xl =
xW ′

+ xT (l,α) where xW ′
ij (i ∈ J, j ∈ J) equals the number of times arc (i, j)

occurs in W ′ and xT (l,α) is a solution of the problem T (l, α). Since l × ki ≥
(N − 1) × ki ≥ N − 1 ≥ αi for any index i ∈ J , we may conclude that W ′ is
a feasible complete tour for the problem P (l). Thus, the solution xl is feasible
for P (l) and the transportation problem T (l, α) is correctly defined with strictly
positive right hand-side coefficients l × k − α. Since xl is a feasible solution of
P (l), we have

l × F (l) + F (T )

≤
∑

(i,j)∈W ′

ci,jxi,j + l × F (T (l, α)) + F (T )

=
∑

(i,j)∈W ′

ci,jxi,j + (l + 1)× F (T (l + 1, α)) + l × F (T (l, α)) + F (T )

−(l + 1)× F (T (l + 1, α))

= F (l + 1) + l × F (T (l, α)) + F (T )− (l + 1)× F (T (l + 1, α)).
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Hence, we can prove equation 4 by proving

l × F (T (l, α)) + F (T ) = (l + 1)× F (T (l + 1, α)) for any l ≥ N − 1 (*)

.
Since the polyhedron of the transportation problem is integer,we can assume

without loss of generality that F (T ), F (T (l, α)) and F (T (l + 1, α)) are linear
programs. Further, changing notation from x to x/l yields that instead of proving
that l × F (T (l, α)) + F (T ) = (l + 1) × F (T (l + 1, α)) it suffices to prove that
l × F (T (1, α/l)) + F (T ) = (l + 1)× F (T (1, α/(l + 1))). The reader is encourage
to verify that the three linear programs T (1, α/l), T, T (1, α/(l + 1)) only differ
in the right hand sides. Let it be noted also that T is by definition identical to
T (1, 0), and hence F (T ) equals F (T (1, 0)).

Let us denote the dual of T (1, α/l) as DT (1, α/l). It can be described as
follows:

DT (1, α
l
)) : max

u,v

(∑
i∈J

(ki − αi

l
)ui +

∑
j∈J

(kj − αj

l
)vj

)
subject to
ui + vj ≤ ci,j, i ∈ J, j ∈ J.

We simply write DT for DT (1, 0), and indeed DT is the dual of T . Since the
three problems T (1, α/l), T, T (1, α/(l+1)) only differ in the right hand sides, the
three problems DT (1, α/l), DT, DT (1, α/(l + 1)) only differ in the coefficients of
the objective function.

Now, suppose that despite the differences in the coefficients of the objective
function, some optimal solution (u∗, v∗) of DT is also optimal for DT (1, α/l) and
DT (1, α/(l + 1)). Then, by strong duality, we have

(l + 1)× F (T (1,
α

l + 1
))

= (l + 1)×

(∑
i∈J

(ki −
αi

l + 1
)u∗i +

∑
j∈J

(kj −
αj

l + 1
)v∗j

)
=

∑
i∈J

((l + 1)× ki − αi)u
∗
i +

∑
j∈J

((l + 1)× kj − αj)v
∗
j

= +
∑
i∈J

(l × ki − αi)u
∗
i +

∑
j∈J

(l × kj − αj)v
∗
j +

∑
i∈J

kiu
∗
i +

∑
j∈J

kjv
∗
j

= l ×

(∑
i∈J

(ki −
αi

l
)u∗i +

∑
j∈J

(kj −
αj

l
)v∗j

)
+

(∑
i∈J

kiu
∗
i +

∑
j∈J

kjv
∗
j

)
= l × F (T (1,

α

l
)) + F (T )
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which proves equation (∗) and hence equation 4 as required to prove the theorem.
Thus, intuitively, we have to show that for l large enough, or more specifically

l ≥ N − 1, the differences in the coefficients of the objective function between
the problems DT , DT (1, α/l) and DT (1, α/(l + 1)). are small enough to yield a
solution (u∗, v∗) that is optimal for all three of DT , DT (1, α/l) and DT (1, α/(l+
1)). Continuing in this intuitive fashion, such a solution (u∗, v∗) can be found as
follows. Consider the polyhedron of DT . Let us make some small modifications
to the objective function, and hence to the objective hyperplane. Let’s say these
modifications are obtained by adjusting the orthogonal vector by a small vector
σ. It is clear that if optimal face of the polyhedron is bounded in the σ-direction,
then we preserve at least one optimal point of this face. By the second condition
of the theorem, F (T (N − 1, α)) is finite. It then follows that in the direction α
the optimal face is bounded. Therefore with a small adjustment of the orthogonal
vector in the α-direction, we keep at least one dual optimal solution (u∗, v∗) of T
for the problems DT (1, α/l) for any sufficiently big number l ∈ Z+.

More formally, the equation (∗) can be proved using the following theorem
from sensitivity analysis:

Theorem 5.2 Partition Perturbation Theorem (see, e.g. Greenberg (1997)).
Consider linear program LP (b) = min{cx|x ≥ 0, Ax ≥ b} and its dual DLP (b) =
max{πb|π ≥ 0, πA ≤ c}. Suppose (x0, π0) is a pair of strictly complementary so-
lutions for LP (b) and DLP (b) respectively, and γ is an admissible direction, i.e.
LP (b+ θγ) has an optimal solution for some θ > 0. Define the differential linear
program: ∆(b) = max{πγ|π is optimal solution of DLP(b)}. Then there exists
θ∗ > 0 such that the following holds true for θ ∈ [0, θ∗]: the optimal partition for
LP (b + θγ) or, equivalently, DLP (b + θγ) is the same as the optimal partition
for ∆(b).

By the conditions of Theorem 5.1 F (T (N − 1, α)) and hence F (T (1, α/(N −
1))) are finite and therefore α, α is an admissable direction.

Let (u∗, v∗) be the optimal solution of DT that is also optimal for ∆(b) =
max{(u, v)T , (α, α)|(u, v) is an optimal solution of DT}. Then, by the Partition
Perturbation Theorem, there exists θ∗ > 0 such that for any θ ∈ [0, θ∗] the
optimal partition of T (1, θα) (and hence DT (1, θα)) is the same as the optimal
partition for T (and DT ). This in turn implies that the optimal dual solution
(u∗, v∗) of DT is also optimal for DT (1, θα) for any θ ∈ [0, θ∗]. By consequence,
we can complete the proof by showing that θ∗ ≥ 1/l.

To estimate θ∗ for a general linear program LP , the following approach is pro-
posed in Monteiro and Mehrotra (1996). Consider the system of linear equations
ABz = γ where AB denotes the submatrix of A whose columns correspond to the
indices from B = {n|xn > 0}. In Monteiro and Mehrotra (1996), the authors list
the following two mutually exclusive cases:
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• If the system has no solution, that is γ is not in the range of AB, then there
is not a number θ > 0 that preserves the optimal partition.

• Assume that the system has a solution, say z, then θ∗ = +∞ if z ≤ 0 and
θ∗ ≤ min{xn/zn|n ∈ B, zn > 0} otherwise.

Since we have chosen the conditions of the theorem such that an admissable
direction exists, we are clearly in the second case. Thus, there exist a solution
z∗ of the system Bz = α2 where α2 ∈ Z2N is the vector (α, α). Letting x∗ be an
optimal solution to T , the value min{x∗i,j/z∗i,j|x∗i,j > 0; z∗i,j > 0} bounds θ∗ from
above. Since the polyhedron of P is integral x∗i,j ≥ 1 if x∗i,j > 0. Hence, θ∗ ≥ 1/Z∗,
where Z∗ = max{z∗i,j|zi,j > 0}. Thus, it remains to bound max{z∗i,j|zi,j > 0}.

Let us denote by B the base matrix of the linear program T , which is ob-
tained from the constraint matrix of T by elimination of all columns correspond-
ing to variables x∗ij for which x∗ij = 0. The problem Bz = α2 can be repre-
sented as the following problem on the graph. Given a graph G = (J, E) where
E = {(i, j) ∈ J × J | x∗i,j > 0}. The problem consists in finding a circulation flow
such that every city j ∈ J has inflow and outflow equal to αj times. Negative
components of the vector z are allowed, hence we may disregard the orienta-
tion of the xi,j in the edges. Consider the circulation flow z∗. Since every city
j ∈ J of the graph D has inflow and outflow αj-times, zi,j ≤ αj for all i, j.
Hence, zi,j ≤ αj ≤ N − 1 for all i, j ∈ J , and thus Z∗ ≤ maxj∈J αj. But then,
θ ≥ 1/ maxj∈J αj ≥ 1/(N − 1), and hence for l ≥ N − 1 as stated in the theorem,
θ∗ ≥ 1/l and the proof is complete. 2

Theorem 5.3 For every instance of P(l) with finite input data

F (l) = F (N − 1)
N − 1

l
+ F (T )

l −N + 1

l

and the solution xl = xN−1 + (l −N + 1)xT is optimal for P (l).

Proof. All conditions of the theorem 5.1 are satisfied when the input data
are finite. Indeed, if the objective coefficients ci,j, i ∈ J, j ∈ J , and multiplicity
coefficients kj, j ∈ J , are finite, then the values F (N − 1) and F (T (N − 1, α))
are finite. 2

Theorem 5.4 If an instance is stable then the stabilization number l0 is such
that l0 ≤ N − 1, and this bound is tight.

Proof. According to Theorem 5.1, it holds for l ≥ N that l × F (l) =
(l−1)×F (l−1) + F (T ) or equivalently F (l−1) = (l×F (l) − F (T ))/(l−1).
By stability, we have that there exists l such that F (l) = F (T ) Substituting F (T )
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for F (L) in the above equality we get F (l − 1) = F (T ). Since by Theorem 5.1
the equality holds for for any l ≥ N we have F (N − 1) = F (T ) and immediately
l0 ≤ N − 1.

It remains to show that there exists instances for which l0 = N − 1. Consider
the following instance, which is a straightforward extension of Example 3.1.

Example 5.1

Let J = {1, 2, . . . , N}, ki = 1 for any i ∈ J and the distance matrix is

1 1 1 1 . . . 1 1
1 1 a a . . . a a
1 a 1 a . . . a a
...

. . .

1 a . . . a 1 a a
1 a . . . a a 1 a
1 a . . . a a a 1


where a > 1.

• For the transportation problem F (T ) = N , xT
i,j = 0 for i 6= j and xT

i,j = 1
for i = j. An optimal collection C = {(1, (1, 1)), (1, (2, 2)), . . . , (1, (N, N))}.

• For l = 1, an optimal solution is given by xi,i+1 = 1 for i = 1, . . . , N − 1,
xN,0 = 1, and xi,j = 0, i, j ∈ J otherwise. Thus, the value of an optimal
solution is in this case F (1) = 1 + (N − 2)a + 1 = 2 + (N − 2)a.

• For l = 2, an optimal solution is given by x1,2 = x2,2 = x2,1 = 1, x1,3 = 1,
xi,i+1 = 1 for i = 3, . . . , N − 1, and xN,0 = 1, xi,i = 1, i = 3, . . . , N , and
xi,j = 0, i, j ∈ J otherwise. Thus, in this case the value of an optimal
solution equals F (2) = (3 + 1 + (N − 3)a + 1 + (N − 2))/2 = ((N − 3)a +
N + 3)/2,

• For any 1 < l < N − 1 an optimal solution xl
i,j (i ∈ J, j ∈ J) is

1 1 . . . 1 1∗ 0 . . . 0 0
1 l − 1 0 0∗ 0 . . . 0 0
...

. . .
... . . .

...
1 0 l − 1 0∗ 0 . . . 0 0
0∗ 0∗ . . . 0∗ l − 1∗ 1∗ 0∗ 0∗

0 0 . . . 0 0∗ l − 1
. . . 0 0

... . . .
...

. . . . . .

0 0 . . . 0 0∗ 0 l − 1 1
1 0 . . . 0 0∗ 0 . . . 0 l − 1
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where the ”*” superscripts the l-th row and l-th column of the matrix. The
value of this optimal solution

F (l) =
(l − 1)2 + (l − 1)(l − 1) + 1 + (N − (l + 1))a + 1 + (N − l)(l − 1)

l

=
(l − 1)(N + 1) + 2 + (N − l − 1)a

l

(where the equality can be derived by adding all (l − 1) terms and slightly
rewriting the remainder).

• For l = N − 1 we get F (N − 1) = N = F (T ). An optimal solution is
1 1 . . . 1
1 l − 1
...

. . .

1 l − 1


Thus, for this instance l0 ≤ N−1. We finish the proof by showing that l0 ≥ N−1.
Indeed, for l = N − 2, which implies that N ≥ 3,

F (N − 2) =
(N − 3)(2N − 2) + 2 + (N − (N − 2)− 1)a

N − 2

=
2N2 − 8N + 6 + 2 + a

N − 2

=
2(N − 2)2 + a

N − 2

= 2(N − 2) +
a

N − 2

≥ 2(N − 2) +
1

N − 2

≥ N + N − 4 +
1

N − 2
≥ N

where the last inequality holds since N ≥ 3, which yields l0 > N−2 as required. 2

The previous instance also proves a final theorem of this section:

Theorem 5.5 The bound of Theorem 5.1 is tight, i.e. there exist instances for
which all conditions hold and F (N − 2) > F (N − 1).
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6 Summary and Conclusions

This paper deals with a very general high multiplicity sequencing problem, namely
the high multiplicity traveling salesman problem (HMTSP). The research is mo-
tivated by the applicability of the HMTSP to a variety of scheduling problems.
Lately, high multiplicity scheduling problems haven been widely studied, but very
little is known about the impact of scheduling the jobs as specified by a minimal
part set, as opposed to the more general scheduling problem of scheduling jobs
in non-minimal, optimal, part sets. This paper investigates how the cycle time,
or length of a HMTSP tour varies with the multiplicities in the (minimal) part
set. In particular we investigate the behavior of the optimal solution, and the
optimal solution value, when all quantities in the minimal part set are multiplied
by a factor l. We show that the optimal solution value decreases when l increases.
Moreover, we show that the ratio between the value of an optimal solution for
l = 1 and for arbitrary l can grow proportional to l.

Further, we have investigated whether there exist finite l for which the optimal
value cannot be improved upon. We have given a polynomial procedure that
decides this problem in Section 4. In the same section we show that, if there
exists finite l for which the optimal value is minimal, then this l can be bounded
from above by (N +1)2/4. In fact, we have shown that, if we restrict our encoding
schemes to sequences which explicitly specify an order in which the cities are to
be visited, then (N +1)2/4 is a tight bound. However, in Section 5 we show that
if the optimal solution is given in terms of a solution to an integer program, this
bound can be improved to be N −1. Section 5 also shows that even if there is no
finite l for which the optimal solution value is lowest attainable, the differences
between the lengths of cyclic optimal schedules for l and l + 1 are identical for
all l ≥ N − 1.

The bounds on l establish the importance of encoding schemes for solutions,
especially in the case of sequencing problems. Indeed, the results make clear that
if the optimal solution is given in terms of an explicit sequence, then the tightest
bound on l that can be derived is O(N2), whereas this bound can be improved
upon to be O(N) when using a more compact encoding scheme, which is based
upon an integer programming formulation.

The linear bound obtained in this paper applies to all high multiplicity schedul-
ing problems that can be formulated as a HMTSP. It will be interesting to see
whether this result, as well as the ratio analysis, can be improved upon for specific
problems.

Finally, we conjecture that the bound of Theorem 5.1 can be improved to be
(N − 1)/ mini ki.
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