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Der Stand macht den Punkt. 
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CHAPTER 1 11 
 

 

Phenomenology of psychosis 

 

Psychotic disorders, such as schizophrenia or other non-affective psychoses, are 

characterized by profound problems in the recognition of and interaction with 

reality [1]. Among the core symptoms are delusions and hallucinations, commonly 

referred to as the positive symptom cluster, and flattened affect, lack of motivation 

and anhedonia, also called the negative symptom dimension of psychosis [2]. Also, 

depressive mood, manic features and disorganized behavior are common in 

psychosis. According to the 4th version of the Diagnostic and Statistical Manual of 

Mental Disorders [2], a diagnosis of schizophrenia or other psychotic disorder is 

fulfilled when symptoms occur independent of substance use or other medical 

conditions, are present a significant portion of time during one month, and interfere 

with social and occupational activities. Although not included in the classification of 

the DSM IV, psychotic disorders are further often accompanied by impairments in 

neurocognitive and social cognitive domains, including memory, executive functioning 

and theory of mind [3-5]. Some of the neurocognitive disturbances have been shown 

to strongly correlate with the negative and disorganized symptom clusters, yet not 

with the positive and depressive symptom dimensions [6], suggesting the existence of 

different cerebral mechanisms underlying the different symptom clusters. This is also 

in line with the proposed distinction between positive syndrome type I schizophrenia 

and negative syndrome type II schizophrenia [7-9]. While the former subtype is 

thought to be more common in females and characterized by mostly positive and 

affective symptoms, a better outcome, and a rather episodic and recurrent course, 

the latter subtype appears to be more common in males and has been associated 

with negative and cognitive symptoms, a worse outcome, and a rather deteriorating 

course [7-9]. Still, the distinction into two separable subtypes of schizophrenia 

remains a matter of debate. Notably,  although neurocognition has been shown to 

correlate with certain symptom dimension, it does not seem to be a good predictor 

of functional outcome in psychotic disorders, which has been shown to more strongly 

correlate with measures of social cognition, in particular theory of mind [10].  

 

The expression of psychosis does not appear to be restricted to clinically relevant 

psychotic disorders. Qualitatively similar psychotic experiences have been shown to 

be distributed in the general population [11-14]. Therefore, a dimensional view  of 

psychosis, in which developmental expression of subclinical psychotic experiences is 

distinguished from clinically relevant psychotic symptoms by quantitative differences 

in symptom expression, might constitute a more adequate approach in contrast to the 

classic categorical view of a discrete and qualitatively different illness [15, 16]. In 

support of the dimensional approach of psychosis are studies demonstrating that 

psychotic experiences show continuity with psychotic disorders such as schizophrenia 

in terms of familial clustering and shared etiological factors [17-20]. In addition, 
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given the fact that transient psychotic experiences may, under certain circumstances, 

become abnormally persistent, giving rise to clinical psychotic disorder [13, 21-24], 

psychotic experiences represent an important phenotype for the investigation of 

mechanisms by which environmental risk factors such as cannabis impact on psychosis 

risk [24]. Therefore, these so-called sub-clinical psychotic symptoms are targeted in 

the epidemiological studies presented in this thesis (chapters 2, 3, and 4). 

 

Etiology of psychosis 

 

The risk factors for psychotic disorders such as schizophrenia are diverse. Besides a 

strong genetic component – first-degree relatives of patients with schizophrenia 

have a ten times higher risk of developing the disease compared to the general 

population [25] – research has identified a number of environmental factors that 

impact on psychosis risk [26]. Among the most common environmental influences are 

growing up in an urban environment [27-29], migration and discrimination [30-32], 

social deprivation and isolation [33-35], abuse and victimization [36, 37], obstetric 

complications [38-40] and cannabis use [41]. The latter being the central topic of 

investigation in this thesis.  

 

The development and expression of vulnerability to psychosis might best be 

understood in terms of interaction between genes and environment [42]. Unlike 

gene-environment correlation, where a certain genetic make-up predisposes an 

individual to the exposure to certain environmental influences, gene-environment 

interaction implies that the degree to which environmental risk factors impact on 

psychosis risk is dependent on the level of individual, pre-existing genetic 

vulnerability for psychosis [43, 44]. Statistically speaking, interaction between genes 

and environment may either be additive or multiplicative (discussed in more detail in 

chapter 3) and it has been suggested that interaction on the additive scale is 

biologically more plausible, yielding information on the extent to which two causes 

biologically depend on each other or co-participate in disease causation [45]. In line 

with these considerations, synergistic interaction between genetic predisposition for 

psychosis and environmental risk factors in causing psychosis has been identified for 

urbanicity [28], prenatal exposure to infections [46], psychosocial stress [47], trauma 

[37] and cannabis use [48].  
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Cannabis use as cause of psychosis 

 

After tobacco and alcohol, cannabis is the most widely used recreational drug in the 

world [49]. According to the European Monitoring Centre on Drugs and Drug 

Addiction (EMCDDA), about 22.5 % of European adults aged 15 to 65 have used 

cannabis at least once in their life and more than 6 % have used cannabis in the last 

year [50]. Cannabis use is particularly prominent among young adults, with lifetime 

prevalence rates of about 31.6 % in 15-34 year olds [50], which is alarming given 

the fact that the adolescent, still maturing brain might be particularly vulnerable to 

the adverse effects of cannabis [51, 52]. Notably, the prevalence of cannabis use 

differs largely throughout Europe but seems to be independent of availability in the 

respective countries: In the Netherlands, where cannabis is legally sold and 

consumed in so-called ‘coffeeshops’, the prevalence is rather moderate (22.6 %), 

compared to high-prevalence countries, which include Denmark (38.6 %), Italy 

(32.0 %) and the United Kingdom (31.1 %) [50].  

Biological and psychological effects of cannabis  

Cannabis is derived from the female plant of Cannabis Sativa and most of the 

effects associated with its use are caused by delta-9-tetrahydrocannabinol (THC), 

the main psychoactive constituent of cannabis. In the human brain, THC mainly binds 

to cannabinoid-1-receptors (CB1), where it acts as a partial agonist [53]. CB1 

receptors, which are the primary binding site of endogenous cannabinoids (eCBs) 

are densely distributed in various regions of the brain, including hippocampus, basal 

ganglia, amygdala, prefrontal cortex and cerebellum [54]. Among the best 

characterized eCBs are anandamide (N-arachidonoylethanolamide) and 2-AG (2-

arachidonoylglycerol) [55, 56]. Being synthesized in and released on demand from 

the postsynaptic neuron, eCBs act in a retrograde fashion and bind to CB1 receptors 

located on neighboring presynaptic terminals [57]. Activation of CB1 receptors 

inhibits neurotransmitter release and thereby modulates several neurotransmitter 

systems, including the dopamine system [58]. The endocannabinoid system thus plays 

an important role in the fine-tuning of synaptic neurotransmission and activation of 

this system by exogenous cannabinoids such as THC can lead to profound and long-

lasting changes in synaptic functioning [52]. Yet, the exact effects of THC on the 

brain remain unknown, in particular with regard to long-term effects on mental 

health. The acute, psychological effects of cannabis include relaxation, sociability 

and euphoria but also anxiety, panic attacks or paranoia [49, 59]. Furthermore, 

cannabis use has been shown to affect cognitive functioning, in particular mnemonic 

and executive functioning as well as psychomotor speed, both in the short-term and 

beyond the period of acute intoxication [60-62]. Whether the neurocognitive effects 

of chronic long-term use are reversible remains unclear, since some level of 

impairment might still be detectable in abstinent users [63]. Intriguingly, in patients 
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with schizophrenia, cannabis use has been associated with superior neurocognitive 

functioning compared to non-using patients [64, 65]. With regard to the effects of 

cannabis use on brain structure, there is accumulating evidence for cannabis-related 

changes in brain morphology of chronic users, such as ventricular enlargement, 

reduced hippocampal and amygdala volume, and structural abnormalities in the 

corpus callosum [66-70]. Some studies further suggest that these changes occur dose-

dependent and are related to early age of onset of use [67, 68, 70]. With regard 

to long-term effects of cannabis use on mental health, cannabis use has been 

particularly associated with an increased risk to develop psychotic symptoms and 

schizophrenia [41].  

Epidemiological studies of cannabis as cause of psychosis  

Early evidence for a role of cannabis use in the emergence of psychosis was 

provided by a number of experimental studies on the acute effects of cannabis 

which demonstrated its ability to induce paranoid delusions and visual and auditory 

hallucinations in healthy individuals [71-73]. Later experimental studies on the acute 

effects of THC on psychopathology and cognitive endophenotypes of psychosis have 

replicated these psychotomimetic effects of cannabis [74-76]. One of the first large 

epidemiological studies that investigated the link between cannabis use and 

psychosis was conducted in 1987 [77]. The researchers examined the association 

between cannabis use and the development of schizophrenia during a 15-year 

follow-up in 45 570 Swedish conscripts and revealed a dose-response effect: 

Individuals, who had used cannabis on 11 to 50 occasions had a three-fold 

increased risk of developing schizophrenia compared to non-users and in individuals 

who had used cannabis on more than fifty occasions the risk was increased even six-

fold [77]. A later re-analysis of the same cohort for reasons of methodological 

refinement similarly reported a strong dose-response relationship between cannabis 

use and later development of schizophrenia, which was not explained by use of 

other drugs [78]. The link between cannabis use and psychosis was subsequently 

investigated by numerous epidemiological studies. By now, meta-analytic work has 

confirmed cannabis use as a risk factor for any psychotic outcome, including 

psychotic symptoms, schizophrenia or schizophreniform disorder, independent of 

factors such as age, gender, socio-economic status, and use of other drugs [41, 79-

82]. Yet, a much discussed topic in the cannabis-psychosis debate remains the issue 

of self-medication or reverse causality [83-86]: Is the association between cannabis 

use and psychosis indeed causal, or do early psychotic experiences in fact prompt 

cannabis use as a means of self-medication? 

Neurobiological aspects of the association between cannabis and psychosis 

It has been suggested that the psychosis-inducing effects of cannabis are mediated 

by increased dopaminergic neurotransmission in striatal regions of the brain [87]. 
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Dysregulation of the dopamine system, in particular hypoactivity in the mesocortical 

dopamine pathway along with hyperactivity in subcortical dopamine pathways, has 

been implicated in the emergence and experience of psychotic symptoms for many 

year [88]. However, experimental studies employing neurochemical imaging 

techniques to investigate cannabis-induced changes in striatal dopamine 

neurotransmission in healthy human volunteers produced inconsistent results: While 

one study found increased striatal dopamine release following the acute 

administration of THC [89], two other studies failed to detect such an effect [90, 91]. 

Yet, no study has investigated striatal dopamine release in response to THC in 

individuals with psychotic disorder. More research is therefore needed in order to 

clarify the apparent inconsistencies and to investigate neurobiological effects of THC 

in at-risk populations such as patients with psychotic disorder or their first-degree 

relatives. 

Differential sensitivity to cannabis as cause of psychosis  

The use of cannabis is neither sufficient nor necessary to precipitate psychotic 

symptoms. Cannabis use thus most likely constitutes a component cause of psychotic 

disorder, interacting with other genetic and environmental risk factors in increasing 

the risk for psychotic outcomes [92]. Accordingly, an important goal in recent 

research has been to identify factors that moderate the cannabis-psychosis 

relationship, rendering some individuals particularly vulnerable to the psychosis-

inducing effects of cannabis. Patients with a diagnosis of psychotic disorder have 

been found to show increased sensitivity to the acute effects of cannabis on 

behavioral outcomes such as cognition and psychotic reactivity [93]. Recently it was 

furthermore demonstrated that patients as well as their siblings showed increased 

cerebral cortical sensitivity to cannabis in terms of stronger reductions in cortical 

thickness compared to healthy controls [94]. Increased sensitivity with regard to the 

long-term effects of cannabis exposure on psychotic outcomes has also been 

demonstrated in individuals with underlying psychosis vulnerability or high schizotypy 

[48, 95, 96]. Studies on genetic moderation of the cannabis-psychosis relationship 

have mostly focused on the gene, which codes for the enzyme COMT (Catechyl-O-

Methyl-Transferase, an enzyme that is involved in the degradation of dopamine in 

the PFC). A functional single nucleotide polymorphism (SNP) at codon 158, the 

COMT val158met polymorphism, has been shown to modulate dopamine levels in the 

human PFC [97, 98]. Caspi and colleagues [99] were the first to demonstrate COMT 

val158met moderation of the effects of adolescent cannabis use on later psychotic 

outcome. The risk for adult schizophreniform disorder was highest among individuals 

with the val/val genotype and lowest for the met/met genotype. The risk was 

intermediate for individuals with the val/met genotype. Experimental [100] as well 

as observational [101] studies have since replicated the moderating role of COMT 

val158met genotype. Yet, this idea has been challenged by a non-replication by 
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now [102]. Recently, two other SNPs situated in the schizophrenia candidate gene 

AKT1 were identified in relation to increased sensitivity to the psychosis-inducing 

effects of cannabis [103]. Overall, research thus suggests that (genetic) 

predisposition for psychosis as well as genetic variation of specific functional SNPs 

contributes to differential sensitivity to cannabis. Environmental factors, on the other 

hand, that might impact on the pathway from cannabis to psychosis have received 

only little attention. Some studies have indicated that early exposure to trauma 

induces differential sensitivity to cannabis effects in terms of psychosis risk [104, 

105].  

Clinical implications  

Cannabis use is extremely common in clinical populations [106, 107] and has been 

associated with poor compliance, higher relapse rates and worse outcome among 

patients with schizophrenia [107-110]. Accordingly, cannabis use is often a major 

concern in the treatment of these patients and has been targeted by intervention 

strategies, albeit with little success [111, 112]. Yet, our understanding of patterns of 

initiation and continuation of use in at-risk populations and patients with established 

psychotic disorder is limited [113]. Self-reported reasons for cannabis use in patients 

with schizophrenia include enhancement of positive affect, alleviation of negative 

affect and dysphoria as well as avoidance of isolation and getting ‘high’ [114, 115]. 

These reasons similarly seem to apply to healthy controls  [115], and are supported 

by research findings showing that cannabis use is associated with decreased 

negative symptoms in patients with schizophrenia [116]. In addition, evidence from 

Experience Sampling research suggests that cannabis use indeed increases positive 

affect and decreases negative affect in individuals with schizotypal traits [117]. 

Recently, Henquet and colleagues [118] investigated reactivity to cannabis use in 

daily life in patients with schizophrenia and healthy controls. In line with previous 

research, the study revealed a mood-enhancing effect of cannabis in both groups. 

Yet, the effect was greater in the patient group, suggesting that patients with 

schizophrenia were more sensitive to the positive effects of cannabis on mood. In 

addition, cannabis use was followed by an increase in hallucinatory experiences in 

patients only, which is in line with experimental research showing increased 

vulnerability to the acute psychotogenic effects of THC in patients with schizophrenia 

[93]. Furthermore it was demonstrated that the mood-enhancing effects occurred 

acutely, while the effect on hallucinations emerged only sub-acutely [118]. The 

temporal dissociation of cannabis effects in daily life might help to explain why 

patients continue to use: Cannabis use might be mostly associated with its positive 

effects while its negative psychosis-inducing effects are obscured. On the contrary, 

Dekker and colleagues recently demonstrated that, both implicitly and explicitly, 

patients tend to have negative associations with cannabis use [119].  
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Recently it has been suggested for the first time that patients with psychotic disorder 

experience higher levels of craving compared to healthy controls, independent of 

frequency of cannabis use [120]. Yet, this study did not control for the effects of 

antipsychotic medication and there is evidence that craving is associated with type 

of antipsychotic treatment [121]. Still, increased craving might be particularly 

instrumental for continuation of use in individuals with psychotic disorder. Increasing 

our understanding of patterns of cannabis use in such vulnerable populations is thus 

of great clinical relevance, in particular for the development of new and effective 

treatment strategies.  

 

Aims of this thesis  

 

Taken together, (genetic) epidemiological as well as experimental research has 

identified cannabis use as a component cause of psychotic disorder. Yet, issues such 

as reverse causality, differential sensitivity and environment-environment interaction, 

as well as the biological basis of the cannabis-psychosis relationship remain in need 

for further investigation. The research presented in this thesis aimed at shedding light 

on these matters by combining epidemiological (chapters 2, 3 and 4), observational 

(chapter 8) and experimental imaging research techniques (chapter 7) to elucidate 

both epidemiological and biological mechanisms by which exposure to cannabis 

increases the risk of psychotic disorder:  

 

In order to clarify the temporal association, including the issue of reverse causality, 

between cannabis use and the development of psychotic symptoms and to shed light 

on possible mechanisms underlying this association, chapter 2 tests the hypothesis 

that adolescent cannabis use increases risk for psychotic outcomes by impacting on 

incidence and persistence of sub-clinical psychotic experiences in the general 

population.  

 

The link between cannabis use and psychotic outcomes can best be understood in 

terms of gene-environment and environment-environment interactions. However, little 

is known about the moderating role of other environmental risk factors. Therefore, 

chapters 3 and 4 investigate possible environmental determinants of differential 

sensitivity to the long-term psychosis-inducing effects of cannabis, in particular 

urbanicity and trauma.  

 

The neurotransmitter dopamine plays an important role in the pathophysiology of 

psychosis and interacts with the endocannabinoid system. Both systems might be 

involved in the psychosis-inducing effects of cannabis. Therefore, in chapters 5 and 6, 

evidence for the involvement of the dopamine system in the pathophysiology of 
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psychosis is reviewed and the interaction between the dopamine and the 

endocannabinoid system is discussed, presenting possible biological mechanisms by 

which cannabis might increase psychosis risk. In line with these considerations, we 

subsequently test the hypothesis that the use of cannabis increases psychosis risk 

partly by inducing striatal dopamine release (chapter 7).  

 

In order to shed further light on patterns and mechanisms of cannabis use in 

psychosis, chapter 8 applied the Experience Sampling Method to elucidate the role 

of craving and its association with continuation of use in the daily lives of patients 

with psychotic disorder and healthy controls.  

 

Finally, chapter 9 discusses cannabidiol, another constituent of cannabis, as a 

potential antipsychotic agent and emphasizes the need to take into account 

differences in potency when investigating the effects of cannabis in future studies.  
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Abstract 

 

Objective To test the hypothesis that adolescent cannabis use increases risk for 

psychotic outcomes by impacting on incidence and persistence of sub-threshold 

expression of psychosis in the general population.  

Design Analysis of data from a prospective population-based cohort study in 

Germany (Early Developmental Stages of Psychopathology study).  

Participants 1923 individuals from the general population (aged 14-24 years at 

baseline).  

Main outcome measure Incidence and persistence of sub-threshold psychotic 

symptoms following adolescent cannabis use. Cannabis use and psychotic symptoms 

were assessed three times (baseline, T2, T3) over a 10-year follow-up period using 

the Munich version of the Composite International Diagnostic Interview (M-CIDI). 

Results In individuals who were negative for lifetime psychotic symptoms and 

lifetime cannabis use at baseline, incident cannabis use over the baseline-T2 period 

increased the risk of later incident psychotic symptoms over the T2-T3 period 

(adjusted odds ratio 1.85, 95% confidence interval 1.10 to 3.13, P = 0.021). 

Furthermore, continued use of cannabis increased the risk of persistence of psychotic 

symptoms over the T2-T3 period (adjusted odds ratio 2.20, 95% confidence interval 

1.16 to 4.17, P = 0.016). The incidence rate of psychotic symptoms over the 

baseline-T2 period was 31% in exposed versus 20% in non-exposed individuals; 

over the period T2-T3 these rates were 14% and 8%, respectively. 

Conclusion Cannabis use is a risk factor for the development of incident psychotic 

symptoms. Furthermore, the data suggest that continued cannabis use increases the 

risk for psychotic disorder by impacting on the persistence of psychotic symptoms. 
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Introduction 

 

Cannabis is the most frequently used illicit drug in the world, particularly in 

adolescents [1, 2]. The use of cannabis is consistently associated with mental illness 

[3], in particular psychotic disorder [4-9]. It remains a matter of debate, however, 

whether the association between cannabis and psychosis is causal, or whether early 

psychotic experiences may in fact prompt cannabis use as a means of self-

medication [10, 11]. This issue can only be resolved if incident cannabis use is 

investigated in relation to later incident psychotic symptoms or disorder. Rarely have 

studies been able to examine the longitudinal relationship between cannabis use 

and psychosis in this fashion. 

  

The issue of self-medication was addressed by Henquet and colleagues [6], using 

data from the German prospective EDSP cohort study [12, 13]. The authors 

investigated the association between cannabis use at baseline and subsequent 

development of psychotic symptoms at four-year follow-up, and reported that after 

adjustment for pre-existing psychotic symptoms, cannabis use at baseline still 

remained significantly associated with psychotic symptoms at four-year follow-up. 

There was no evidence for self-medication effects, as pre-existing psychotic 

symptoms did not significantly predict later cannabis use [6]. Ferdinand and co-

workers [11] investigated the role of pre-existing self-reported psychotic symptoms 

and demonstrated a bi-directional association between cannabis and psychotic 

symptoms over a 14-year follow-up study in the general population. The authors 

showed that cannabis use predicted later psychotic symptoms in individuals with no 

evidence of psychotic symptoms prior to onset of cannabis use and that the reverse 

was also true, in that psychotic symptoms predicted cannabis use in those who were 

cannabis naïve prior to onset of psychotic symptoms [11]. Evidence for a self-

medication effect was also demonstrated in a prospective population-based cohort 

study [14], in which it was found that individuals with self-reported hallucinations at 

the age of 14 years had a higher risk of using cannabis on a daily basis at 21-

years. However, in a sibling pair analysis, this study also suggested an independent 

effect of cannabis use on self-reported delusional ideation later in life [14]. Thus, 

although the cannabis-psychosis link has been investigated in many studies, results on 

the temporal association between cannabis use and psychotic symptoms remain 

conflicting. Longitudinal cohort studies with multiple, repeated, interview-based 

measures of cannabis use and psychotic symptoms are needed to clarify this issue. 

The EDSP study [12, 13], which completed its recent 10-year follow-up, representing 

the fourth assessment (assessments at baseline, T1, T2 and T3, see also figure 1) is 

uniquely suitable for the renewed investigation of the temporal association between 

cannabis and psychosis.  
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Another issue regards the mechanism by which cannabis may increase risk for 

psychotic symptoms, particularly the question whether cannabis may increase the risk 

for psychotic disorder by causing persistence of normally transitory developmental 

expression of psychotic experiences. For most individuals, sub-threshold psychotic 

phenomena are of a transitory nature and never progress to psychotic illness [15]. 

However, it has been shown that sub-threshold psychotic experiences may become 

abnormally persistent, depending on the degree of additional exposure to 

environmental risk factors [16-18], and that progressively greater levels of 

persistence are associated with greater risk for transition to clinical psychotic 

disorder [19]. Spauwen and colleagues [16] showed that the persistence rate of 

psychotic experiences was much higher for individuals growing up in an urban 

environment compared to those growing up in a rural environment [16]. Similarly, 

Cougnard and co-workers [17] provided evidence that childhood trauma, urbanicity 

and cannabis act additively in increasing the risk of persistence of psychotic 

experiences [17]. The fact that cannabis use increases psychosis risk in a dose-

response fashion [6, 14, 20] and the finding that psychotic patients with continued 

cannabis use show more severe and persistent symptoms [21] suggests that cannabis 

use may increase the risk for psychotic illness by impacting on the persistence rate of 

psychotic experiences that under normal circumstances (i.e. without exposure to 

cannabis) would have remained transitory phenomena for the majority of 

individuals.  

 

The aim of the present study, therefore, was to investigate, in a population-based 

10-year follow-up cohort study of adolescents and young adults, the association 

between incident cannabis use and (i) true incidence of psychotic experiences (i.e. 

after exclusion of individuals with lifetime pre-existing psychotic experiences), and 

(ii) risk of persistence of psychotic experiences.  

 

Method                         

Sample and study design 

The observation frame was part of the Early Developmental Stages of 

Psychopathology (EDSP) study, which collected data on the prevalence, incidence, 

risk factors, comorbidity, and course of mental disorders in a random, representative 

population sample of adolescents and young adults in the general population [12, 

13]. The baseline sample, following ethics committee approval, was randomly 

drawn, in 1994, from the respective population registry offices of Munich and its 29 

counties, to mirror the distribution of individuals expected to be 14–24 years of age 

at the time of the baseline interview in 1995. The base population were all those 

born between June 1, 1970, and May 31, 1981, registered as residents in these 
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localities and having German citizenship. These registers can be regarded as highly 

accurate because (1) each German is registered by his town, (2) they are regularly 

updated, (3) in the interest of scientific studies, any number of randomly drawn 

addresses with a given sex and age-group can be obtained, and (4) strict 

enforcement of registration by law and the police applies. More details on the 

sampling, representativeness, instruments, procedures, and statistical methods of the 

EDSP Study sample have been presented previously [12, 13]. 

 

 

baseline T3T2

3.5 years
8.4 years

Incident cannabis use Incident psychotic experiences 

baseline T3T2

3.5 years
8.4 years

Cannabis continuation Persistence of psychotic 
experiences

A

B

 
 

Figure 1. Study design. 

A. Testing the association between incident cannabis use with onset in the period baseline-T2, and incident 

psychotic symptoms with onset in the period T2-T3, in individuals who were cannabis naïve at baseline and who 

had not reported any psychotic experience at T2 (i.e. no lifetime psychotic experiences by T2). 

B. Testing the association between different cannabis exposure states (the combinations of cannabis use at 

baseline (lifetime) and/or T2 (interval) and persistence of psychotic experiences (i.e. presence of psychotic 

experiences at both T2 (lifetime) and T3 (interval)).  

 

 

The overall design of EDSP is longitudinal and prospective, consisting of a baseline 

and 3 follow-up surveys, covering a time period of on average 1.6 years (baseline–

T1, SD = 0.2), 3.5 years (baseline–T2, SD = 0.3), and 8.4 years (baseline–T3, 

range = 7.3–10.5 y, SD = 0.7). Because the primary goal of the study was to 

examine the incidence and developmental risk factors for psychopathology, the 

younger group (14–15 y), presumed to have the highest incidence density, was 

sampled at twice the rate of persons aged 16–21 years, and the oldest group (22–

24 y) was sampled at half this rate. For the same reason, subjects aged 14–17 

years at baseline were examined at the 4 time points and subjects aged 18–24 

years were assessed only 3 times (baseline, T2, T3). The present study is based on 

the whole cohort assessed at baseline, T2 and T3. For a schematic illustration of the 
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overall design and the current analyses see figure 1. Response rates were 84% at 

T2 and 74% at T3 (Fig. 2).  

 

 

Baseline sample 

N = 3021

T2 (3.5 year follow-up) 

N = 2548 (response rate 84%)

Partial missing 
information in 287 

individuals

T3 (8.4 year follow-up) 

N = 2210 (response rate 73%)

Risk set N = 1923

Loss to follow-up: 338 individuals

Main reason: refusal to participate, failure to 
contact the individual, lack of time

Loss to follow-up: 473 individuals

Main reason: refusal to participate, failure to 
contact the individual, lack of time

 
 
Figure 2. Schematic illustration of response rates and reasons for loss to follow-up. 

 

Instruments 

Participants were assessed using the computerized version of the Munich-Composite 

International Diagnostic Interview (DIA-X/M-CIDI) [22], an updated version of the 

World Health Organization’s CIDI version 1.2. [23]. The DIA-X/M-CIDI is a 

comprehensive, fully standardized diagnostic interview and assesses symptoms, 

syndromes, and diagnoses of various mental disorders in accordance with the 

definitions and criteria of the International Classification of Diseases, Tenth Revision, 

and Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition), along 

with information about onset, duration, severity of symptoms, and psychosocial 

impairment. The CIDI has been primarily designed for use in epidemiological studies 

of mental disorders and can also be used for clinical purposes. It is divided into 16 

sections: 1 sociodemographic section, 12 sections assessing 288 symptoms of groups 

of mental disorders (including ‘somatoform and dissociative,’ ‘phobic and other 

anxiety,’ ‘depressive and dysthymic,’ ‘manic and bipolar affective,’ ‘schizophrenia 
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and other psychotic,’ ‘eating,’ ‘dementia and other cognitive,’  ‘posttraumatic stress,’ 

as well as ‘tobacco,’ ‘alcohol,’ and ‘substance-related’ disorders), and 3 final sections 

containing concluding questions, interviewer observations, and interviewer ratings. 

The instrument, designed for use by trained interviewers who are not clinicians, has 

shown high inter-rater [24, 25] and test-retest reliability [22, 26]. However, the 

assessment of psychosis with CIDI by lay interviewers is not considered reliable. 

Therefore, in the EDSP Study, trained clinical interviewers at the level of clinical 

psychologist, who were allowed to probe with follow-up clinical questions, conducted 

the interviews in the respondents’ homes. At baseline, the DIA-X/M-CIDI lifetime 

version was used. At each of the follow-up assessments, participants applied the 

interval version, which covers the period of assessment from the last interview until 

the next. Data on the G section concerning psychosis and its clinical relevance were 

only collected at T2 (lifetime version) and T3 (interval version). Since the assessment 

of substance use was part of the diagnostic interview with the DIA-X/M-CIDI, 

psychologists who did the interviews were not blinded for cannabis use.  

Assessment of psychotic symptoms 

Data on positive psychotic experiences were collected at time T2 (lifetime version) 

and T3 (interval version) using the G-section of the DIA-X/M-CIDI. Since the primary 

objective of the EDSP study was to investigate the early stages of substance abuse 

in adolescents and young adults, data on the occurrence of psychotic symptoms as 

assessed with the G-section were added at T2 (measuring lifetime experience of 

psychotic symptoms) and T3 (measuring interval experience of psychotic symptoms) 

[13]. Conform previous work [6, 19] presence of positive psychotic experiences was 

broadly defined as any rating of ‘present’ on any of the 20 DIAX/M-CIDI core 

psychosis items (G1, G2a, G3–G5, G7–G13, G13b, G14, G17, G18, G20, G20C, 

G21, and G22a), including 14 delusion items, 5 hallucination items, and 1 item on 

passivity phenomena. Items relate to classic psychotic symptoms involving, e.g., 

persecution, thought interference, auditory hallucinations, and passivity phenomena. 

Participants were first invited by the psychologist to read a list of all the psychotic 

experiences and then asked whether they ever experienced such symptoms (list and 

phrasing available upon request). All these psychosis items were rated in 2 ways: 

‘absent’ and ‘present’. Thus, all the psychosis DIA-X/M-CIDI items used in the present 

study were coded in a dichotomous manner without intermediate levels. Psychotic 

symptoms at T2 accordingly referred to lifetime occurrence of minimally one positive 

rating on any psychosis item in the G-section; T3 psychotic symptoms denote interval 

occurrence of minimally one positive rating on any psychosis item in this section. 

Assessment of cannabis use  

Cannabis use was assessed with the L-section of the DIA-X/M-CIDI at all three 

assessments. The question ‘Have you ever used cannabis more than five times’ was 
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used to define cannabis exposure. Consistent with previous work in this sample [6], 

the CIDI cut-off of use of five times or more was used to define cannabis exposure 

(yes versus no). Thus, at baseline, cannabis use was defined as lifetime use of 

cannabis of five times or more (‘baseline cannabis use’, dichotomously defined yes 

versus no). At T2, and similarly at T3, cannabis use was defined as interval use of 

cannabis of five times or more, applied to the intervals of baseline-T2 and T2-T3, 

respectively (‘T2 cannabis use’, ‘T3 cannabis use’, both dichotomously defined yes 

versus no). As assessment of frequency of cannabis use differed between time points 

(i.e. at baseline: ‘How often do you use cannabis on a five point scale ranging from 

less than monthly to almost daily?’; at T2: ‘How many times have you used cannabis 

since the last assessment?’), the frequency variable was not included in the analyses.  

Statistical analyses 

Data were analyzed using STATA, release 10.0 (StataCorp, College Station, TX). 

Associations were expressed as odds ratios from logistic regression models. 

 

All analyses were a priori adjusted for the following fixed and time-varying 

confounding factors: age at baseline (in years), gender (0=female, 1=male), socio-

economic status (lower, middle, upper, other, as assessed at baseline), use of other 

drugs at baseline and T2, childhood trauma (i.e. trauma before the age of 14 years 

as assessed at baseline) [27] and urbanicity [28, 29]. The variable ‘use of other 

drugs’ included psychostimulants, sedatives, opiates, cocaine, phencyclidine and 

psychedelic drugs and refers to CIDI-rated use of 5 times or more (lifetime or 

interval use at baseline and T2 respectively) of any of these drugs, as assessed with 

the L-section of the M-CIDI. ‘Childhood trauma’ refers to experience of any traumatic 

experience during childhood (i.e. before the age of 14 years) as assessed with the 

N-section of the M-CIDI at baseline and was dichotomously defined as ‘present’ 

versus ‘absent’. As demonstrated recently by Fisher and colleagues [30], self-report 

questionnaires constitute a valid method to assess childhood trauma in individuals 

presenting with psychotic features. Urbanicity was assessed at baseline by retrieving 

data on place of residence from the population registry offices of the city and the 

29 counties of Munich, and was defined as either living in the city of Munich (4061 

persons per square mile) or in the rural surroundings (553 persons per square mile) 

at baseline. To examine whether associations between cannabis use and psychotic 

symptoms were independent of other psychiatric diagnoses at baseline, analyses 

were additionally adjusted for any psychiatric diagnosis other than psychosis at 

baseline. A dichotomous variable ‘any psychiatric diagnosis’ (present versus absent) 

was calculated, summarizing main psychiatric diagnoses other than psychosis at 

baseline (i.e. major depressive disorder, hypomania, dysthymic disorder, bipolar 

disorder, panic disorder, obsessive compulsive disorder, posttraumatic stress 

disorder, conversion disorder, somatisation disorder, eating disorders). Sensitivity 
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analyses were conducted to investigate whether attrition occurred at random and to 

assess potential bias introduced by missing data. This was done by multiple 

imputation of missing values using the ICE routine in Stata 11.1. This method imputes 

several alternative versions of the complete dataset using the data that is not 

missing.   

Incident cannabis use and incidence of psychotic symptoms 

Logistic regression analyses were used to investigate the association between 

baseline-T2 incident cannabis use and T2-T3 incident psychosis outcome (Fig. 1a). In 

order to investigate true incidence of psychotic symptoms following cannabis use, 

rather than persistence of pre-existing psychotic experiences, individuals who had 

admitted to lifetime presence of any psychotic symptom at T2 (n = 574, 22.7 %) 

were excluded from the analysis. Similarly, all individuals with cannabis use at 

baseline were excluded, thus only including individuals with de novo cannabis 

exposure between baseline and T2. Reverse causality (i.e. self-medication) was 

investigated by testing the association between baseline-T2 psychosis and T2-T3 

cannabis use in individuals without cannabis use at both baseline and T2. 

Cannabis use and risk of persistence of psychotic symptoms 

A dichotomous ‘persistence’ variable was calculated (‘no persistence’ versus 

‘persistence’), ‘no persistence’ referring to experience of psychotic symptoms either 

never or only once (at T2 or T3), and ‘persistence’ referring to to experience of 

psychotic symptoms at both T2 and T3. In order to investigate whether different 

levels of exposure to cannabis affected persistence of psychotic symptoms 

differentially, a categorical ‘cannabis continuation’ variable (0 = never cannabis 

use; 1= cannabis use at baseline but not at T2; 2 = cannabis use at T2 but not at 

baseline, 3 = cannabis use at both baseline and T2) was calculated. Logistic 

regression analyses were used to investigate the association between cannabis 

continuation and psychosis persistence (Fig. 1b).  

 

Results  

Sample 

A total of 2210 individuals completed the T3 assessment. 287 participants had 

partial missing information on substance use and psychotic symptoms, resulting in a 

final risk set for analysis of 1923 individuals of which 926 (48%) were men (Figure 

2). Mean age was 18.3 years (SD = 3.3 years) at baseline, 21.8 (SD = 3.4 years) 

at T2 and 26.6 (SD = 3.5 years) at T3. Further participant characteristics of the risk 

set are summarized in table 1. 
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Table 1. Participant characteristics per T2 cannabis usage group in the risk set (N = 1923). Figures are 

numbers (percentages organized by column). 

 

 T2 cannabis use no T2 cannabis use 

Gender   

Male 119 (30.3%) 807 (52.7%) 

Female 274 (69.7%) 723 (47.3%) 

Socio-economic status*   

Lower 30 (7.3%) 85 (5.6%) 

Middle 220 (53.8%) 894 (59.2%) 

Upper 137 (33.5%) 524 (34.7%) 

Other 22 (5.4%) 6 (0.4%) 

Urbanicity   

Urban 295 (75.1%) 1050 (68.6%) 

Rural 98 (24.9%) 480 (31.4%) 

Childhood trauma   

Present 97 (24.7%) 266 (17.4%) 

Absent 296 (75.3%) 1264 (82.6%) 

Use of other drugs 

baseline 
  

Present 25 (6.4%) 11 (0.7%) 

Absent 368 (93.6%) 1519 (99.3%) 

Use of other drugs T2   

Present 40 (10.2%) 3 (0.2%) 

Absent 353 (89.8%) 1527 (99.8%) 

Any psychiatric disorder 

baseline** 
  

Present 76 (19.3%) 180 (11.8%) 

Absent 317 (80.7%) 1350 (88.2%) 

   

Note. Socio-economic status: lower (lower class, lower middle class), middle (middle middle class), upper (higher 

middle class, upper class) other (none of the above or missing). Residence: urban (the city of Munich, 4061 

persons per square mile), rural (the surroundings of Munich, 553 persons per square mile). Childhood trauma: 

any traumatic experience during childhood. Use of other drugs more than five times baseline (lifetime) and T2 

(interval). 

* SES in N=1918 due to missing values of 5 participants. 

** denotes any psychiatric disorder at baseline according to M-CIDI diagnoses other than psychosis. 

 

 

At baseline, 247 participants (12.8%, lifetime use) reported cannabis use. Of those, 

56 participants (22.7%) used cannabis almost every day, 69 (27.9%) reported 

weekly use and 57 (23.1%) used cannabis monthly; 65 participants (26.3%) 

reported cannabis use at a frequency of less than monthly. At T2, 392 participants 

(20.4%, interval use) reported cannabis use. Mean frequency of those who reported 

cannabis use at T2 was 130 times within the baseline-T2 period (minimum 5 and 

maximum 997 times). Psychotic symptoms were reported by 436 participants 



CHAPTER 2 37 

 

 

(22.7%) at T2 (lifetime) and by 231 participants (12.0 %) at T3 (interval). Table 2 

summarises patterns of cannabis use in relation to psychotic symptoms.  

 

 

Table 2. Patterns of cannabis use in relation to psychotic symptoms in N=1923 (columns: numbers of 

participants and percentages*).  

 

 Psychotic symptoms at follow up1 

   Cannabis use2 T2 T3 

 Yes No Yes No 

baseline     

                          

 

Yes  

No 

81 (4.2%) 

355 (18.4%) 

166 (8.6%) 

1.321 (68.7%) 

42 (2.2%) 

189 (9.8%) 

205 (10.7%) 

1.487 (77.3%) 

T2     

                                         

 

Yes 

No 

126 (6.7%) 

310 (16.1%) 

267 (13.9%) 

1.220 (63.5%) 

69 (3.6%) 

162 (8.4%) 

324 (16.8%) 

1.368 (71.2%) 

 

*Some percentages do not total 100 due to rounding. 
1Any psychotic symptom lifetime (T2) and interval (T3) as assessed with the M-CIDI (G) section.  
2Use of more than 5 times lifetime (baseline) and interval (T2) as assessed with the M-CIDI (L) section.  

 

Incident cannabis use and incidence of psychotic symptoms 

Lifetime cannabis use as assessed at T2 significantly increased the risk of psychotic 

experiences at T3 (adjusted odds ratio = 1.49, 95% confidence interval 1.07 to 

2.07, P = 0.018; tables 3 and 4). After excluding all individuals who had used 

cannabis at baseline and had reported psychotic experiences at T2, incident 

cannabis use over the baseline-T2 period similarly increased the risk for incident 

psychotic experiences between T2 and T3  (adjusted odds ratio = 1.85, 95% 

confidence interval 1.10 to 3.13, P = 0.021). Results were unchanged after 

additional adjustment for any psychiatric diagnosis other than psychosis at baseline 

(adjusted odds ratio = 1.86, 95% confidence interval 1.10 to 3.13, P = 0.020). 

There was no evidence for self-medication effects, as T2 psychotic experiences did 

not predict incident cannabis use between T2 and T3 (adjusted odds ratio = 0.82, 

95% confidence interval 0.57 to 1.17, P = 0.3). 

Cannabis use and persistence of psychotic experiences 

Analyses revealed a significant association between continuation of cannabis use 

and risk of persistence of psychotic experiences (adjusted χ² = 16.22, P = 0.001; 

tables 4 and 5). After adjustment for age, gender, socio-economic status, use of 

other drugs at baseline and T2, childhood trauma and urbanicity, occasional 

cannabis use (cannabis use at either baseline or T2, exposure states 1 and 2) effect 

sizes were attenuated, with statistical significance only for the combination of 

cannabis use at both baseline and T2 (exposure state 3; adjusted odds ratio = 2.20, 
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95% confidence interval 1.16 to 4.17; P = 0.016). Additional adjustment for any 

psychiatric diagnosis other than psychosis at baseline only occasioned a slight 

reduction in the association between cannabis use at both baseline and T2 and the 

risk for persistence of psychotic symptoms (adjusted odds ratio = 1.99, 95% 

confidence interval 1.04 to 3.81, P = 0.037). 

 

 

Table 3. Association between incident cannabis use and incident psychotic experiences (columns: odds ratios 

and 95% confidence intervals; P-values). 

 

 Risk of psychotic experiences at T3 

T2 Cannabis use Unadjusted Adjusted* 

Whole sample 1.8 (1.32 to 2.44; 0.000) 1.49 (1.07 to 2.07; 0.018) 

After exclusion1 2.06 (1.26 to 3.38; 0.004) 1.85 (1.10 to 3.13; 0.021) 

 

*Adjusted for age, gender, socio-economic status, use of other drugs, childhood trauma and urbanicity.  
1 Individuals with baseline cannabis use and pre-existing psychotic symptoms were excluded from the analyses. 

 

 

Table 4. Course of psychotic experiences in relation to level of continued cannabis use (columns: numbers of 

participants and percentages). 

 

 Psychotic experiences at follow-up 

Cannabis continuation1 none at either T2 or T3 at both T2 and T3 

0 1.071 (75%) 303 (21%) 64 (4%) 

1 59 (64%) 25 (27%) 8 (9%) 

2 144 (60%) 75 (32%) 19 (8%) 

3 90 (58%) 48 (31%) 17 (11%) 

 

10 = no use (reference category), 1 = cannabis use at baseline but not at T2, 2 = cannabis use at T2 but not at 

baseline, 3 = cannabis use at baseline and T2 

 
 

Table 5. Association between cannabis exposure states and persistence of psychotic experiences (columns: odds 

ratios and 95% confidence intervals; P-values). 

  

 Risk of persistence of psychotic experiences 

 Cannabis continuation1 Unadjusted Adjusted* 

0 1 1 

1 2.04 (0.95 to 4.40; 0.068) 2.07 (0.92 to 4.66; 0.078) 

2 1.86 (1.09 to 3.17; 0.022) 1.43 (0.82 to 2.49; 0.202) 

3 2.64 (1.51 to 4.64; 0.001) 2.20 (1.16 to 4.17; 0.016) 

 

*Adjusted for age, gender, socio-economic status, use of other drugs baseline and T2, childhood trauma and 

urbanicity.  
10 = no use (reference category), 1 = cannabis use at baseline but not at T2, 2 = cannabis use at T2 but not at 

baseline, 3 = cannabis use at baseline and T2. 
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Missing data  

Imputation of 20 datasets with the ICE routine in Stata 11.1, which imputes multiple 

alternatives based on data that is not missing revealed that the association between 

continued cannabis use and the risk of persistence of psychotic symptoms remained 

significant (adjusted χ² = 16.65, P = 0.001). Again, the strongest association was 

found for exposure state 3 (i.e. cannabis use at both baseline and T2) with an 

adjusted odds ratio of 1.99 (95% confidence interval 1.08 to 3.66, P = 0.028).  

 

Discussion 

 

This 10-year follow up study showed that incident cannabis use significantly 

increased the risk of incident psychotic experiences in individuals. The association 

was independent of age, gender, socio-economic status, use of other drugs, 

urbanicity and childhood trauma; additional adjustment for other psychiatric 

diagnoses similarly did not change the results. There was no evidence for self-

medication effects, since psychotic experiences did not predict later cannabis use. 

The results thus aid in clarifying the temporal association between cannabis use and 

psychotic experiences by systematically addressing the issue of reverse causality, 

given that the long follow-up period allowed all individuals with sensitively assessed 

pre-existing psychotic experiences or pre-existing cannabis use to be excluded. In 

addition, cannabis use was confirmed as an environmental risk factor impacting on 

the risk of persistence of psychotic experiences (Fig. 3).  

 

 

 
 
Figure 3. The cannabis-psychosis-persistence model.  

Person A has “normal” developmental expression of sub-threshold psychotic experiences that are mild and 

transient. Person B has similar expression but longer persistence due to additional environmental exposure 

(here cannabis). Person C has prolonged persistence and subsequent transition to clinical psychotic disorder due 

to repeated environmental exposure, i.e. repeated cannabis use. 
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Cannabis and psychosis: what is the mechanism behind the association? 

The present study investigated the association between cannabis use and psychosis 

risk by analyzing the expression of psychotic experiences. Psychotic experiences 

share many characteristics with clinically relevant psychosis, such as demographic, 

environmental and genetic risks, and are thought to represent a behavioural marker 

for psychosis liability [18, 31, 32]. It has been shown that psychotic experiences are 

a common and generally transitory phenomenon in the general population, that 

nevertheless may become abnormally persistent and progress to clinical psychotic 

disorder if combined with exposure to environmental risks [19, 33, 34]. The current 

study confirmed cannabis as an environmental risk factor, impacting on psychosis risk 

by (i) increasing the risk of incident psychotic experiences, and, if use continues over 

time, (ii) increasing the risk of persistence of psychotic experiences.  

 

The finding that longer exposure to cannabis was associated with greater risk for 

persistence of psychotic experiences is in line with an earlier study showing that 

continued cannabis use over time increases the risk for psychosis in a dose-response 

fashion [5]. This is also in agreement with the hypothesis that a process of 

sensitization may underlie emergence and persistence of psychotic experiences [35] 

as an indicator of liability to psychotic disorder [18, 31]. Sensitization refers to the 

phenomenon that repeated exposure to an (environmental) stressor leads to 

progressively greater responses over time [35-38]. In rats, repeated exposure to 

THC (delta-9-tetrahydrocannabinol, the main psychoactive component of cannabis) 

induces behavioural sensitization: rats pre-treated with increasing doses of THC show 

greater behavioural (locomotor) responses to a THC challenge after a 14-day 

washout period than do THC-naïve rats [39, 40]. However, in humans, direct 

evidence for cannabis sensitization is lacking. Still, since the present study showed 

that the risk of persistence of psychotic experiences increases with longer periods of 

cannabis exposure, it is attractive to hypothesize that a process of sensitization 

underlies the association between cannabis and psychosis [32]. 

Methodological issues 

The results should be interpreted in the light of several limitations. First, information 

on substance use and psychosis outcome was acquired using the DIA-X/M-CIDI, which 

essentially provides self-reported information. However, the interview was 

conducted face-to-face by clinical psychologists who were allowed to follow up with 

clinical questioning in order to ensure systematic and valid assessment of outcomes 

and can therefore be assumed to yield better and more valid results than a self-

report questionnaire. Secondly, the analyses were not directly adjusted for the 

possible confounding effects of a positive family history of psychosis, since this 

information was not available in the EDSP data. However, previous research has 

shown that associations between cannabis use and psychotic symptoms are not 
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reducible to family history of psychosis [41, 42] and that genetic liability for 

psychotic disorder does not predict cannabis use [43]. In addition, individuals with a 

positive family history of psychosis report more positive symptoms than individuals 

without such predisposition [44, 45]. As all individuals with at least one T2 lifetime 

psychotic symptom were excluded from the analysis, the possible confounding effect 

of positive family history for psychosis was indirectly adjusted for to a degree. 

Further, we used a rather broad outcome measure, defined as a minimum of one 

positive rating on a G-section item, representing psychotic experiences rather than 

clinically relevant psychotic disorder. It has been shown however, that psychotic 

experiences show continuity with psychotic disorders such as schizophrenia [18, 46]. 

In addition, given the fact that transient psychotic experiences may, under certain 

circumstances, become abnormally persistent, giving rise to clinical psychotic disorder 

[15, 17, 19], psychotic experiences represent an important phenotype for the 

investigation of mechanisms and pathways by which environmental risk factors such 

as cannabis impact on psychosis risk. A further limitation concerns the use of the G-

section of the DIA-X/M-CIDI. This section was administered at T2 with a view to 

assess lifetime occurrence of symptoms which represents a long period for 

retrospective assessment of psychotic phenomena, possibly resulting in false 

negatives. As participants with T2 lifetime experience of psychotic symptoms were 

excluded from the analyses, underreporting would have resulted in false negatives 

being incorrectly kept in the analyses. It is unlikely however, that underreporting 

would have occurred as a function of cannabis use, which could have resulted in 

biased estimates. In addition, T2 lifetime subclinical psychotic symptoms were 

reported by 23%, which is in keeping with the literature on the estimated 15-28% 

rate of subclinical psychotic symptoms in the general population [47]. Therefore, the 

influence of underreporting is likely limited. Finally, since the time between follow-up 

visits was 4 years on average, selective recall may have influenced the results. 

Spurious findings may have arisen if those with psychotic symptoms had better recall 

of earlier cannabis use. However, given the well-known link between psychosis 

liability and cognitive alterations including impaired memory, any influence of 

selective recall likely would have been conservative rather than anti-conservative.   
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Abstract 

 

Background Cannabis use is considered a component cause of psychotic illness, 

interacting with genetic and other environmental risk factors. Little is known, however, 

about these putative interactions. The present study investigated whether an urban 

environment plays a role in moderating the effects of adolescent cannabis use on 

psychosis risk. 

Methods Prospective data (N= 1923, aged 14-24 years at baseline) from the 

longitudinal population-based German Early Developmental Stages of 

Psychopathology (EDSP) cohort study were analysed. Urbanicity was assessed at 

baseline and defined as living in the city of Munich (4061 individuals per square 

mile) or in the rural surroundings (553 individuals per square mile). Cannabis use and 

psychotic symptoms were assessed three times over a 10-year follow-up period 

using the Munich version of the Composite International Diagnostic Interview (M-CIDI).  

Results Analyses revealed a significant interaction between cannabis and urbanicity 

(10.9% adjusted difference in risk, 95%CI: 3.2-18.6, p = 0.005). The effect of 

cannabis use on follow-up incident psychotic symptoms was much stronger in 

individuals who grew up in an urban environment (adjusted risk difference 6.8%, 

95%CI: 1-12.5, p = 0.021) compared to individuals from rural surroundings 

(adjusted risk difference -4.1%, 95%CI: -9.8-1.6, p = 0.159). The statistical 

interaction was compatible with substantial underlying biological synergism. 

Conclusions Exposure to environmental influences associated with urban upbringing 

may increase vulnerability to the psychotomimetic effects of cannabis use later in 

life. 
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Introduction 

 
Adolescent cannabis use may increase the risk of psychotic disorder [1-3], the first 

stage of which is expressed as abnormal persistence of subclinical psychotic 

symptoms [4, 5]. However, only a minority of cannabis users will eventually develop 

a psychotic disorder and many individuals with psychotic illness have never been 

exposed. Therefore, cannabis use likely constitutes a component cause, co-

depending on other causal influences in shaping risk for psychosis [6]. Little is known, 

however, about the nature of these putative interactions [1, 7, 8].  

 

Using data from the prospective German Early Developmental Stages of 

Psychopathology study [9, 10], Henquet and colleagues [11] showed that individuals 

scoring high on schizotypy had a much higher risk of developing psychotic symptoms 

after cannabis use compared to individuals with low or average schizotypy scores 

[11]. A subsequent study suggested that the moderating effect of schizotypy on the 

psychotomimetic effect of cannabis use may be mediated by genetic risk for 

psychotic disorder [12] with some evidence for specific molecular genetic variation 

[8, 13, 14]. Environmental factors may similarly moderate the long term effects of 

cannabis on psychosis outcomes, as both Houston and colleagues [15] and Harley 

and colleagues [16] reported that individuals who were exposed to trauma early in 

life, compared to those without trauma, had a much higher risk to develop psychotic 

outcomes following adolescent cannabis use. Thus, the risk conveyed by the 

combination of cannabis and trauma was much higher than the sum of the risk posed 

by either factor alone [15, 16].  

 

Other environmental risk factors may also interact with cannabis use. For example, 

there is evidence that cannabis use, childhood trauma and growing up in an urban 

environment independently increase the risk of onset and persistence of psychotic 

symptoms [4] and it has been hypothesized that all three may be associated with the 

same underlying mechanism of behavioural ‘sensitisation’ over time [17-19]. Meta-

analyses suggest that growing up in an urban environment is consistently associated, 

in a dose-response fashion, with increased psychosis risk [20, 21], particularly if 

there is additional evidence of genetic risk [22-24]. The aim of the present study 

was to investigate whether environmental factors associated with urbanicity 

moderate the strength of the cannabis-psychosis relationship. Data from the German 

Early Developmental Stages of Psychopathology (EDSP) study [9, 10] were 

analyzed to investigate interaction between cannabis use and urbanicity on later 

expression of psychotic symptoms in adolescents and young adults. 
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Method 

Sample and study design 

The Early Developmental Stages of Psychopathology (EDSP) study collected data on 

the prevalence, incidence, risk factors, comorbidity, and course of mental disorders in 

a random, representative population sample of adolescents and young adults in the 

general population [9, 10]. The baseline sample, following ethics committee 

approval, was randomly drawn, in 1994, from the respective population registry 

offices of Munich and its 29 counties, to mirror the distribution of individuals 

expected to be 14–24 years of age at the time of the baseline (T0) interview in 

1995. The base population were all those born between June 1, 1970, and May 

31, 1981, registered as residents in these localities and having German citizenship. 

These registers can be regarded as highly accurate because (1) each German is 

registered by his town, (2) they are regularly updated, (3) in the interest of scientific 

studies, any number of randomly drawn addresses with a given sex and age-group 

can be obtained, and (4) strict enforcement of registration by law and the police 

applies. More details on the sampling, representativeness, instruments, procedures, 

and statistical methods of the EDSP Study sample have been presented previously 

[9, 10]. 

 

The overall design of the cohort study is longitudinal and prospective, consisting of a 

baseline (T0) and 3 follow-up surveys, covering a time period of on average 1.6 

years (T0–T1, SD = 0.2), 3.5 years (T0–T2, SD = 0.3), and 8.4 years (T0–T3, range 

= 7.3–10.5 y, SD = 0.7). Because the primary goal of the study was to examine the 

incidence and developmental risk factors for psychopathology, the younger group 

(14–15 y), presumed to have the highest incidence density, was sampled at twice 

the rate of persons aged 16–21 years, and the oldest group (22–24 y) was 

sampled at half this rate. For the same reason, subjects aged 14–17 years at 

baseline were examined at the 4 time points and subjects aged 18–24 years were 

assessed only 3 times (T0, T2, T3). The present study is based on the whole cohort 

assessed at T0, T2 and T3. Response rates were 84% (N=2548) for T2 and 74% 

(N=2210) for T3. 

Instruments 

Participants were assessed using the computerized version of the Munich-Composite 

International Diagnostic Interview (DIA-X/M-CIDI) [25], an updated version of the 

World Health Organization’s CIDI version 1.2 [26]. The DIA-X/M-CIDI is a 

comprehensive, fully standardized diagnostic interview and assesses symptoms, 

syndromes, and diagnoses of various mental disorders in accordance with the 

definitions and criteria of the International Classification of Diseases, Tenth Revision, 

and Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition), along 
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with information about onset, duration, severity of symptoms, and psychosocial 

impairment. The CIDI has been primarily designed for use in epidemiological studies 

of mental disorders and can also be used for clinical purposes. It is divided into 16 

sections: 1 sociodemographic section, 12 sections assessing 288 symptoms of groups 

of mental disorders (including ‘somatoform and dissociative,’ ‘phobic and other 

anxiety,’ ‘depressive and dysthymic,’ ‘manic and bipolar affective,’ ‘schizophrenia 

and other psychotic,’ ‘eating,’ ‘dementia and other cognitive,’  ‘posttraumatic stress,’ 

as well as ‘tobacco,’ ‘alcohol,’ and ‘substance-related’ disorders), and 3 final sections 

containing concluding questions, interviewer observations, and interviewer ratings. 

The instrument, designed for use by trained interviewers who are not clinicians, has 

shown high inter-rater [27, 28] and test-retest reliability [25, 29]. However, the 

assessment of psychosis with CIDI by lay interviewers is not considered reliable. 

Therefore, in the EDSP Study, trained and experienced clinical interviewers at the 

level of clinical psychologist, who were allowed to probe with follow-up clinical 

questions, conducted the interviews in the respondents’ homes. At baseline, the DIA-

X/M-CIDI lifetime version was used. At each of the follow-up assessments, 

participants applied the interval version, which covers the period of assessment from 

the last interview until the next. Data on the G section concerning psychosis and its 

clinical relevance were collected at T2 (lifetime version) and T3 (interval version). 

Assessment of psychotic experiences 

Data on positive psychotic experiences were collected at time T2 (lifetime version) 

and T3 (interval version) using the G-section of the DIA-X/M-CIDI. Presence of 

positive psychotic experiences was broadly defined as any rating of ‘present’ on 

any of the 20 DIAX/M-CIDI core psychosis items (G1, G2a, G3–G5, G7–G13, 

G13b, G14, G17, G18, G20, G20C, G21, and G22a), including 14 delusion items, 

5 hallucination items, and 1 item on passivity phenomena. Items relate to classic 

psychotic symptoms involving, e.g., persecution, thought interference, auditory 

hallucinations, and passivity phenomena. Participants were first invited by the 

psychologist to read a list of all the psychotic experiences and then asked whether 

they ever experienced such symptoms. All these psychosis items were rated in 2 

ways: ‘absent’ and ‘present’. Thus, all the psychosis DIA-X/M-CIDI items used in the 

present study were coded in a dichotomous manner without intermediate levels.  

Assessment of urbanicity 

Urbanicity was assessed at baseline and was defined dichotomously as either living 

in the city of Munich (4061 persons per square mile) or in the rural surroundings (553 

persons per square mile) at time of inclusion. Data on living location were derived 

from the population registry offices of the city and the 29 counties of Munich. 
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Assessment of cannabis use  

Cannabis use was assessed with the L-section of the DIA-X/M-CIDI at all three 

assessments. Conform previous analyses [11], cannabis use at T0 was defined as 

lifetime use of cannabis of five times or more (‘T0 cannabis use’) and cannabis use at 

T2 was defined as use of cannabis of five times or more since T0 (‘T2 cannabis use’).  

Statistical analyses 

Data were analyzed using STATA, release 10.0 (StataCorp, College Station, TX). 

Associations are expressed as risk differences (RD) from logistic regression models. 

Cannabis X urbanicity interaction 

To investigate whether the effects of incident cannabis use over the T0-T2 period on 

expression of incident psychotic experiences over the T2-T3 period were moderated 

by the urban environment, interaction between T0-T2 cannabis use and urbanicity 

was calculated under an additive model [22, 23]. This was done as the additive 

interaction can be interpreted in a meaningful way, yielding information on the 

extent to which two causes biologically depend on each other or co-participate in 

disease causation [30]. Thus, we derived from the additive statistical interaction an 

estimate of the amount of biological synergism, as originally described by Darroch 

[30], and since successfully applied to psychiatric research [31-33]. The amount of 

biological synergism in this context can be understood as the proportion of 

individuals exposed to both cannabis use and urbanicity that developed the 

psychosis outcome because of the specific co-participation of these two factors.  If 

this proportion is low, the statistical interaction is of little practical importance as 

most individuals exposed to both cannabis use and urbanicity will have developed 

the outcome because of either cannabis or urbanicity in isolation, not because of 

their synergistic action [30]. How the amount of biological synergism can be 

estimated approximately from the additive statistical interaction has been described 

in detail previously [30, 33]. To ensure prediction of strictly incident psychotic 

symptoms over the T2-T3 follow-up period, all individuals who had reported lifetime 

psychotic experiences at T2 were excluded from the analyses. The interaction 

between T0-T2 cannabis use and urbanicity was calculated using the BINREG 

procedure in STATA yielding RD’s, followed by calculation of the appropriate linear 

combinations from the model with the interaction, using the STATA LINCOM 

command. In addition, in order to check for possible mediation between cannabis 

and urbanicity (in the sense of one factor influencing the occurrence of the other), 

logistic regression analysis was used to test whether urbanicity was associated with 

T0 cannabis use.  

 

All analyses were a priori adjusted for the following confounding risk factors: age 

(in years), sex (0=female, 1=male), socio-economic status (lower, middle, upper, 
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other), cannabis use at baseline (to control for possible mediating effects between 

urbanicity and cannabis use), use of other drugs and childhood trauma [34]. Use of 

‘other drugs’ included psychostimulants, sedatives, opiates, cocaine, phencyclidine 

and psychedelic drugs and refers to use of 5 times or more of any of these drugs, as 

assessed with the L-section of the M-CIDI. Conform previous analyses in this sample 

[35], ‘Childhood trauma’ was defined as lifetime experience of any traumatic 

experience during childhood as assessed with the N-section of the M-CIDI, 

dichotomously defined as ‘present’ versus ‘absent’. 

 

Results 

Sample 

A total of 2210 individuals completed the T3 assessment (response rate 74.0%). 

Two-hundred-ninety participants had partial missing information on substance use 

and psychotic symptoms, resulting in a final risk set for analysis of 1923 individuals 

of which 926 (48.2%) were men. Mean age was 18.3 years (SD = 3.3 years) at T0, 

21.8 (SD = 3.4 years) at T2 and 26.6 (SD = 3.5 years) at T3. Participant 

characteristics of the risk set are summarized in table 1.  

At T0, 247 participants (12.8%) reported lifetime cannabis use. At T2, 392 

participants (20.4%) reported using cannabis over the T0-T2 interval and 381 

individuals (27.1%) reported T2-T3 interval cannabis use at T3. Psychotic symptoms 

were reported by 436 participants (22.7% - lifetime) at T2 and by 231 

participants (12.0 % - interval) at T3. At the time of inclusion, 1.345 (69.9%) 

participants were registered as living in the city of Munich; 578 participants (30.1%) 

were registered as living in the rural surroundings.  

Main effects of cannabis and urbanicity 

In individuals with no history of psychotic symptoms, cannabis use over the T0-T2 

period was significantly associated with incident psychotic symptoms over the T2-T3 

period (unadjusted OR = 1.77, 95%CI: 1.16-2.70, p = 0.008). After adjustment for 

age, sex, socio-economic status, cannabis use at baseline, childhood trauma and use 

of other drugs, the strength of the association was reduced somewhat (adjusted OR 

= 1.59, 95%CI: 0.98-2.60, p = 0.061). There was no significant association 

between urbanicity and incident psychotic symptoms over the T2-T3 period (adjusted 

OR = 1.16, 95%CI: 0.77-1.76, p = 0.497). 

Interaction between cannabis and urbanicity 

Analysis revealed a significant interaction between T0-T2 cannabis use and 

urbanicity (test for additive interaction: 10.9% adjusted difference in risk, 95%CI: 

3.2-18.6, p = 0.005, table 2). The association between T0-T2 cannabis use and T2-
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T3 psychosis was much stronger for individuals from an urban environment (adjusted 

RD 6.8%, 95%CI: 1-12.5, p = 0.021, table 2) compared to individuals from rural 

surroundings (adjusted RD -4.1%, 95%CI: -9.8-1.6, p = 0.159, table 2). 

 

Further analyses revealed that biological synergism was between 51% and 66%, 

i.e. of all the individuals in the risk set exposed to both urbanicity and cannabis, the 

majority had developed the psychosis outcome because of the specific synergistic 

effect of the two, assuming causality. There was a small but significant positive 

association between urbanicity and T0 cannabis use (adjusted OR = 1.40, 95%CI: 

1.02-1.98, p = 0.038).  

 

 

Table 1. Participant characteristics of the risk set (N = 1923). 

 n % 

Gender   

Male 926 48.2 

Female 997 51.8 

Socio-economic status   

Lower 115 6 

Middle 1114 58 

Upper 661 34.4 

Other 33 1.7 

Urbanicity   

Urban 1345 69.9 

Rural 578 30.1 

Childhood trauma   

Yes 363 18.9 

No 1560 81.1 

Cannabis use (T0)   

Yes 247 12.8 

No 1676 87.2 

Use of other drugs (T0)   

Yes 36 1.9 

No 1887 89.1 

Note. Socio-economic status: lower (lower class, lower middle class), middle (middle middle class), upper (higher 

middle class, upper class) other (none of the above or missing). Urbanicity: urban (the city of Munich, 4061 

persons per square mile), rural (the surroundings of Munich, 553 persons per square mile). Cannabis use/Use of 

other drugs: Any use of more than five times. Childhood trauma: Any traumatic experience during childhood.  
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Discussion 

There was evidence that urbanicity may moderate the long-term effects of cannabis 

on psychosis: adolescents who grew up in the city of Munich were much more likely to 

develop psychotic symptoms after cannabis use than individuals who grew up in the 

rural surroundings of Munich. This interaction effect was independent of confounding 

factors such as age, gender, socio-economic status, use of other drugs and childhood 

trauma and was not irrelevant, as the majority of those exposed to both urbanicity 

and cannabis developed the psychosis outcome because of their co-action. There 

was also some evidence that this interaction could be interpreted in the sense of 

mediation (urbanicity leading to cannabis use leading to psychosis), as a small but 

significant association existed between urbanicity and cannabis use.    

Cannabis and urbanicity: moderation and possible mechanisms 

The present study identified urbanicity as one of the factors that may moderate the 

association between cannabis and psychosis. Previously, a similar interaction was 

reported between cannabis and developmental trauma, another environmental 

exposure associated with psychotic outcomes [15, 16]. Given evidence that cannabis, 

trauma, and urbanicity do not reflect the same environmental influence in the 

association with psychotic outcomes [4], the current analyses, in combination with the 

findings on similar moderation by developmental trauma [15, 16], suggest that they 

do share the same interactive pathway. A mechanism of developmental sensitization 

has been suggested to underlie this pathway [17].   

 

Epidemiological evidence indicates that although developmental expression of 

subclinical psychotic experiences in adolescence is mostly transient, repeated 

exposure to environmental risk factors causes subclinical psychotic experiences to 

persist and become more severe, resulting in onset of psychotic illness in a minority of 

individuals [4, 36, 37]. Urbanicity represents a complex proxy environmental 

influence, and the mechanism of its impact on psychosis remains largely unknown. The 

effect does not appear to be mediated by demographic factors, obstetric 

complications, childhood socio-economic position, neuropsychological impairment, air 

pollution, drug use or ethnic group, and there is evidence that exposure between the 

ages of 5-15 years is associated with the greatest effect [20, 21, 38], suggesting 

mediation by factors impacting during development. One study showed that an 

urban environment induced anxiety, negative feelings towards other people and 

reasoning biases associated with delusional ideation [39]. Allardyce and colleagues 

[40] showed that social fragmentation as well as deprivation had a significant effect 

on first psychosis admission rates independently of urbanicity, and that the effect of 

urbanicity on first psychosis admission rates disappeared after statistical adjustment 

for social fragmentation and deprivation [40]. Similarly, there is evidence that risk 
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for psychotic syndrome associated with indicators of social maladjustment, for 

example single parent family, single marital status and residential instability, 

similarly varies with the degree to which this represents the exception in relation to 

the wider social environment [41, 42]. This type of interaction between individual-

level and area-level social “fragmentation” may mediate the effect of the urban 

environment [41].  

 

The absence of an association between urban environment and incident psychotic 

symptoms in the current study is in line with previous research [43]. The likely 

explanation is that the time window of exposure to urban environment in relation to 

risk for psychosis outcomes is from 5-15 years [44]. Individuals with lifetime psychotic 

symptoms, assessed at baseline, that previous work in this sample showed were 

associated with urban environment [45], were excluded from the analyses. Later 

onset ‘incident’ psychotic symptoms could not be traced directly anymore to earlier 

exposure to the urban environment, although an indirect effect was still apparent, 

through moderation of sensitivity to the psychotomimetic effects of cannabis. It may 

be hypothesized that early exposure, i.e. between the ages of 5-15 years, to 

increased social fragmentation associated with an urban environment may constitute 

an environmental stressor that, through epigenetic mechanisms, leads to permanent 

neurodevelopmental alterations, which in turn result may contribute to enhanced 

sensitivity to the psychotomimetic effects of cannabis later in life. 

Cannabis and urbanicity: Moderation or mediation? 

In the present study, a small but significant association was found between urbanicity 

and cannabis use: Individuals living in the urban environment were more likely to use 

cannabis at baseline than individuals from the rural area. This finding indicates that 

the interaction between cannabis use and urbanicity may represent not only an 

underlying mechanism of moderation (the psychotomimetic effect of cannabis is 

larger in urban areas) but also of mediation (living in the city may enhance cannabis 

use). Both mechanisms would be important form a public health perspective. 

Cannabis X urbanicity: What it does and what it does not tell us? 

One of the limitations of epidemiological research concerns the inability to make 

inferences about underlying molecular mechanisms. Therefore, our findings are not 

informative with regard to molecular mechanisms such as developmental 

sensitization. However, when epidemiological research is followed by targeted 

experimental animal and human research, it may constitute the first step in a chain of 

research efforts to uncover the biological mechanisms of environment-environment or 

gene-environment interaction [7]. Thus, the fact that the majority of those exposed to 

both cannabis and urbanicity developed the psychosis outcome because of a specific 

mechanism of co-participation between these two factors suggests the finding 
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constitutes an important starting point requiring follow-up experimental research 

targeting a final common pathway that both factors may impact on. 

 

The interest of epidemiological findings like these lies in the area of public health 

and disease causation. As shown by Darroch [30], evidence of non-additivity 

represents a way to estimate the population amounts of biological synergism (the 

population exposed to both risk factors that developed the outcome because of the 

specific co-participation between the two factors) and biological parallelism (the 

population exposed to both risk factors that developed the outcome because of the 

action of only one factor). Examination of biological synergism and parallelism is of 

vital interest to epidemiologists and public health, since it allows identification of 

populations that would benefit most from a given intervention: If synergism is large, 

public health gains could be obtained by targeting either factor. On the other hand, 

if parallelism is large, public health may gain by targeting both factors. In the 

current study, synergism was between 50-65%, indicating that targeting either 

factor could potentially result in public health gains. 

Limitations/methodological issues 

There are several limitations. First, information on substance use and psychosis 

outcome was acquired using the M-CIDI, which is meant to essentially provide self-

reported information. Nevertheless, the interview was conducted face-to-face by 

clinical psychologists who were allowed to follow up with clinical questioning in order 

to ensure systematic and valid assessment of outcomes and can therefore be 

assumed to yield better and more valid results than a self-report questionnaire.  

 

Secondly, urbanicity was assessed by retrieving data on living location from the 

German registry offices. Although these registers can be considered as highly 

accurate since in Germany registration is obligatory and registries are regularly 

updated, the information is restricted to current living location and therefore does 

not provide information on duration of living at a certain location. Pedersen en 

Mortensen [44] showed that increasing duration of living in urban areas leads to 

increased psychosis risk in a dose-response fashion. Research has furthermore 

suggested that the effect of urbanicity on psychosis risk operates during upbringing 

rather than at birth [44] or around illness onset [46]. Considering the current study, 

even under the hypothetical assumption that participants registered as living in the 

city of Munich had just moved there from the rural surroundings or, the other way 

around, individuals from the rural surroundings had just moved to the city, this would 

have yielded an under-,  rather than an overestimation of the effects size. In 

addition, previous work suggest current urban residence in young people reflects 

urban upbringing in the majority [46]. The paradigm used in the current study was 

based on the notion that psychotic symptoms can be expressed below the threshold 
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of diagnosis and are meaningful in relation to the clinical phenotype. Meta-analytic 

work of sub-diagnostic expression of psychotic experiences in the general 

population has shown aetiological, psychopathological and longitudinal continuity 

between the extended subclinical phenotype and clinical expression of psychotic 

disorder, as well as a similar age-related developmental pattern of expression [47]; 

a recent landmark general population birth cohort study confirmed this pattern of 

findings [48]. Further, since transient and normally expressed psychotic experiences 

may, under certain circumstances, become abnormally persistent and develop into 

clinical psychosis [4, 36, 49], psychotic experiences represent an important 

phenotype for the investigation of mechanisms and pathways by which 

environmental risk factors such as cannabis impact on psychosis risk [5].   

 

Finally, in interpreting the findings of this current study, it was assumed that in this 

area in Germany, cannabis used in the city does not differ from cannabis used in 

rural areas. Although this cannot be formally explored the assumption may be valid, 

since availability of cannabis in Germany is limited in general (compared to 

countries such as the Netherlands, where ‘coffeeshops’ are allowed to sell cannabis 

on a semi-legal basis) and access to cannabis is likely comparable between rural 

and urban areas. 
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Dear Editors, 

 

Cannabis use is considered a component cause of psychotic disorder interacting with 

genetic and environmental risk factors in increasing psychosis risk [1]. Recently, two 

cross-sectional and one prospective study provided evidence that cannabis use 

interacts additively with trauma to increase psychosis risk [2-4]. In an attempt at 

further replication, we examined prospective data from the German Early 

Developmental Stages of Psychopathology (EDSP) study [5, 6].  

 

The EDSP study collected data on the prevalence, incidence, risk factors, 

comorbidity, and course of mental disorders in a random, representative population 

sample of adolescents and young adults in the general population [5, 6]. Individuals 

were assessed three times (at T0, T2, and T3) over a 10-year follow-up period. 

More details on the sampling, representativeness, instruments, procedures, and 

statistical methods of the EDSP Study sample have been presented elsewhere [5, 6]. 

Data on psychotic symptoms, cannabis use and trauma were acquired with the 

computerized version of the Munich-Composite International Diagnostic Interview 

(DIA-X/M-CIDI) [7], an updated version of the World Health Organization’s CIDI 

version 1.2 [8]. At T0, the DIA-X/M-CIDI lifetime version was used. At each of the 

follow-up assessments, participants applied the interval version, covering the period 

of assessment from the last interview until the next. Data on positive psychotic 

symptoms were collected at T2 (lifetime version, representing lifetime experience of 

symptoms) and T3 (interval version, representing symptoms that occurred over the 

T2-T3 period). Presence of positive psychotic experiences was broadly defined as 

any rating of ‘present’ on any of the DIAX/M-CIDI core psychosis items. All items 

were dichotomously rated as ‘absent’ or ‘present’. Cannabis use was assessed at all 

three assessments. Conform previous analyses [9], cannabis use at T0 was defined as 

lifetime use of cannabis of five times or more and cannabis use at T2 was defined as 

use of cannabis of five times or more since T0. Trauma was assessed at T0 and was 

dichotomously defined as having experienced any of the following events at least 

once lifetime: war experiences, physical threats or attacks, rape, sexual abuse, 

natural disasters, serious accidents, kidnapping and hostage-taking, and witnessing 

any of the aforementioned events. 

 

Data were analyzed using STATA, release 11.1 (StataCorp, College Station, TX). 

Associations were expressed as odds ratios (OR) derived from logistic regression 

models. Interaction between T2 cannabis use and trauma was calculated under an 

additive model [10], using the BINREG procedure in STATA yielding risk differences 

(RD), followed by calculation of the appropriate linear combinations from the model 

with the interaction, using the STATA LINCOM command. To ensure prediction of 

strictly incident psychotic symptoms over the T2-T3 follow-up period, all individuals 
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who had reported lifetime psychotic experiences at T2 were excluded from the 

analyses. Analyses were adjusted for the following confounding risk factors: age (in 

years), sex (0=female, 1=male), socio-economic status (lower, middle, upper, other), 

cannabis use at baseline, use of other drugs at baseline  

(including psychostimulants, sedatives, opiates, cocaine, phencyclidine and 

psychedelic drugs), and urbanicity, defined dichotomously as living in the city of 

Munich (‘urban’, 4061 persons per square mile) or in the rural surroundings (‘rural’, 

553 persons per square mile) at the time of inclusion.  

 

We analyzed data of 1923 individuals of which 926 (48.2%) were men. Mean age 

was 18.3 years (SD = 3.3 years) at T0, 21.8 (SD = 3.4 years) at T2 and 26.6 (SD 

= 3.5 years) at T3. There was no evidence that trauma moderated the association 

between T2 cannabis use and incident psychotic symptoms over the T2-T3 period 

(see table 1 for statistics). The interaction remained small and non-significant when 

examining a more stringent outcome criterion, defined as having experienced at 

least two psychotic symptoms, and when examining the influence of having been 

exposed to at least two or three traumatic events, respectively. In order to strictly 

predict incident psychotic symptoms over the T2-T3 period, the above described 

analyses excluded all individuals with lifetime pre-existing psychotic symptoms as 

assessed at T2. Accordingly, the remaining group of subjects exclusively consisted of 

individuals who had not developed any psychotic symptoms by the time of the T2 

assessment, possibly constituting a relatively resilient subgroup. However, the 

interaction remained non-significant also when analyzing the whole cohort (-1.3% 

adjusted difference in risk, 95% CI: -11.1- 8.4, p = 0.782).  

 

Opposed to what was hypothesized and in contrast to previous findings [2-4], the 

current analyses did not provide evidence for interaction between cannabis use and 

trauma in increasing psychosis risk. This may be due to sampling variation, or 

alternatively, the relatively long follow-up between T2 and T3 was insensitive to this 

type of analysis. More work in the area of environment-environment interactions in 

predicting psychosis is necessary. 
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Abstract 

 

Schizophrenia has long been associated with an imbalance in dopamine (DA) 

neurotransmission, and brain imaging has played an important role in advancing our 

knowledge and providing evidence for the dopaminergic abnormalities. This chapter 

reviews the evidence for DA dysfunction in different brain regions in schizophrenia, 

in particular striatal, extrastriatal and prefrontal regions, with emphasis on recently 

published findings. As opposed to the traditional view that most striatal 

dopaminergic excess, associated with the positive symptoms of schizophrenia, 

involves the dopaminergic mesolimbic pathway, recent evidence points to the 

nigrostriatal pathway as the area of highest dysregulation. Furthermore, evidence 

from translational research suggests that dopaminergic excess may be present in the 

prodromal phase, and may by itself, as suggested by the phenotype observed in 

transgenic mouse with developmental overexpression of dorso-striatal D2 receptors, 

be an early pathogenic condition, leading to irreversible cortical dysfunction.  
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Introduction 

 

The psychotomimetic effects of stimulant drugs, in combination with the observed 

antipsychotic effects of D2-blocking drugs, gave rise to the initial dopamine (DA) 

hypothesis of schizophrenia [1-3]. Refined and modified in the intervening years, this 

theory to date remains central to the pathophysiology of schizophrenia [4-6].   

 

Based on the observation that DA-enhancing drugs such as amphetamine show 

psychotomimetic properties while the effectiveness of classic antipsychotic 

medication, blocking DA D2 receptors, had been shown to directly correlate with its 

affinity for the D2 receptor [7], the dopamine hypothesis initially assumed a general 

dopaminergic hyperfunction [1, 2]. However, subsequent findings, including reduced 

cerebral blood flow in the prefrontal cortex (PFC) of patients with schizophrenia and 

the observation that negative symptoms such as flattened affect, anhedonia and 

compromised cognitive function did not respond to classic antipsychotic treatment 

targeting D2 receptors, were incompatible with a generally overactive DA system. 

Accordingly, the dopamine hypothesis was reformulated as an imbalance in DA 

neurotransmission in different regions of the brain, characterized in particular by 

hyperactivity in the subcortical DA pathway and hypoactivity in the cortical DA 

system [8-10]. It was also suggested that DA hyperactivity in subcortical brain 

regions, in particular striatal areas, accounted primarily for the positive symptoms of 

schizophrenia, while the negative symptoms were mostly associated with DA 

hypoactivity in cortical areas, particularly PFC [11].  

 

In this chapter, we present the history as well as the latest research findings relating 

to dopamine dysfunction in schizophrenia.  The two main new findings that will be 

emphasized here are the following: Unlike the traditional thinking that most 

dopaminergic excess causing positive symptoms involves the dopaminergic 

mesolimbic pathway, recent evidence points to the nigrostriatal pathway, projecting 

to the anterior caudate, part of the associative striatum, as the area of highest 

dysregulation.  Furthermore, as opposed to the thinking that dopamine is a final 

common pathway, recent evidence from translational research suggests that 

dopamine dysregulation may be an early pathogenic mechanism that leads to 

further dysregulation of brain function.  We will review the evidence and outline 

future research needed to understand the molecular mechanisms and develop better 

therapeutic interventions. 

 

 

 



76 THE DOPAMINE DYSFUNCTION IN PSYCHOSIS REVISITED 

 

 

Evidence for DA dysfunction in schizophrenia  

 

Direct empirical evidence for DA alterations in schizophrenia was initially elusive. 

Postmortem studies were difficult to interpret due to the possible confounding by 

prior neuroleptic exposure and the first imaging studies using Positron Emission 

Tomography (PET) and Single Photon Emission Tomography (SPECT) produced 

inconsistent findings. Advances in PET and SPECT imaging techniques, such as the 

development of new, high affinity radiotracers, made it possible to study DA 

neurotransmission in several regions of the brain, including striatal, extrastriatal and 

prefrontal cortical regions with more anatomical detail than previously possible. 

Striatal DA alterations 

Using PET and SPECT imaging techniques, different paradigms have been employed 

in order to study aspects of presynaptic and postsynaptic striatal DA alterations in 

schizophrenia. These include markers of DA synthesis, release and reuptake, as well 

as DA receptor availability and differences in receptor affinity states [12-14].  

Presynaptic DAergic parameters  

Dopamine synthesis. DA is synthesized by hydroxylation of the precursor tyrosine to 

L-DOPA, which then is decarboxylated to DA by aromatic acid decarboxylase 

(AADC). Radioactive analogues of L-DOPA, such as [11C]L-DOPA and [18F]DOPA, 

have been used to estimate enzymatic activity of AADC, as an indicator of DA 

synthesis capacity [15-18]. However, this is overly simplified and other factors may 

affect the overall signal measured with [11C]L-DOPA and [18F]DOPA, including 

delivery of [11C]L-DOPA and [18F]DOPA to the brain, crossing the plasma 

membrane, storage in presynaptic vesicles as a result of VMAT activity, release of 

[11C]L-DOPA and [18F]DOPA, and degradation, all may play a role in addition to 

the activity of DOPA decarboxylase. Better knowledge of these mechanisms is 

needed to better understand the exact molecular processes underlying [11C]L-DOPA 

and [18F]DOPA uptake and their disturbance in schizophrenia. Nevertheless, a 

number of studies have used radiolabelled L-DOPA, such as [11C]L-DOPA or 

[18F]DOPA in schizophrenia. The first study, by Reith and colleagues [19], revealed 

significantly elevated [18F]DOPA uptake in drug-naïve patients compared to healthy 

controls [19]. While the majority of the following studies using the same technique 

replicated this finding [20-26], two studies failed to find markers of elevated DA 

synthesis capacity: One study reported a small but not significant increase in 

[18F]DOPA uptake [27], while another found decreased levels of [18F]DOPA uptake 

[28]. This discrepancy might be explained by differences in study population: 

Studies reporting positive findings were all conducted in acutely psychotic, mostly 

drug-naïve, patients (with the exception of McGowan and colleagues), while the two 
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studies reporting negative or inverse findings were done in chronic, previously 

medicated, patients. Recently, DA synthesis capacity was investigated in twins 

discordant for schizophrenia. No elevation in striatal DA synthesis was observed in 

the unaffected twin, nor in the low-symptomatic medicated twin with chronic 

schizophrenia when compared to controls, suggesting that increased DA synthesis is 

not a genetic marker for schizophrenia [29].  

 

Dopamine release. The next step in DA transmission is the release of DA from the 

presynaptic terminal. An estimation of DA release from striatal DA neuron terminals 

can be obtained by measuring changes in D2 binding potential after 

pharmacologically induced DA release with SPECT (Single Emission Computed 

Tomography) and PET imaging techniques [30-32]. One of the first studies to 

investigate amphetamine-induced DA release in schizophrenia was conducted by 

Laruelle and colleagues [33], using SPECT and the radiotracer [123I]IBZM, an 

antagonist at D2/3 receptors. Changes in D2/3 binding potential as an estimation 

of amphetamine-induced DA release were measured in 15 medication-free patients 

with schizophrenia and 15 healthy control participants. The decrease in binding 

potential induced by amphetamine was significantly greater in patients with 

schizophrenia compared to controls. Furthermore, the amphetamine-induced 

decrease in D2/3 binding potential was associated with the transient increase in 

positive symptoms induced by amphetamine in the schizophrenia group [33]. The 

results of a subsequent PET study using [11C]raclopride as radiotracer were in line 

with these observations [34]: The schizophrenia group showed greater 

amphetamine-induced decreases in [11C]raclopride binding compared to controls, 

indicative of greater amphetamine-induced DA release. Furthermore, the study did 

not find differences in amphetamine effects on [11C]raclopride binding between 

medication-free (N=5) and medication-naïve (N=6) patients with schizophrenia, 

indicating that the effect occurs independent of earlier treatment with neuroleptics. 

Abi-Dargham and colleagues [35] have since then replicated these findings. 

Furthermore, it was shown that changes in amphetamine-induced dopamine release 

in schizophrenia might be associated with illness phase, as amphetamine-induced 

transient worsening of psychotic symptoms correlated with changes in [11C]raclopride 

binding in patients with schizophrenia and no difference in [11C]raclopride binding 

was seen in patients in remission compared to controls [36]. The amphetamine 

paradigm shows stimulated release, as amphetamine increases dopamine levels by 

reversing DAT.  Another aspect of DA transmission is uncovered with depletion 

paradigms: The administration of alpha-methyl-para-tyrosine (αMPT), a reversible 

competitive inhibitor of tyrosine hydroxylase, causes acute depletion of endogenous 

DA and can be used as a method to assess the degree of baseline (non-stimulated) 

intrasynaptic DA activity [37], most likely reflecting basal release as a result of 

neuronal firing. Abi-Dargham and colleagues [38] used this technique in combination 
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with SPECT and [123I]IBZM in 18 untreated patients with schizophrenia and 18 

matched control participants before and after αMPT-induced DA depletion. 

Exposure to αMPT led to increased D2 receptor availability in both patients with 

schizophrenia and healthy controls, however, the effect was larger in schizophrenia 

patients, indicative of higher baseline DA activity in this group. The magnitude of the 

effect did not differ between medication-naïve patients with schizophrenia and 

those, previously treated with antipsychotics [38]. Similar results were recently 

obtained by Kegeles and colleagues [39], who employed the same depletion 

paradigm in combination with PET and [11C]raclopride [39]. Kegeles and colleagues 

furthermore showed that the largest effect of acute DA depletion on D2 receptor 

binding was observed in the associative striatum and not in limbic striatum as was 

long hypothesized. Recently it was shown that amphetamine-stimulated DA release 

and baseline DA activity are related in patients with schizophrenia but not in controls 

[40]. Pilot data from Canada furthermore suggest that DA release in patients with 

schizophrenia and individuals at high risk compared to healthy controls is also 

increased in response to psychosocial stress [41]. Altogether, studies have 

consistently demonstrated increased amphetamine-stimulated DA release in 

schizophrenia. Depletion studies further suggest that schizophrenia is characterized 

by increased baseline DA activity.  

 

Dopamine reuptake. DA transmission in the striatum is regulated by DA transporters 

(DAT), which are located on the presynaptic membrane of DA terminals and rapidly 

remove DA from the synaptic cleft [42]. Several studies have investigated DAT 

density in schizophrenia, using PET or SPECT, to obtain an index of density of DA 

terminals and striatal innervation [43-54]. The majority of studies did not observe 

differences in DAT availability between neuroleptic-naïve patients with 

schizophrenia and controls [43, 45, 46, 49, 51-53]. Two studies reported reduced 

DAT binding in patients with schizophrenia compared to controls [47, 50]. However, 

since the patients were not medication-naïve, the researchers concluded that the 

observed reduction in DAT binding was secondary to prior treatment with 

neuroleptics. In order to clarify this issue, Mateos and colleagues [48] repeated the 

experiment in a cohort of neuroleptic-naïve patients with schizophrenia and also 

found lower DAT density [48]. Still, this remains the only study, which reported 

decreased DAT binding in schizophrenia. So, taken together the evidence suggests 

that schizophrenia is not associated with changes in DAT density. Recently, two dual-

isotope SPECT studies used [99mTc]TRODAT and [123I]IBZM to simultaneously measure 

DAT and D2 receptor availability in drug-naïve patients with schizophrenia and 

controls [44, 54]. In line with most of the previous findings, no overall differences in 

DAT or D2 receptor availability were observed. However, in patients but not 

controls, DAT density correlated positively with D2 receptor availability [54], which 
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was most pronounced in patients presenting with predominantly positive symptoms 

[44].  

Postsynaptic DAergic parameters 

DA receptor availability. The most extensively studied receptor in schizophrenia is the 

D2 receptor, which is abundantly present in the human striatum. Numerous studies 

have measured the density of striatal D2 receptors in schizophrenia, both in vivo and 

postmortem, and three meta-analyses have reviewed the strength and consistency of 

the reported findings [14, 55, 56]. The first of these meta-analyses was conducted 

by Zakzanis and Hansen [56] and included 17 studies of which 7 were postmortem. 

The results from 511 patients with schizophrenia and 534 controls suggested that, 

although D2 receptor availability was elevated in approximately 70% of the 

patients, increased receptor density failed to discriminate patients from controls and 

is therefore unlikely to represent a general marker of schizophrenia [56]. In line with 

this are the findings of the second meta-analyses, which included 15 in vivo studies 

on D2 receptor density in schizophrenia, and concluded that there was small but 

significant elevation of receptor availability along with greater variability in 

schizophrenia patients compared to controls [14]. The more recent, comprehensive 

meta-analysis by Kestler and colleagues [55] included 20 postmortem studies and 

17 in vivo studies on D2 receptor availability in schizophrenia and took into account 

differences in methodology such as in vivo versus postmortem measures (which are 

likely to be confounded by prior treatment with neuroleptics, which results in 

upregulation of D2 when administered chronically) as well as the possible influence 

of sample characteristics such as age, gender or medication status. The authors 

concluded that the data were compatible with the idea of a subgroup of patients 

with schizophrenia being characterized by elevated D2 density [55]. The results of a 

recent study using the high affinity D2/D3 ligand [18F]fallypride were also in line 

with this, showing selective alterations in D2 density in schizophrenia patients [57]. 

Several lines of research indicate that, in addition to the D2 receptor, the D3 

receptor might play an important role in the pathophysiology of schizophrenia [58-

60]. However, until recently it was not feasible to selectively target D3 receptors 

with neurochemical imaging to obtain a direct measure of D3 in schizophrenia, since 

the available radiotracers exhibited similar affinities for the D2 and D3 receptors 

and therefore could not distinguish between them. Using the D2/3 agonist 

radiotracer [11C]PHNO, which has higher affinity for D3 than for D2, a recent study 

did not reveal differences in receptor occupancy between patients with 

schizophrenia compared to controls [61], although a more selective tracer would be 

needed to replicate this initial finding. Several studies have used ligand subtraction 

methods to measure the distribution of striatal D4 receptors in schizophrenia. 

However, these studies produced inconsistent results, some reporting increased 

availability of D4 [62-65], while others did not find differences in D4 between 
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schizophrenia patients and controls [66-68]. More selective tracers are needed to 

better characterize these receptors. Most (postmortem) studies did not find altered 

levels of D1 receptors in the striatum [69-74], one reported a slight decrease in D1 

density [75]. The results of two in vivo studies of striatal D1 density in schizophrenia 

are in line with the majority of postmortem findings and do not suggest alterations in 

striatal D1 receptor levels in schizophrenia [76, 77]. Taken together, it seems that a 

subgroup of schizophrenia patients is characterized by increased density of D2-like 

(i.e. D2/D3) receptors, independent of age, gender and prior neuroleptic exposure. 

The density of striatal D1 receptors on the other hand seems to be unaltered. No 

conclusive data is available for D4. 

 

Balance in D2 receptor affinity states. Being the primary target of antipsychotic 

medication, the D2 receptor plays a major role in schizophrenia and psychosis [78, 

79], although, as discussed above, its involvement in the pathophysiology of 

psychotic disorders remains unclear [14, 55, 56]. The D2 receptor has been shown to 

exist in two different affinity states: a high affinity, active state (D2high) and a low 

affinity, inert state (D2low) [80, 81]. Preclinical work has shown that radiolabelled DA 

agonists such as (+)-PHNO, which selectively binds to D2/3 receptors in the high-

affinity state, in combination with PET can be used to study the distribution of D2high 

both in-vitro [82] and in-vivo [83, 84]. The distribution of D2high using PET and [11C]-

(+)-PHNO was recently demonstrated also in human volunteers [81, 85]. For 

schizophrenia, it has been suggested that the observed super-sensitivity to DA-

enhancing drugs such as amphetamine is the result of an imbalance in D2 affinity 

states, in particular elevated availability of D2high receptors [86, 87]. However, 

evidence for this primarily stems from animal models of schizophrenia [for a review 

see 86]. Recently, the distribution of D2high was for the first time studied in patients 

with schizophrenia, and contrary to what could be expected from pre-clinical work, 

no elevation in D2high was observed in medication-free patients with schizophrenia 

compared to controls [61]. Although the authors acknowledge that differences in 

D2high between schizophrenia patients and controls could have been masked by 

endogenous DA, to date, there is no evidence for D2high dysregulation in 

schizophrenia.  

Extrastriatal DA alterations 

Several studies have now used high affinity radiotracers such as [18F]fallypride, 

[11C]FLB 457, and [123I]epidepride, to measure the distribution of D2 receptors in 

low-density brain regions such as the thalamus, anterior cingulate cortex, temporal 

cortex or substantia nigra, in unmedicated and medication-naïve patients with 

schizophrenia. Some studies found decreased D2 receptor availability in the 

thalamus [88-92], anterior cingulate cortex [91, 93], temporal cortex [91, 94] and 

midbrain [95], while some found no differences in the thalamus [95], anterior 
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cingulate and temporal cortex [88, 92, 96], and one study found an increase in D2 

receptor availability in schizophrenia in the substantia nigra [92]. A very large 

recent study did not confirm any of the above reported extrastriatal D2 receptor 

alterations in schizophrenia [57]. 

 

Another recent study has used the radiotracer [11C]PE21 in combination with PET to 

visualize thalamic DAT in patients with schizophrenia, who were either medication-

naïve or off medication for at least six months [97]. In contrast to striatal brain 

regions, where DAT seems to be unaffected in schizophrenia, this study reported 

increased DAT binding in the thalamus of patients with schizophrenia compared to 

controls. Another study measured extrastriatal DA synthesis capacity using PET and 

[11C]L-DOPA and found no differences between medication-naïve patients with 

schizophrenia and controls with regard to DA synthesis capacity in the thalamus or 

anterior cingulate and temporal cortex [20], although the ability of this tracer to 

measure extrastriatal dopamine synthesis is questionable [98]. 

Prefrontal cortical DA alterations 

While D2 receptors are abundantly present in striatal regions of the brain, the 

predominant DA receptors in prefrontal cortical regions are of the D1 type [99]. The 

distribution of D1 receptors in schizophrenia has been studied using the PET 

radiotracers [11C]NNC 112 or [11C]SCH 23390. However, the few studies that have 

been conducted produced conflicting results. While Okubo and colleagues [76], 

using [11C]SCH 23390, found a decrease in receptor binding in patients with 

schizophrenia compared to controls, the study by Karlsson and colleagues [100], 

using the same radiotracer, did not reveal any differences between groups [76, 

100]. However, patients in this latter study were all drug-naïve, while the former 

study also included drug-free patients. The more recent study by Hirvonen and 

colleagues [101] reported decreased [11C]SCH 23390 binding in frontotemporal 

brain regions of previously medicated patients with schizophrenia compared to their 

unaffected co-twins and healthy comparison twins and higher doses of antipsychotics 

were associated with greater decreases in D1 receptor binding [101]. Interestingly, 

unaffected monozygotic co-twins displayed increased receptor binding compared to 

healthy comparison twins, and unaffected dizygotic co-twins showed intermediate 

levels. Two other studies used the radiotracer [11C]NNC 112: One reported 

increased D1 receptor binding in the schizophrenia group, which correlated with 

deficits in working memory performance [77], and the second study found increases 

limited to the drug naïve patients but not the previously treated ones [102]. Studies 

on D1 receptor availability in schizophrenia are summarized in table 1. 
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Table 1. PET studies on D1 receptor availability in PFC in schizophrenia 

 

 
Study 

 
Ligand 

 
N 

 
Results 

Patients 
(drug-

naïve/drug-free) 

Controls 

 
Okubo et al., 
1997 

 
[11C]SCH23390 

 
17 (10/7) 

 
18 

 
Decreased receptor 
binding in patients versus 
controls 
 

 
Karlsson et al., 
2002 

 
[11C]SCH23390 

 
10 (10/0) 

 
10 

 
No difference between 
patients and controls 
 

 
Hirvonen et al., 
2006 

 
[11C]SCH23390 

 
9 (0/9) 

 
24 

 
Decreased receptor 
binding in patients versus 
controls (i.e. their 
unaffected co-twins and 
healthy comparison 
twins), but increased 
receptor binding in 
unaffected co-twins 
versus healthy 
comparison twins 
 

 
Abi-Dargham 
et al., 2002 

 
[11C]NNC112 

 
16 (9/7) 

 
16 

 
Increased receptor 
binding in patients versus 
controls 
 

 
Abi-Dargham 
et al.,  
in press 

 
[11C]NNC112 

 
25 (12/13) 

 
40 

 
Increased receptor 
binding only in drug-
naive patients versus 
controls; no change in 
drug-free patients 
 

 

 

While it is possible that the discrepancy in findings is due to the influence of 

neuroleptic medication, it might also be that differences in radioligand properties 

contributed to the diverging results, as shown by Guo and colleagues [103]: Using a 

DA depletion paradigm the researchers could demonstrate that the in vivo binding 

of the two radiotracers [11C]SCH 23390 and [11C]NNC 112 was affected 

differentially by changes in endogenous DA, indicating that the increased D1 

receptor availability observed in the studies by Abi-Dargham and colleagues using 

[11C]NNC 112 might reflect an upregulation of D1 receptors, secondary to 

chronically low DA levels. This would also be consistent with the observed correlation 

between increased D1 receptor binding and deficits in working memory [77]. 

However, since both radioligands also bind to the serotonergic 5-HT2A receptor 
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[104, 105], selective tracers are needed to pursue these investigations of the role of 

cortical D1 receptors in schizophrenia. 

Dopamine in at-risk and prodromal states 

The above described studies have revealed several aspects of DA dysfunction in 

patients with established schizophrenia. In order to extend these findings and shed 

light on the timing of DA dysfunction in schizophrenia, researchers have started 

recently to examine different aspects of DA transmission in individuals with 

prodromal signs of schizophrenia and individuals at genetic or psychometric risk for 

psychosis.  

 

Three studies have investigated striatal DA synthesis capacity with PET and [18F]F-

DOPA. While Huttunen and colleagues [106] observed increased [18F]F-DOPA 

uptake in the caudate-putamen in low-symptomatic first-degree relatives of patients 

with schizophrenia compared to controls, the study by Shotbolt and colleagues [29] 

did not reveal any changes in radiotracer uptake in unaffected and completely 

asymptomatic co-twins of schizophrenia patients compared to controls [29, 106]. 

Howes and colleagues [24] found increased [18F]-DOPA uptake in individuals with 

prodromal signs of schizophrenia compared to controls [24].  Interestingly, this effect 

was most pronounced in the associative striatum and correlated positively with 

severity of prodromal symptoms. Moreover, in a subsequent study the authors could 

indicate that the increase in DA synthesis capacity observed in individuals in the 

prodromal phase of the illness progressed over time only in those individuals who 

later developed schizophrenia, but not in those who did not develop the disease 

[107]. However, in contrast to the findings in prodromal individuals, where the effect 

was most pronounced in associative striatum, the progression in DA synthesis 

alteration in those who developed the disease was only seen in sensorimotor striatum 

[107]. Three other studies have examined stimulated DA release in individuals 

psychometrically at-risk for schizophrenia (i.e. individuals with schizoptypal traits). 

Soliman and colleagues [108] employed a psychosocial stress paradigm in 

combination with PET and [11C]raclopride to study stress-induced DA release in 

psychometric schizotypes compared to controls. No changes in DA release in 

response to stress were observed in normal controls, nor in the ‘positive’ schizotypes 

(i.e. individuals with perceptual aberrations). Only the ‘negative’ schizotypes (i.e. 

individuals with physical anhedonia) showed an increase in DA release in response to 

stress compared to baseline [108]. Abi-Dargham and colleagues [109] as well as 

Woodward and colleagues [110] studied amphetamine-induced DA release in 

individuals with schizotypal personality disorder (SPD) and individuals with 

schizotypal traits, respectively. In the SPD subjects of the first study, amphetamine 

caused a larger decrease in [123I]IBZM binding compared to controls [109]. 

Similarly, amphetamine-induced DA release measured with PET and [18F]fallypride 
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correlated positively with schizotypal traits in the second study [110]. In accordance 

with previous findings showing that DA dysregulation might be most pronounced in 

associated striatum as opposed to limbic or sensorimotor regions [24, 39], the 

correlation between stimulated DA release and schizotypal traits was strongest in 

associative striatum. Finally, one study has investigated striatal D2 receptor 

availability in six monozygotic and 5 dizygotic unaffected co-twins of patients with 

schizophrenia and compared them to control twins without a family history of 

psychosis. Elevated caudate D2 receptor availability was observed only in the 

monozygotic co-twins of schizophrenia patients, compared to dizygotic co-twins and 

controls. No changes however were revealed in the dizygotic co-twins compared to 

controls [111].  

 

In summary, studies suggest an increase in DA in schizotypal states and in relation to 

schizotypal and prodromal symptoms, linking DA dysfunction to the expression of the 

schizophrenia phenotype. Combined with the findings of Shotbolt and colleagues 

who did not observe any changes in DA synthesis capacity in unaffected co-twins of 

patients with schizophrenia [29], this suggests that DA dysfunction does not relate to 

a general genetic vulnerability in the absence of behavioral manifestations but 

rather represents a biological marker for the very early expression of schizophrenia 

symptomatology.  

 

 

Healthy



Worsening
severity of
signs and
symptoms

10 20 30 40 50

Years

Premorbid Prodromal Onset/
deterioration

Residual/stable

?

 
 

Figure 1. Schematic illustration of the course of the DA deficit in schizophrenia. DA dysregulation has been 

shown to occur already in the prodromal phase of the illness and seems to progress along with illness 

progression, peaking at illness onset. Adapted with permission from Lieberman [112]. 
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Summary 

The most consistently found dopaminergic alteration in schizophrenia is elevated 

presynaptic DA function in striatal brain regions (see figures 2 and 3 for an 

illustration), in particular associative striatum, as demonstrated by imaging studies 

showing i) increased L- DOPA uptake as an index of increased DA synthesis 

capacity, ii) elevated amphetamine-induced DA release and iii) elevated D2 

occupancy by DA as revealed by the acute DA depletion. DAT seems to be 

unaffected in schizophrenia, and increased D2 availability was only found in a 

subgroup of patients. Findings concerning the distribution of D3 and D4 remain 

understudied and equivocal. Although preclinical work suggests an imbalance in D2 

receptor affinity states being associated with psychosis, the only study in patients 

with schizophrenia did not find elevated D2high. The evidence concerning DA 

alterations in extrastriatal and prefrontal cortical brain areas in schizophrenia seems 

less consistent. While some studies found elevated levels of D2 in areas such as the 

thalamus, anterior cingulate and temporal cortex or the midbrain and substantia 

nigra, others did not. The results of the few studies on D1 receptor availability in 

prefrontal cortex in schizophrenia are also conflicting. Thus, while a lot of effort has 

been put into the investigation of striatal DA alterations in schizophrenia, research 

has been less successful with regard to extrastriatal and prefrontal cortical regions. 

More research is needed to resolve the inconsistencies in findings research has 

provided so far.  

 

Functional and clinical implications 

 

As defined in the current, fourth version of the Diagnostic and Statistical Manual of 

Mental Disorders [113], schizophrenia is a highly heterogeneous disease, presenting 

with positive, negative and cognitive symptoms. Positive symptoms include 

hallucinations and delusions, while negative symptoms refer to flattened affect, 

anhedonia and loss of motivation. Cognitive disturbances are mostly seen in domains 

such as working memory, executive function and aspects of social cognition. DA 

dysregulation plays a role within each of these dimensions. While positive symptoms 

seem to most directly relate to excessive striatal DA transmission, negative and 

cognitive symptoms have been associated with decreased DA function in PFC. The 

latter assumption was primarily based on the known and crucial involvement of the 

PFC in cognitive and emotional processes [114-116]. Still, after decades of research 

into DA and schizophrenia, it remains elusive how DA dysregulation actually 

translates into the complex and multifactorial symptoms that characterize the clinical 

picture of schizophrenia. 
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Figure 2. DA transmission at striatal medium spiny neurons. The most consistently found dysregulation in 

schizophrenia points to increased DA synthesis, increased stimulated DA release and increased D2 receptor 

binding after acute DA depletion. 
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Figure 3. New data bringing new evidence: The DA dysfunction in schizophrenia seems to be most pronounced 

in AST as opposed to VST as previously assumed. Adapted with permission from Simpson and colleagues [117]. 

SMST (sensorimotor striatum), AST (associative striatum), VST (ventral striatum), VTA (ventral tegmental area), 

SNc (substantia nigra pars compacta), SNr (substantia nigra pars reticulate).  
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Relating DA dysfunction to positive symptoms  

Several of the imaging studies discussed in this chapter, have reported associations 

between alterations in striatal DA function and symptomatology in patients with 

schizophrenia. Regarding DA synthesis, Hietala and colleagues found a negative 

correlation between striatal F-DOPA uptake and depressive symptoms and a 

positive correlation with paranoid symptoms, although this was significant at trend-

level only [22]. Howes and colleagues reported a positive correlation between 

severity of positive prodromal symptoms as well as neuropsychological impairment 

and increased DA synthesis capacity in associative striatum. However, this was not 

true for depressive symptoms [24]. With regard to DA release, Laruelle and 

colleagues [33] found that amphetamine-induced decrease in D2 binding potential 

was associated with positive symptoms. In a subsequent study the authors could 

furthermore establish a relation between amphetamine-stimulated DA release and 

illness-phase, as amphetamine-stimulated DA release was only increased in patients 

presenting with acute schizophrenia but not in patients in remission [36]. Recently, 

Woodward and colleagues revealed a positive correlation between stimulated DA 

release and schizoptypal personality traits in healthy individuals [110]. 

 

Assuming that striatal hyperdopaminergia plays a role in the emergence and 

experience of positive psychotic symptoms, the question arises as to how 

dopaminergic alterations in striatal brain regions ultimately give rise to the 

experience of hallucinations and delusions. Altered salience attribution has been 

suggested as a possible mechanism [118]. Burst firing of dopamine neurons in the 

ventral tegmental area markedly increases dopamine release in the striatum [119] 

and is believed to mediate the perception of salience or reward associated with 

stimuli [120-122]. The phasic bursts of dopamine release, which are highly 

dependent on glutamatergic excitatory afferents, have been shown to be regulated 

by constant low-frequency tonic firing of dopamine neurons [42]. Tonic dopamine 

tone in turn is under control of GABAergic inhibition. Increased levels of tonic 

dopamine firing may result in decreased amplitude of phasic dopamine burst firing, 

thus dampening responsivity of this system. Decreased tonic dopamine levels, on the 

other hand, may result in a heightened responsivity of the phasic dopamine 

component [42, 123]. Kapur has suggested that, in schizophrenia, dopamine 

dysregulation results in a psychological state of aberrant salience, in which mundane 

events and ideas may be attributed with undue significance  [118]. Thus, a 

hyperdopaminergic state in striatal brain regions, which most likely reflects 

dysregulation of the phasic component of DA release [124, 125], is believed to 

create a condition in which logically unconnected ideas and associations are weaved 

together and elaborated upon, eventually leading to the emergence of a delusional 

system. The process of salience attribution has been related to associative and 

reinforcement learning, in which what is called “reward prediction error” plays a key 
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role [126]. It is hypothesized that previous reward outcomes are used to form a 

reward prediction, which is then compared to the actual current reward. The 

difference between reward prediction and actual outcome is referred to as the 

reward prediction error [126], and has been shown to be mediated, in animals as 

well as in humans, by dopamine activity in ventral midbrain and striatum [127-130]. 

Compared to healthy controls, patients with psychosis seem to exhibit aberrant 

reward prediction and reward-related learning, both at the behavioral and the 

neural level [131, 132]. However, the relationship between dopamine dysfunction in 

these brain regions, alterations in reward processing and symptomatology in 

schizophrenia has not directly been studied and remains speculative.  

Relating DA dysfunction to negative and cognitive symptoms  

As intact dopaminergic neurotransmission is critical for PFC functioning and cognition, 

[114, 133], the negative and cognitive symptoms of schizophrenia have been 

particularly associated with cortical hypodopaminergia [77, 134, 135], although 

direct evidence for this association in schizophrenia is missing. The nature of 

dopamine dysfunction in the cortex remains unclear, although one study showing 

decreased tyrosine hydroxylase immunolabeling suggests decreased innervation 

[136]. Recently, the group of Simpson, Kellendonk and Kandel and colleagues 

suggested a role for the striatum in the etiology of negative and cognitive symptoms 

of schizophrenia [117]. Based on their preclinical work in D2 overexpressing mice, 

the researchers demonstrated that striatal DA alterations in form of overexpression 

of D2 leads to changes in DA turnover and prefrontal D1 receptor stimulation [137]. 

Behaviorally, this was accompanied by deficits in working memory [137] and 

operant performance, expressed in both reduced motivation and deficits in timing of 

the rewards [138]. It was moreover shown that the deficits in cognitive performance 

were secondary to the motivational deficit directly resulting from the D2 

overexpression [139], and remained even after the D2 overexpression had been 

reversed [138]. In line with these preclinical findings, studies in individuals with 

prodromal symptoms of schizophrenia have revealed an association between 

increased striatal DA synthesis capacity and altered activation in prefrontal cortical 

brain regions during cognitive engagement [140, 141]. 

 

Conclusions 

 

This chapter reviewed evidence for DA dysfunction in schizophrenia. Most of this 

evidence stems form imaging studies applying PET and SPECT techniques. Due to 

advances in these imaging techniques it has become possible to study neurochemical 

alterations in the DA system in several regions of the brain. Accordingly, recent 

studies were able to examine DA neurotransmission in the different substructures of 
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the striatum and revealed that, in contrast to the prevailing idea of DA hyperactivity 

in the mesolimbic DA pathway, it is rather hyperactivity in associative striatum that is 

implicated in schizophrenia pathology, as illustrated in figure 3. It further seems that 

the dysfunction is presynaptic rather than postsynaptic, characterized by increased 

DA synthesis capacity and increased phasic release to pharmacological and possibly 

also psychosocial challenges (see figure 2). Some of these alterations have been 

demonstrated also in individuals with prodromal signs of schizophrenia and seem to 

progress along with illness progression, suggesting that the dysfunction occurs early 

in the disease and may represent an early pathogenic process leading to further 

dysregulation (for an illustration on the course of the DA deficit see figure 1).  

 

Despite recent advances in the study of DA dysregulation in schizophrenia, the 

etiology of DA imbalance remains unknown. It has been assumed that striatal DA 

hyperactivity results from decreased activity in PFC, due to its functional role in 

inhibiting subcortical DA transmission [26, 142]. Conversely, preclinical work has 

recently shown that striatal DA abnormalities result in altered PFC DA activity [137]. 

The striatum is a complex integrative structure, receiving among others input from the 

hippocampus, an area of pathology in schizophrenia [143, 144], and in animal 

models changes in hippocampal activity lead to dysregulation of DA neuronal 

acitvity [145]. Future research should take into account these preclinical observations 

to understand the circuitry involved in the striatal and cortical dopamine dysfunction 

in schizophrenia. 
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Abstract 

 
General population epidemiological studies have consistently found that cannabis 

use increases the risk of developing psychotic disorders in a dose-dependent 

manner. While the epidemiological signal between cannabis and psychosis has 

gained considerable attention, the biological mechanism whereby cannabis increases 

risk for psychosis remains poorly understood. Animal research suggests that delta-9-

tetrahydrocannabinol (THC, the main psychoactive component of cannabis) increases 

dopamine levels in several regions of the brain, including striatal and prefrontal 

areas. Since dopamine is hypothesized to represent a crucial common final pathway 

between brain biology and actual experience of psychosis, a focus on dopamine 

may initially be productive in the examination of the psychotomimetic effects of 

cannabis. Therefore, this review examines the evidence concerning the interactions 

between THC, endocannabinoids and dopamine in the cortical as well as subcortical 

regions implicated in psychosis, and considers possible mechanisms whereby 

cannabis-induced dopamine dysregulation may give rise to delusions and 

hallucinations. It is concluded that further study of the mechanisms underlying the link 

between cannabis and psychosis may be conducted productively from the 

perspective of progressive developmental sensitization, resulting from gene-

environment interactions.  
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Introduction 

 
Stimulant drugs such as amphetamine have long been associated with psychotic 

symptoms. High doses can induce positive symptoms in people with no previous 

psychiatric history while even low doses can exacerbate positive symptoms in 

patients with a psychotic disorder [1, 2]. By the mid-1970s, experimental 

replications of the psychotomimetic effects of stimulant drugs, in combination with the 

observed antipsychotic effects of D2-blocking drugs, had given rise to the initial 

dopamine hypothesis of schizophrenia. Refined and modified in subsequent years, 

this theory remains central to theories about psychosis [3-6].   

 

Recent developments suggest that the dopamine hypothesis may need to be re-

examined in order to incorporate recent, seemingly unrelated research findings 

concerning risk factors for the development of psychosis [7]. One example concerns 

the insight that use of cannabis may impact negatively on mental health [8]. 

Cannabis use is associated with poor outcome in existing psychotic illness [9] and has 

consistently been shown to increase the risk to develop psychotic symptoms or 

disorder in healthy individuals [10-12]. However, the vast majority of cannabis users 

never develop any psychotic symptoms or mental health problems. Thus, cannabis is 

not a sufficient cause for psychotic illness but rather may constitute a component 

cause, interacting with other environmental and genetic factors [13]. Although the 

epidemiological link between cannabis and psychosis has been investigated 

extensively, the biological basis of this association remains poorly understood (see 

box 1 for a summary of main findings). Recent research suggests that heavy long-

term cannabis use, particularly when started during adolescence, may lead to 

abnormalities in brain structure [14-18], but it seems unlikely that the use of cannabis 

increases the risk of psychosis by inducing major structural brain changes [19, 20]. Its 

neurochemical interactions with neurotransmitters such as dopamine, however, are in 

urgent need of further investigation (DeLisi, 2008). Pharmacological and gene-

knockout studies have demonstrated that the central effects of THC are mediated via 

partial agonism at cannabinoid 1 receptors (CB1 receptors), the primary binding site 

of endogenous cannabinoids (eCBs) [21]. Expression of CB1 receptors is high in the 

hippocampus, cerebellum, basal ganglia, prefrontal cortex (PFC), amygdala and 

substantia nigra pars reticulata [22]. Endocannabinoids, of which the best 

characterized are anandamide (N-arachidonoylethanolamine; AEA) and 2-

arachidonoylglycerol (2-AG), are synthesized in and released from postsynaptic 

neurons but act predominantly at CB1 receptors located on neighboring presynaptic 

terminals, that is, they act in a retrograde fashion [23-25]. Activation of CB1 

receptors inhibits pre-synaptic neurotransmitter release (direct targets are GABA 

and glutamate terminals) and consequently modulates several neurotransmitter 

systems, including the dopamine system  [26]. Furthermore, it is thought that principal 
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output neurons, such as mesencephalic dopamine neurons, regulate their excitatory 

and inhibitory inputs via retrograde eCB signaling [26]. 

 

 

Box 1. What do we know about the association between cannabis and psychosis? 

 

1. Epidemiological studies have shown that cannabis use increases the risk of developing 

psychotic symptoms in a dose-response fashion, independent of possible confounding 

factors and self-medication effects. Effects may be more prominent during early 

adolescence [11, 28-30].  

2. Cannabis use is neither a necessary nor a sufficient cause of psychotic illness. Therefore, 

the link between cannabis use and psychosis may best be understood in terms of gene-

environment interactions [13]: 

a. Patients with a diagnosis of schizophrenia are more sensitive to the cognitive 

and behavioral effects of cannabis than controls [31]. 

b. High schizotypy, psychotic disorder and COMT val158met genotype have 

been found to moderate sensitivity to the psychosis-inducing effects of 

cannabis [31-35] . 

c. Environmental risk factors may induce differential sensitivity to cannabis in 

terms of psychosis risk, e.g. childhood trauma [36, 37] and urban rearing 

environment [38]. 

3. Cumulative exposure to environmental risks may increase the risk for psychosis in an 

additive fashion. The concept of behavioral sensitization may therefore provide a 

plausible mechanism for the link between cannabis and psychosis [27, 39, 40].  

4. Although some studies did not find cannabis-use related changes in brain morphology 

[41], others do suggest that long-term heavy cannabis use may lead to structural brain 

changes [14, 17, 18], possibly related to early onset of use [15, 16].  

5. Alterations in the endocannabinoid system have been revealed in schizophrenia, in 

particular increased levels of anandamide and increased CB1 receptor availability, 

independent of cannabis use [42-44]. 

 

 

In order to discuss how modulation of dopaminergic neurotransmission by 

cannabinoids, including THC, may contribute to the development of psychotic 

symptoms − and ultimately schizophrenia − following persistent cannabis use, the 

literature (using the databases Pubmed and Psychinfo) was searched systematically 

for relevant experimental, clinical and epidemiological findings across different 

disciplines, including molecular, neurobiological and behavioral findings. This review 

will therefore first outline the involvement of dopamine in the pathophysiology of 

schizophrenia, with an emphasis on mechanisms of how dopaminergic dysregulations 

may translate into delusions and hallucinations. Subsequently, the question of how 

cannabinoids, such as THC, may impact on dopaminergic pathways to provoke 

psychosis will be examined. We also address the potential role of cannabinoids in 

sensitization [27] processes in psychosis.  
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What are the dopaminergic pathways to psychosis? 

 
The involvement of dopamine in the pathophysiology of schizophrenia is still central 

to the understanding of psychosis [45-47]. The classic dopamine hypothesis of 

schizophrenia assumed a hyperfunctioning dopamine system to be the central 

feature of schizophrenia symptomatology, primarily in terms of the positive symptom 

cluster [48, 49]. Additional formulations later proposed that reduced dopaminergic 

activity in prefrontal cortical brain regions might be linked to negative and cognitive 

symptoms [50-52]. Although current models of schizophrenia pathophysiology also 

consider other neurotransmitters such as glutamate and GABA [4, 46], dopamine is 

still assumed to play a key role in the emergence and experience of positive as well 

as negative and cognitive symptoms in schizophrenia [6, 53].  

The subcortical pathway 

Indirect evidence supporting the notion of a hyperfunction in the mesolimbic 

dopamine system comes from observations that amphetamine, through a mechanism 

of hyperdopaminergia, induces positive psychotic symptoms whereas antipsychotic 

medications, blocking dopamine D2 receptors, dampen symptoms [48, 49, 54, 55]. 

Direct empirical support for hyperdopaminergia, showing alterations in the 

mesolimbic dopamine system of schizophrenia patients, was initially elusive. While 

some studies found increased striatal D2 receptor availability in schizophrenia 

patients compared to healthy controls [54, 56, 57], others failed to reveal such a 

difference [58-60]. However, more recent evidence suggests that it is elevated pre-

synaptic dopamine function that is associated with schizophrenia [reviewed in 

53].Furthermore, elevated pre-synaptic dopamine function was also reported in 

individuals with prodromal signs of schizophrenia [61] and  in first-degree relatives 

of patients with schizophrenia [62].   

 

Assuming that mesolimbic hyperdopaminergia plays an important role in the 

emergence and experience of psychotic symptoms, the question arises how 

dopaminergic alterations in mesolimbic brain regions actually give rise to the 

experience of hallucinations and delusions. Altered salience attribution has been 

suggested as a possible mechanism [63]. The mesolimbic dopamine system projects 

from the ventral tegmental area (VTA) to, among other areas, the ventral striatum. 

Burst firing of dopamine neurons in the VTA markedly increases dopamine release in 

the striatum [64] and is believed to mediate the perception of salience or reward 

associated with stimuli [65-67]. The phasic bursts of dopamine release, which are 

highly dependent on glutamatergic excitatory afferents, have been shown to be 

regulated by constant low-frequency tonic firing of dopamine neurons [68]. Tonic 

dopamine tone in turn is under control of GABAergic inhibition. Increased levels of 

tonic dopamine firing may result in decreased amplitude of phasic dopamine burst 
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firing, thus dampening responsivity of this system. Decreased tonic dopamine levels, 

on the other hand, may result in a heightened responsivity of the phasic dopamine 

component [68, 69]. Kapur has suggested that, in schizophrenia, dopamine 

dysregulation results in a psychological state of aberrant salience, in which mundane 

events and ideas may be attributed with undue significance  [63]. Thus, a 

hyperdopaminergic state in striatal brain regions is believed to create a condition in 

which logically unconnected ideas and associations are weaved together and 

elaborated upon, eventually leading to the emergence of a delusional system. Only 

a few experimental studies have actually studied the process of salience attribution 

in schizophrenia. This process has been related to associative and reinforcement 

learning, in which what is called “reward prediction error” plays a key role [70]. It is 

hypothesized that previous reward outcomes are used to form a reward prediction, 

which is then compared to the actual current reward. The difference between 

reward prediction and actual outcome is referred to as the reward prediction error 

[70]. Reward prediction error signaling is mediated, in animals as well as in humans, 

by dopamine activity in ventral midbrain and striatum [71-74]. Compared to healthy 

controls, patients with psychosis seem to exhibit aberrant reward prediction and 

reward-related learning, both at the behavioral and the neural level [75, 76]. G. K. 

Murray and colleagues [77] employed a functional magnetic resonance imaging 

(fMRI) paradigm using a monetary reward task, and found that patients were less 

able to distinguish between neutral and rewarding stimuli. This was also evident at 

the brain activation level as patients with schizophrenia showed an increased 

midbrain response to neutral prediction, but attenuated activity in response to 

reward prediction [77]. Taken together, these results support the notion that 

hyperactivity in the mesolimbic dopamine system promotes psychotic symptoms by 

disrupting the process of salience attribution.  

The cortical pathway 

In addition to mesolimbic dopamine hyperfunction, schizophrenia has been 

associated with decreased activity in the mesocortical dopamine pathway, which 

projects from the VTA to, among other areas, the PFC [1]. As dopaminergic 

neurotransmission at prefrontal dopamine D1 receptors is critical for PFC functioning 

and cognition [78, 79], cortical hypodopaminergia has been associated with the 

cognitive and negative symptoms of schizophrenia, such as impairments in working 

memory and executive functioning as well as anhedonia and flattened affect [50, 

80, 81]. Evidence for this, however, has been mainly indirect and primarily stems 

from neuroimaging studies investigating prefrontal D1 receptor availability [82, 83].   

Subcortical and cortical dopamine: two distinct pathways? 

As outlined above, schizophrenia may be associated with dopamine imbalances in 

both cortical and subcortical brain regions. Furthermore, the mesocortical dopamine 
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pathway, projecting from VTA to PFC, has been shown to exert inhibitory influences 

on mesolimbic dopamine activity [84, 85]. It has thus been proposed that mesolimbic 

hyperdopaminergia in schizophrenia may result from failed inhibition by cortical 

dopamine [84, 85]. Meyer-Lindenberg and colleagues [86] used Positron Emission 

Tomography to study regional cerebral blood flow (with [15O]H2O as radiotracer) 

and presynaptic dopaminergic function (with 6-[18F]DOPA as radiotracer) in the 

same session. Patients with a diagnosis of schizophrenia exhibited significantly lower 

levels of prefrontal cortical activity during an executive functioning task, compared 

to controls. Furthermore, the decrease in PFC activity in the patient group was 

predictive of a relative increase in striatal dopaminergic function, indicating that 

frontal hypodopaminergia leads to mesolimbic hyperdopaminergia.   

 

While the above suggests that striatal dopamine transmission is under the influence 

of PFC dopamine, Kellendonk and colleagues have demonstrated the opposite as 

well: mesolimbic dopamine activity may exert influences on prefrontal dopamine 

function [87-89]. Transgenic mice over-expressing striatal D2 receptors were found 

to be characterized by impairments in working memory and executive functioning, 

both of which are functions that critically require prefrontal dopamine activity. At the 

molecular level, over-expression of striatal D2 receptors was associated with 

increased dopamine turnover in the PFC and increased activation of prefrontal D1 

receptors [87]. It was further demonstrated that over-expression of striatal D2 

receptors resulted in disturbed motivational and associative learning [88, 89], core 

features of schizophrenia. There is thus some evidence that the cortical and 

subcortical dopamine pathways are subject to bi-directional influences.  

 

Does THC influence dopaminergic pathways to psychosis? 

 
Is it possible that some of the psychosis-inducing effects of exogenous cannabinoids 

such as THC may be mediated by dopamine? THC has been shown to affect 

endocannabinoid neurotransmission and much evidence indicates that eCBs are key 

components in the regulation of dopamine neurotransmission [90-92]. Animal 

research furthermore suggests that exogenous cannabinoids like THC facilitate 

dopaminergic neurotransmission in several regions of the brain, including striatum 

and PFC [93-95].  

Do cannabinoids influence subcortical dopamine? 

Dopamine neuronal firing in the VTA is controlled by excitatory glutamatergic and 

inhibitory GABAergic inputs, which in turn are reciprocally modulated by eCBs 

released from dopaminergic dendrites (figure 1) [91, 96, 97]. Findings from 

numerous animal studies have shown that the overall result of exogenous CB1 
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receptor agonists, such as THC, is to evoke burst-firing in the VTA and thereby 

increase extracellular dopamine concentrations in striatal brain regions (figure 1) 

[94, 98-100]. Recently, the acute effects of THC on striatal dopamine transmission 

have been investigated in human volunteers, using experimental Positron Emission 

Tomography (PET) paradigms. However, findings were inconsistent. While one study 

reported a THC-induced increase in striatal dopamine release [101], another study 

failed to detect such an effect [102]. An earlier Single Photon Emission Computed 

Tomography (SPECT) study, however, did find increased dopamine release in the 

striatum of a single patient with schizophrenia following cannabis exposure; in 

addition, the dopamine response in the patient was followed by an acute worsening 

of positive psychotic symptoms  [103]. Researchers have therefore asked whether D2 

blockade might prevent such an effect. D’Souza and colleagues showed that 

haloperidol (a D2 antagonist) did not significantly inhibit acute THC induced 

psychopathology in healthy subjects, which was in agreement with their earlier 

finding that ongoing D2 blockade in schizophrenia patients (i.e. antipsychotic 

treatment) offered no protection against THC-elicited acute positive psychotic 

symptoms [104, 105]. Liem-Moolenaar [106] on the other hand demonstrated that 

pre-treatment with haloperidol did reverse THC-induced increases in Positive and 

Negative Syndrome Scale scores in healthy volunteers [106].  

 

At the molecular level, both dopamine and eCBs are fundamental for the synaptic 

re-organisation which underpins new striatal learning [107-110]. So called spike-

timing dependent plasticity (STDP) has an absolute requirement for near-

simultaneous electrical activity in pre-synaptic terminals (cortical inputs) and the 

dendritic spines of medium spiny neurons (MSNs), the major striatal neuron. Crucially, 

change occurs rapidly, after only one or two spike pairings, conditions which are 

feasible under normal physiological conditions [111, 112]. In the striatum, long-term 

depression (LTD) of cortical inputs onto MSNs has repeatedly been shown to be 

mediated by retrograde endocannabinoid signaling [113-115]. In addition 

corticostriatal LTD often requires the activation of D2 receptors by dopamine (figure 

2) [111, 116, 117]. For instance, in mice in which dopamine was depleted by 

reserpine or 6-hydroxy-dopamine, LTD of corticostriatal synapses was absent but 

could be restored by administration of the D2 receptor agonist quinpirole; and 

quinpirole combined with an inhibitor of eCB clearance showed synergistic effects in 

improving the severe psychomotor impairments associated with dopamine depletion 

[118].  
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Figure 1. The convergence of dopamine and the endocannabinoids in the VTA.  

A. Firing patterns in midbrain dopaminergic (DA) neurons are influenced by a host of excitatory 

(glutamatergic, GLU, as indicated in grey) and inhibitory (GABAergic, GABA, as indicated in grey) inputs. DA 

neurons regulate neighboring presynaptic terminals via retrograde endocannabinoid (2-AG, as indicated in 

blue) signaling. 

B. When exogenous cannabinoids (THC, as indicated by cannabis leaves) bind to CB1 R’s located on 

glutamatergic (GLU) and GABAergic (GABA) terminals, retrograde endocannabinoid signaling (2-AG, as 

indicated in blue) is disrupted and stimulation of CB1 R’s by THC inhibits glutamate and GABA release.  

 

 

 

 

 
 
Figure 2.  Striatal plasticity at medium spiny neurons belonging to the indirect pathway. Cortical fibers form 

glutamatergic synapses (GLU) at the medium spiny neuron (MSN). At these synapses, endocannabinoid-

mediated (as indicated in blue) long-term depression (LTD) is induced as long as dopamine (as indicated in 

orange) is present at D2 receptors. In the absence of dopamine or in the presence of A2A receptor agonists (as 

indicated in grey) long-term potentiation (LTP) is induced.  
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New insights into the roles of dopamine and eCBs in striatal learning and plasticity 

have been provided by Shen and colleagues [112]. They investigated plasticity at 

identified populations of striatal MSNs. MSNs can be divided into two roughly 

equally sized groups. MSNs belonging to the direct pathway express D1 receptors 

while MSNs of the indirect pathway express D2 receptors. Shen et al. [112] showed 

that cortical inputs onto both MSN sub-types exhibit bi-directional plasticity 

(strengthening or weakening), dependent on the pattern of ongoing 

neuromodulation: At D2 MSNs, LTD was expressed pre-synaptically via retrograde 

endocannabinoid signaling, but only as long as dopamine was present at D2 

receptors. Co-joint adenosine A2a receptor and glutamate NMDA receptor 

stimulation could overpower LTD and trigger LTP instead (figure 2). For 

completeness, the opposite was observed at D1 expressing MSNs. Here, 

endocannabinoid-mediated LTD was induced in the absence of dopamine from D1 

receptors, whereas D1 agonists led to the induction of LTP [112].  These findings 

indicate that eCBs, glutamate, adenosine and dopamine act in concert to promote 

plasticity at simultaneously active corticostriatal synapses. One could speculate that 

under tonic D2 receptor stimulation, active MSN’s belonging to the indirect pathway 

weaken their cortical inputs via endocannabinoid-mediated LTD (figure 2) and a net 

positive signal would be returned to the cortex, facilitating an emerging 

psychomotor program. In contrast, if extracellular dopamine levels fall, albeit 

transiently following the non-arrival of a predicted reward [119], the indirect 

pathway would tend towards LTP (strengthening), and an overall negative signal 

would be returned to the cortex. Failure to signal the non-arrival of reward, that is, 

failure to inhibit tonic D2 signaling would be predicted to have major effects on 

corticostriatal loops and psychomotor health. 

 

Returning to the pharmacology, caffeine, an antagonist at A2A receptors (LTP 

blockade), has been shown to exacerbate positive psychotic symptoms as well [120, 

121], while A2A receptor agonists (LTP promotion) such as CGS 21680 appear to 

have anti-psychotic properties [122, 123]. Further, inhibitors of adenosine re-uptake 

or metabolic degradation have anti-psychotic properties in schizophrenia patients 

[124-127]. In addition, it is widely acknowledged that CB1 receptor agonists, such 

as THC (LTD promotion), are psychotomimetic and constitute a component risk factor 

for the development of schizophrenia, whereas cannabidiol (CBD) an allosteric 

inverse agonist at CB1 receptors (and inhibitor of adenosine re-uptake) has shown 

promise as an antipsychotic [128-131]. Overall, pharmaceutical manipulations which 

alter the balance of corticostriatal synapses of the indirect pathway display 

consistent pro- or anti-psychotic properties. Drugs which weaken cortical inputs onto 

MSNs of the indirect pathway (LTD) appear to be pro-psychotic. In contrast, drugs 

which favor a shift towards strengthening (LTP) of the same synapses appear to be 

anti-psychotic [132].  
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Do cannabinoids interact with the cortical dopamine pathway? 

In addition to influencing dopaminergic neurotransmission in the mesolimbic pathway, 

THC also seems to affect dopaminergic neurotransmission in the PFC, at least as far 

as evidence from animal studies is concerned [93, 133]. At the human behavioral 

level, the acute effects of THC include cognitive impairment in domains such as 

memory and attention [134, 135]. Furthermore, short term cognitive impairment 

following cannabis use has been suggested to overlap largely with cognitive 

dysfunctions as observed in schizophrenia [136]. It is well established that cognitive 

performance strongly depends on optimal prefrontal dopamine levels, with too low 

as well as too high levels of dopamine being equally detrimental to cognition [78]. 

In rats, acute administration of THC has been shown to increase prefrontal dopamine 

levels [137, 138], and to impair spatial working memory [139]. Furthermore, Pistis 

and colleagues [138] found that THC-induced increases in prefrontal dopamine 

could be prevented by administration of rimonabant, a CB1 receptor antagonist. 

This suggests that the effects of THC on dopamine transmission are mediated by the 

activation of CB1 receptors [138]. In contrast to these acute effects, repeated 

exposure to THC has been found to result in a reduction of dopamine metabolism in 

the rat PFC [133, 140]. The mechanism underlying the differences associated with 

acute and repeated exposure need to be investigated further – sensitization, as 

discussed below, may provide a concept to advance this field. The effects of 

repeated exposure again were accompanied by cognitive impairment, which follows 

the inverted U-curve association between dopamine levels and cognitive 

performance [141]. In an experimental study in human volunteers, carriers of the Val 

allele of the COMT (catechol-o-methyltransferase) val158met polymorphism who 

had repeatedly used cannabis were more sensitive to both the psychosis-inducing 

and the cognitive effects of THC than Met allele carriers [32]. The Val allele of this 

common polymorphism is associated with higher enzymatic activity of COMT and 

accordingly lower levels of prefrontal dopamine [142]. 

 

Although THC has been found to affect dopaminergic processes in PFC, the nature of 

endocannabinoid function in the human PFC remains largely unknown [143]. CB1 

receptors are densely expressed in the PFC [144] and studies on CB1 receptor 

knock-out mice have provided insights in prefrontal endocannabinoid function. By 

using the Morris water maze paradigm, Varvel & Lichtman [145] showed that CB1 

receptor knock-out mice did not differ from wild type control mice with regard to 

recognition memory. However, CB1 receptor knock-out mice made significantly more 

perseveration errors after the location of the platform had been changed. In 

addition, administration of THC was found to significantly worsen mnemonic 

performance in the wild type control mice, while task performance of the CB1 

receptor knock-out was unaffected [145]. Since memory function partly relies on 
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prefrontal brain functioning, it may be hypothesized that the observed performance 

impairments are attributable to THC effects in prefrontal brain regions.  

 

Taken together, it seems that the repeated administration of THC alters PFC function 

and impairs cognition by acting on dopamine signaling via activation of CB1 

receptors. In particular, repeated exposure to THC has been found to decrease 

dopamine levels in the PFC. As decreased prefrontal dopaminergic function is 

postulated to constitute a core feature of schizophrenia pathophysiology [82], 

cannabis use may increase the risk for psychosis partly by contributing to a 

hypodopaminergic state in the PFC. Taking into account THC effects in striatal 

regions, it thus appears that THC aggravates dopaminergic imbalances by 

increasing the dopaminergic tone in striatal regions of the brain, while, when 

administered repeatedly, decreasing dopamine levels in prefrontal regions of the 

brain. Evidence to support this idea predominantly stems from animal research and it 

remains speculative whether this applies to humans as well.  

Does dopamine-mediated behavioral sensitization constitute a potential mechanism 

behind the cannabis-psychosis relationship? 

The above suggests that repeated exposure to THC may cause changes in the 

dopamine system and subsequently progressively greater behavioral responses over 

time [146, 147]. A process of dopamine sensitization thus may constitute a possible 

mechanism by which environmental factors such as stress or stimulant drugs contribute 

to psychosis risk (figure 3) [27, 148, 149]. Rats pretreated with THC twice a day 

over a period of three days, were found to be more sensitive to the locomotor 

effects of a THC challenge, after a 14-day washout period, compared to rats that 

had not been pretreated [146]. Neurobiologically, the process of sensitization is 

thought to involve dopaminergic signaling in the mesolimbic pathway, as sensitization 

to stimulants, such as amphetamine, has frequently been shown to lead to increased 

activity of dopamine neurons in the VTA [150] and increased dopamine release in 

the striatum [151-154] [147].  

 

Cross-sensitization between stimulant drugs and stress has been shown as well. De 

Jong and colleagues [155] demonstrated that mice, after being exposed to 

psychosocial stress using a social defeat paradigm, exhibited an enhanced 

locomotor response to an amphetamine challenge compared to mice that had not 

been stressed previously. Using repeated maternal separation as a psychosocial 

stress paradigm, Kikusui and co-workers [156] found that mice which were kept 

separated from their mothers from day 1 to day 13 in the post-natal period, were 

more sensitive to the locomotor effects of a cocaine challenge at day 50, than mice 

which had not been stressed [156]. Most likely, cross-sensitization between stress and 

stimulants is mediated by striatal dopamine, as cocaine-induced striatal dopamine 
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increase was higher in rats which had been repeatedly pre-exposed to a stressor in 

form of foot shocks [157, 158].  

 

 

 

 
 

Figure 3. Sensitization Behavioral Phenotype. Person A has “normal” developmental expression of subclinical 

psychotic experiences that are mild and transient. Person B has similar expression but longer persistence due to 

additional environmental exposure such as stress (as indicated by zigzag arrows). Person C has prolonged 

persistence and subsequent transition to clinical psychotic disorder possibly due to severe repeated 

environmental exposure such as repeated cannabis use (as indicated by cannabis leaves) in addition to prior 

stress. Adapted with permission from Collip et al., 2008. 

 

 

Although THC shows cross-sensitization with other drugs such as amphetamine, heroin 

and morphine [146, 159], only a few studies have investigated cross-sensitization 

between THC and stress. Findings from animal studies have shown that the effects of 

THC seem to be contingent on the environmental conditions under which THC is 

administered [160]. In rats housed under normal conditions (housed in groups with 

water and food freely available) the exposure to THC only caused slight behavioral 

changes in form of mild sedation and hypothermia and did not alter dopaminergic 

neurotransmission. In contrast, under stressful housing conditions (isolation and food 

deprivation), THC administration had marked behavioral consequences, including 

immobility and hyperactivity. Furthermore, exposure to THC in the stressful 

environment resulted in significantly increased striatal dopamine uptake [160]. 

Mokler and colleagues [161] showed that in rats, pre-treatment with THC on days 4, 

6 and 8 postnatally changed the behavioral response to electric foot shocks in the 

adult period. THC pretreatment furthermore altered the stress-induced dopamine 

response in the hypothalamus and frontal cortex [161]. Houston [36] investigated 

interaction between early cannabis use and childhood sexual trauma on the 

development of psychotic disorder in a large population-based sample (N= 5877). 
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The data were suggestive of cross-sensitization between stress and early cannabis 

exposure, as the effect of cannabis on psychosis outcome was significant only in the 

individuals who had been exposed to trauma during early childhood. The interactive 

effective of cannabis use and childhood trauma on psychosis risk was replicated by 

Harley et al. [37]. 

 

At the molecular level, sensitization processes seem to involve endocannabinoid 

signaling. Filip and colleagues [162] demonstrated that administration of 

rimonabant, a CB1 receptor antagonist potently blocked the expression of 

hypersensitivity to cocaine [162]. Further, Corbille and colleagues showed that 

sensitization following a single dose of cocaine or amphetamine was reduced in CB1 

receptor knockout mice [163] and CB1 receptor knockouts failed to sensitize to 

amphetamine administered daily for 7 days [164]. In addition, it was shown that 

mice treated with the CB1 receptor antagonist AM251 in both a single and 7 day 

dosing paradigm showed a reduction in the development of sensitization to 

stimulants [165]. Finally, Chiang and Chen showed that microinjection of the CB1-R 

inverse agonist/antagonist SR147778 directly into the ventral striatum potently 

blocked the expression of hypersensitivity to methamphetamine (Chiang and Chen, 

2007). 

 

Thus, despite some contradictory findings, research suggests an important role for 

the endocannabinoid system in the neurochemical processes underlying sensitization. 

Repeated exposure to THC may sensitize an individual to the psychotic effects of 

THC, in interaction with other environmental risk factors such as stress, and this may 

be particularly relevant for individuals genetically at risk of dopamine dysregulation 

(Henquet, 2008). 

 

Conclusion  

 
Although advances in the understanding of endocannabinoid function have been 

made, the endocannabinoid system is still far from being understood and its 

interactions with other neurotransmitter systems including the dopamine system are 

complex. While in the VTA, dopamine seems to be downstream of endocannabinoid 

function, it appears that, in the ventral striatum, part of dopaminergic 

neurotransmission is actually upstream of endocannabinoid function, at least 

concerning its involvement in plasticity at striatal MSN’s. Accordingly, although THC 

might stimulate burst firing of DA neurons in the VTA and as a consequence increase 

DA levels in the striatum, here THC might additionally exert its effects by directly 

influencing synaptic plasticity [132].   
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Most evidence to date, however, stems from animal research and to date, a clear 

answer to the question of whether there is a case for dopamine mediating the 

psychosis-inducing effects of cannabis cannot be given. There is a lack of studies 

investigating the acute and long term effects of THC on dopaminergic 

neurotransmission, learning and reward experience in humans. Advances in imaging 

techniques, such as the development of novel radiotracers, as well as a growing 

understanding of the biology and psychology of positive psychotic symptoms, hold 

promise for the future study of how the biological underpinnings of the cannabis-

psychosis relationship may alter experience in such a way that psychotic symptoms 

ensue.  
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Abstract 

 

Cannabis use is associated with psychosis, particularly in those with expression of, or 

vulnerability for, psychotic illness. The biological underpinnings of these differential 

associations, however, remain largely unknown. We tested the hypothesis that THC 

(delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis) 

provokes psychotic experiences by differential induction of striatal dopamine 

release. Positron Emission Tomography and [18F]fallypride were used to investigate 

striatal dopamine release after pulmonary administration of THC in a group of 

healthy cannabis users (average risk psychotic disorder), patients with psychotic 

disorder (high risk psychotic disorder) and first-degree relatives (intermediate risk 

psychotic disorder). While THC was not associated with increased dopamine release 

in the control group, significant ligand displacement in striatal subregions indicative 

of dopamine release was detected in both patients and relatives, most pronounced 

in caudate nucleus. The results indicate that dopamine may mediate the 

psychotogenic effects of THC, in particular in individuals already at risk for 

dopamine dysregulation.  
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Introduction 

 
The use of cannabis, the most frequently used illicit drug in the world, has long been 

associated with an increased risk of developing psychotic symptoms in healthy 

individuals, and with poor outcome in patients with psychotic disorder [1-4]. While 

the epidemiological link between cannabis and psychosis is well established, very 

little is known about the biological underpinnings of this association [5, 6].  

 

Long-term heavy cannabis use, in particular when started during early adolescence, 

is associated with structural brain changes such as impaired structural integrity of the 

corpus callosum [7], alterations in white and gray matter [8, 9], and decreased 

hippocampal and amygdala volumes [10]. However, it has been argued that the use 

of cannabis is unlikely to increase the risk of psychosis by mechanisms that manifest 

themselves as major structural brain changes [11, 12]. Alternatively, neurochemical 

interactions between cannabis and neurotransmitters such as dopamine (DA) may 

constitute a biological link between cannabis and psychosis [6]. In the human brain, 

delta-9-tetrahydrocannabinol (THC, the main psychoactive constituent of cannabis) 

binds to cannabinoid 1 (CB1) receptors, the main binding site of endogenous 

cannabinoids (eCBs) [13, 14]. Activation of CB1 receptors inhibits pre-synaptic 

neurotransmitter release −direct targets being GABA and glutamate terminals− and 

consequently modulates several neurotransmitter systems, including the DA system 

[13, 15, 16]. DA is thought to play a role in schizophrenia pathophysiology [17, 18], 

and animal studies suggest that THC affects DA neurotransmission in several regions 

of the brain including prefrontal cortex (PFC) and mesolimbic regions [19-22]. 

However, direct evidence for interaction between THC and DA in the human brain to 

date remains scarce. First insights came from a single case report study with Single 

Positron Emission Computed Tomography (SPECT) and the radiotracer [123I]IBZM. In 

this study, a 20% decrease in striatal D2 receptor binding ratio was observed, 

indicating increased synaptic DA activity, in a medication-free patient with 

schizophrenia just after using cannabis [23]. Three subsequent studies used 

neurochemical imaging to examine the effects of THC on DA neurotransmission in 

healthy human volunteers. Bossong and colleagues [24] included seven healthy male 

recreational cannabis users and investigated the effects of THC on DA 

neurotransmission with Positron Emission Tomography (PET) and [11C]raclopride. The 

authors observed small (around 3.5%) but significant decreases in D2 receptor 

binding in two subregions of the striatum, the ventral striatum and the precommissural 

dorsal putamen after pulmonary THC administration [24]. The PET study by Stokes 

and colleagues [25] failed to find significant changes in D2 receptor binding after 

an oral dose of THC in thirteen healthy male volunteers. Similarly, Barkus and 

colleagues [26] did not observe DA release after intravenous THC studied with 

SPECT and [123I]IBZM [26].  
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The present study aimed to shed light on these inconsistencies, hypothesizing that 

inconsistencies in previous studies may be related to differential inclusion of 

individuals with increased sensitivity to THC. Thus, we not only investigated THC-

induced DA release using PET and the highly selective and high affinity DA D2/3 PET 

radioligand [18F]fallypride (Lataster and colleagues, [27]) in a group of healthy 

cannabis users, but also in groups with demonstrated increased sensitivity to THC: 

patient with psychotic disorder and their first-degree relatives. Patients with 

psychotic disorder have been shown to be more sensitive to the behavioral and 

cognitive effects of cannabis [28, 29] and individual differences in sensitivity to 

cannabis are in part mediated by genetic risk for psychotic disorder, siblings 

displaying more sensitivity than well controls [30, 31]. 

 

Materials and methods 

Participants 

A total of 30 volunteers (10 patients with psychotic disorder, 10 first-degree 

relatives of patients with psychotic disorder, and 10 healthy controls agreed to 

participate in the study. Participants were recruited through flyers in local coffee 

shops (cafes where cannabis is sold and consumed legally) and newspaper 

advertisements, as well as through in- and outpatient mental health service facilities 

in South Limburg, The Netherlands. Inclusion criteria were i) age 18-60 years, ii) 

sufficient command of the Dutch language, iii) no intellectual impairment (i.e. IQ > 

80) as ensured by the Dutch version of the Wechsler Adult Intelligence Scale [32], iv) 

having smoked cannabis at least once in the past 12 months, v) patients only: a 

diagnosis of psychotic disorder according to the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-IV) [33], and vi) relatives only: having a first degree relative 

with a diagnosis of psychotic disorder. Exclusion criteria were i) head trauma with 

loss of consciousness or neurological disorder, ii) endocrine or cardiovascular 

disorder, iii) a diagnosis of  psychiatric illness according to the DSM-IV in the 

relatives and the controls and, controls only, a positive family history of psychotic 

disorder, iv) current use of psychotropic medication, v) current use of illicit drugs 

other than cannabis, vi) current use of alcohol in excess of 5 standard units per day, 

vii) presence of metal elements in the body, viii) pregnancy or lactation, and ix) a 

history of claustrophobia.  

 

The study was carried out in accordance with the World Medical Association’s 

declaration of Helsinki and approved by the standing medical ethics committee of 

Maastricht University Medical Center. Written informed consent was obtained from 

all participants.   
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Design and procedure 

The study made use of a single-blind placebo-controlled design. This was done in 

order to apply statistical modeling as previously described by Christian and 

colleagues [34] and recently by Lataster and colleagues [27], which requires only a 

single radiochemical synthesis and administration, thereby avoiding session effects 

and minimizing the amount of radiation exposure. All participants attended a 

screening session, during which inclusion and exclusion criteria were confirmed and 

baseline clinical measures taken. During the actual testing session, which was 

separated by approximately one week from the screening session, participants 

received both 8 mg of THC and placebo in a single-blind manner: participants first 

received the placebo followed by the active drug separated by approximately 2 

hours, but were told that the order of administration was random. Participants were 

asked to abstain from cannabis at least five days prior to the testing session and 

from caffeine and nicotine 4 hours prior to the testing session. At the beginning of the 

testing session, participants received a standardized meal and a caffeine-free 

beverage. Baseline clinical measures were repeated in case the screening session 

and testing session were more than one week from each other. Urinalysis was 

carried out to verify drug and medication abstinence and a pregnancy test was 

done to rule out pregnancy in the female participants. Additionally, abstinence from 

alcohol was assured by means of a breathalyzer. Finally, the inhalation procedure 

was practiced. The PET procedure started approximately 1 hour after the start of 

the testing session (see figure 1 for an illustration of the PET protocol). Effects of THC 

on subjective experience and psychopathology were assessed using computer-

assisted tasks and self-report questionnaires, which were applied after the 

administration of placebo and THC, respectively. At the end of each session, blood 

pressure and heart rate was measured. All participants stayed under psychological 

observation until the acute effects of the THC had faded and it was safe for the 

participants to return home.   

 

 

 

 
 
Figure 1. Schematic illustration of the scan protocol. The first three scan segments provided a total of 53 

frames, representing tracer kinetics during the baseline condition; the 25 frames of the last scan segment 

represented tracer kinetics during the exposure condition. Each scan segment was preceded by a 2 min CT scan 

and followed by a short break.   
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Baseline clinical measures 

Diagnoses were confirmed using the Operational Criteria Checklist and associated 

OPCRIT computer program [35]. Presence and severity of psychotic symptoms during 

the past two weeks was assessed in all participants with the Positive and Negative 

Syndrome Scale (PANSS) [36]. Current and past cannabis and other drug use was 

assessed using the appropriate sections of the WHO Composite International 

Diagnostic Interview [37] and the Structured Clinical Interview for DSM Disorders 

[38].  

Drug preparation and administration  

Preparation and administration of drugs was performed according to Zuurman and 

colleagues [39]. THC was purified from Cannabis sativa by Farmalyse BV, Zaandam, 

The Netherlands, in agreement with GMP guidelines, and was dissolved in 200µl 

100 vol% alcohol. The solvent was used as placebo. Drugs were administered by 

means of a vaporizer (Volcano®, Storz-Bickel GmbH, Tuttlingen, Germany). 

Cannabis vaporization is a technology designed to safely and effectively deliver 

THC while avoiding the respiratory hazards of smoking by heating THC to a 

temperature where active THC vapors are produced, but below the point of 

combustion where noxious pyrolytic by products are formed [40, 41]. Approximately 

five minutes before administration, 8mg of THC was vaporized and stored in an 

opaque polythene bag equipped with a valved mouthpiece preventing the loss of 

THC in between inhalations. As practiced at the beginning of the testing session, 

subjects were instructed to inhale the volume of the bag in 3-5 subsequent 

inhalations, holding their breath for 10 seconds after each inhalation and without 

speaking during the inhalation process. The same procedure was followed for the 

administration of placebo.  

Blood sampling 

Venous blood samples were taken at baseline and 5, 10, 15, and 75 minutes after 

THC administration to determine plasma concentrations of THC and its two main 

metabolites 11-OH-THC and 11-nor-9-carboxy-THC, as indicated by Zuurman and 

colleagues [39, 42]. To prevent unblinding of participants, sham samples were taken 

at baseline and 5, 10, 15 and 75 minutes after placebo administration. Plasma 

samples were analyzed by ABL, Analytisch Biochemisch Laboratorium BV, Assen, The 

Netherlands.  

Visual Analogue Scales 

For experimental validation, Visual Analogue Scales (VAS) on alertness, feeling 

‘high’ and external and internal perception [39, 43] were used to assess subjective 

changes in perception induced by THC.  
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PET scans 

Radiotracer preparation 

The fluorinated substituted benzamide [18F]fallypride is a high affinity antagonist 

radiotracer used to visualize and estimate both striatal and extrastriatal DA D2/3 

receptors [44, 45]. The use of [18F]fallypride in combination with the linear extension 

of the simplified reference region model as described by Alpert and colleagues [46] 

allows for a single experimental session requiring only a single radiochemical 

synthesis and administration, baring the advantage of avoiding session effects and 

minimizing amount of radiation exposure for the participants as previously 

demonstrated in an environmental exposure paradigm [27].  The precursor for 

tracer synthesis was obtained from ABX (Radeberg, Germany) and labeling was 

performed on-site using a Raytest Synchrom R&D synthesis module (Raytest, 

Straubenhardt, Germany). The final product was obtained after reverse-phase high 

performance liquid chromatographic (HLPC) purification using a Waters XTerraTM 

RP18 5 µm 7.8 mm x 150 mm column and sodium acetate 0.05M pH5.5/ethanol 

70:30 V/V as mobile phase at a flow rate of 1.5 ml/min. The [18F]fallypride eluted 

after 18 minutes. The collected peak (2ml) was diluted with 8ml of NaCl 0.9% and 

sterile filtered over a Millipore Cathivex-GS 0.22 µm filter. The final product of the 

radioligand was administered as a sterile solution of 7mM sodium acetate buffer pH 

5.5, 0.72% and 6% ethanol. The specific radioactivity at the time of injection was 

greater than 37 GBq/µmol (1000 Ci/mmol). Radiochemical purity was > 95%.  

Data acquisition and processing  

Subjects were placed on the scanner bed with their head fixated using a vacuum 

bed and the body strapped to the bed to avoid movement during PET acquisition. 

Positions of the monitor and response box were adjusted to allow for optimal 

comfort. Subjects received 185 MBq of [18F]fallypride in a slow intravenous bolus 

injection through a catheter in the left antecubital vein. Upon tracer injection, 

dynamic emission scans were initiated in three-dimensional mode using a PET/CT 

scanner (Philips, Eindhoven, The Netherlands). Data were acquired in frames of 60 

seconds during the first 6 minutes and in frames of 120 seconds thereafter. PET 

emission was performed based on the PET imaging protocol for [18F]fallypride used 

previously by Christian and colleagues [34], adapted for detecting [18F]fallypride 

displacement in striatal brain regions according to a simulation study (Ceccarini et 

al., submitted). Emission data were acquired in four segments, separated by a total 

of three breaks (figure 1). Given the use of an “activation” parameter in the kinetic 

model used for analyses (Alpert et al., 2003; discussed below), representing 

presence or absence of additional DA release, and the hypothesis of THC 

administration being associated with increased DA activity, the THC condition was 

always presented after the placebo condition. The first three PET segments with a 
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total duration of 170 min thus represented tracer kinetics during the placebo 

condition. Administration of placebo occurred between the first and the second 

segment. THC was administered at 220 min post-injection, followed by the last PET 

segment with duration of 50 min, representing tracer kinetics during the exposure 

condition. The timing of THC administration was adjusted such that the proportional 

distribution of radioligand was optimized for striatal brain regions, high in 

dopamine D2/3 receptor density [34]. Each PET segment was preceded by a low-

dose CT scan (80kV tube potential, 11 mAs) to correct for attenuation. PET data 

were reconstructed using a 3D OSEM (ordered-subset expectation maximization) 

iterative reconstruction including model-based scatter as well as attenuation 

correction based on a measured attenuation map acquired by the CT, with a final 

spatial resolution of 4mm. All subjects additionally received a high-resolution T1-

weighted structural MRI for anatomical co-registration purposes (1.5 Tesla Scanner, 

Phillips, Netherlands). Reconstructed PET data were transferred in DICOM (Digital 

Imaging and Communications in Medicine) and converted to Analyze using PMOD 

software version 2.95 (PMOD Inc., Zurich Switzerland). To correct for head motion 

during the scan segments, all PET frames were realigned, co-registered to the 

subject’s MRI and then spatially normalized to a specific T1-weighted template 

constructed in MNI (Montreal Neurological Institute) stereotaxic space using SPM2 

(Statistical Parametric Mapping, The Wellcome Department of Cognitive Neurology, 

London, UK). To increase signal to noise ratio, the normalized images were then 

smoothed with a 3D gaussian filter (4mm full width at half maximum) before 

applying the pharmacokinetic model.  

Statistical analysis 

Given hierarchical clustering of the data, each person contributing minimally two 

observations (placebo and THC), behavioral (VAS) data were analyzed using 

multilevel random regression analysis in Stata using the XTREG routine, examining 

the effects of condition (placebo versus THC) on subjective experience.   

 

To estimate THC-induced DA release, PET data were analyzed applying the linear 

extension of the simplified reference region model (LSRRM) [46], a kinetic model 

described and used in functional neurotransmitter [18F]fallypride PET studies on DA 

D2/3 receptors [34, 47]. This method takes into account the THC-induced temporal 

perturbations in ligand specific binding, including a baseline condition and a DA 

activation paradigm during a single scan session. The design has several practical 

advantages, such as the requirement for only a single radiochemical synthesis and 

administration and avoidance of session effects. The LSRRM accounts for time-

dependent changes in ligand concentration, assuming that the steady state is not 

maintained. The LSRRM therefore allows the dissociation rate of the ligand, k2a, to 
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change throughout the paradigm in response to fluctuating levels of DA (k2a = k2/[1 

+ BPND], where k2 is the tissue to plasma efflux constant and BPND is the non-

displaceable binding potential). Changes in BPND in activation studies are usually 

assumed to reflect changes in the concentration of available receptor sites (Bavail), 

and a decrease in BPND is assumed to reflect increased neurotransmitter release. The 

temporal change of k2, via a change in BPND, is obtained by introducing the 

additional term γ ·h(t), where γ represents the amplitude of the ligand displacement 

and the function h(t) describes a rapid change following activation onset and 

dissipation over time. The exponential decay function h(t) = exp[-τ(t-T)] accounts for 

temporal variation in the model parameters, where τ controls the rate at which 

activation effects die away (τ = 0.03 min-1) and T indicates activation initiation (T = 

220 min). It follows that, through linearization of the simplified reference region 

model (SRRM), an increased k2a reflected in a decreased BPND for DA receptors due 

to increased DA release would result in a positive value of γ. The cerebellum, 

representing an area with negligible density of DA D2/3 receptors, was used as 

reference region [48]. For each subject, two binary masks were created based on 

the corresponding normalized MRI, using an in-house created set of volumes-of-

interests (VOIs) based on the Talairach atlas [49]. One binary mask contained all 

brain regions of interest (i.e. the striatal subregions, in particular caudate nucleus, 

putamen, pallidum and nucleus accumbens), and a second mask was drawn only on 

the cerebellum. For each subject, VOI analysis was performed by estimating the 

kinetic parameters using the LSRRM and the PET time-activity curves (TACs) for all 

VOIs. A voxel-wise t-statistic map of the γ parameters was computed to localize 

those areas with estimated increased DA release following THC administration. 

These statistic t maps were generated as t = γ/sd(γ), where the standard deviation 

parametric image of γ (sd[γ]) was created based on the estimated covariance 

matrix, consistent with previous work by Christian and colleagues [34] and Lataster 

and colleagues [27]. The false discovery rate (FDR) [50] correction was utilized to 

control statistical significance thresholds in the context of multiple comparisons at the 

voxel level [51]. In order to identify the spatial extent of the neuromodulation for 

each region of interest showing significant activation-induced DA release, the 

percentage of voxels exceeding an FDR-corrected significance threshold of p(α(FDR) 

= 5%) < 0.05 was calculated. Group differences in the spatial extent of THC-

induced DA release were then tested using regression models within STATA. 

Inspection of residuals from the regression models indicated substantial 

heteroscedasticity of the error variances across the three groups. To account for this, 

we used a regression model that allowed the error variances to differ between 

groups. All analyses were a priori adjusted for age (in years), sex, nicotine use 

(continuous: number of cigarettes per day), alcohol use (continuous: grams of alcohol 

per week) and use of other medication (dichotomous: yes versus no). 



132 THC-INDUCED DOPAMINE RELEASE AS A FUNCTION OF PSYCHOTIC DISORDER AND 

PSYCHOTIC VULNERABILITY  

 

 

Results 

Participants  

The initial sample consisted of 10 patients with a DSM-IV diagnosis of psychotic 

disorder, 10 first-degree relatives of patients with psychotic disorder, and 10 

healthy controls. However, two patients were excluded due to protocol violation in 

terms of use of antipsychotic medication. In addition, two individuals (one relative 

and one control subject) were excluded due to excessive movement during the scan, 

yielding uncorrectable movement artifacts in the PET data. The resulting final sample 

thus consisted of 8 medication-free patients with a diagnosis of psychotic disorder, 9 

first-degree relatives and 9 healthy controls. Of the patients, five individuals fulfilled 

criteria for non-affective psychotic disorder and three individuals fulfilled criteria for 

affective psychotic disorder. Controls and relatives did not fulfill criteria for any 

psychiatric disorder. There were not suggestive differences between three groups 

with regard to mean age, male/female ratio and mean intellectual functioning as 

indexed by IQ (Table 1).  Patients had higher scores on the positive syndrome 

dimension of the PANSS. All participants had used cannabis during the past 12 

months: 16 participants reported daily use during the past 12 month, 3 participants 

admitted to weekly use and 7 participants used cannabis monthly or less than 

monthly (Table 1).  

Drug screening 

Urinalysis was positive for THC in 18 participants (6 patients, 6 relatives and 6 

controls). Since the majority of the sample reported daily use of cannabis, urinalysis 

can be expected to reveal traceable amounts of THC; all participants indicated 

compliance with the protocol and gave verbal confirmation of abstention from 

cannabis minimally 5 days before testing.  One participant tested positive for 

cocaine (a relative). For power reasons and since exclusion of this latter individual 

did not change the results, this observation was kept in the analyses. All participants 

tested negative for benzodiazepines, amphetamine, methamphetamine, opiates and 

alcohol.  

Blood sample analysis 

The concentration of THC in plasma reached a maximum of 37.3 ± 19.3 ng/ml at 5 

minutes post inhalation and decreased subsequently. The two main metabolites 11-

OH-THC and THC-COOH reached a maximum concentration of 1.6 ± 1.5 ng/ml 

and 25.2 ± 22.4 ng/ml at 5 and 15 minutes post-inhalation, respectively (see table 

2 and figure 2).  
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Table 1. Participant characteristics.  

 

 
 

Controls  
(n = 9) 

Relatives  
(n = 9) 

Patients  
(n = 8) 

Mean Age (SD) 31.4 (11.4) 36.1 (12.0) 31.1 (8.9) 

Percentage male (n) 55.6 (5) 66.7 (6) 75.0 (6) 

Mean IQ (SD) 102.8 (14.0) 105.5 (11.8) 102.7 (15.6) 

Cannabis use % (n)*    

Monthly or less 33.3 (3) 22.2 (2) 25.0 (2) 

Weekly  11.1 (1) 11.1 (1) 12.5 (1) 

Daily 55.6 (5) 66.7 (6) 62.5 (5) 

Mean PANSS score (SD)    

Positive 1.0 (0.0) 1.0 (0.1) 1.5 (0.7) 

Negative 1.0 (0.0) 1.0 (0.1) 1.1 (0.2) 

Global  1.2 (0.1) 1.1 (0.1) 1.2 (0.2) 

Total 1.0 (0.0) 1.0 (0.1) 1.1 (0.1) 

Nicotine usea % (n)    

0 44.4 (4) 22.2 (2) 25 (2) 

1 - 10 22.2 (2) 44.4 (4) 25 (2) 

11 – 20  33.3 (3) 33.3 (3) 37.5 (3) 

> 20  0.0 (0) 0.0 (0) 12.5 (1) 

Alcohol useb % (n)    

0 – 50 66.7 (6) 44.4 (4) 62.5 (5) 

50 – 150 33.3 (3) 44.4 (4) 0.0 (0) 

150 - 350 0.0 (0) 11.1 (1) 37.5 (3) 

Other medication use % (n)    

Yes  0.0 (0) 11.1 (1) 25.0 (2) 

No  100.0 (9) 88.9 (8) 75.0 (6) 

Use of contraceptives % (n)    

Yes 22.2 (2) 11.1 (1) 0.0 (0) 

No 77.8 (7) 88.9 (8) 100.0 (8) 
 

Note. Percentages do not always total 100 due to rounding.  

* Refers to cannabis use in the last 12 month. 
a Refers to number of cigarettes per day. 
b Refers to grams per week. Standard drink/unit size in the Netherlands contains 9.9 g of ethanol.  

 

 

 

 
Table 2. Mean maximum plasma concentration of THC, 11-OH-THC and THC-COOH 

 

 Patients 

(n = 9) 

Relatives 

(n = 9) 

Controls 

(n = 8) 

THC 43.5 (22.4) 36.1 (19.3) 33.0 (17.0) 

11-OH-THC 1.6 (1.3) 2.2 (2.0) 1.2 (0.9) 

THC-COOH 25.7 (30.3) 28.0 (21.9) 22.0 (16.3) 

 

Note. Numbers are ng/ml (SD). 
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Figure 2. Plasma concentrations of THC and its two main metabolites 11-OH-THC and 11-nor-9-carboxy-THC 

(THC-COOH) at baseline (0) and at 5, 15, and 75 minutes post inhalation across groups.  

 

Visual Analogue Scales 

From the 13 VAS composite scores on ‘external perception’ (5 scales) and ‘internal 

perception’ (7 scales) were calculated. The scale on ‘feeling high’ was analyzed 

separately. As expected, THC induced significant increases in ‘feeling high’ (β = 

11.74, 95% CI: 6.90-16.59, p < 0.001), ‘external perception’ (β = 2.16, 95% CI: 

0.84-3.47, p = 0.001) and ‘internal perception’ (β = 1.19, 95% CI: 0.01-2.38, p = 

0.049) (figure 3).  
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Figure 3. Effects of pulmonary THC on subjective feelings of ‘high’, ‘internal perception’, and ‘external 

perception’ across groups, measured with Visual Analogue Scales at baseline (0) and 5, 15, and 25 minutes 

post-inhalation.  
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In vivo DA release following THC administration 

Inspection of the scatterplot revealed one outlier (a relative); this subject was 

accordingly excluded from this analysis. THC induced detectable amounts of [18F] 

fallypride displacement, indicative of DA release, throughout the striatum in both 

patients and relatives, but not in controls (see figure 4 and 5 and table 3). On 

average, γ was positive, indicating DA release for all striatal subregions in the 

patient group, and for the caudate nucleus in the relatives (see table 4). 

Furthermore, there was a significant difference between the three groups with 

regard to the amount of ligand displacement in right and left caudate nucleus, left 

putamen, and right pallidum (see table 3 for group statistics). Post hoc pairwise 

comparisons showed that the amount of ligand displacement was significantly larger 

for patients and relatives versus controls, respectively, in left caudate nucleus (Bpatients 

= 0.18, p = 0.002, Brelatives = 0.18, p = 0.021), left putamen (Bpatients = 0.13, p = 

0.018, Brelatives = 0.12, p = 0.047) and left pallidum (Bpatients = 0.19, p = 0.032, 

Brelatives = 0.07, p = 0.020). In the right caudate nucleus, the only group difference 

was between patients and controls (B = 0.18, p = 0.032). No differences were 

observed between patients and relatives in any of the subregions. Tables 3 and 4 

summarize THC-induced changes in [18F]fallypride binding quantified as the number 

of voxels within a region exceeding the FDR-corrected significance threshold of 

p(α(FDR) = 5%) < 0.05, and mean parameter estimates, respectively. Ligand 

displacement was independent of age, gender, alcohol use, and nicotine use.  

 
Table 3. Mean percentages (SD) of THC-induced ligand displacement in striatal subregions 
 

 Controls 

(n = 9) 

Relatives 

(n = 9) 

Patients 

(n = 7a) 

 

Group statistics* 

Caudate Nucleus     

Right 3.5 (5.6) 12.6 (19.0) 15.3 (19.7) F (3, 21) = 2.18; p = 0.071 

Left 2.5 (3.0) 19.0 (19.5) 16.2 (16.9) F (3, 21) = 1.67; p = 0.058 

Average 3.0 (3.2) 15.7 (17.9) 15.9 (15.1) F (3, 21) = 2.48; p = 0.034 

Putamen      

Right 1.4 (1.5) 9.8 (17.3) 16.2 (19.8) F (3, 21) = 1.85;p = 0.042 

Left 2.4 (4.3) 14.6 (16.7) 13.7 (12.7) F (3, 21) = 2.14; p = 0.043 

Average 1.9 (2.5) 12.3 (14.9) 14.9 (15.5) F (3, 21) = 2.43; p = 0.025 

Pallidum     

Right 1.5 (2.7) 6.8 (7.6) 16.4 (21.8) F (3, 21) = 2.15; p = 0.022 

Left 3.3 (5.6) 15.7 (27.9) 11.6 (17.1) F (3, 21) = 0.54; p = 0.329 

Average 2.3 (2.8) 10.8 (15.5) 14.4 (15.6) F (3, 21) = 1.71;p = 0.048 

Nucleus Accumbens      

Right 2.2 (5.7) 3.4 (7.3) 10.9 (16.1) F (3, 21) = 1.37; p = 0.086 

Left 1.2 (2.9) 11.3 (22.4) 4.5 (6.4) F (3, 21) = 0.81; p = 0.440 

Average 1.7 (3.1) 7.4 (14.9) 7.7 (7.1) F (3, 21) = 1.51;p = 0.140 
 

Note. Numbers are percentages (SD) of voxels within a region exceeding the FDR corrected significance threshold of p(α(FDR) = 

5%) < 0.05, relative to the total number of voxels within the mask of the respective region. 
a One subject was identified as an outlier and accordingly excluded from this analysis. 

*adjusted for age, gender, alcohol and nicotine use 
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Figure 4. Mean statistical parametric t map of γ in sagittal (left) and coronal (right) sections overlaid on a MRI 

template, showing THC-induced [18F]fallypride displacement at the level of the striatum (x = 0, y = 11, z = -4) 

for controls (top row), relatives (middle row) and patients (bottom row). 

 

 

 
 

Figure 5. Percentage of voxels with significant THC-induced dopamine release in the caudate nucleus, putamen 

(top row), globus pallidus and nucleus accumbens (bottom row) for controls, relatives and patients. Horizontal 

lines indicate the mean value for each group 
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Discussion 

 

The present study revealed the novel finding of striatal DA release following 

pulmonary administration of THC in a group of patients with psychotic disorder and 

unaffected relatives. Consistent with most previous work, no DA release was 

detected in healthy control participants.  

THC-induced dopamine release: the mechanism behind cannabis-induced psychosis? 

Numerous animal studies suggest that exogenous cannabinoids such as THC stimulate 

burst firing of midbrain DA neurons and, as a consequence, facilitate striatal DA 

release through activation of cannabinoid 1 (CB1) receptors [15, 22, 52-56]. In 

humans however, evidence that DA may mediate acute effects of THC is scarce, and 

whether or not DA mediates in part the psychotogenic effects of cannabis remains 

unclear [6]. The results of three imaging studies investigating THC-induced dopamine 

release in the human striatum are inconsistent. While Bossong and colleagues [24] 

report a small, but significant increase in striatal DA, more recent work by Stokes 

and colleagues [25] as well as Barkus and colleagues [26] did not observe such an 

effect. Our present study agrees with the most recent studies, as no THC-induced DA 

release was detected in healthy controls. However, in both patients with psychotic 

disorder and unaffected relatives, pulmonary administration of THC was associated 

with a subsequent increase in striatal DA. This is in line with  epidemiological and 

experimental work,  demonstrating that patients with a psychotic disorder as well as 

individuals at risk for psychosis show increased vulnerability to the psychosis-inducing 

effects of cannabis at the behavioral level [28, 30, 31, 57, 58]. Thus, our findings 

suggest that in individuals at risk for psychotic disorder, increased sensitivity to the 

effects of cannabis may be mediated by striatal dopamine. Notably, in both 

patients and relative,, dopamine release was most pronounced in the caudate 

nucleus, and dopaminergic hyperactivity in this region is thought to play an 

important role in the pathophysiology of psychotic symptoms [59]. The apparent 

discrepancy in the findings presented by Bossong and colleagues [24] may thus be 

explained by sample admixture of individuals with higher than average liability for 

psychotic disorder. 

 

The present findings fit with animal work demonstrating interaction between the 

endocannabinoid and the DA system, in particular with regard to regulation of 

mesolimbic DA transmission [56, 60]. However, it has also been shown that part of 

the signaling activity mediated by the endocannabinoid system actually takes place 

downstream of DA neurotransmission in terms of D2 receptor activation [61, 62], and 

DA may conversely regulate endocannabinoid function [63]. In line with this, acute 

psychosis, which is thought to be characterized by dopaminergic hyperactivity in 
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striatal brain regions, has been associated with increased levels of the 

endocannabinoid anandamide in cerebrospinal fluid (CSF), independent of cannabis 

use and inversely correlated with psychotic symptoms [64, 65]. In addition, patients 

treated with D2 receptor blocking agents had lower CSF levels of anandamide [65]. 

Moreover, elevated levels of anandamide may be present in patients in the 

prodromal phase of psychotic disorder [66]. Research has additionally indicated 

that the density of CB1 receptors may be altered in individuals with psychotic 

disorder [67, 68]. Together, these observations suggest an important role of the 

endocannabinoid system in the pathophysiology of schizophrenia and may 

furthermore explain our finding that exogenous cannabinoids such as THC affect DA 

neurotransmission particularly in individuals at risk for DA dysregulation, such as 

patients with psychotic disorder and first degree relatives.  

 

Taken together, the results of the present study are in line with earlier studies 

demonstrating that THC does not significantly increase striatal DA in healthy 

volunteers. However, the novel finding that in patients with psychotic disorder as well 

as in their first-degree relatives, THC was associated with increased DA release in 

striatum, most markedly in the caudate nucleus, may explain previous discrepancies. 

DA thus may mediate in part the psychosis-inducing effects of cannabis, conditional 

on additional risk of DA dysregulation.  

Limitations  

The present findings have to be interpreted in the light of some limitations. The use 

of the LSRRM has several practical advantages, such as the requirement for only a 

single radiochemical synthesis and administration and avoidance of session effects. 

However, practical implementation of the model implies that time-dependent 

alterations in regional cerebral blood flow (rCBF) are not fully accounted for. Still, 

as argued by Christian and colleagues [34], using a single injection protocol in 

combination with the in vivo kinetics of [18F]fallypride may minimize the possible 

confounds of changing rCBF associated with drug administration. Second, due to the 

constraint of a one-day protocol, the order of drug administration was only single-

blind, so that drugs were not administered randomly, but in the same order for 

every subject. However, since individuals were told that the order of administration 

would occur randomly, and the majority of individuals was not able to accurately 

indicate the active drug when asked at the end of the experiment expectation bias 

seems unlikely, and would not explain differential effects across the three groups. 

Third, maximum levels of THC were relatively low in the present study compared to 

studies using the same amount of THC under the same administration protocol [24, 

39]. From these studies, it is known that THC reaches a peak concentration in plasma 

at 5 minutes after administration and decreases rapidly thereafter. In our study, due 

to practical reasons and despite major effort, blood samples were not always taken 



140 THC-INDUCED DOPAMINE RELEASE AS A FUNCTION OF PSYCHOTIC DISORDER AND 

PSYCHOTIC VULNERABILITY  

 

 

at exactly 5 minutes after THC inhalation. Therefore, the relatively low THC plasma 

concentrations in the present study are likely due to the fact that the maximum peak 

was missed in some individuals. Subtle differences in the timing of blood sampling 

might also explain the relatively high between-subject variability. Also, since our 

sample included frequent cannabis users, of whom the majority used daily, it is not 

surprising that urinalysis was positive for 18 participants, which equals 

approximately 70% of the sample. Therefore, compliance with the study protocol 

(i.e. abstinence from cannabis during the 5 days prior to scanning) could only be 

confirmed by interview. Finally, the present finding of a group difference in ligand 

displacement in several subregions of the striatum has to be interpreted in light of 

rather low power (0.6). Replication in a larger group is therefore imperative.  
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Abstract 

 

The prevalence of cannabis use among individuals with psychotic disorder is 

considerable. However, little is known about patterns of use and factors contributing 

to continuation of use in this vulnerable population. The present study therefore 

investigated the role of craving, a central feature of drug-using behavior, in relation 

to cannabis use in patients with psychotic disorder and healthy controls. Craving was 

assessed cross-sectionally with the Obsessive Compulsive Drug Use Scale (OCDUS) 

for cannabis, as well as in the flow of daily life using the Experience Sampling 

Method (ESM - a structured diary method assessing individuals in daily life). Patients 

scored higher on the OCDUS than controls, but did not differ from controls in ESM 

indices of craving in daily life. Nevertheless, the ESM measure of craving better 

predicted daily life cannabis use and this association was stronger in controls. 

Craving was not moderated by antipsychotic medication in the patient group. The 

results indicate that the association between craving and cannabis use is assessed 

most accurately when assessed in the moment in daily life. 
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Introduction 

 

The use of cannabis is common in users of mental health services, particularly in 

patients with psychotic disorder [1, 2] in whom cannabis use has been associated 

with poor treatment concordance and higher relapse rates [3]. Although cannabis 

use thus constitutes a major concern in the treatment of patients with psychotic 

disorder [4], little is known about patterns and mechanisms of continuation of use in 

this vulnerable population, particularly in association with craving for cannabis.   

 

Craving constitutes a central feature of drug-using behavior and addiction. It is 

assumed that craving develops as a result of associative learning processes, in which 

the repeated use of addictive drugs is reinforced by the attribution of (aberrant) 

incentive salience to the act of drug taking [5, 6]. Recently, it has been suggested 

that craving for cannabis is increased in psychosis as patients, independent of 

frequency of use, experienced significantly more craving than cannabis-using 

healthy controls [7]. Another recent study suggested that in patients with psychotic 

disorder, craving was associated with antipsychotic treatment [8], which produces 

blockade at dopamine D2 receptors. Patients who were receiving risperidone 

experienced significantly more craving compared to patients treated with 

olanzapine or clozapine. These antipsychotics differ in D2 receptor occupancy rate, 

D2 receptor dissociation rate and D1/D2 receptor occupancy rate [9], risperidone 

having a higher D2 occupancy rate, a lower D1/D2 occupancy rate and a lower 

dissociation rate [8, 9]. Thus, there is evidence that craving is increased in psychosis, 

possibly in association with the use of antipsychotic medication. As craving for 

cannabis may be particularly instrumental for continuation of cannabis use in patients 

with psychotic disorder and constitutes an important aspect of drug-using behavior, 

this issue requires further clarification. 

 

In the above mentioned studies, craving for cannabis was measured primarily with 

the Obsessive Compulsive Drug Use Scale (OCDUS), which was recently validated 

for cannabis use [7]. It is a 12-item Likert-rated scale based on the Obsessive 

Compulsive Drinking Scale [10]. However, the use of cross-sectional questionnaires 

arguably is inaccurate as it does not allow assessment of dynamic, real-life 

fluctuations in craving and its association with cannabis use, which are important in 

users of mental health service given the complexity of drug-using behavior in 

relation to fluctuating psychiatric symptoms. Therefore, the current study used the 

Experience Sampling Method (ESM), a real-life self-assessment random time 

sampling technique, to extend existing findings on craving for cannabis in psychosis 

to the dynamic context of daily life. The following research questions were examined. 

First, is craving, measured both with the OCDUS and with ESM, increased in patients 

with psychotic disorder compared to healthy controls? Second, do OCDUS scores 
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reflect craving in daily life measured with ESM? And third, are OCDUS and/or ESM 

craving associated with cannabis use in daily life and does this association differ 

between groups? In addition, analyses were carried out in order to investigate the 

influence of antipsychotic medication in the patient group.  

 

Method 

Participants 

The study included 58 patients with a diagnosis of psychotic disorder and 63 healthy 

controls. Patients were recruited through in- and out-patient mental health service 

facilities in South Limburg, The Netherlands, in the context of a treatment study on 

the effectiveness of motivational interviewing for patients with psychotic disorder 

and co-morbid cannabis abuse. All patients were frequent cannabis users and willing 

to receive treatment. Controls were recruited using flyers in local ‘coffeeshops’ (cafes 

where cannabis is sold and consumed legally) and through word-by-mouth 

advertising. Inclusion criteria were i) aged between 18 to 55 years, ii) using 

cannabis minimally three times a week, and iii) patients only: a diagnosis of 

psychotic disorder according to the Operational Criteria Checklist (OPCRIT) [11], 

yielding diagnoses according to Research Diagnostic Criteria after running the 

OPCRIT computer program. Exclusion criteria were i) weekly use of illicit drugs other 

than cannabis, ii) alcohol use in excess of five units per day, iii) presence of 

neurological or psychiatric disorder other than psychosis (patients only) and iv) 

presence of any neurological or psychiatric disorder (confirmed by OPCRIT) and 

family history of psychosis (controls only).  

Instruments 

Clinical measures  

The Positive and Negative Syndrome Scale (PANSS) [12] was used to assess severity 

of psychotic symptoms in the patient group. The Obsessive Compulsive Drug Use 

Scale (OCDUS) for cannabis use [8] was used to assess craving for cannabis in both 

patients and controls. The OCDUS is a 12-item Likert-rated scale, originally 

described by Anton and colleagues in work relating to alcohol use [10]. A cannabis-

specific version of the OCDUS was recently validated by Dekker and colleagues [7] 

and successfully applied by Machielsen and colleagues [8], confirming the existence 

of three subscales which can be best described as ‘craving/urge’, ‘resistance’, and 

‘impact’. In order to capture levels of symptomatology and craving during the ESM 

week, both scales were administered after the week in which ESM was carried out. 
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The Experience Sampling Method (ESM) 

ESM is a pseudo-random self-assessment time sampling technique. Feasibility, 

validity and reliability of ESM in patients with schizophrenia have been 

demonstrated previously [13, 14]. Participants received a digital wrist watch and 

paper-and-pencil ESM booklet. Twelve times a day on six consecutive days, the 

watch emitted a beep at random moments in 85-minute time blocks between 07:30 

h and 1:30 h. After each beep, participants were asked to fill in a self-assessment 

form, collecting reports of affect, craving, severity of symptoms and activity rated on 

7-point Likert scales at the moment of the beep. Participants were instructed to 

complete the form immediately after the beep to minimize memory distortion and to 

record the time at which they completed their report. In addition to filling in self-

assessment forms after each beep, participants were asked to fill in a day-

evaluation form at the end of each day before they went to sleep. During a briefing 

session, the ESM procedure was explained and a practice booklet was completed 

and discussed with the participant to confirm that the scale format was accurately 

understood. During the ESM week, participants were contacted by phone in order to 

ensure that they complied with the instructions. Participants were requested not to use 

illicit drugs other than cannabis during the ESM week and if they did, to tell the 

investigator about this use. None of the participants was a regular user of drugs 

other than cannabis. At each beep, when forms were completed, participants were 

asked to report the exact time. Reports completed more than 5 minutes before and 

15 minutes after the beep were excluded from the analyses, given that previous 

research has shown that remote answers are less reliable and less valid [15]. In 

addition, given that previous work has shown that measures of individuals with less 

than 30% of completed reports are less reliable, participants with less than 24 valid 

beeps were similarly excluded from the analyses [15]. 

ESM measures 

Measures of craving and use of cannabis in the flow of daily life were derived from 

the ESM reports as described below.  

Craving intensity was assessed with the item ‘I would like to use cannabis’. This item 

was rated on a 7-point Likert scale from ‘not at all’ to ‘very much’. The score on this 

item formed a continuous variable (‘ESM craving intensity’) referring to the moment 

of the beep. The mean score per person across all beeps (‘mean ESM craving 

intensity’) was used to investigate overall group differences on this item.  

Craving frequency was measured by calculating the proportion of beeps per person 

at which craving was reported (dichotomous, cut-off score of > 2 on the craving 

item), relative to the number of valid beeps.  

Craving variability was defined as the mean square successive difference (MSSD), 

which is calculated as the average of the squared difference between successive 

continuous craving scores. The MSSD measure is suggested by several authors as a 
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measure of variability on a certain item across moments in momentary assessment 

studies and was accordingly adapted to represent variability in craving across 

measurement moments [16, 17]. 

Cannabis use was assessed with the item ‘Since the previous beep I have used 

cannabis’ and was dichotomously coded yes versus no. This item formed the variable 

‘momentary cannabis use’ (dichotomous, yes versus no) and referred to cannabis use 

in the period between two beeps (see figure 1). In addition, to obtain a measure of 

frequency of cannabis use throughout the ESM week, we calculated the percentage 

of beeps per person at which cannabis use was reported, relative to the number of 

valid beeps. This score formed the continuous variable ‘cannabis use frequency’.  

Antipsychotic medication 

Conform previous work [8, 18], antipsychotic medication was classified as tight 

(haloperidol, flupentixol, penfluridol, risperidone) or loose binding (olanzapine) 

based on published D2 receptor occupancy and dissociation rates.  

Statistical analysis 

Data were analyzed using Stata© release 11.0. All analyses were a priori adjusted 

for age and sex.  

Individual-level analyses testing differences between groups 

Linear regression models were used to investigate i) overall group differences on 

OCDUS scores, mean ESM craving intensity, mean ESM craving frequency, mean 

ESM craving variability and cannabis use frequency, ii) the association between 

OCDUS scores and mean ESM craving intensity with cannabis use frequency on the 

one hand, and iii) the association between scores on the OCDUS, including its 

subscales, and mean ESM craving intensity on the other. Additional analyses were 

performed in order to investigate the effect of antipsychotic medication in the 

patient group. 

Momentary-level ESM analyses 

Due to the multilevel structure of ESM (i.e. multiple assessments clustering within 

subjects) multilevel random effects regression analysis was applied using the xtgee 

routine, yielding odds ratio’s (OR), to test the association between ESM craving 

intensity at time point (t) (independent variable) and momentary cannabis use 

reported at time point (t+1) dependent variable (figure 1). The interaction with 

group was calculated in order to investigate whether this association differed 

between groups. These analyses were additionally adjusted for cannabis use, 

reported at time point (t). Analyses were performed in order to investigate the 

effect of antipsychotic medication in the patient group.  
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‘Since the last beep 
I have used cannabis’craving

t                                                               t+1
 

 

Figure 1. Moment-to-moment analyses of association between ESM craving intensity at time t and momentary 

cannabis use between t and t+1, under additional adjustment for cannabis use reported at time t.  

 

Results 

Sample 

Of the 58 patients, 18 (31.0 %) had fewer than 24 valid reports and were 

therefore excluded from the analyses. Of the 63 controls, 6 (9.5 %) were excluded 

due to fewer than 24 valid reports. Thus, the final sample consisted of 40 patients 

with psychotic disorder (24 male, 60.0 %; for OPCRIT diagnoses see table 1) and 

57 controls (41 male, 71.9 %). Eight participants (3 patients and 5 controls) used 

cannabis in combination with other drugs during a total of 12 (0.9 %) of all beeps at 

which cannabis use was reported (n = 1347). To avoid confounding by other drug 

use, these observations were excluded from the analyses. Patients were receiving 

either tight binding agents (N = 12), loose binding agents (N = 14), a combination 

of antipsychotics (N = 10) or no medication (N = 4). On average, patients were 

older, had lower educational level and, per definition, had higher PANSS scores 

than controls. Furthermore, patients had collected less valid ESM reports than controls. 

Demographic and clinical characteristics are summarized in table 1.  

Individual-level analyses: group differences 

Patients scored significantly higher on the total OCDUS than controls (B = 1.18, p = 

0.022). Patients scored significantly higher than controls on the OCDUS subscale 

‘craving/urge’ (B = 1.39, p = 0.036) and on the subscale ‘impact’ (B = 1.43, p = 

0.009), whereas patients and controls did not differ on the subscale ‘resistance’ (B = 

0.05, p = 0.958). No differences between patients and controls were apparent with 

regard to mean ESM craving intensity (B = 0.43, p = 0.168) or mean ESM craving 

frequency (B = 12.67, p = 0.062). The two groups also did not differ in mean ESM 

craving variability (B = 2.17, p = 0.289), and similarly did not differ in mean ESM 

cannabis use frequency (B = 7.36, p = 0.139). See table 2 for mean scores per 

group.  
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Both OCDUS total score and mean ESM craving intensity were significantly 

associated with mean ESM cannabis use frequency (BOCDUS = 14.05, p < .001; 

BESMcraving = 13.49, p < 0.001), and this association did not differ between patients 

and controls (p > 0.05) When OCDUS total score and mean ESM craving intensity 

were entered in the model simultaneously, only mean ESM craving intensity remained 

significantly associated with mean ESM cannabis use frequency (BESMcraving =  13.08, 

p < 0.001; BOCDUS = -2.11, p =  0.619).   

 

OCDUS total score was significantly associated with mean ESM craving intensity (B = 

4.33, p < 0.001). Regarding the OCDUS subscales, significant associations with 

mean ESM craving intensity were found for ‘craving/urge’ (B = 0.48, p < 0.001) 

and ‘impact’ (B = 0.33, p < 0.001), but not for ‘resistance’ (B = 0.11, p = 0.223).  

 

Analyses did not reveal any differences in scores on the OCDUS, mean ESM craving 

intensity, mean ESM craving frequency or mean ESM craving variability between 

patients receiving tight binding agents versus patients receiving loose binding agents 

or no antipsychotic medication (all p > 0.05, see table 3 for mean scores per 

medication group).  

Momentary-level ESM analyses 

Momentary ESM craving intensity was significantly associated with subsequent 

momentary cannabis use (OR = 1.49, p < 0.001), and this association was 

somewhat stronger in controls as compared to patients (Fig. 2, p = 0.001). The 

association between ESM craving intensity and momentary cannabis use was not 

moderated by medication status in the patient group (all p > 0.05).  
 

 

 
 

Figure 2. Moment-to-moment association between ESM craving intensity at time (t) (ranging from 1 = not at all 

to 7 = very much) and momentary cannabis use (yes versus no) between t and (t+1). 
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Table 1. Demographic and clinical characteristics 

 

 

 Patients Controls Patients vs. Controls 

N 40 57 n.a. 

Mean age (SD) 37.7 (9.15) 27.4 (9.16) F(1, 95) = 28.22, p < 0.001 

Male % (n) 61.5 (24) 71.9 (41) χ2 (1) = 1.14, p = 0.285 

Education % (n)*    

Elementary 27.8 (10) 14.3 (8) 
 

χ2 (2) = 11.6, p = 0.003 
Secondary 61.1 (22) 41.1 (23) 

Higher 11.1 (4) 44.6 (25) 

Mean PANSS scores (SD)     

Positive symptoms 1.73 (0.77) 1.05 (0.10) F(1, 91) = 42.41, p < 0.001 

Negative symptoms 1.58 (0.61) 1.22 (0.23) F(1, 89) = 25.61, p < 0.001 

Global symptoms 1.53 (0.44) 1.10 (0.16) F(1, 86) = 45.81, p < 0.001 

OPCRIT diagnoses % (n)    

Schizophrenia  40.0 (16) n.a. n.a. 

Schizoaffective disorder 5.0 (2) n.a. n.a. 

Other psychoses 55.0 (22) n.a. n.a. 

Current use of medication % (n) 90.0 (36) 0.00 (0) n.a. 

Tight binding antipsychotics 33.3 (12) n.a. n.a. 

Loose binding antipsychotics 38.9 (14) n.a. n.a. 

Other/combination 27.8 (10) n.a. n.a. 

Mean valid ESM reports % (n) 44.4 (32) 56.9 (41) F(1, 95) = 14.99, p = 0.002 

Cannabis use frequency % (n)  40.6 (13) 36.6 (15) F(1, 93) = 0.47, p = 0.496 

 

Note. Some percentages do not total 100 due to rounding.  
* Information is missing in n = 1 control subject and n = 4 patients. 

 

 

 
Table 2. Mean ESM and OCDUS scores per group. 

 

 
 

Patients 

 

Controls 

Mean ESM craving intensity (SD) 3.57 (1.31) 3.20 (1.26) 

ESM craving frequency % (SD) 61.43 (29.20) 52.71 (27.82) 

ESM craving variability MSSD (SD) 15.58 (8.69) 13.90 (9.14) 

Mean OCDUS scores (SD)   

Craving/urge 3.08 (1.02) 2.45 (0.69) 

Resistance 3.21 (1.02) 3.20 (1.21) 

Impact 2.27 (0.80) 1.65 (0.63) 

Total score 2.76 (0.80) 2.24 (0.55) 
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Table 3. Mean scores per medication group (patients only; all p > 0.05). 

 

 
Tight 

(N = 12) 

Loose 

(N = 14) 

No medication 

(N = 4) 

Mean ESM craving intensity (SD) 3.27 (1.63) 3.83 (1.14) 2.92 (0.73) 

ESM craving frequency % (SD) 51.30 (29.57) 70.04 (26.33) 48.13 (19.72) 

ESM craving variability MSSD (SD) 14.04 (11.56) 16.70 (6.90) 11.62 (4.30) 

Mean OCDUS scores (SD)    

Craving/urge 3.07 (1.41) 3.38 (1.01) 2.65 (0.19) 

Resistance 3.05 (1.33) 3.14 (1.19) 3.38 (0.75) 

Impact 2.29 (1.13) 2.51 (0.59) 2.05 (0.93) 

Total score 2.74 (1.10) 2.98 (0.74) 2.52 (0.41) 

Note. Classification of medication according to high or loose binding characteristics  at D2 receptors was done 
in agreement with Lataster and colleagues [18].  

 

Discussion 

 
The present study demonstrated that craving is increased in patients with psychotic 

disorder, when measured with the OCDUS. Yet, in daily life, patients and controls 

did not differ with regard to craving intensity, craving variability or craving 

frequency. In patients and controls, both OCDUS craving and ESM craving intensity 

were associated with frequency of cannabis use. However, ESM craving appeared 

to be a better predictor of cannabis use in daily life, given that when both terms 

were entered in the individual-level prediction model of cannabis use simultaneously, 

only ESM craving remained significant. Analysis of moment-to-moment assessment of 

craving in association with cannabis use showed that craving intensity was predictive 

of subsequent cannabis use. Although sample sizes per medication subgroup were 

small and individual-level comparisons likely had low power, no differences were 

revealed between patients receiving tight or loose binding agents or no medication.  

Craving for cannabis in daily life  

In line with the findings of Dekker and colleagues [7], increased craving was 

apparent in patients with psychotic disorder, relative to controls, in a comparison of 

OCDUS scores. Yet, when craving was measured in the moment with ESM, patients 

and controls reported comparable levels of craving intensity. One possibility to 

account for this discrepancy is that our ESM craving measure is not a valid tool for 

the assessment of craving for cannabis. However, OCDUS craving and ESM craving 

were significantly associated with each other, with the exception of the OCDUS 

subscale ‘resistance’, suggesting that at least part of the concept of craving is 

reflected by our daily life ESM craving measure. In addition, when both OCDUS 
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scores and mean ESM craving intensity were simultaneously entered in the prediction 

model, only mean ESM craving remained significantly associated with frequency of 

cannabis use in daily life, suggesting that OCDUS is reducible to the ESM measure in 

this regard. Together with the finding that momentary ESM craving intensity was 

significantly associated with subsequent cannabis use, this supports the validity of 

ESM craving and furthermore indicates that craving as captured by the OCDUS is 

less predictive for daily life cannabis use. One explanation for this finding is that 

reporting on cross-sectional questionnaires is subject to interpretation, in comparison 

with reporting in the moment with ESM. In OCDUS, patients may report their 

(sometimes erroneous) interpretation of cannabis use as beneficial for symptoms  [19], 

resulting in higher OCDUS craving scores, whereas during ESM individuals report 

momentary craving without interpretation of the perceived relationship between 

cannabis use and symptoms. 

 

The association between ESM craving intensity and subsequent cannabis use was 

stronger for controls than for patients, yet no differences emerged with regard to 

overall craving intensity, craving frequency and craving variability. Since patients 

and controls did not differ with regard to the OCDUS subscale ‘resistance’ it is 

unlikely that the weaker association in patients with psychotic disorder is due to 

being more resistant to urges of craving. One explanation may be that patients with 

psychotic disorder are prevented from use more often than controls, for example 

due to lack of money or limited access to sites where cannabis may be obtained. 

Alternatively, cannabis use in patients may occur more independently of inner cues 

such as craving and may instead be under stronger guidance by other, unmeasured 

factors, such as fluctuating mental states. 

Antipsychotic medication and craving in patients with psychotic disorder 

In contrast to Machielsen and colleagues [8], who showed that patients receiving 

tight binding agents experienced significantly more craving than patients treated 

with loose binding antipsychotics, our study did not reveal any significant differences 

with regard to antipsychotic medication. Moreover, inspection of the mean OCDUS 

or ESM craving scores suggests that patients treated with tight binding agents 

experience less craving, both with regard to intensity and frequency, than patients 

receiving loose binding agents. Medication-free patients, on the other hand, had the 

lowest mean scores. Yet, none of these differences reached significance in our 

analyses. One explanation may be lack of power due to small sample sizes, 

although this would not explain the different directionality of the findings compared 

to Machielsen and colleagues (2011), and the ESM-level analyses were more 

powerful than the individual-level analyses. Therefore, the current results may also 

indicate that craving is increased in psychosis, independently of antipsychotic 

medication, supporting the later findings by Dekker and colleagues (in press).  
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Limitations 

The current results have to be interpreted in the light of several methodological 

limitations. First, compliance with the research protocol is a crucial element of the 

ESM research method. Some authors have cast doubt on compliance in paper-and-

pencil ESM studies and preferred the use of electronic devices [20]. However, two 

studies in which paper-and-pencil diary and electronic diary data were collected 

using comparable procedures, suggested good compliance rates with the time 

protocol and demonstrated that both methods yielded data comparable in terms of 

both psychometric features and research findings [21, 22] . Second, reports on 

craving and cannabis use were based on self-report and not confirmed by objective 

measures, such as urine analysis. However, underreporting of cannabis use is unlikely, 

as consumption of cannabis is legal in The Netherlands and participants reported 

cannabis use at 50% of the beeps. Finally, the current ESM protocol assessed 

craving with the use of a single item, which may not be sufficient to capture the 

complex concept of craving, compared to multi-item questionnaires such as the 

OCDUS. However, the current analyses suggest that our ESM craving measure is a 

better predictor of daily life cannabis use than the OCDUS, lending support to the 

validity of the ESM craving item.  

 

Conclusion  

 
Taken together, and several limitations notwithstanding, the findings suggest that 

craving is increased in patients with psychosis, independent of antipsychotic 

medication, when assessed with cross-sectional questionnaires such as the OCDUS 

that may carry more interpretational judgments than in-the-moment ESM reports. In 

contrast, daily life craving does not seem to differentiate between patients and 

controls, yet craving at ESM level is strongly associated with daily life cannabis use, 

independent of the cross-sectional OCDUS measure. Therefore, the current results 

emphasize the need to further investigate craving as a factor maintaining cannabis 

use in patients with psychotic disorder, especially regarding the influence of 

antipsychotic medication. Deeper insight into patterns of craving in relation to 

cannabis use in psychosis is crucial for understanding the co-morbidity between 

psychosis and cannabis use disorders and for developing new and effective 

treatment programs.  
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Summary 

 

A recent study by Morgan and colleagues found that cannabidiol attenuates the 

acute cognitive effects of delta-9-tetrahydrocannabinol (THC). This is of interest as 

THC has been associated with the detrimental effects of cannabis on mental health in 

at-risk users, and the potency of cannabis is increasing across Europe. 
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Introduction 

 

The paper by Morgan and colleagues published in this issue [1] adds to the idea 

that cannabidiol (a cannabis compound) antagonises the effects of delta-9-

tetrahydrocannabinol (THC, the main psychoactive compound of cannabis). 

Cannabidiol itself has no psychoactive properties but instead, as Morgan et al 

showed, may protect against the cognitive effects of THC. In their naturalistic study, 

participants consumed their own, self-chosen cannabis and were subsequently tested 

on a number of cognitive task and questionnaires. Individuals whose self-chosen 

cannabis contained high levels of cannabidiol showed no memory impairment after 

consumption of their cannabis, in contrast to the individuals whose self-chosen 

cannabis contained low levels of cannabidiol: here, cannabis significantly worsened 

memory performance.  

 

Cannabis is the most frequently used drug in the world and although recent data 

suggest a stabilisation of cannabis use in most countries in Europe, its use remains 

particularly popular among young adolescents. That this is of great concern follows 

from epidemiological studies showing that heavy use during adolescence is 

particularly detrimental with respect to long-term effects on cognition and mental 

health. The findings by Morgan and colleagues [1] emphasise the importance of 

taking into account differences in potency of cannabis preparations. Cannabis 

potency varies widely between and within countries and between different products. 

Data from the UK, for instance, show that, on average, cannabis resin contains 

approximately equal levels of THC and cannabidiol, whereas herbal cannabis 

contains only moderate levels of THC and almost no cannabidiol. By contrast, 

sinsemilla, or skunk, contains high levels of THC and almost no cannabidiol [2]. 

European data show that the use of resin has remained relatively stable over the 

past years. The use of skunk, however, has significantly increased in the UK and 

other European countries. It is quite established that the detrimental effects of 

cannabis on mental health are primarily attributable to THC. In this light, the findings 

by Morgan and colleagues are relevant as they show that different types of 

cannabis may moderate the risk for mental health problems to different extents, 

depending largely on the potency of the cannabis preparation. This is also of 

relevance for the cannabis–psychosis causality debate and could help to explain 

why not everyone exposed to cannabis will develop cognitive impairments or 

psychiatric symptoms. Although a clear dose–response association has consistently 

been shown between cannabis exposure and psychosis risk, none of the published 

epidemiological studies differentiated between potency and content of the cannabis 

they studied. The first evidence that different strains of cannabis may indeed have a 

differential impact on mental health risk was provided by Di Forti and colleagues 

[3]. They investigated different types of self-chosen cannabis and found that 
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individuals with a first episode of psychosis had used higher-potency cannabis (i.e. 

skunk) for a longer period of time and with greater frequency than healthy controls 

[3]. Thus, use of skunk containing high concentrations of THC but low concentrations of 

cannabidiol was associated with a higher risk of mental health problems. 

 

Does cannabidiol reverse the acute effects of THC? 

 

In Morgan and colleagues’ current study, cannabidiol antagonised the effects of THC 

on memory [1]. However, no such reversal effects were observed for transient 

psychotic-like symptoms or anxiety. In a previous study, the authors did show that 

individuals who smoked cannabis low in cannabidiol reported significantly more 

psychotic experiences compared with those who smoked cannabis containing high 

levels of cannabidiol [4]. Although the authors assessed psychosis proneness as 

opposed to state-related psychotic experiences in that study, the results suggest that 

cannabidiol may protect against the psychotogenic properties of THC. Experimental 

studies are in line with this, showing that cannabidiol has the ability to reduce 

anxiety and psychotomimetic symptoms as well as psychosis-related cognitive 

distortions induced by THC [5, 6]. It remains largely unknown, however, how 

cannabidiol brings about the THC-antagonising effects, since its pharmacological 

actions are still elusive. Although cannabidiol seems to have only low affinity for the 

cannabinoid 1 (CB1) receptor (the main binding site for THC), some interaction 

between cannabidiol and the CB1 receptor has been suggested [7]. Also, 

cannabidiol may exert its effects by inhibiting reuptake of the endogenous 

cannabinoid anandamide [7]. In an effort to understand the biological mechanisms 

underlying the interaction between THC and cannabidiol, Bhattacharyya and 

colleagues [5] demonstrated opposing effects of THC and cannabidiol on brain 

activity by using functional magnetic resonance imaging. Delta-9-

tetrahydrocannabinol attenuated striatal activity and concurrently induced psychotic 

symptoms, whereas the reverse (i.e. increases in striatal activity) was observed under 

cannabidiol conditions. Clearly, the molecular actions of cannabidiol are in urgent 

need of further investigation. 

 

Cannabidiol as a potential antipsychotic drug 

 

The fact that cannabidiol is able to reduce the acute anxietyinducing and 

psychotomimetic effects of THC has raised the question whether cannabidiol might 

also be effective in treating patients with established psychotic disorder [8]. 

Evidence, although limited, seems promising: Zuardi and colleagues reported 

improvement in two patients treated with cannabidiol, whose symptoms worsened 
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after discontinuation of cannabidiol. In two other patients, cannabidiol had no 

therapeutic effects; however, these two patients did not respond to other 

antipsychotic medication either [8]. Preliminary data on a clinical trial including 42 

patients described similar positive effects for cannabidiol on Positive and Negative 

Syndrome Scale scores, but with fewer side-effects than regular treatment with 

amisulpride [9]. 

 

Cannabis and genetic liability 

 

It seems clear from the above that cannabidiol has the ability to reverse some of the 

acute effects of THC and may even reduce psychotic symptoms in some patients.  

Differences in cannabidiol content and THC/cannabidiol ratio between different 

cannabis preparations may furthermore help to explain why only a minority of 

cannabis users develop a psychotic illness. Underlying genetic liability for psychosis, 

however, has been found to determine cannabis sensitivity as well. In a recent study, 

it was found that individuals at (genetic) risk for psychosis may be more sensitive not 

only to the psychosis-inducing effects of cannabis in daily life, but also to the 

positive, mood-enhancing effects of cannabis [10]. Moreover, the rewarding effects 

of cannabis on mood seem to be acute, whereas psychotic experiences emerge 

subacute. These findings fit with the idea that different components may have 

different or even opposing effects, with THC being responsible for the psychosis-

inducing effects and cannabidiol for the anxiolytic effects. Although numerous studies 

have shown that cannabis has a negative impact on mental health, especially in 

individuals with established psychotic disorder, the intriguing question remains as to 

why patients continue to use these highpotency types of cannabis. Di Forti’s data 

seem to indicate that individuals at increased genetic risk for psychosis (i.e. patients 

with first-episode psychosis) prefer smoking the higher-potency cannabis. Morgan 

and colleagues, however, found no evidence that healthy controls with elevated 

schizotypy scores show preference towards the high THC/low-cannabidiol variants, 

as the ‘high-cannabidiol’ and ‘low-cannabidiol’ groups did not differ with regard to 

schizotypy [1].  

 

Thus, as different types of cannabis clearly affect mental health differentially, more 

research is needed to understand how genetic liability may increase sensitivity to 

and preference for specific types of cannabis. Furthermore, the study by Morgan 

and colleagues stresses the importance of taking into account differences in cannabis 

potency when studying acute and long-term effects of cannabis use. Also, when 

treating patients with psychosis and comorbid cannabis dependence, the type of 

self-chosen cannabis needs to be considered in order to better understand how not 
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only the rewarding and anxiolytic, but also the psychosis-inducing properties of the 

drug determine patterns and continuation of use. 
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Discussion 

 

This thesis applied epidemiological, observational and experimental neurochemical 

imaging techniques to study several aspects of the cannabis-psychosis relationship. 

First, the temporal association between exposure to cannabis and the incidence of 

psychotic symptoms was studied. Second, it was investigated whether differential 

sensitivity to the psychosis-inducing effects of cannabis is influenced by the 

environment. Third, biological mechanisms that might underlie the association 

between exposure to cannabis and increased risk for psychosis were elucidated. 

Finally, in order to increase our understanding of patterns and mechanisms of use in 

clinical populations, craving for cannabis was investigated as a maintaining factor 

for continuation of cannabis use in daily life of patients with psychotic disorder, 

among which cannabis use is particularly prevalent.  

 

Results presented in this thesis show that the use of cannabis preceded the onset of 

incident, subclinical psychotic symptoms in individuals who had never experienced 

any psychotic symptoms previously (chapter 2). It was also revealed that continued 

use of cannabis was associated with an increased risk of persistence of these 

subclinical psychotic symptoms (chapter 2). Furthermore, it could be demonstrated 

that individuals who grew up in an urban environment were particularly sensitive to 

the long-term psychosis-inducing effects of cannabis, providing evidence for 

environmental moderation of vulnerability to the long-term psychosis-inducing effects 

of cannabis (chapter 3). Yet, the previously reported link between childhood trauma 

and increased sensitivity to the effects of cannabis on psychosis risk could not be 

replicated (chapter 4). With regard to possible neurobiological mechanisms of the 

cannabis-psychosis relationship, it was shown that part of the psychosis-inducing 

effects of cannabis might be mediated by THC-induced dopamine release in striatal 

brain regions, in particular in patients with established psychotic disorder and 

individuals at risk for psychosis (chapters 5, 6 and 7). Finally, it was indicated that 

patients with established psychotic disorder experience higher levels of craving for 

cannabis as indicated by higher scores on the Obsessive Compulsive Drug Use Scale 

(OCDUS) for cannabis. Yet in daily life, craving did not seem to differentiate 

between patients and controls (chapter 8).  

Cannabis and psychosis: A causal association? 

Primarily based on the results of numerous epidemiological studies, the link between 

exposure to cannabis and increased psychosis risk has been well established [1-3]. 

However, cannabis use is much more prevalent among patients with psychotic 

disorder compared to the general population [4-6]. Therefore, it has remained a 

matter of debate, whether the association between cannabis use and the onset of 

psychosis is indeed causal, or else is due to reverse causality, e.g. in form of self-
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medication, or residual confounding by preexisting symptoms or underlying 

vulnerability [7, 8]. This issue was systematically addressed in chapter 2 of this thesis 

by analyzing data from a prospective population-based cohort study of adolescents 

and young adults. Due to the long follow-up period, individuals with carefully 

assessed pre-existing psychotic symptoms could be excluded from the analyses. Still, 

the study revealed a strong association between cannabis use in the period between 

baseline and first follow-up and incident psychotic symptoms four years later at 

second follow-up [9]. Moreover, the presence of psychotic symptoms at baseline did 

not predict cannabis use at follow-up. This is in accordance with previous research in 

the same cohort [10] and in contrast to the self-medication hypothesis, which implies 

that cannabis use is caused by the intention to relieve pre-existing psychotic 

symptoms or distress resulting from mental illness [11]. The study presented in this 

thesis thus clarifies the temporal association between exposure to cannabis and the 

development of psychotic symptoms and, together with the observation that 

continuation of use is particularly detrimental, provides further evidence for a causal 

relationship. Of note, in a large Danish cohort study, age of onset of schizophrenia 

was significantly lower in patients with a history of cannabis use, compared to 

patients who were never exposed [12]. This link between cannabis use and earlier 

age of onset of psychotic disorders was recently established by meta-analytic work 

[13].  

 

Thus, the research presented in this thesis strengthens the evidence that cannabis use 

is causally linked with increased risk of psychotic disorder [9], the first stage of which 

is expressed as abnormal persistence of subclinical psychotic symptoms [9, 14]. 

Alternatively, it has been argued that the link between cannabis and psychosis is due 

to shared etiology, where similar neuropathology, including alterations in mesolimbic 

dopamine transmission and dysregulation of cortical, temporal and mesoaccumbens 

circuits, give rise to both cannabis use and psychotic disorder [15]. However, 

individuals differ in their sensitivity to the effects of cannabis and not all patients 

with psychotic disorder have been exposed to cannabis. Hence, cannabis use most 

likely constitutes a component cause of psychosis, co-depending on other causal 

influences [16]. Previous research has shown that underlying psychosis liability (as 

indicated by higher than average scores on scales measuring schizotypy or by 

familial predisposition) as well as variation in specific genetic polymorphisms may 

render some individuals more vulnerable to the effects of cannabis than others [10, 

17-20]. Little is known however about possible environmental moderation. Therefore, 

this thesis investigated the influence of two environmental candidates, urbanicity and 

trauma. Urbanicity is one of the major risk factors of schizophrenia [21] and trauma 

has been previously suggested to interact with cannabis use in increasing psychosis 

risk [22-24]. In agreement with the proposed mechanism of environmental 

moderation, the results described in chapter 3 indicate that the risk of developing 
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psychotic symptoms is greater in individuals growing up in an urban environment 

compared to individuals from rural areas [25]. On the contrary, as discussed in 

chapter 4 of this thesis, interaction between trauma and cannabis use could not be 

confirmed [26]. Still, our findings lend support to the idea that in addition to gene-

environment interaction, mechanisms of environment-environment interaction play a 

causal role in the pathway to psychosis.  

Cannabis and psychosis: A role for sensitization? 

As outlined above and discussed in this thesis, cannabis use increases the risk of 

incident subclinical psychotic symptoms, and moreover, impacts negatively on the 

persistence of these subclinical symptoms [9]. Previous research has shown that 

developmental expression of subclinical psychotic experiences in adolescence is 

mostly transient [27]. Yet, repeated exposure to environmental risk factors, including 

cannabis use as shown in chapter 2, may cause subclinical psychotic experiences to 

persist and become more severe, resulting in onset of psychotic illness in a minority of 

individuals [9, 28, 29]. This is in line with the psychosis-proneness-persistence model, 

in which genetic predisposition for psychosis synergistically combines with increasing 

levels of environmental exposure to cause clinical impairment and the onset of 

psychotic disorder [14]. This has been previously demonstrated for the additive 

effects of cannabis, trauma and urbanicity [30] and receives further support by our 

recent finding of interaction between cannabis use and urbanicity. Intriguingly, while 

cannabis, trauma, and urbanicity do not reflect the same environmental influence, 

they all impact on the same (psychotic) outcome [31]. This implies a shared 

interactive pathway. A mechanism of developmental sensitization has been 

suggested to underlie this pathway, referring to the observation that repeated 

exposure to a stimulus elicits progressively greater responses over time [32]. Studies 

demonstrating increasing effects on psychosis risk dependent on cumulative 

environmental exposure are in agreement with a process of sensitization [9, 33-35] 

Moreover, the aforementioned synergistic effects between different risk factors, 

including cannabis use and urbanicity (chapter 3), are suggestive of a mechanism of 

cross-sensitization underlying the developmental pathway to psychosis [25, 30, 36].  

 

Biologically, the mechanism of sensitization remains understudied and not well 

understood, at least concerning the evidence in humans. Only one study so far has 

investigated neurochemical correlates of sensitization to amphetamine in humans and 

demonstrated alterations in dopaminergic signaling induced by the repeated 

administration of amphetamine [37]. This is in line with animal studies demonstrating 

increased activity of dopamine neurons in the VTA [38] and increased dopamine 

release in the striatum [39-41] following amphetamine sensitization. Yet, as 

discussed in chapter 6 of this thesis, neurobiological evidence for sensitization 
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induced by exposure to cannabis is scarce, although some studies in rats do suggest 

a dopaminergic mechanism of cannabis sensitization [42, 43].  

Cannabis and psychosis: Do all roads lead to dopamine? 

While the epidemiological link between cannabis and psychosis has received 

considerable attention, very little is known about the biological underpinnings. The 

important role of a dopamine dysfunction in psychosis and schizophrenia – 

summarized in chapter 5 – together with evidence from animal work suggesting 

interaction between the endocannabinoid and the dopamine system – discussed in 

chapter 6 – has given rise to the hypothesis that part of the psychosis-inducing 

effects of cannabis are mediated by dopamine [44]. This hypothesis has been tested 

recently by groups in the UK and The Netherlands, yet with inconsistent results. While 

Bossong and colleagues [45] found evidence for dopamine release induced by THC, 

Stokes and colleagues [46] and Barkus and colleagues [47] did not find such an 

effect. Notably, these studies were conducted in healthy male subjects who used 

cannabis only recreationally. However, patients with established psychotic disorder 

as well as their unaffected relatives have been shown to be more vulnerable to the 

psychosis-inducing and behavioral effects of cannabis [17, 48]. It is therefore 

important to investigate the effects of THC on dopamine release in these at-risk 

populations. Chapter 7 of this thesis presents the first neurochemical imaging study 

of THC-induced dopamine release in patients with psychotic disorder, unaffected 

relatives of patients with psychotic disorder and healthy controls. In line with Stokes 

and colleagues [46] and Barkus and colleagues [47], THC did not induce dopamine 

release following pulmonary administration of THC in healthy controls. Yet in both 

patients and relatives, administration of THC was associated with a subsequent 

increase in striatal dopamine. This suggests that the psychosis-inducing effects of 

cannabis are mediated by a mechanism of increased striatal dopamine release in 

individuals at risk for dopamine dysregulation, and thus provides evidence for 

differential sensitivity towards cannabis on a neurobiological level (chapter 7). 

However, previously it was demonstrated that pre-treatment with haloperidol, a D2 

receptor antagonist, did not prevent the behavioral and psychotomimetic effects 

produced by administration of THC and even worsened some of the cognitive effects 

of THC [49]. Although this might corroborate the evidence concerning interaction 

between the dopaminergic and endocannabinoid system, the findings suggest that 

the psychosis-inducing and perceptual effects of cannabis involve pathways other 

than increased dopamine turnover [49]. This would also explain the observation that 

THC does not induce dopamine release in healthy controls. A recent review on the 

neuropharmacological mechanisms of endocannabinoid action suggests that, in the 

striatum, dopaminergic neurotransmission is actually upstream of endocannabinoid 

function  and D2 receptor stimulation leads to endocannabinoid-mediated 

depression of cortical inputs [50]. Moreover, it appears that drugs which follow this 
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mechanism and weaken cortical inputs to medium spiny neurons of the indirect 

pathway are pro-psychotic [50]. Yet, findings from animal studies indicate that, in 

the ventral tegmental area, THC might stimulate burst firing of DA neurons and as a 

consequence increase DA levels in the striatum [44], which is in agreement with the 

results in chapter 7, at least concerning patients with psychotic disorder and first-

degree relatives. Thus, the pathway from cannabis to psychosis most likely involves 

multiple mechanisms and THC might exert its effects by both increasing striatal 

dopamine and directly influencing synaptic plasticity via a mechanism downstream 

of dopamine. Still, the former might be particularly true in individuals at risk for 

psychosis, who are especially prone to dopamine dysregulation (chapter 7).  

 

Notably, early adolescence has been shown to be a particularly vulnerable period 

for the long-term effects of cannabis, as the risk to develop psychosis later in life is 

higher for those who started to use cannabis before the age of 15 compared to 

those who started at a later age [51, 52]. This is in agreement with preclinical 

evidence from studies in rats: Chronic treatment with THC led to long-lasting 

cognitive as well as behavioral changes in both pubertal and adult rats, yet the 

effects of acute administration were significantly more pronounced in the pubertal 

rats [53]. Adolescence represents a highly vulnerable period with regard to brain 

development in general and the development of the endocannabinoid system in 

particular [54]. Although our understanding of the function and development of the 

endocannabinoid system is still limited, this system is thought to play a crucial role in 

the fine-tuning of synaptic transmission, modulating GABAergic, glutamatergic and 

dopaminergic neurotransmission [55]. Early exposure to exogenous cannabinoids 

such as THC might accordingly lead to profound disturbances in the development of 

cortical as well as subcortical neural networks, providing the basis for vulnerability 

towards mental health problems, including psychosis, later in life [56]. Interestingly, 

schizophrenia has been associated with functional impairments in the 

endocannabinoid system, independent of cannabis use. In acutely psychotic patients 

with schizophrenia as well as in individuals with prodromal schizophrenia pathology, 

levels of the endogenous cannabinoid anandamide were elevated and inversely 

correlated with both positive and negative symptoms [57-59]. In addition, studies on 

the availability of cannabinoid 1 (CB1) receptors, the primary binding site of both 

endocannabinoids and THC, suggest increased levels of cortical CB1 receptors in 

schizophrenia [60-63]. Yet other studies are not consistent with this and found no 

elevation in CB1 receptor density [64, 65]. Surprisingly, no study so far has looked 

at CB1 receptor density in healthy cannabis users. The results of an early rat study 

are indicative of downregulation of CB1 receptor availability following chronic 

administration of THC [66].   
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Taken together, the biological pathways from cannabis to psychosis appear to be 

diverse and research on this topic is still in its infancy. The research presented in this 

thesis is in line with a role for dopamine in bringing about the psychotomimetic 

effects of cannabis, at least in individuals at risk for psychosis. Alternatively, studies 

into the functional role of the endocannabinoid system in both healthy individuals 

and patients with schizophrenia suggest that (early) exposure to cannabis might 

induce psychosis risk by disrupting crucial cortical and subcortical neural networks 

necessary for a well-functioning endocannabinoid system [67]. Further research into 

the developmental processes and mechanisms of endocannabinoid-mediated 

neurotransmission in the human brain is therefore warranted. 

Cannabidiol as a protective agent 

So far, research on the effects of cannabis in relation to psychosis risk has primarily 

targeted THC as the main psychoactive ingredient in cannabis. However, apart from 

THC, cannabis contains a range of other cannabinoids, among others cannabidiol 

(CBD), and street preparations of cannabis differ largely in their composition [68]. 

Notably, in contrast to THC, CBD has been shown to have antipsychotic and 

anxiolytic properties [69] and, as has been suggested among others by Morgan and 

colleagues [70, 71], might antagonize the effects of THC. Chapter 9 of this thesis 

provides an editorial on this topic and concludes that it is inevitable to consider 

differences in the potency (i.e. the amount of THC) of cannabis when studying its 

effects on behavior, cognition and mental health. Yet so far, only few studies have 

differentiated between high and low potent cannabis preparations in that regard. In 

an epidemiological study, Di Forti and colleagues [72] investigated 280 cases 

presenting with a first episode of psychosis and 174 controls to study the differential 

effects of high versus low potency cannabis. It was revealed that, among those who 

used cannabis, first-episode patients were almost seven times more likely to have 

used high potency cannabis than the controls, independent of confounding factors. 

Additionally, there was evidence for a dose-response relationship as those who used 

high-potency cannabis daily were six times more likely to be in the patient group 

compared to those who used it less frequently [72]. The link between patient status 

and high-potency cannabis might imply that patients have a preference for stronger 

cannabis preparations. On the other hand, these findings emphasize that the 

psychosis-inducing effects of cannabis are primarily attributable to and dependent 

on the concentration of THC. A study by Morgan and colleagues, who analyzed hair 

samples of 140 healthy individuals with regard to traceable levels of THC and CBD, 

confirmed this link: The group of individuals who had only THC in hair showed the 

highest levels of psychotic experiences compared to individuals with THC and CBD in 

hair and those without any cannabinoids in hair [70]. In a set of subsequent 

naturalistic studies, in which healthy participants were tested while intoxicated with 

their own chosen cannabis, the researchers further revealed that cannabidiol 
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antagonized the negative effects of THC on cognition, both acutely and longer term 

[71, 73], and attenuated the incentive salience of cannabis-associated cues, 

including self-rated indices of liking of the drug [74]. Similar evidence stems from 

imaging studies documenting opposite effects of THC and CBD on both brain function 

and behavioral parameters in healthy individuals [75, 76].  

 

In agreement with the above, CBD has been discussed as an antipsychotic drug [77, 

78], but might also be of relevance for the treatment of drug addiction [79]. Future 

research should therefore focus on the identification of mechanisms of action of both 

endogenous cannabinoids and exogenous cannabinoids such as THC and CBD to 

advance our understanding of the etiology as well as treatment of schizophrenia 

and co-morbid cannabis abuse.  

Clinical relevance 

Notably, the prevalence of cannabis use is much higher among patients with 

psychotic disorder compared to the general population [4-6]. Research on the 

reasons and motives of cannabis use has shown that patients with psychotic disorder 

and healthy controls share similar intentions [80, 81]. Both groups most often report 

using cannabis to get ‘high’, to enhance mood and relieve dysphoria, and for 

reasons of social participation and relaxation. Yet patients with psychotic disorder 

are more likely to also use cannabis out of boredom and to avoid social isolation 

[82]. Studies on the effects of cannabis use in daily life are scarce, in particular in 

patients with psychotic symptoms. Accordingly, much on this topic remains unclear, 

including the question of why patients are particularly prone to continue to use 

cannabis. A recent study on the patterns of cannabis use in psychosis employed the 

Experience Sampling Method in a group of patients and revealed both a positive 

mood enhancing effect of cannabis and a negative hallucinogenic effect [83]. 

Notably, while the positive effects on mood occurred quite immediately, the 

negative effect on psychotic symptoms emerged only sub-acute [83]. The authors 

concluded that this bi-phasic pattern of cannabis effects in psychosis might be 

indicative of a vicious circle: The positive effects are directly linked to the use of 

cannabis, while the delayed experience of symptom worsening is not associated with 

drug taking anymore and instead fosters further use [83]. In an attempt to replicate 

the bi-phasic effect of cannabis in psychosis, a second cohort of patients was 

recently investigated applying the same technique [84]. Again, cannabis had a 

positive effect on mood and a negative effect on hallucinations, yet the effects co-

occurred acutely and could not be temporally disentangled [84].  

 

Despite these initial attempts to shed light on patterns of cannabis use in patients 

with psychosis, this issue remains in need for investigation, especially with regard to 

mechanisms of continuation of cannabis use in this vulnerable group. Therefore, 
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another aim of this thesis was to further investigate factors that contribute to 

maintenance of use in psychosis (chapter 8). A central feature of drug-using 

behavior is craving, the strong urge or desire for the drug, also called wanting [85]. 

Chapter 8 accordingly investigated craving in relation to cannabis use in a group of 

patients with psychotic disorder and healthy controls. An earlier study, employing the 

cross-sectional Obsessive Compulsive Drug Use Scale (OCDUS) for cannabis use, had 

suggested that craving levels are increased in patients with psychotic disorder [86]. 

In line with this, our study also revealed higher levels of craving in patients with 

psychosis compared to healthy controls independent of frequency of use, when 

measured with the OCDUS. When measured with the Experience Sampling Method 

in daily life however, no differences emerged with regard to mean levels of craving 

intensity or frequency during the last week. Yet, craving measured with ESM in daily 

life better predicted daily life cannabis use compared to the OCDUS, implying that 

craving is assessed most accurately when measured in the moment in daily life. 

Moreover, although craving in daily life was significantly associated with cannabis 

use in daily life in both groups, this association was stronger in the controls than the 

patients, possibly implying that patients are prevented from use more often, for 

example due to lack of money or limited accessibility. Alternatively, patients might 

be using cannabis widely independent from inner cues such as the experience of 

craving, implying that use has become rather habit-like. This might be supported by 

the observation that patients often use cannabis to fight boredom [82]. Previously it 

had been suggested that craving levels might differ according to type of 

antipsychotic treatment – tight binding agents at D2 receptors were found to be 

associated with higher levels of craving compared to agents with a low binding 

profile [87]. In our study, no such differences were revealed, which is in line with one 

earlier study indicating no effects of olanzapine or risperidone on craving for 

cannabis in schizophrenia [88]. Yet, numbers of individuals per treatment group in 

our study were low. Thus, failure to detect differences could also be due to a lack of 

power. Since Dekker and colleagues [86], who were the first to indicate higher levels 

of craving in psychosis patients, did not include any statistical adjustment for the 

effects of medication, this issue needs further clarification.  

 

Overall, cannabis use has been associated with poorer outcome and higher relapse 

rates in patients with psychotic illness [89], while cessation of use after a first 

episode of psychosis has been shown to have beneficial effects on mental health 

outcomes [90]. Accordingly, cannabis use constitutes a major concern in the treatment 

of co-morbid patients and research has put effort in the development and 

evaluation of effective treatment strategies [91]. Cognitive Behavioral Therapy in 

combination with motivational interviewing had been suggested to be of particular 

promise [91, 92]. However, a recently evaluated trial in patients with psychotic 

disorder and co-morbid substance use indicated only little improvement in terms of a 
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reduction in the amount of substance used per day [93]. No improvement was 

observed with regard to overall frequency of use or in relation to any form of 

clinical or functional outcome or measures of psychopathology [93]. Together with 

our findings discussed in chapter 8 of this thesis, these observations emphasize the 

need to further elucidate patterns of cannabis use in patients with psychotic disorder. 

  

Conclusion 

 
Overall, the research presented in this thesis has contributed towards a better 

understanding of the mechanisms behind the association between exposure to 

cannabis and an increased risk of developing psychotic symptoms and schizophrenia, 

both from an epidemiological perspective and with regard to neurobiological 

underpinnings. Evidence could be strengthened that cannabis use precedes the onset 

of psychosis and negatively impacts on the persistence of subclinical psychotic 

symptoms. This thesis moreover provided evidence for environmental moderation of 

the psychosis-inducing effects of cannabis, in form of interaction between urbancity 

and cannabis use. With regard to the neurobiological mechanism by which exposure 

to cannabis might increase psychosis risk, the research presented in this thesis 

postulates an important, although clearly not exclusive, role for the dopamine system. 

Finally, it was shown that craving for cannabis, which might be most accurately 

assessed in the moment in daily life, is strongly associated with cannabis use and 

might thus play a central role in maintaining drug use.  

 

Future research should be dedicated to shedding further light on the involvement of 

the endocannabinoid system in psychotic disorders as well as in drug-addiction. 

Especially the involvement of the CB1 receptor in the mediation of the effects of 

cannabis on the brain is in urgent need of further investigation. Moreover, the 

mechanisms of action of cannabinoids other than THC, such as CBD, remain widely 

unknown and knowledge on how CBD brings about its potentially antipsychotic 

effects would greatly advance the development of novel pharmacological treatment 

strategies. Finally, it is of major importance to gain better insight into patterns of 

initiation and continuation of use in vulnerable populations such as patients with 

psychotic symptoms, in particular with regard to the influence of antipsychotic 

medication on levels of craving for cannabis. Together, such research advances will 

hopefully translate into prevention and treatment strategies that will not only 

improve quality of life of many patients but also help to inform adolescents towards 

a sensible dealing with cannabis.  
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SUMMARY  

 

The use of cannabis has been widely established as a risk factor for psychosis. Yet, 

the exact nature of the association still remains unclear, including the issue of self-

medication or reverse causality. Previously it had been suggested that the link 

between cannabis and psychosis might best be understood in terms of interaction 

between genes and environment, where individual vulnerability combines with 

environmental risk such as cannabis use in causing psychotic disorder. However, it is 

widely unknown whether cannabis use might also interact with other environmental 

risk factors. In addition, the biological mechanisms behind such findings remain 

elusive.  

 

This thesis therefore considered epidemiological (studied in chapters 2, 3 and 4) as 

well as biological mechanisms (discussed in chapters 5, 6, 7, and 9) that may 

underlie the association between exposure to cannabis and the development of 

psychotic symptoms and schizophrenia.  

 

CHAPTER 1 provides an overview on the epidemiology and etiology of psychotic 

disorders such as schizophrenia and discusses cannabis use as an important 

environmental risk factor. Furthermore, epidemiological studies on the link between 

cannabis use and psychosis are reviewed and an outlook is given on potential 

biological correlates of this association, concluding that dopamine might play a role 

in mediating the effects of cannabis on psychosis risk. The chapter subsequently 

discusses existing findings on differential sensitivity to the effects of cannabis, 

indicating that genetic predisposition for psychosis as well as variation in specific 

molecular polymorphisms might give rise to increased vulnerability. Also, cannabidiol 

is introduced as another cannabinoid and ingredient of cannabis with potential 

antipsychotic properties. Finally, research gaps in the study of cannabis as cause of 

psychosis are identified and the aims of the current thesis are outlined.  

 

CHAPTER 2 deals with the temporal association between exposure to cannabis and 

the development of psychotic symptoms to shed further light on the nature of this 

association. In addition it was of interest whether cannabis use increases psychosis 

risk by impacting on the persistence of subclinical psychotic symptoms. For this 

purpose, data from a large German prospective cohort study of adolescents and 

young adults (Early Developmental Stages of Psychopathology, EDSP) were 

analyzed. The following research questions were formulated: i) Does cannabis use 

precede the onset of incident subclinical psychotic symptoms in adolescence and 

young adults? And ii) Does cannabis use increase psychosis risk by negatively 

impacting on the persistence of these subclinical psychotic symptoms? Analyses of the 
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data revealed that, in individuals who were cannabis naïve at baseline, use of 

cannabis between baseline and first follow-up was significantly associated with 

increased risk of incident psychotic symptoms at second follow-up. Moreover it was 

revealed that continued use of cannabis (i.e. cannabis use at both baseline and first 

follow-up) increased the risk that subclinical psychotic symptoms persisted throughout 

the period between first and second follow-up. Together these findings provide 

further evidence for a causal role of cannabis use in the etiology of psychosis. 

Moreover, a mechanism of abnormal persistence of subclinical psychotic symptoms is 

suggested to form part of the pathway from cannabis to psychosis.  

 

CHAPTER 3 considers the possibility of environmental moderation of the cannabis-

psychosis relationship. In particular we investigated whether urbanicity – growing up 

in an urban environment – played a role for the long-term psychosis-inducing effects 

of cannabis. Again, data from the German EDSP study were analyzed and the 

interaction between urbanicity and cannabis use at follow-up was calculated. To 

ensure the prediction of incident psychotic symptoms, all individuals with preexisting 

psychotic symptoms at baseline were excluded from the analyses. It was revealed 

that the risk to develop psychotic symptoms following cannabis use was much higher 

for individuals who grew up in an urban environment compared to individuals from 

the rural surroundings. This suggests that, in addition to genetic factors, exposure to 

environmental risk factors may induce increased sensitivity to the psychosis-inducing 

effects of cannabis.  

 

CHAPTER 4 presents a further epidemiological study on environmental moderation 

of the cannabis-psychosis relationship. Previous research had indicated that trauma 

interacts with cannabis use in causing psychosis: Individuals who were exposed to 

trauma during childhood had a higher risk of developing psychotic symptoms and 

schizophrenia following cannabis use later in life. The present study aimed at 

replication of this finding in the large cohort of the prospective German EDSP study. 

Contrary to our hypothesis and to previous findings, trauma was not associated with 

increased risk of developing psychotic symptoms after cannabis use.  

 

CHAPTER 5 provides an update on the dopamine dysfunction in psychosis and 

schizophrenia. This includes neurochemical imaging studies on mechanisms of 

presynaptic and postsynaptic dopamine function in both striatal and extrastriatal 

regions of the brain, including prefrontal areas. It is concluded that contrary to the 

long-standing claim of involvement of mesolimbic dopamine dysregulation, it is 

rather a dysfunction in nigrostriatal dopaminergic pathways and in particular 

associative striatum that is associated with (early) expression of symptomatology in 

psychosis.  



SUMMARY 193 
 

 

In order to elucidate the role of dopamine in the psychosis inducing effects of 

cannabis, CHAPTER 6 summarizes and integrates research across different 

disciplines on the interaction between the dopamine and the endocannabinoid 

system. Dopamine plays a central role in the emergence as well as experience of 

psychotic symptoms. Striatal dopaminergic hyperfunction has been implicated in the 

positive symptoms of psychosis, while dopaminergic hypoactivity in prefrontal brain 

regions has been assumed to underlie the expression of negative symptoms. 

Evidence from animal research suggests that endocannabinoids are key components 

in the regulation of dopaminergic neurotransmission, both in striatal and prefrontal 

brain regions. Moreover, THC has been shown to differentially affect these 

pathways. It is concluded that the repeated administration of THC might alter PFC 

function and impair cognition by acting on dopamine signaling via activation of CB1 

receptors. In the ventral tegmental area, it seems that THC leads to burst firing of 

dopamine neurons and as a consequence increased dopamine levels in the striatum. 

Here, THC might additionally exert its effects by directly influencing synaptic 

plasticity. Yet, most of the evidence discussed in this chapter stems from animal 

research, and research into the processes underlying cannabis-induced psychosis in 

the human brain is demanded.  

 

In line with the considerations put forward in chapter 6, CHAPTER 7 tests the 

hypothesis that THC increases the risk of developing psychotic symptoms by 

stimulating striatal dopamine neurotransmission. For this purpose, Positron Emission 

Tomography and [18F] fallypride was used to study ligand displacement at D2 

receptors – indicative of increased dopamine release – following pulmonary 

administration of THC in 9 patients with psychotic disorder, 9 first-degree relatives 

and 10 healthy controls. Analyses revealed significant dopamine release associated 

with administration of THC in both patients with psychotic disorder and first-degree 

relatives. In line with previous findings, no THC-induced dopamine release was found 

in healthy controls. These findings support a dopaminergic mechanism of cannabis-

induced psychosis in individuals at risk for psychosis. 

 

CHAPTER 8 investigates patterns of cannabis use in relation to craving for cannabis 

in daily life of patients with psychotic disorder and healthy controls. The study makes 

use of the Experience Sampling Method (ESM), a structured diary technique that 

pseudo-randomly collects multiple observations per person during several 

consecutive days. Participants received a digital wrist watch and a paper-and-pencil 

ESM booklet. Twelve times a day on six consecutive days, the watch emitted a beep 

at random moments. After each beep, participants were asked to fill in a self-

assessment form, collecting reports on craving intensity, severity of symptoms and 

cannabis use rated on 7-point Likert scales at the moment of the beep. In addition to 

collecting information on craving levels by means of the ESM booklets, craving was 
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assessed with the Obsessive Compulsive Drug Use Scale (OCDUS) for cannabis use. 

It was revealed that patients with psychotic disorder displayed higher levels of 

craving when measured with the OCDUS, but did not differ from healthy controls in 

craving intensity when measured in daily life with ESM. Also ESM craving was a 

better predictor of cannabis use during the ESM week than scores on the OCDUS. 

Craving in daily life was significantly associated with cannabis use in daily life. 

Notably, this association was stronger for controls than for patients, suggesting that 

patients are either prevented more often from use or alternatively use cannabis 

rather independent from inner cues. In general, no differences were found between 

patients receiving different types of antipsychotics, yet failure to detect such 

differences might be due to a lack of power. Overall, the study emphasizes the 

need to further elucidate the role of craving in relation to cannabis use in patients 

with psychosis, in particular with regard to the influence of antipsychotic medication. 

Better insight into mechanisms of cannabis use might ultimately guide the 

development of effective treatment strategies.  

 

CHAPTER 9 presents an editorial addressing the issue of differences in potency of 

cannabis (i.e. the amount of THC) in relation to its effects on psychosis and cognition. 

Apart from THC, cannabis contains a range of other cannabinoids, among others 

cannabidiol. Notably, cannabidiol has been shown to act anxiolytic and, as 

suggested by studies by Morgan and colleagues, might antagonize the negative 

effects of THC. This is of relevance as the composition of cannabis differs widely with 

regard to the ratio of cannabidiol and THC. It is concluded that future research on 

this topic is warranted in order to shed further light on the possibly antipsychotic 

mechanisms of action of cannabidiol. Furthermore the importance of considering 

differences in the cannabidiol:THC ratio of cannabis when studying its effects on 

human behavior and mental health is emphasized.  

 

Finally, CHAPTER 10 briefly summarizes the results of the studies presented in this 

thesis, which includes three epidemiological studies, an experimental neuroimaging, 

an observational study, two reviews and an editorial. The relevance of the current 

results is discussed on the background of existing findings. Furthermore, clinical 

implications are considered. Directions for future research are provided.  
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