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DETRENDING BOOTSTRAP UNIT ROOT TESTS

Stephan Smeekes

Department of Quantitative Economics, Maastricht University, Maastricht,
The Netherlands

� The role of detrending in bootstrap unit root tests is investigated. When bootstrapping,
detrending must not only be done for the construction of the test statistic, but also in the first
step of the bootstrap algorithm. It is argued that the two issues should be treated separately.
Asymptotic validity of sieve bootstrap augmented Dickey–Fuller (ADF) unit root tests is shown for
test statistics based on full sample and recursive ordinary least squares (OLS) and generalized
least squares (GLS) detrending. It is also shown that the detrending method in the first step of
the bootstrap may differ from the one used in the construction of the test statistic. A simulation
study is conducted to analyze the effects of detrending on finite sample performance of the
bootstrap test. It is found that full sample OLS detrending should be preferred based on power
in the first step of the bootstrap algorithm, and that the decision about the detrending method
used to obtain the test statistic should be based on the power properties of the corresponding
asymptotic tests.

Keywords Deterministic trends; Sieve bootstrap; Unit root test.

JEL Classification C15; C22.

1. INTRODUCTION

In recent years we have seen a large number of papers on the
application of the bootstrap to nonstationary time series. The good
performance of bootstrap methods in stationary time series has led people
to adapt the methods to nonstationary settings, and in particular to unit
root testing, where finite sample size distortions are known to occur
frequently. The literature has focused mainly on how to deal with serial
correlation, but it stays relatively silent on how to deal with deterministic
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Maastricht University, P. O. Box 616, 6200 MD Maastricht, The Netherlands; E-mail: S.Smeekes@
maastrichtuniversity.nl
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trends. Our aim in this paper is to investigate how the method of
detrending impacts the performance of bootstrap unit root tests.

Allowing for deterministic trends is very important in applications.
Many economic series such as real gross domestic product (GDP) can be
thought of as containing a linear trend, while the inclusion of an intercept
is relevant for virtually every economic time series. It is therefore crucial to
have tests that can take such trends into account. One way to take a trend
into account is to include it in the unit root equation and make it part
of the testable hypothesis, such as the �-tests of Dickey and Fuller (1981).
The alternative way, that we consider here, is to perform an initial step
of detrending, and then to perform the unit root test on the detrended
series.

It is well known in the unit root literature that the method of
detrending can have a major impact on the power of the tests. In
their seminal work, Elliott et al. (1996) showed that generalized least
squares (GLS), or quasi-difference, detrending is optimal in terms of local
asymptotic power if the initial condition is equal to zero. Alternatively, Shin
and So (2001) and Taylor (2002) propose to detrend the data recursively.
Shin and So (2001) show that with recursive demeaning that the bias of the
estimate of the autoregressive parameter decreases and correspondingly
the power of the test increases.

While one might expect the power properties of the asymptotic tests
to carry over to the bootstrap setting, it might be that the method of
detrending in the actual bootstrap procedure has an effect on the size
of the bootstrap tests as well. The argument of Shin and So (2001) that
the autoregressive parameter is estimated more precisely with recursive
detrending, could for example lead one to expect an improvement in size
properties of the bootstrap tests. In this paper we investigate the effects of
the detrending methods in a bootstrap context.1

There is a large array of different bootstrap unit root tests available,
see, e.g., Chang and Park (2003), Paparoditis and Politis (2003), Swensen
(2003a), Parker et al. (2006), Richard (2007), and Cavaliere and Taylor
(2009) among others. The tests that have been proposed in these
papers differ in the bootstrap method used (usually sieve, block or wild
bootstrap), in the test statistic used, and the tests differ in whether the null
is imposed in the estimation for the bootstrap. We choose to focus on one
particular test, the residual-based augmented Dickey–Fuller (ADF) sieve
bootstrap t -test. This test was proposed by Paparoditis and Politis (2005)

1It is not our intention in this paper to find an “optimal” unit root test; we focus on the
effect of the aforementioned detrending methods in the bootstrap. A thorough investigation of
modifications of the basic Dickey–Fuller test, including hybrid forms, has been done in Leybourne
et al. (2005).
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and Palm et al. (2008) and shown to perform well in the simulation study
of Palm et al. (2008) compared to other alternatives.2

In this paper we extend the proof of asymptotic validity given
in Palm et al. (2008) to a setting with deterministic components
in the data generating process (DGP), and allowing for a range of
detrending methods that includes full sample and recursive ordinary
least squares (OLS) and GLS detrending. A simulation study investigates
the impact of the method of detrending on the performance of
the bootstrap unit root test. By allowing for a different method
of detrending in the first step of the bootstrap procedure than in
the calculation of the test statistic, we can analyze the two points
separately.

An interesting question is when to apply the tests with just an intercept,
and when to include both an intercept and a trend. As analyzed by,
among others, Harvey et al. (2009), estimating the model with trend in
the absence of a trend in the DGP leads to a significant loss of power
compared to the model with just an intercept. On the other hand, the
tests with intercept only are not invariant to the presence of a trend in
the DGP and should therefore not be applied in this setting. We will not
analyze this issue explicitly in combination with the bootstrap; for the tests
considered in this paper the problem is essentially the same whether one
uses the bootstrap or not. As such, the conclusions of Harvey et al. (2009)
remain relevant with the application of the bootstrap as well. The approach
to deal with uncertainty regarding the deterministic trend and the initial
condition by a union of tests as proposed by Harvey et al. (2009) and
Harvey et al. (2012) has been extended to a bootstrap setting by Smeekes
and Taylor (2012).

The outline of the paper is as follows. Section 2 will describe the model
used for the theoretical analysis. The tests and their limit distributions are
discussed in Section 3. In Section 4 a simulation study will be undertaken.
Section 5 concludes. All proofs are contained in the Appendix. Finally,
a word on notation. �x� is the largest integer smaller than or equal
to x . Convergence in distribution (probability) is denoted by

d−→ (
p−→).

Bootstrap quantities (conditional on the original sample) are indicated
by appending a superscript ∗ to the standard notation. Convergence in

distribution (probability) of bootstrap statistics is denoted
d∗−→ (

p∗
−→), where

the bootstrap convergence holds in probability. W (r ) denotes a univariate
standard Brownian motion.

2Wild bootstrap tests such as those of Cavaliere and Taylor (2008) and Cavaliere and Taylor
(2009) have also been shown to perform well. However, in our setting of homoskedasticity they
are very similar to the sieve bootstrap test we consider.



872 S. Smeekes

2. THE MODEL WITH DETERMINISTIC TRENDS

We consider the following DGP for yt (t = 1, � � � ,T ):

yt = xt + �′zt , xt = �xt−1 + ut ,

ut =
∞∑
j=0

�j�t−j = �(L)�t � (1)

The process zt is a deterministic process. In particular, we consider zt =
1 and zt = (1, t)′. In the remainder of the paper we will focus on the
case with linear trend, but it is clear that all results will also hold for
the intercept only case. The null hypothesis H0 : � = 1 corresponds to a
unit root, possibly in the presence of a deterministic trend. Under the
alternative H1 : |�| < 1, with the following conditions on the linear process
ut , the process is integrated of order zero.

Assumption 1. (i) Let �t be i.i.d. with E�t = 0, E�2
t = �2, and E�4

t < ∞. (ii)
�(z) �= 0 for all |z| ≤ 1, and

∑∞
j=0 j |�j | < ∞.

These assumptions, which are comparable to those found in the literature
(cf. Phillips and Solo, 1992; Chang and Park, 2002), are sufficient for
the derivation of the asymptotic distribution of the test statistic and its
bootstrap counterpart. For the derivation of the asymptotic distribution of
the original test statistic, Assumption 1(i) could be relaxed to allow �t to
be a martingale difference series, but for the sieve bootstrap one needs the
independent and identically distributed (i.i.d.) assumption (Chang and
Park, 2003).

The treatment of the deterministic components is comparable to
Elliott et al. (1996). Moreover, as in Elliott et al. (1996), we assume that the
initial condition is zero, i.e., x0 = 0. While this is an innocuous assumption
under the null hypothesis as x0 cannot be identified if a constant is
included in the model, this is a crucial assumption under the alternative
for the optimality of the approach of Elliott et al. (1996), as discussed
by Müller and Elliott (2003), Elliott and Müller (2006), and Harvey et al.
(2009) among others. A theoretical discussion on the role of the initial
condition for the optimality of the tests is beyond the scope of this paper,
but we will return to the point in the simulation study in Section 4.

3. BOOTSTRAP ADF TESTS WITH DETRENDING

In this section the (bootstrap) ADF tests with detrending are discussed
and their limit distributions are derived. We describe the methods in a
general framework, of which OLS, GLS, and recursive detrending are
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special cases.3 In the following we will focus on the Dickey–Fuller t -statistic,
as this is the most popular in practice. We do not explicitly consider the
ADF coefficient test, which has been discussed by Xiao and Phillips (1998)
with GLS detrending. However, all results derived here also apply to the
ADF coefficient test, although a slightly stronger assumption on the lag
length in the ADF regression is needed (cf. Chang and Park, 2002).

3.1. Detrended ADF Statistics

We define the detrended series ydt ,�,	 as

ydt ,�,	 = yt − �̂′
t ,�,	zt , where �̂t ,�,	 =

(
	∗∑
t=1

zcT ,�,t z
′
cT ,�,t

)−1 (
	∗∑
t=1

zcT ,�,t ycT ,�,t

)
�

(2)

Here 	∗ = max(t , �T 	�) has the same meaning as in Taylor (2002). It
indicates if and how recursive detrending is used, as only observations up
to 	∗ are used. If 	 = 0, 	∗ = t and “full” recursive detrending is used. If
	 = 1, 	∗ = T and the full sample is always used to detrend. If 	 is between
0 and 1, recursive detrending is used, but a minimum proportion of the
sample is always used in estimating �.

We consider the variant of recursive detrending of Taylor (2002). It
is easier to apply than the Shin and So (2001) method and does not
require the adjustment of Sul (2009), which is necessary for the Shin
and So (2001) method as their approach is not invariant to the trend
parameter (Rodrigues, 2006). Moreover, it directly lends itself to be put
into the framework described above. The main argument for recursive
detrending is to avoid using an explanatory variable (the first lag) that
is correlated with the error term, which happens for full sample OLS
demeaning through the subtraction of the overall mean estimate. Shin
and So (2001) showed using simulations that the first order autoregressive
estimator under recursive demeaning is less biased than under full sample
demeaning, and as a consequence, unit root tests based on recursive
demeaning are more powerful.

Next, zcT ,�,t = zt − (1 − cT ,�)zt−1 for t ≥ 2 and zcT ,�,1 = z1. We specify
cT ,� as cT ,� = c̄ �T −�. If � = 0, this is OLS detrending as cT ,0 = 1 and
hence zcT ,0,t = zt . If � = 1, this is the GLS detrending of Elliott et al.
(1996) as cT ,1 = c̄T −1 and hence zcT ,1,t = zt − (1 − c̄T −1)zt−1. ycT ,� is defined
accordingly. Elliott et al. (1996) consider the construction of unit root
tests that are point optimal against a local alternative � = 1 − c̄T −1.

3A general framework that nests all these options was presented by Broda et al. (2009). Ours
slightly deviates from theirs as our objectives are different.
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The parameter c̄ has to be selected by the user. Elliott et al. (1996)
recommend using c̄ = 7 for the intercept only case and c̄ = 13�5 for the
linear trend case, as the power functions of the DF-GLS test are very close
to the power envelope for these values. As these values are commonly
accepted we will use them as well later in our simulation study.

To lighten the notational load, we will not explicitly mention the
dependence on � and 	 when no confusion can arise. Hence, we usually
write ydt and �̂t when the context is clear. The ADF t -statistic ADF�,	 is then
the usual regression t -statistic of significance on 
 in the augmented DF
regression

�ydt = 
ydt−1 +
p∑

j=1

�j�ydt−j + �d
p,t �

We need the following assumption on the lag length p in the ADF
regression.

Assumption 2. Let p → ∞ and p = o(T 1/2) as T → ∞.

The limiting distribution of the ADF t -statistic is given below. Note
that the asymptotic distributions given below reduce to the standard
distributions found in Elliott et al. (1996) and Chang and Park (2002)
when 	 = 1.

Theorem 1. Let yt be generated by (1) with � = 1, and let Assumptions 1 and
2 hold. Let � = 0, 1 and 	 ∈ [0, 1]. Then, as T → ∞, we have that

ADF�,	
d−→W�(1, 	)2 − W�(0, 	)2 − 1

2
(∫ 1

0 W�(r , 	)2dr
)1/2 ,

where

W0(r , 	) = W (r ) − 2r̄−2(2r̄ − 3r )
∫ r̄

0
W (s)ds − 6r̄−3(2r − r̄ )

∫ r̄

0
sW (s)ds,

W1(r , 	) = W (r )− r r̄−1

(
1+ c̄ r̄ + 1

3
c̄2r̄ 2

)−1 [
(1+ c̄ r̄ )W (r̄ )+ c̄2

∫ r̄

0
sW (s)ds

]
,

and r̄ = max(r , 	).

Remark 1. Under the local alternative � = 1 − cT −1, the limit
distribution will remain the same as in Theorem 1, but with W (r ) replaced
by Wc(r ) = ∫ r

0 e−(r−s)cdW (s) in the expressions for W�(r , 	). This can be
shown straightforwardly, though tediously, using standard results regarding
the invariance principle (cf. Phillips and Perron, 1988) and our proofs in
the appendix.
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3.2. Bootstrap ADF Statistics and Their Asymptotic Properties

The bootstrap algorithm we consider is an extension of Bootstrap Test
4 given in Palm et al. (2008). The extension is Step 1, on the treatment of
deterministic components.

Algorithm 1.

1. Calculate ỹdt = yt − �̃′
t zt , where �̃t = �̂t ,�̃,	̃ is defined in (2), but it is not

necessary that �̃ = � and 	̃ = 	.
2. Estimate an ADF regression of order q for ỹdt by OLS and calculate the

residuals

�̂d
q ,t = �ỹdt − 
̂ỹdt−1 −

q∑
j=1

�̂j�ỹdt−j � (3)

3. Resample with replacement from the recentered residuals
(
�̂d
q ,t − ¯̂�d

q ,t

)
to obtain bootstrap errors �∗

t .
4. Build u∗

t recursively as u∗
t = ∑q

j=1 �̂j u∗
t−j + �∗

t , using the estimated
parameters �̂j from Step 2, and build x∗

t as x∗
t = x∗

t−1 + u∗
t . Finally, let

y∗
t = x∗

t + �∗′zt . See Remark 2 for the choice of �∗.
5. Using the bootstrap sample y∗

t , apply the same method of detrending as
applied to the original sample to obtain the detrended bootstrap series
y∗d
t = y∗d

t ,�,	. Calculate ADF ∗
�,	 as the t -statistic of significance of 
∗ in the

ADF regression of order p∗

�y∗d
t = 
∗y∗d

t−1 +
p∗∑
j=1

�∗
j �y

∗d
t−j + �∗d

p∗,t �

6. Repeat Steps 3 to 5 B times, obtaining bootstrap test statistics ADF ∗b
�,	 for

b = 1, � � � ,B, and select the bootstrap critical value c∗
 as c∗

 = max�c :∑B
b=1 I (ADF

∗b
�,	 < c) ≤ �, or equivalently as the -quantile of the ordered

ADF ∗b
�,	 statistics. Reject the null of a unit root if ADF�,	 is smaller than c∗

 ,
where  is the nominal level of the test.

As can be seen from the algorithm above, we allow for a different lag
length in the sieve bootstrap (q) than in the calculation of the test statistic
(p). Moreover, we allow for a different lag length in the calculation of the
bootstrap test statistic (p∗). It might seem a logical choice to set q = p, as
both are based on an ADF regression. However we do not wish to impose
this because, if the methods of detrending differ, the ADF regressions are
not the same, and one might obtain a different p and q if the choice is
based on an information criterion.
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It is also important to allow for lag length selection of p∗ within the
bootstrap, as this will improve the finite sample properties of the test. In
the following we will simply denote p∗ by p to lighten the notational load.
This is a harmless simplification as we require p∗ to satisfy Assumption
2 as well, and moreover p and p∗ will never be in the same part of the
proof anyway. The finite sample performance of the tests might improve by
imposing certain restrictions on the relation between p and p∗; see Richard
(2009) for more details. We will not explore this here any further. We need
the following assumption on the lag lengths.

Assumption 3. (i) Let q → ∞ and q = o((n/ lnn)1/3) as n → ∞. (ii) Let
p/q → � > 1 as T → ∞, where � may be infinite.

The second part of the assumption essentially states that, for large T ,
p should be at least as large as q .

Remark 2. It is unnecessary to include deterministic components in Step
4 of the bootstrap algorithm, as the tests we consider are invariant with
respect to the true deterministic components in the (bootstrap) DGP.
Therefore, we recommend setting �∗ = 0 for simplicity. While our results
would continue to hold for other values of �∗, it would not be valid to set
y∗
t = x∗

t + �∗′
t zt , with �∗

t = �̂t , as this would mean that the parameters of the
deterministic trends are time-varying, which is not the case in the original
sample.

It is important to note that the detrending method in the first step
of the bootstrap test using �̂t ,�̃,	̃ does not have to be the same as the one
performed in the test using �̂t ,�,	. Specifically, we do not require that �̃ = �

and 	̃ = 	; the properties of the estimated coefficients and residuals are
identical asymptotically for any �̃ and 	̃. This is formalized in the following
lemma.

Lemma 1. Define �̃j , j = 1, � � � , q as the OLS estimators in a regression of ut

on ut−1, � � � ,ut−q . Let �̂j be defined as in (3). Let �̃t = �̂t ,�̃,	̃ be defined as in (2)
with �̃ = 0, 1 and 	̃ ∈ [0, 1] and let Assumptions 1 and 3 hold. Then

�̂j = �̃j + Op(T −1q1/2),

uniformly in j = 1, � � � , q.

Using the above lemma we can use the results on autoregressive
approximation and the sieve bootstrap as established by Hannan and
Kavalieris (1986) and Bühlmann (1997), used in a unit root setting by Park
(2002) and Chang and Park (2003) (also see Remark 4). Given Lemma 1
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and the results mentioned above, we can establish the limit distribution of
the detrended ADF bootstrap tests.

Remark 3. If we restrict ourselves to full sample detrending then one
can show that all that is required of �̃ = (�̃1, �̃2)

′ is that it satisfies the
conditions �̃1 − �1 = Op(T 1/2) and �̃2 − �2 = Op(T −1/2), thus allowing for
trend estimators beyond the OLS and GLS framework (see Smeekes,
2009a, Chapter 3). We conjecture that a similar result holds for recursive
detrending.

Remark 4. One might consider using Yule–Walker instead of OLS in the
sieve bootstrap to ensure that the estimated autoregression is invertible.4 In
fact, the results of Hannan and Kavalieris (1986) and Bühlmann (1997) are
derived for Yule–Walker estimators. However, Theorem 1 of Poskitt (1994)
implies that these results are valid for OLS estimation as well.

We can now derive the following theorem on the asymptotic
distribution of the bootstrap ADF t -statistics. Note that, as the limit
distribution of the bootstrap statistic is the same as that of its asymptotic
counterpart, this theorem establishes the asymptotic validity of the
bootstrap ADF test.

Theorem 2. Let yt be generated by (1) with � = 1, and let Assumptions 1, 2
and 3 hold. Let � = 0, 1 and 	 ∈ [0, 1]. Then, as T → ∞, we have that

ADF ∗
�,	

d∗−→ W�(1, 	)2 − W�(0, 	)2 − 1

2
(∫ 1

0 W�(r , 	)2dr
)1/2 in probability�

The asymptotic validity of the bootstrap tests that we established is
a property of the bootstrap tests under the null hypothesis. We next
investigate how the bootstrap performs under the alternative hypothesis.
We discern local and fixed alternatives.

Under local alternatives the bootstrap tests must have the same
asymptotic distribution as under the null hypothesis, as it is only then
that the bootstrap tests will have the same asymptotic local power function
as the asymptotic tests. Here this means that Theorem 2 should remain
valid under local alternatives. Swensen (2003b) shows that this is true for
full sample OLS and GLS detrending under i.i.d. errors. Without going
into technical details, it is not difficult to see that under local alternatives
the result of Theorem 2 will continue to hold. Under local alternatives

4The disadvantage of Yule–Walker is that it may have substantial finite sample bias (Poskitt,
1994). Another option if one is worried about the noninvertibility of the OLS estimates is to impose
a root bound as in Burridge and Taylor (2004).



878 S. Smeekes

all rates of convergence remain the same as under the null hypothesis,
including those of the trend estimators, which will ensure that all results,
including Lemma 1, remain valid. It then follows directly from Lemma 1
that Theorem 2 will continue to hold.

Under fixed alternatives, the bootstrap test needs to converge to
some limiting distribution in order to achieve consistency. However, to
have the highest power possible one needs that Theorem 2 continues to
hold under fixed alternatives. For fixed alternatives we may write xt =
(1 − �L)−1�(L)�t = �+(L)�t , where �+(L) is an invertible polynomial.
Therefore, one may approximate xt with a finite order autoregressive
model, or in other words, directly apply the sieve bootstrap of Bühlmann
(1997) to it. Our ADF regression is equivalent to the direct autoregressive
approximation and therefore valid as well. As such, the estimates �̂j will
converge to their population counterparts with rates as in Hannan and
Kavalieris (1986). The only complication arising is the detrending, as
the trend estimators have different properties in the stationary setting.
However, the trend estimators will converge at higher rates,5 which means
that this will not cause any problems. For these reasons, Theorem 2 will
continue to hold, and the bootstrap tests will have the same distributions
under fixed alternatives as under the null hypothesis.

4. FINITE SAMPLE PERFORMANCE

4.1. Simulation Setup

In this section, a Monte Carlo study is performed to investigate the
performance of the methods in finite samples. Our goal is twofold. First,
we wish to investigate whether the power properties of the asymptotic tests
carry over to the bootstrap setting. For example, it is well known that
the GLS detrended test is more powerful than the OLS detrended test
if the initial condition, the deviation of the initial observation from the
deterministic components, is small, while it is the other way around if the
initial condition is large (cf. Müller and Elliott, 2003). Therefore, we will
perform simulations both with a small (zero) initial condition and with a
large initial condition. Our goal is certainly not to give a complete analysis
of the power properties of the tests, but simply to get an idea of whether
power properties carry over to the bootstrap.

The second goal is to investigate whether the method of detrending in
the first step of the bootstrap procedure has an impact on the performance
of the test (both size and power). As discussed in the previous section, the

5See for example (Hamilton, 1994, Chapter 16) for the OLS estimator in a model with
intercept and trend.
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method of detrending in the bootstrap does not have to be the same as
the method performed for the construction of the test statistic.

In order to investigate this we will consider all combinations of
OLS (� = 0), GLS (� = 1), full sample (	 = 1) and full recursive (	= 0)
detrending for use in the bootstrap and the construction of the test
statistic, including their asymptotic variants. The asymptotic tests are
denoted by ADF�,	 where � and 	 indicate the method of detrending for the
calculation of the test statistic as before. The bootstrap tests are denoted
by ADF ∗,�̃,	̃

�,	 , where �̃, 	̃ indicate the method of detrending used in the first
step of the bootstrap. For GLS detrending we use c̄ = 13�5.6

The DGP we use in our simulations is almost identical to the one
given in (1), except that we restrict ut to be a (stationary and invertible)
ARMA(1,1) process, and we generalize the initial condition. The DGP is
given below:

yt = xt + �′zt , xt = �xt−1 + ut

ut = �ut−1 + �t + ��t−1, (4)

where �t ∼ N (0, 1) and � = 1 − cT −1. We set the true deterministic
components equal to zero (take � = (0, 0)′); as we perform all tests under
the assumption that zt = (1, t), all tests are invariant to the true value of
�. For the size analysis we set x0 = 0 without loss of generality. For the
power analysis we consider both a small and large initial condition; that
is, we follow Harvey et al. (2009) and set x0 = a

√
�u/(1 − �2), where �u =

limT→∞ T −1E(
∑T

t=1 ut)
2. We set a = 0 which gives a zero initial condition,

and a = 2�5, a value that gives a clear power advantage to the OLS test in
Harvey et al. (2009).

Lag lengths p, q and p∗ are selected separately using the modified
Akaike information criterion (MAIC) (Ng and Perron, 2001). As suggested
by Perron and Qu (2007), lag lengths p and p∗ are always determined from
OLS detrended data. All results are obtained using 1000 simulations and
499 bootstrap replications. For the asymptotic tests, we use small sample
critical values. The nominal level is taken to be 0.05 everywhere.

4.2. Simulation Results

Figures 1 and 2 present results for size (c = 0) for T = 50 and
T = 100, respectively. The figures are split according to the test statistic
used, e.g., the top left cell consists of all tests that use ADF0,1, the ADF

6Elliott et al. (1996) suggest and investigate the optimality of this value for full sample GLS
detrending. There is however no reason why this value should be optimal for recursive GLS
detrending. However, we will use it as it is a well accepted value in the literature. Moreover, a
study into the optimal value for c̄ is outside the scope of this paper. Broda et al. (2009) go into
more detail.
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FIGURE 1 Size, T = 50.

test based on full sample OLS detrending, as test statistic, and they
differ in the method that is applied in the first step of the bootstrap.
The numbers 1, 2, 3, 4, 5 on the x-axis correspond to setting the
autoregressive moving average (ARMA) parameters in (4) as � = 0 and
� = −0�8,−0�4, 0, 0�4, 0�8, respectively, while 6, 7, 8, 9, 10 correspond to
� = 0 and � = −0�8,−0�4, 0, 0�4, 0�8, respectively (the value for � = � = 0
is given in both parts of the graph).

The asymptotic tests are undersized for most parameter combinations,
while there is the familiar oversize for negative moving average (MA)
parameters. Note that the recursively detrended tests have smaller size
distortions in this case, although for other parameter combinations they
have more undersize. The bootstrap tests appear to be less sensitive than
the asymptotic tests to the values of the ARMA parameters, and have size
close to the nominal level in general. The exception is the DGP with
the large negative MA parameter, where there is still oversize, although
generally less than for the asymptotic tests. What is quite noticeable is that
the bootstrap corrects most of the undersize of the asymptotic tests.
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FIGURE 2 Size, T = 100.

The effects of the detrending method used for the calculation of the
test statistic follow that of the corresponding asymptotic tests, although less
pronounced. Considering the method of detrending in the first step of the
bootstrap, we see that the recursively detrended tests, in particular the GLS
version, have a tendency to reject less often than the full sample detrended
tests. With the exception of the models with a negative MA parameter,
where recursive GLS detrending leads to size closest to nominal, this leads
to undersize, which could affect power negatively. Full sample detrending,
in particular using OLS, in the first step of the bootstrap leads to size
closest to nominal although it has larger size distortions if there is a large
negative MA parameter.

We next consider the power properties of the tests. For this purpose
we report (unadjusted) power curves for the DGP with i.i.d. errors.7 We
investigate the power properties of the tests for both a small (zero) and

7We consider i.i.d. errors to avoid size distortions caused by the ARMA parameters. These
curves are representative though for the other models.
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FIGURE 3 Power curves for i.i.d. errors, a = 0, T = 100.

large initial condition, as it is known from the literature that the initial
condition has a major impact on the relative power of tests using OLS and
GLS detrending (cf. Harvey et al., 2009). Fig. 3 gives the power curves
for a zero initial condition, while Fig. 4 gives the curves for a large initial
condition (a = 2�5). For both cases we take T = 100.

As expected for the asymptotic tests, the power curves show that for a
small initial condition, full sample GLS detrending is the most powerful,
while for a large initial condition, full sample OLS detrending is the most
powerful. The power of the recursively detrended tests is smaller than
that of their full sample counterparts. The bootstrap tests follow their
asymptotic counterparts closely regarding the detrending method used for
the calculation of the test statistic, but the curves also show that in general
the bootstrap tests tend to be more powerful than the asymptotic tests,
which is likely caused by the fact that the asymptotic tests are undersized.
The power of the bootstrap tests also clearly depends on the method
of detrending used within the bootstrap. The tests that use full sample
OLS detrending in the first step of the bootstrap have the highest power,
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FIGURE 4 Power curves for i.i.d. errors, a = 2�5, T = 100.

while the power of recursive GLS detrending is lowest. Full sample GLS
detrending is very similar to OLS for a small initial condition, but leads to
lower power for a large initial condition.

These results show that in the first step of the bootstrap full sample
OLS detrending should be preferred from a power perspective. The
only downside to full sample OLS detrending is its size for negative MA
parameters, but given the power properties this does not seem to justify
using another detrending method in the first step of the bootstrap. The
major determinant of this result appears to be the selection of the lag
length q . Under recursive detrending, structurally a higher lag length is
selected than under full sample detrending. Also, a higher lag length is
selected under full sample GLS detrending than under full sample OLS
detrending.8 Unreported simulations show that if the lag length is selected
in the same way for all methods, the differences disappear. Therefore,

8Average selected lags are available on request.
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it mainly seems to be important to let the selection of q be based on full
sample OLS detrended data.

While the detrending in the first step of the bootstrap clearly matters,
overall it only has a minor impact on the power properties of the bootstrap
tests, as these are mainly determined by the properties of the corresponding
asymptotic test. Therefore, just as for the asymptotic tests, we can conclude
that the GLS full sample detrended test is the preferred test if the initial
condition is small, while the OLS full sample detrended test is to be
preferred if the initial condition is large. Recursive detrending does not
outperform full sample detrending. Of course, the initial condition will
usually be unknown and therefore this conclusion may not be very helpful.
However, the same conclusion holds if asymptotic tests are applied, and as
the properties of the asymptotic tests carry over to the bootstrap setting, any
solution to this problem of the initial condition for asymptotic tests (such
as considered in Harvey et al., 2009, and Harvey et al., 2012) will remain
valid in a bootstrap context (as in Smeekes and Taylor, 2012).

5. CONCLUSION

We have investigated the role of detrending in bootstrap unit root
tests. We have pointed out that the method of detrending used for
the construction of the test statistic does not have to be the same as
the method of detrending performed in the first step of the bootstrap
algorithm. The bootstrap has been shown to be valid for a wide range
of possible detrending methods, irrespective of the method used in the
construction of the test statistic.

A simulation study has been conducted to investigate the impact of
detrending on the size and power properties of the bootstrap unit root
tests. The first important conclusion is that in the first step of the bootstrap
algorithm, full sample OLS detrending outperforms the other methods
in terms of power, and this is mainly caused by the lag selection in
the bootstrap. The second important conclusion is that the method of
detrending used for the construction of the test statistic has a major
impact on the power of the test. Moreover, the power properties of the
bootstrap tests are determined by the power properties of their asymptotic
counterparts, although the bootstrap tests are in general more powerful.

These two conclusions have the following implications. First, the choice
of detrending used in the first step of the bootstrap algorithm should be
seen separately from the choice of the detrending method for the test
statistic. Our simulation study indicates that full sample OLS detrending
should be preferred here, or at least that the lags used in the ADF
regression in the second step of the bootstrap should be selected from
full sample OLS detrended data. Second, the choice of the detrending
method used in the construction of the test statistic should be based on



Detrending Bootstrap Unit Root Tests 885

power considerations. As the power properties of the asymptotic tests carry
over to the bootstrap setting, the choice of the detrending method for
the bootstrap tests should be based on the same considerations as for the
asymptotic tests, that is, GLS detrending should be preferred if the initial
condition is small while OLS detrending should be preferred if the initial
condition is large.

There are several extensions possible to this paper. First, one could
consider alternative methods of detrending. We have limited our analysis
to OLS and GLS detrending, but one can easily imagine other methods.
Second, one could extend the analysis to other types of unit root tests.
Examples of these points are given in Leybourne et al. (2005). Finally, one
could view detrending in a broader perspective and analyze more general
trends, such as polynomial trends of higher order or broken trends.

APPENDIX: PROOFS

Proof of Theorem 1. It follows directly from results in Elliott et al.
(1996) and Taylor (2002) that

T −1/2yd�Tr �
d−→�(1)�W�(r , 	)�

By Assumption 1, we may define �(z) = �(z)−1 = 1 − ∑∞
j=1 �j zj . Now

define �p,t = ut − ∑p
j=1 �j ut−j = �t + ∑∞

j=p+1 �j ut−j . As ydt = xt − (�̂t − �)′zt ,
we can write

�p,t = �ydt −
p∑

j=1

�j�ydt−j + �[(�̂t − �)′zt ] −
p∑

j=1

�j�[(�̂t−j − �)′zt−j ],

where �[atbt ] = atbt − at−1bt−1 for any sequences at and bt . Then, letting
�p(z) = 1 − ∑p

j=1 �j zj , we can write �d
p,t = �p,t − �p(L)�[(�̂t − �)′zt ] such

that �ydt = ∑p
j=1 �j�ydt−j + �d

p,t . Similarly, we can define �d
t such that �d

t =
�ydt − ∑∞

j=1 �j�ydt−j = �t − �(L)�[(�̂t − �)′zt ].
Letting �Y d = (�yd1 , � � � ,�y

d
T )

′, Y d
−1 = (yd0 , � � � , y

d
T−1)

′, wd
p,t =

(�ydt−1, � � � ,�y
d
t−p)

′, Md
p = (wd

p,1, � � � ,w
d
p,T )

′, �p = (�1, � � � ,�p)
′, and �d

p =
(�d

p,1, � � � , �
d
p,T )

′, we have �Y d = Md
p �p + �d

p and

AT = Y d ′
−1�Y

d − Y d ′
−1M

d
p

(
Md ′

p M d
p

)−1
Md ′

p �Y d

= Y d ′
−1�

d
p − Y d ′

−1M
d
p

(
Md ′

p M d
p

)−1
Md ′

p �d
p ,

BT = Y d ′
−1Y

d
−1 − Y d ′

−1M
d
p

(
Md ′

p M d
p

)−1
Md ′

p Y d
−1,

�̂2 = T −1(�Y d − Y d
−1
̂)

′(I − Md
p (M

d ′
p M d

p )
−1Md ′

p )(�Y d − Y d
−1
̂),
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from which we can now construct the ADF statistic ADF�,	 =

̂

[
�̂2V̂ar(
̂)

]−1/2 = �̂−1ATB
−1/2
T .

It can next be shown, in similar spirit as in Chang and Park (2002),
that

T −2Y d ′
−1Y

d
−1

d−→�(1)2�2

∫ 1

0
W�(r , 	)2dr ,

T −1Y d ′
−1�

d
p

d−→ 1
2
�(1)�2(W�(1, 	)2 − W�(0, 	)2 − 1),∥∥∥(T −1Md ′

p M d
p )

−11
∥∥∥ = Op(1),

∣∣∣T −1Y d ′
−1M

d
p

∣∣∣ = Op(p1/2),∣∣∣T −1Md ′
p �d

p

∣∣∣ = Op(p−1/2), (A.1)

and �̂2 p−→�2. The proofs of Lemma 1 and 2 in Smeekes (2009b) present
details. With these results the limit distributions follow straightforwardly.

�

Proof of Lemma 1. Let �̄q denote the vector of OLS estimators
�̄1, � � � , �̄q in a regression of �ydt on �ydt−1, � � � ,�y

d
t−q (hence imposing the

null hypothesis of a unit root). Then

�̂q = �̄q + (Md ′
q M d

q )
−1Md ′

q Y d
−1
̂ = �̄q + Op(T −1q1/2)�

The next step is to show that �̄q = �̃q + Op(T −1q1/2). Let �B̃z = (�[(�̃1 −
�)′z1], � � � ,�[(�̃T − �)′zT ])′, such that �d

q = �q − �q(L)�B̃z. Also define
wq ,t = (ut−1, � � � ,ut−q)

′ and Mq = (wq ,1, � � � ,wq ,T )
′. Now note that

�̄q − �̃q = (Md ′
q M d

q )
−1Md ′

q �d
q − (M ′

qMq)
−1M ′

q�q

= [(Md ′
q M d

q )
−1 − (M ′

qMq)
−1]M ′

q�q − (Md ′
q M d

q )
−1

[
M ′

q�q(L)�B̃z

+ �B̃z ′�q − �B̃z ′�q(L)�B̃z
]

= AT + BT + CT + DT �

Now define �B̃zq as a T × q matrix with element (i , j) as �B̃z(i ,j)q =
�[(�̃i−j − �)′zi−j ]. Then

‖AT‖ ≤ 2
∣∣∣T −1M ′

q�q

∣∣∣ ∥∥∥(T −1Md ′
q M d

q )
−1

∥∥∥ ∥∥∥(T −1M ′
qMq)

−1
∥∥∥

×
(∥∥∥T −1M ′

q�B̃zq
∥∥∥ +

∥∥∥�B̃z ′
q�B̃zq

)∥∥∥ = op(T −1q1/2),
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‖BT‖ ≤
∥∥∥(T −1Md ′

q M d
q )

−1
∥∥∥ ∣∣∣T −1M ′

q�q(L)�B̃z
∣∣∣ = Op(T −1q1/2),

‖CT‖ ≤
∥∥∥(T −1Md ′

q M d
q )

−1
∥∥∥ ∣∣T −1�B̃z ′�q

∣∣ = Op(T −1q1/2),

‖DT‖ ≤
∥∥∥(T −1Md ′

q M d
q )

−1
∥∥∥ ∣∣T −1�B̃z ′�q(L)�B̃z

∣∣ = Op(T −1q1/2),

which follows directly from the proof of (A.1) as shown in the proof of
Lemma 3 in Smeekes (2009b). Hence we may conclude that �̂j = �̃j +
Op(T −1q1/2) uniformly in j , 1 ≤ j ≤ q . �

Proof of Theorem 2. We must first show that the following invariance
principle for u∗

t holds:

T −1/2
�Tr �∑
t=1

u∗
t

d∗−→ ��(1)W (r ) in probability� (A.2)

The first step towards proving (A.2) is to show that E∗ ∣∣�∗
t

∣∣2+�
< ∞

for some � > 0. Define �̃q ,t as the residuals of a regression of ut on
ut−1, � � � ,ut−q . We then have for any 2 < a ≤ 4

E∗|�∗
t |a ≤ 2a−1T −1

T∑
t=1

∣∣∣∣∣�̂d
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a
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a

so that we can write E∗|�∗
t |a ≤ 2a−1(R1,T + R2,T ). First note that

R1,T ≤ 2a−1T −1
T∑
t=1
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∣∣∣a + 2a−1
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∣∣∣∣∣
a

= 2a−1(R11,T + R12,T )�

As �̂d
q ,t − �̃q ,t = −
̂ydt−1 + ∑q

j=1(�̂j − �̃j)ut−j − �̂q(L)�[(�̃t − �)′zt ], we have
that

R11,T ≤ 3a−1

(
|
̂|aT −1
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|ydt−1|a + T −1
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t=1

∣∣∣∣∣
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It follows that R11,T = op(1) as |
̂|aT −1
∑T

t=1 |ydt−1|a = op(1),

T −1
T∑
t=1

∣∣∣∣ q∑
j=1

(�̂j − �̃j)ut−j

∣∣∣∣a ≤ T −1 max
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|�̂j − �̃j |a
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t=1

q∑
j=1

|ut−j |a

= Op(T −aqa/2+1),

and finally, defining �̂0 = −1 and realizing that �[(�̃t−j − �)′zt−j ] =
(�̃2,t−j − �2) + op(1),

T −1
T∑
t=1

∣∣∣∣ q∑
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It follows similarly that R12,T = op(1). It then follows from Lemma 3.2 in
Park (2002) that R2,T = Op(1), and consequently that E∗|�∗

t |a = Op(1) and

T −1/2
∑�Tr �

t=1 �
∗
t

d∗−→ �W (r ) in probability.
To prove the invariance principle for u∗

t we can apply the Beveridge–
Nelson decomposition as in (Park, 2002, p. 478). We then need to show
that

�̂(1)
p−→�(1), P∗

{
max
1≤t≤T

|T −1/2ū∗
t | > �

}
= op(1), (A.3)

where ū∗
t = �̂(1)−1

∑q
i=1(

∑q
j=i �̂j)u∗

t−i+1. The first result in (A.3) follows as∣∣∣�̂(1) − �(1)
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∣∣∣ +

∣∣∣�̃(1) − �(1)
∣∣∣ = Op(T −1q3/2) + op(1),

where the first part follows from Lemma 1 and the second part from
Lemma 3.1 in Park (2002). To prove the second result in (A.3) we need to
show that

∑q
j=1 j

1/2|�̂j | = Op(1), (see Palm et al., 2010, Proof of Theorem 2,
p. 671). We can write
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where the first part follows from Lemma 1 and the second part follows
from the proof of Theorem 2 in Palm et al. (2010). This completes
the proof of (A.2). It then follows straightforwardly from (A.2) that

T −1/2y∗d
�Tr �,�,	

d∗−→ ��(1)W�(r , 	) in probability.
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In analogy with the original sample, define �∗
p,t = u∗

t − ∑p
j=1 �̂j u∗

t−j =
�∗
t + ∑q
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t−j . However, it is clear from our Assumption 3(ii) that
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9 Therefore

our proofs can proceed as if we set �∗
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sample we can derive that �y∗d
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]−1/2 = �̂∗−1A∗
TB
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Using the results in Chang and Park (2003), we can then show the
following results in similar fashion as their non-bootstrap counterparts
(Lemma 5 of Smeekes, 2009b, provides details):
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It also follows in the same way that �̂∗2 p∗
−→ �2. The bootstrap limit

distributions can then easily be derived. �
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