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Abstract

Since the introduction of exible manufacturing systems, researchers have investigated the

various planning and scheduling problems that the users of such systems are facing. Several

of these problems are not encountered in more classical production settings, and so called tool

mamagement problems appear to be among the more fundamental ones of these problems. Many

researchers have proposed approximate solution techniques for tool management problems, most

of which are hard to solve. In this paper we investigate the quality of these algorithms by means

of worst case analysis. We show that all of the polynomial approximation algorithms proposed

to date exhibit rather poor worst case behavior. We also investigate the complexity of solving

these problems approximately. In this respect, we investigate the interrelationships between tool

management problems and their relationships with other well known combinatorial problems,

such as Set Covering and Clique, and give several negative results on the approximability of

various tool management problems.



1 Introduction

Regardless of the precise de�nition of exibility in the term exible manufacturing systems, the

ability of machines to perform various operations on various products or parts, is a most vital

component of this exibility. This exibility of the machines is achieved by equipping them with

a tool magazine, which enables the machines to hold a set of tools from which, depending on

the operation the machine has to perform, it uses one tool or another. The resulting exibility

may be advantageous from a strategic or even tactical viewpoint, it comes at a price. The

complexity of the operational planning and scheduling of the machines increases considerably,

even when considering the machines in isolation. Apart from the part sequencing decisions,

that normally constitute a solution to a single machine scheduling problem, one has to specify

tool handling decisions. Hence, problems concerning the scheduling of a single exible machine,

which are so fundamental to the scheduling of exible manufacturing systems, di�er essentially

from classical single machine scheduling problems. For this reason, such problems received

considerable attention in the literature, since the introduction of these machines.

A good deal of the literature concerning tool management problems in single machine

scheduling problems takes a practical position. The authors extract a problem from a more

or less real life situation and propose an approximate solution strategy. Other authors, by

contrast, are interested in the mathematical models underlying one or several of these prob-

lems. In this paper we also are primarily interested in mathematical properties of single exible

machine scheduling problems. More speci�cally, we will be interested in the worst case ratios

of polynomial approximation algorithms for single exible machine scheduling problems. This

means that we borrow from both theoretical as well as applied papers. Many of the algorithms

as they are proposed in the literature have appeared in applied papers. On the other hand, a

proper classi�cation of the complexity of the models and their approximability requires a more

theoretical background. In subsequent sections we introduce the problems studied in this paper

and study their complexity, and the complexity of solving them approximately, at length. We

now give a brief overview of related results.

Few attempts have been made to date to classify the problems discussed in this paper

with respect to their approximability. Rajagopalan [1985] establishes that a simple `First Fit

Decreasing' heuristic `can do almost arbitrarily bad' for certain batching problems. Kortsarz

and Peleg [1993] consider a special case of the batch selection problem that may be interpreted

as the problem of �nding a densest induced subgraph. They present an approximation algorithm

for �nding a dense subgraph of a graph G(V;E) of cardinality at most C, whose worst case ratio

is O(jV j 7

18 ). Goldschmidt et al. [1992] also propose several approximation algorithms for special

cases of both the batch selection and the related job grouping problem, with constant worst case

ratios or worst case ratios that are linear in the tool magazine capacity C. Goldschmidt et al.

[1993] suggest a dynamic programming formulation for the batch selection problem and discuss

conditions under which it can be implemented to run in polynomial time.

Of course, there is also a vast amount of literature dealing with the same type of problems

but focusing on other topics than their approximability. Hirabayashi et al. [1984] propose a

quite general mathematical programming formulation for the batch selection problem. Crama

& Mazzola [1995] investigate polyhedral properties of this formulation. Dietrich, Lee & Lee

[1993], and Johnson, Mehrotra, and Nemhauser [1993] also study valid inequalities for (special

cases of) the batch selection problem. Hwan & Shogan [1989] propose a branch & bound algo-
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rithms for the batch selection problem and a langrangean relaxation based solution technique.

Hirabayashi et al. [1984] propose a set covering formulation for the job grouping problem, and

develop a branch & bound algorithm for the batch selection problem. Crama & Oerlemans

[1994] solve the job grouping problem by a column generation approach that is based on the

aforementioned set covering formulation. For a more detailed overview of models and solution

techniques for single machine tooling problems we refer to Crama [1995].

In the next section, we �rst discuss several of the basic single exible machine scheduling

problems and we also briey discuss some mathematical models, their complexity, and their

relationships with other combinatorial problems. Section 3 investigates the worst case behavior

of several algorithms as they are proposed in the literature to date. This investigation will lead

us to the conclusion that all of these algorithms have very poor worst case behavior. However,

as yet it is not known whether there (can) exist polynomial approximation algorithms with a

better worst case behavior. We give negative results on this topic in Section 4. In section 5 we

conclude by discussing directions for further research.

2 Models and complexity

In this section we briey discuss several models as they arise naturally in the context of exible

machine scheduling, and their complexity. Our main purpose is to facilitate the analysis in the

subsequent sections.

To start with, let us take a look at the physical characteristics of exible machine scheduling.

First of all, there is a machine on which a set of jobs or parts have to be processed. (We use

jobs and parts interchangeably). Processing means that the machine performs one or several

operations on these jobs, and the execution of each of these operations requires one or more

tools. The machine can store tools in its tool magazine. In this paper, we assume the magazine

contains C slots, and that each tool requires exactly one slot, although more general models

are possible of course (Crama [1995]). Using tools from the tool magazine requires little set up

time, and thus, as long as a sequence of jobs that have to be processed only requires tools that

are present on the machine, in the tool magazine, set up times are (negligibly) small. However,

if the number of tools required by a sequence of jobs exceeds the tool magazine capacity C, it is

unavoidable that some tool is removed from the magazine to be replaced by another tool. We

refer to such an event as a switch. Switches can not take place during processing operations.

Further, switches usually take nonnegligible time, and thus set up times are `large' whenever a

switch is required.

Under many reasonable objective functions of such scheduling problems, e.g.

makespan minimization, we have to minimize the sum of the set up times. The total set up

time is usually computed in one of the two following ways. If tools cannot be switched simul-

taneously, total set up time depends linearly on the number of tool switches. On the other

hand, supposing that tool switches may be performed (completely) simultaneously, total set up

time depends linearly on the number of switching instants. Let us de�ne a loading strategy as

a speci�cation of the contents of the tool magazine at the beginning of the processing of each

job. We now identify the following four basic scheduling problems, whose names are taken from

Crama [1995]:
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1. Tool switching : The problem of �nding an input sequence for the parts and a loading

strategy for the tool magazine with minimum total set up time, in case total set up time

depends linearly on the number of switches.

2. Loading problem : The problem of �nding for a given part input sequence, a loading

strategy with minimum total set up time, in case total set up time depends linearly on the

number of switches.

3. Job grouping : The problem of �nding an input sequence for the parts and a loading

strategy for the tool magazine with minimum total set up time, in case total set up time

depends linearly on the number of switching instants.

4. Batch selection : The problem of �nding the largest group of jobs that can be processed

without tool switches.

We have enumerated here the optimization versions of the four problems, but we refer to the

decision versions by the same name.

The loading problem is a special case of the tool switching problem that is interesting not only

from a computational viewpoint ; both the tool switching problem and the loading problem also

arise in the context of (mainframe) computer memory management (Blazewicz & Finke [1994]).

Notice that the only di�erence between the tool switching problem and the job grouping

problem is the underlying cost structure. However, the job grouping problem is in a way less

sensitive to the exact part input sequence. Given two consecutive switching instants, the order

in which the jobs are processed between these instants is irrelevant. Let us therefore call a set of

jobs that can be processed without tool switches, a batch. Then, the job grouping problem boils

down to �nding a partitioning of the jobs in a minimum number of batches. These observations

motivate our interest for the fourth problem, the batch selection problem. Sometimes batches

are referred to as groups, which explains the name job grouping.

Without going into any further detail of the mathematical models that exist for the four

problems, let us discuss their complexity status �rst. Crama, Kolen, Oerlemans & Spieksma

[1994], show that the tool switching problem is strongly NP-Complete, even for �xed C � 2.

The loading problem is investigated by Tang & Denardo [1988], Crama, Kolen, Oerlemans &

Spieksma [1994], and Privault & Finke [1993] who provide a network ow formulation.

The job grouping problem has also been shown to be NP-hard by several authors. Crama

& Oerlemans [1994] show that the problem is strongly NP-complete, even for �xed C � 3, and

that it is NP-complete to decide whether there exists a partitioning of size two. By showing

that the well known set covering problem may be viewed as a special case of the job grouping

problem in which all maximal batches are known, they also establish that the problem remains

strongly NP-complete in such a case. In general, however, the problem is in a way even harder,

since the batch selection problem is known to be strongly NP-complete even when each part

requires two tools (Gallo, Hammer & Simeone [1980]).

In this paper we will be primarily interested in the approximability of the job grouping prob-

lem and the batch selection problem. The loading problem is polynomially solvable, making the

study of approximation algorithms for this problem less interesting. The approximability of tool

switching is briey discussed in relation to the approximability of job grouping in Section 4.
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For the moment we restrict the analysis to job grouping and batch selection and we �rst make

clear that both problems require the same data. An instance consists of a tool magazine capacity

C, a set J of jobs p1; : : : ; pn and a set T of tools t1; : : : ; tm. Further, for each job pi; i = 1; : : : ; n

we specify which tools it requires. To this purpose, we introduce a (0; 1) matrix A, whose m

rows correspond to tools and whose n columns correspond to the jobs. Naturally, we let aij = 1

if tool ti is required by job pj , and zero otherwise. Thus, an instance of (an optimization version

of) job grouping or batch selection is completely speci�ed by a (0; 1) matrix A and a positive

integer C, the tool magazine capacity. In the remainder, we assume that for each pair of jobs,

the sets of tools required for each of the jobs do not contain one another as a subset.

As such, the batch selection problem is to �nd a maximum cardinality subset J of the

columns, such that jfijPj2J aij > 0gj � C. The matrix A, which we shall refer to as the tool-

job matrix, may also be viewed as the node incidence matrix of a hypergraph H(V;E). Each

row i corresponds to a vertex vi 2 V , and each column j to a hyperedge ej 2 E. Indeed, aij = 1

indicates that edge ej contains vertex vi. In this setting the batch selection problem is to �nd a

densest subset of the vertices of cardinality at most C, i.e. a subset of the vertices of cardinality

C, whose induced subgraph contains the largest number of hyperedges. Now, in the decision

version of clique, one may have to �nd a subset V 0 of the vertex set, with jV 0j = C, such that

the subgraph induced by V 0 contains 1
2
jV 0j(jV 0j� 1) edges. This establishes that batch selection

is already NP-complete when each job requires two tools (Gallo, Hammer & Simeone [1988]).

Of course, job grouping may also be interpreted in terms of (0; 1) matrices and hypergraphs.

One has to �nd a minimum cardinality set of subsets S1; : : : ; SK of the vertices, such that the

subhypergraphs H i(Si; ESi) induced by these subsets Si form a covering of H , i.e. [iESi = E.

As observed before, this problem is already NP-hard when all maximal subhypergraphs are

known. In such a case we obtain an ordinary covering problem as follows. We introduce a job-

group matrix B, in which the rows correspond to jobs and the columns correspond to groups.

Indeed bjk = 1 if job pj is in group gk, and zero otherwise. Letting the matrix B be the con-

straint matrix, the job grouping problem is then turned into a set covering problem (should we

give an example of this transformation?).

We informally conclude that the job grouping problem does not appear to be easier than set

covering, and that the batch selection problem is closely related to clique. Both set covering and

clique are notoriously hard from a viewpoint of approximation. We discuss their exact status in

Section 4. For the moment however, we should have modest expectations with respect to the

worst case ratios of polynomial approximation algorithms for job grouping and batch selection

as they are given in the next section.

3 Polynomial time approximation algorithms and worst case

ratios

In this section we overview approximation algorithms for job grouping and batch selection, as

they have been proposed in the literature. We also study their worst case behavior.

From the literature we have extracted the following list of approximation algorithms for the

batch selection problem. Each algorithm is characterized by a selection rule, which speci�es how
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to select jobs or tools. The selection rule is to be repeatedly applied as long as some stopping

criterion is not satis�ed, e.g. the total number of tools (required by the selected jobs) does not

exceed the tool magazine capacity.

1. MIMU rule (Tang and Denardo [1988b]) : Select the job that has the largest number of

tools in common with the jobs already in the batch. In case of a tie, select the job which

requires the smallest number of additional tools : Maximal Intersection, Minimal Union.

2. MI (Maximal Intersection) rule, break ties arbitrarily.

3. MU (Minimal Union) rule, break ties arbitrarily.

4. Whitney & Gaul rule (Whitney & Gaul [1985]) : Let t(Y ) be the number of tools required

by the jobs in the set of jobs Y . Let B be the set of already selected jobs. Select the job

p that maximizes (t(B [ fpg) + 1)=(t(fpg) + 1).

5. Rajagopalan rule (Rajagopalan [1985]) : De�ne the weight of each tool to be the number

of jobs that require it among the jobs not yet assigned to the batch. Select the job for

which the sum of the weights of the tools that are to be added when this job is selected is

maximum.

6. Modi�ed Rajagopalan rule (Crama & Oerlemans [1992]) : De�ne the weight of a tool to

be the number of jobs already selected that require this tool. Select the job for which the

sum of the weights of the tools needed by this job is maximum.

7. Chaillou, Hansen & Mahieu [1989] rule : Create an initial batch consisting of all jobs by

selecting all tools. Then, iterate deleting tools from the set of selected tools until the

number of selected tools equals the magazine capacity. In each iteration delete the tool

which causes the smallest number of jobs to be eliminated from the batch.

8. Marginal gain rule (Dietrich, Lee & Lee [1991]) : De�ne the weight of a job to be the

number of jobs that can be added without tool addition when this job is selected. Select

the job with maximum weight.

Rajagopalan [1985] also proposed a rule of the Maximal Union type, and showed that it

can perform arbitrarily bad on certain instances. This was the motivation to introduce rule 6

described above.

Every approximation algorithm ABS for the batch selection problem gives rise to an approx-

imation algorithm for job grouping AJG in the following manner. We apply ABS to �nd a �rst

group. Then we eliminate the jobs in this group from the instance and we apply ABS again.

We repeat this procedure until there are no jobs left. The sequence of groups that is iteratively

produced by ABS forms a solution of the job grouping problem on the same data. As a matter

of fact, all heuristics for the job grouping problem known to the authors are of this type.

In the remainder of this section, we analyse the worst case ratio of the rules given above.

In the instances we present, the optimal solution of the job grouping problem consists of a set

of batches each of which is an optimal solution of the batch selection problem. Furthermore,

repeatedly applying one of the aforementioned selection rules results in a sequence of batches

containing the same number of jobs. Hence, the worst case performance of a rule on the job

grouping problem is the reciprocal of the worst case ratio of this rule on the batch selection

5



0
BBBBBBBBBBBB@

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
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1
CCCCCCCCCCCCA

Figure 1: Tool job matrix of a worst case instance for heuristics 1,2,3,6 (k = 4)

problem. Therefore we primarily consider the behavior of the rules on the batch selection

problem.

Before we analyse the worst case behavior of the proposed heuristics, let us present an

upperbound on the worst case ratio of any heuristic (for the batch selection problem). For a

magazine capacity C, the maximum number of jobs in a group can be seen to be

 
C

C=2

!
=


( 2Cp
C
), whereas any heuristic �nds a group of at least a single job. Hence,

 
C

C=2

!
is an

upperbound on the worst case ratio of any heuristic. We show here that rules 1 to 6 have worst

case ratios in this order of magnitude, and may therefore perform arbitrarily bad :

Theorem 1 The worst case ratio of heuristics 1,2,3, and 6 is at least 
( 2C

C3=2 ) and 
(n= log2 n).

Proof. Let k be some even integer. We create instances in which there are k top tools and

each job requires k=2 of them. We �rst consider an instance in which there are k=2 + 1 bottom

tools, of which each job requires only 1. The tool magazine capacity C = k + 1. We have a

set of k=2 + 1 jobs for each possible choice of k=2 top tools, one job in the set for each possible

bottom tool. Thus we have

 
k

k=2

!
� (k=2 + 1) jobs. (see Figure 7.1.) Obviously, for the

batch selection problem, an optimal batch is the set of jobs requiring the same bottom tools.

Moreover, the optimal solution for the job grouping problem is to form k=2 + 1 groups (each of

them an optimal batch), one for each bottom tool.

It is not hard to see that heuristics 1,2,3 and 6 start with an arbitrary job and may subse-

quently select the job requiring the same top tools but another bottom tool. In this way they

obtain batches of size k=2 + 1, where the optimal batches consist of

 
k

k=2

!
jobs. The ratio

between the number of jobs in an optimal batch and the number of jobs in a batch found by

either of the heuristics is 
( 2C

C
3

2

). Notice that in this instance selecting jobs randomly could

not have led to a worse solution, be it for the batch selection problem or for the job grouping

problem.

Theorem 2 The worst case ratio of heuristics 4,5 is at least 
( 2Cp
C
) and 
(n).
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1 0 0 1 1 0 0 0 0 0 0 0
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Figure 2: Tool job matrix of a worst case instance for heuristics 4 and 5, (k = 4)

Proof. Heuristics 4 and 5 achieve the ratio claimed in the theorem on the following instance.

Let k again be some even integer. Again, there are two sets of tools, top tools and bottom

tools. Each job requires either some of the top tools or some of the bottom tools. Hence we can

also speak of toptool jobs and bottomtool jobs. There are k top tools and k bottom tools, and

each job requirs k=2 tools, i.e. k=2 top tools or k=2 bottom tools. The tool magazine capacity

C = k. We have a job for each possible choice of k=2 top tools out of k top tools, and a job

for each possible choice of k=2 bottom tools. Thus we have

 
k

k=2

!
� 2 jobs. (see Figure

7.2.) Obviously, both the set of all toptool jobs and the set of all bottomtools jobs are optimal

solutions to the batch selection problem. Moreover, the optimal solution for the job grouping

problem is to form 2 groups (each of them an optimal batch).

It is left to the reader to check that rules 4 and 5 may pick batches of size 2, consisting of a

toptool job and a bottomtool job, whereas the optimal batches consist of

 
k

k=2

!
jobs, yielding

a worst case ratio of 
( 2Cp
C
) and 
(n).

Notice that the bounds of Theorem 2 realize the aforementioned upperbound on the worst

case ratio of any algorithm. In case all jobs require the same number of tools, rule 4 boils down

to the Maximum Union rule. Rajagopalan [1985] already analyzed this Maximum Union rule

and showed that it can do `arbitrarily bad'.

Rule 7 does not solve the instances proposed in the proofs of Theorem 7.1 and Theorem 7.2

to optimality, but it does not perform as poorly as rules 1-6.

Theorem 3 Heuristic 7 has worst case ratio of at least 
(

 p
Cp
C
2

!
=
p
C) and


(n= logn).

Proof. Again, we introduce top and bottom tools. Let k again be some even integer. De�ne the

two types of tools as follows. There are k top tools, each job requiring k=2 of them. There are

k=2� (k=2+ 1) bottom tools, of which each job requires k=2� k=2. The tool magazine capacity
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C = (k=2)2+k. We divide the bottom tools into k=2+1 sets, each consisting of k=2 tools. Each

job requires all tools in all but one of these sets, and none of the bottom tools in the remaining

set. We have a set of jobs for each possible choice of k=2 top tools out of k top tools. This set

contains one job for each possible bottom tool requirement. Thus we have

 
k

k=2

!
� (k=2+ 1)

jobs (see Figure 7.3). Obviously, for the batch selection problem, an optimal batch is a set of 
k

k=2

!
jobs with identical bottom tool requirements. Moreover, an optimal solution for the

job grouping problem is to form k=2 + 1 groups (each of them an optimal batch), one for each

possible bottom tools requirement.

Let us now study the behavior of heuristic 7. The heuristic must delete k=2 tools. We

claim that the heuristic deletes (or may delete) k=2 top tools. Suppose after iteration i; i 2
f0; : : : ; k=2� 1g the heuristic has not deleted bottom tools yet. Then the number of remaining

jobs equals

 
k � i

k=2

!
� (k=2+ 1). By symmetry, every bottom tool is required by a fraction of

k=2
k=2+1

of all jobs. Similarly, every top tool is required by a fraction of

 
k � i� 1

k=2� 1

!
 
k � i

k=2

! =
k=2

k � i
� k=2

k=2 + 1

of all jobs. Hence the heuristic may select a top tool again. After k=2 such iterations we thus

end up with k=2 top tools and all bottom tools and a batch of k=2+ 1 jobs. Now, since C < k2,

this yields a ratio of


(

 p
Cp
C=2

!
=
p
C)

for the batch selection problem.

We now show that the heuristic performs equally bad on the job grouping problem. We show

that when solving the job grouping problem by repeatedly appying heuristic 7 to form batches,

we may get a batch for each possible top tool requirement. In view of the discussion above, it

su�ces to notice that for every set of jobs J such that J contains at least two jobs with distinct

top tool requirements, there is always some top tool that is required by at most
k=2

k=2+1
jobs.

The heuristic proposed by Dietrich Lee & Lee [1991] solves the previous instances optimally.

We have, however, the following theorem :

Theorem 4 Heuristic 8 has worst case ratio of at least 
(

 p
Cp
C
2

!
), and 
(n).
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1
CCCCCCCCCCCCCCCCCCCA

Figure 3: Tool job matrix of a worst case instance for heuristic 7, (k = 4)

Proof. Let m be an even integer. First, we construct a dummy tool job matrix D as follows.

For each possible subset of cardinality m=2 of the integers 1; : : : ; m, we have a column in D.

Each row of D corresponds to a 2-element subset of the integers 1; : : : ; m. Entry di;j = 1 if

the i-th 2-element subset is contained in the j-th (m=2)-element subset, and zero otherwise (see

Figure 7.4).

The jobs corresponding to the columns of D satisfy the following property (P ) :

Let pj ; pk and pl be three jobs. There exists a row i of D such that pij = 1; pik = pil = 0.

From the matrix D we derive an instance that yields the desired ratio as follows. Again we

introduce top tools and bottom tools. There are two sets of bottom tools, called bottom sets,

each job requires all the tools in one of the bottom sets, and none of the other bottom tools.

Each set of bottom tools consists of

 
m

2

!
�
 

m=2

2

!

tools. The top tools correspond to the tools as de�ned by the matrix D. Moreover for each col-

umn of D we have one job for each of the aforementioned bottom sets. Thus we have

�
m

m=2

�
�2

jobs. We set C = 2

 
m

2

!
�
 

m=2

2

!
: Then the heuristic proposed by Dietrich, Lee & Lee

may pick batches in which all bottom tools are required and only

 
m=2

2

!
top tools as follows.

It selects an arbitrary job to begin with. All jobs whose top tool requirements and bottom

tool requirements di�er from the requirements of the already selected job, can not be added

to the batch : the batch would require more than C tools. The single job that has the same

top tool requirements, but requires the other set of bottom tools, has weight zero. Moreover,
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123 124 125 126 : : : 456

12 1 1 1 1 0

13 1 0 0 0 0

14 0 1 0 0 0

15 0 0 1 0 0

16 0 0 0 1 0

23 1 0 0 0 0
...

56 0 0 0 0 : : : 1

Figure 4: The dummy tool job matrix D for m = 6.

because of (P ), all jobs that have the same bottom tool requirements, but di�erent top tool

requirements, also have weight zero. Thus, the rule may select the single job with the same top

tool requirements, �lling up the tool magazine completely. In this way the rule selects groups

of size 2, whereas the optimal solution contains 2 groups of size

 
m
m
2

!
: Since C = �(m2) this

yields the desired ratio.

Although, the bounds we have obtained in this section on the worst case behavior of the

various algorithms imply a rather poor worst case performance, we have not shown that they

are tight. Thus, some of the bounds, especially the bounds derived in Theorems 3 and 4 may

be subject to improvement.

4 Negative results on the approximability of job grouping,

batch selection and tool switching

The results in the previous section being discouraging, the question arises whether polynomial

approximation algorithms with better worst case ratios can exist. The relationship between

clique and batch selection and the relationship between job grouping and set covering, that was

informally established in the Section 2, suggest that good approximation algorithms may not

exist : both clique and set covering are notoriously hard to approximate. It has long been open

whether a polynomial approximation algorithm with a constant worst case ratio could exist

for clique. It was well known however, see Garey & Johnson [1979], that the existence of a

polynomial approximation algorithm with a constant worst case ratio for clique would imply

the existence of a polynomial approximation scheme for this problem, which was regarded to be

unlikely to exist. Only recently, Arora et al. [1993] have shown that a polynomial approximation

scheme for clique cannot exist unless P = NP. More precisely, they have shown that there is

some � such that there cannot exist a polynomial time O(m�) approximation algorithm for clique

(where m is the number of nodes) unless P = NP. In this section we obtain a result in the spirit

of the aforementioned result of Garey & Johnson [1979] for batch selection.
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The same breakthrough that led to the negative result regarding the approximability of

clique, enabled Lund & Yannakakis [1993] to show that for any d; 0 < d < 1
4
, a polynomial

approximation algorithm for set covering with worst case ratio d logn cannot exist, unless NP is

contained in DTIME[npoly logn]. In this section, we briey discuss the implications of this result

for job grouping. We also establish a relationship between the approximability of job grouping

and tool switching.

A �rst negative result is the following theorem, in the spirit of Theorem 6.12 in Garey &

Johnson [1979] :

Theorem 5 Either the batch selection problem can be solved by a polynomial time approxima-

tion scheme, or else there is no polynomial time approximation algorithm with constant worst

case ratio for this problem.

Proof. Suppose that H is a polynomial time approximation algorithm with �nite worst case

ratio r � 1. Let I be an instance of batch selection. For any � let l� be the smallest integer such

that r
1

l� < 1 + �: We construct an approximation scheme S that delivers a solution with value

S(I) for I , such that OPT (I)=S(I) � 1 + �. Moreover its running time depends polynomially

on n;m and logC and on the running time of H , as required, and is exponential in l�.

To obtain a result as mentioned in the theorem, we need a method to `square' an instance.

Given an instance of batch selection, consisting of a magazine capacity C and a tool job matrix

A, squaring gives in polynomial time a new instance of batch selection, with capacity C0 and

tool-job matrix A0 such that

1. From any solution of I 0 with value s0(I 0) we can construct a solution of I with value s(I)

such that s(I)2 � s0(I 0).

2. Moreover, OPT (I 0) = OPT (I)2.

Notice that this su�ces to prove the Theorem. Given an instance of batch selection, we

square dlog(l�)e times, we then apply H and can construct a solution for the original problem

instance of value at least OPT (I)=(1 + �), by de�nition of l�.

We construct C0 and A0 from C and A as follows. The new magazine capacity C0 is equal

to (C + 3)C. There are n2 columns and (C + 3)m rows in A0. For each column of A, we get n

columns in A0. For each row of A we get C + 3 rows in A0. Column a(j�1)n+l depends on the

columns aj and al (j = 1; : : : ; n l = 1; : : : ; n). To be precise, the transformation is as follows :

1. if ai;j = 1, then a0i;(j�1)n+l = 1, for all i = 1; : : : ; m; j; l = 1; : : : ; n ;

2. if ai;l = 1, then a0
(C+2)m+i;(j�1)n+l = 1, for all i = 1; : : : ; m; j; l = 1; : : : ; n ;

3. if ai;j = 1 or ai;l = 1, then a0m+(C+1)(i�1)+k;(j�1)n+l = 1, for k = 1; : : : ; C + 1; i =

1; : : : ; m; j; l = 1; : : : ; n.

4. a0ij = 0 otherwise.
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0
B@ 1 0 0

0 1 0

0 0 1

1
CA

Figure 5: Batch selection instance I , C = 2, A

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 1 0 0

1 1 1 1 0 0 1 0 0

1 1 1 1 0 0 1 0 0

0 1 0 1 1 1 0 1 0

0 1 0 1 1 1 0 1 0

0 1 0 1 1 1 0 1 0

0 0 1 0 0 1 1 1 1

0 0 1 0 0 1 1 1 1

0 0 1 0 0 1 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Figure 6: The instance I 0 = I2, C0 = 10; A0.
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An example of this transformation is given in Figures 5 and 6. Matrix A0 may be interpreted

as follows. For each ordered pair of jobs (pj ; pl) in I , we obtain a job, p0
(j�1)n+l in I 0. Further,

there are three sets of tools. One set, to be referred to as top tools, consists of tools t01; : : : ; t
0
m and

duplicates the tool requirements of pj . Another set consists of tools t
0
(C+2)m+1

; : : : ; t0
(C+2)m+m,

duplicates the tool requirements of job pl. The tools in this second set will be referred to as

bottom tools. The third set of tools depends on both pj and pl. Indeed if some tool ti is required

by either pj or pl, then the tools t0m+(C+1)(i�1)+k ; k = 1; : : : ; C+1 are required for p0
(j�1)n+l and

p0
(l�1)n+j .

It follows from this description that if a job requires tool t0m+(C+1)(i�1)+p, for some 1 � i �
n; 1 � p � C+1 then it requires t0m+(C+1)(i�1)+q , for all 1 � q � C+1. Thus, in any solution, it

is pointless to have exactly r; 0 < r < C + 1 of the tools t0m+(C+1)(i�1)+q ; 1 � q � C + 1. In the

following we may therefore assume, without loss of generality, that a solution contains either all

or none of the tools t0m+(C+1)(i�1)+q ; 1 � q � C + 1, for all i.

Consider again some job Aj in I 0, i.e. some column of A0. The de�nition of A0 implies

that for all i; 1 � i � m, if ai;j = 1, then am+(C+1)(i�1)+q;j = 1 for all 1 � q � C + 1.

We conclude again that there is no bene�t in selecting tool ti in a solution unless all tools

t0m+(C+1)(i�1)+q ; 1 � q � C + 1 are selected. Similarly, if a job requires tool t0
(C+2)m+i, then it

also requires tools t0m+(C+1)(i�1)+q , for all 1 � q � C+1. Again, there is no use in selecting tool

t0
(C+2)m+i, unless tools t

0
m+(C+1)(i�1)+q are selected, for all 1 � q � C + 1. For convenience, we

call block i (1 � i � m), the set of tools t0m+(C+1)(i�1)+q where 1 � q � C + 1. We call t0i the

corresponding top tool, and call t0m+(C+1)m+i the corresponding bottom tool.

The above observations lead us to the conclusion that if we select w blocks, then we select

at most w top tools and at most w bottom tools. Since C0 = (C + 3)C, and each block consists

of C + 1 tools, this implies that we may as well select at least C blocks. Let us �rst consider

the case where we select at least C + 1 blocks. Since C0 = (C + 3)C < (C + 2)(C + 1), we

cannot select C + 2 blocks. Hence suppose we select C + 1 blocks. This means we can select

C(C + 3)� (C + 1)(C + 1) = C � 1 top and bottom tools altogether. But this in turn implies

that we have selected at least two blocks for which there are no corresponding top and bottom

tools. Hence, we can unselect these tools without reducing the number of jobs in the batch,

which brings us again in the situation where the solution contains only (C � 1) blocks.

This leaves us with the case in which we have selected C blocks. In this case, we can select

2C top and bottom tools altogether. We know however, that there is no bene�t in selecting

top and bottom tools whose corresponding block is not selected. Hence, given a selection of C

blocks, we may assume that the remaining tools in the solution are the corresponding top and

bottom tools.

Now that we have imposed some structure on the sets of tools that are selected, let us check

the implications for the number of jobs in the corresponding batch. Consider a solution S to

I , i.e. a set of selected tools ti1 ; : : : ; tiC , with value s(I) and let p1 to pk be the jobs of I that

can be performed using ti1 ; : : : ; tiC . We construct a solution to I 0 with value s0(I 0) by selecting

the top tools t0i1 ; : : : ; t
0
iC

as well as the corresponding blocks and bottom tools. It can be seen as

follows that s0(I 0) = s(I)2. Solution S0 allows exactly the jobs of I 0 corresponding to all ordered

pairs (pj ; pl) ; j; l = 1; : : : ; k to be performed.

Conversely, given a solution S0 of value s0(I 0) to I 0 which requires (without loss of general-

ity) C blocks and their corresponding top and bottom tools, we obtain a solution to I of valuep
(s0(I 0) by selecting tool ti in I , only if t

0
i in I

0 is selected, 1 � i � m. Let t0i1 ; : : : ; t
0
iC
, denote the
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top tools used in the solution S0 to I 0, and let p1; : : : ; pk be the jobs of I that can be performed

using ti1 ; : : : ; tiC : Solution S0 contains exactly those jobs of I 0 corresponding to all ordered pairs

(pj ; pl) for which pj and pl are in the batch corresponding to S. Hence, k =
p
s0(I 0).

In view of Theorem 5, we can exclude polynomial approximation algorithms with a constant

worst case ratio if we are able to show that there is some constant � > 1 such that a polynomial

time � approximation algorithm cannot exist unless P = NP. Results in this spirit might be

obtained using the connection between interactive proofs and approximation algorithms estab-

lished by Feige et al. [1996]. We were able to derive such a result for the following generalization

of batch selection, which we refer to as capacitated batch selection. The capacitated batch se-

lection problem is identical to batch slection except for the introduction of so called tool classes.

Every tool is in exactly one of these classes, and for each of these classes an upperbound is given

on the number of tools in the class that may be contained in the tool magazine at the same time.

(Indeed the batch selection problem arises when all tools are of the same class, and the magazine

may be completely �lled with tools of this class.) It is not hard to extend Theorem 5 to capaci-

tated batch selection. Further, the problem maximum system of representatives (Bellare [1992])

can be viewed as a special case of capacitated batch selection. Bellare [1992] shows that there is

a constant � > 1 such that a polynomial time � approximation algorithm for maximum system

of representatives implies P = NP . We conclude that for capacitated batch selection (nor for

maximum system of representatives) polynomial time approximation algorithm with constant

worst case ratio can exist, unless P = NP. We ommit a more formal prove of this statement,

since we think these problems to be of limited interest.

The remainder of this section discusses the approximability of job grouping, and its rela-

tionship with the approximabilty of tool switching. For the job grouping problem we have the

following negative result on its approximability :

Theorem 6 For any d < 1
4
, the job grouping problem cannot be approximated within a factor

of d logn in polynomial time unless NP is contained in DTIME[npoly logn], even if C = m� 1:

Proof. Lund & Yannakakis [1993] prove that for any d < 1
4
, set covering can not be approxi-

mated within a factor of d log k in polynomial time unless NP is contained in DTIME[npoly logn],

where k is the number of rows of the covering problem. Hence we prove simply by giving a map-

ping from set covering to the special case of job grouping where C = m� 1 and n = k. Notice

that in such instances the batch selection problem can be solved trivially, so that �nding a

minimal cover, or partition, indeed poses the only di�culty.

Let s1; : : : ; sp be the subsets in the set covering instance, and let e1; : : : ; eq be the elements

of its ground set. Then the covering matrix B has bij = 1 if sj contains ei and zero otherwise.

The following construction of a tool job matrix A is due to Crama & Oerlemans [1992]. We set

aij = 1 � bji for all 1 � i � p; 1 � j � q. Setting m = p, and C = p � 1 yields, together with

A an instance of job grouping. One checks that if some subset si contains the two elements ek
and el, then both columns Ak and Al have a zero in row i. Since the tool magazine C = m� 1

this means that jobs jk and jl may be in a same batch. More generally, every subset in the set

covering problem corresponds to a batch in the job grouping problem, and every maximal batch

is a subset in the set covering problem.
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We close this section by discussing the relationship between job grouping and tool switching.

Notice again that both problems require the same data. Now let vTS(S) be the value of solution

S to the tool switching problem. The same switches imply a solution S0 for job grouping of

value vJG(S
0) � vTS(S). Conversely, let vJG(S

0) be the value of any solution S0 to job grouping.

Since between each two groups we can have at most C switches, there is a solution S to tool

switching of value vTS(S) � C � vJG(S
0). Thus we also have that :

1

vTS(OPTTS)
� 1

vJG(OPTJG)
� C

vTS(OPTTS)
:

If we have an approximation algorithm H with worst case ratio r1 for job grouping giving

solution s0, then we can construct a solution S for tool switching, and it holds that

r1 �
vJG(S

0)

vJG(OPTJG)
� vJG(S

0)

vTS(OPTTS)
� vTS(S)=C

vTS(OPTTS)
:

Thus, H yields a Cr1 approximation algorithm for tool switching.

If we have an approximation algorithm H 0 for tool switching with worst case ratio r2, giving

solution S, then we can construct a solution S0 of job grouping so that,

r2 �
vTS(S)

vTS(OPTTS)
� vJG(S

0)

vTS(OPTTS)
� vJG(S

0)=C

vJG(OPTJG)
:

Thus H 0 yields an approximation algorithm with worst case ratio Cr2 for job grouping.

5 Further research

In combination, the results of Sections 3 and 4 still leave a rather big gap between the ratio

the best approximation algorithms achieve and what is likely to be unattainable. We conjecture

that in order to close this gap both stronger negative results as well as better approximation

algorithms are required. As yet, we have not investigated whether the bounds we derive on the

worst case ratios of the approximation algorithms discussed in Section 3 are tight, nor have we

investigated methods that enable tight worst case analysis. Such methods too, are required to

close the aforementioned gap, and appear to be an interesting direction for further research.

The negative results of Section 3 are expressed in constants and n the number of jobs, in which

case a superpolynomial bound on the worst ratio cannot be obtained. However, we have seen

that, expressed in terms of the tool magazine C, superpolynomial worst case ratios are possible.

It may well be the case that there is some � > 0, such that unless P = NP approximation

algorithms with worst case ratio smaller than or equal to 2C
�
cannot exist for both the job

grouping and the batch selection problem. The possibility to achieve superpolynomial worst

case results hopefully provides an extra challenge in investigating this possibility.

On the positive side, Crama & van de Klundert [1994] show that iteratively generating

batches with an � approximation algorithm for the batch selection problem until all jobs are

in some batch, yields an approximation algorithm for job grouping with approximation ratio of

O(� log(n=�)).
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In view of this result, observe that a strengthening of the negative result regarding job

grouping has its implication for what is likely to be attainable for batch selection. For example,

if one could show that there is some � such that there does not exist a polynomial approximation

algorithm with worst case ratio n� for job grouping, unless P = NP, then there could not exist

a polynomial approximation algorithm for batch selection with worst case ratio strictly smaller

than n� unless P = NP. Lund & Yannakakis [1993] have obtained results for problems that are

related in a similar fashion. For example, they were able to show that Graph Coloring cannot

be approximated within a subpolynomial ratio, as is the case for its generating subproblem

Independent Set (Arora et al. [1993]).

Although some of the results we present are rather strong, there appears to be room for even

stronger results addressing the approximability of tool management problems. Not only are

these problems among the more important scheduling problems in contemporary manufacturing,

there are also interesting links with fundamental combinatorial problems. Hopefully, the research

reported in this paper and the open problems we have identi�ed incites further research on the

approximability of tool management problems and their relationship with other combinatorial

problems.
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