

Treewidth : structural properties and algorithmic
insights
Citation for published version (APA):

Marchal, L. (2012). Treewidth : structural properties and algorithmic insights. Maastricht: Datawyse /
Universitaire Pers Maastricht.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Maastricht University Research Portal

https://core.ac.uk/display/231346415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cris.maastrichtuniversity.nl/portal/en/publications/treewidth--structural-properties-and-algorithmic-insights(5ba2b61e-ebd0-4d70-b517-6ed73bcf44f6).html

Treewidth
structural properties and algorithmic insights

Lambertus Marchal

This book was typeset by the author using LaTeX.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission in writing from the author.

Treewidth: structural properties and algorithmic insights
© Lambertus Marchal, 2012

Published by Universitaire Pers Maastricht
ISBN 978 94 6159 134 0
Printed in the Netherlands by Datawyse

Treewidth
structural properties and algorithmic insights

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Maastricht,
op gezag van Rector Magnificus,

Prof. mr. G.P.M.F. Mols,
volgens het besluit van het College van Decanen,

in het openbaar te verdedigen
op donderdag 5 april 2012 om 14.00 uur

door

Lambertus Marchal

UNIVERSITAIRE
PERS MAASTRICHT

U P

M

Promotor:
Prof. dr. ir. C.P.M. van Hoesel

Copromotor:
Dr. A. Grigoriev

Beoordelingscommissie:
Prof. dr. R.J. Müller (voorzitter)
Dr. A. Berger
Dr. H.L. Bodlaender (Universiteit Utrecht)
Prof. dr. ir. A.M.C.A. Koster (RWTH Aachen University)

Dit onderzoek werd financieel mogelijk gemaakt door Maastricht Research School of
Economics of Technology and Organizations (METEOR).

Acknowledgements

This dissertation would not have been realized without the help of several individuals who
in one way or another extended their valuable assistance and contributed to its creation and
completion. I would like to take the opportunity to acknowledge some of them here.

First, I want to express my gratitude to my promotor, Stan van Hoesel. On an enjoyable
spring day in 2005, he succeeded to kindle my interest in a challenging topic, the full scope
of which is still beyond my mind to grasp. Throughout the years of my doctoral studies he
provided his expertise, while allowing me the room to work in my own way. His patience
and reassuring composure have benefited me greatly.

Furthermore, I am heartily thankful to my copromotor, Alexander Grigoriev, for the
many sessions that got things going again when I got stuck at writing. His creativity has
been an inexhaustible source of new research directions to explore. Writing a dissertation
can at times be a daunting and frustrating process. His ability to put things into perspective
has always been most welcome. One could not wish for a more enthusiastic supervisor.

Most of the research that led to this dissertation has been conducted in close collabo-
ration with several co-authors. I am indebted to Hans Ensinck and Arie Koster for their
valuable contributions to respectively Chapter 3 and 4 of this dissertation.

I would like to thank my colleagues for their useful suggestions and for creating a pleas-
ant work atmosphere in Maastricht. I thank my friends and family for providing me with
the necessary distractions from writing.

Finally, my biggest thanks go to Natalya. She has been much more than the co-author of
Chapters 5 and 6. Her loving support, encouragement and leading example have been the
inspiration to complete this work. I feel very privileged to have her at my side.

Bert Marchal
’s-Gravenhage, February 2012

Contents

1 Introduction 11
1.1 Graph theory . 12
1.2 Algorithms and complexity . 14
1.3 Dealing with NP-hardness . 15
1.4 Treewidth . 16
1.5 Use of tree decompositions . 17

1.5.1 when treewidth is not bounded . 19
1.6 Dynamic programming on tree decompositions 20
1.7 Constructing tree decompositions . 21

1.7.1 exact methods . 21
1.7.2 approximation algorithms . 22
1.7.3 heuristics . 23

1.8 Some applications . 23
1.9 Thesis outline . 25
1.10 Published material . 26

2 Preliminaries 27
2.1 Graph terminology . 27
2.2 Planar graphs . 29
2.3 Graph minors . 30
2.4 Treewidth . 32
2.5 Tree decompositions and chordalizations . 34

3 Branch and Bound 37
3.1 Introduction . 37
3.2 Preliminaries . 39
3.3 the Necklace structure . 41

Contents

3.4 Branch-and-Bound algorithm for treewidth . 43
3.4.1 branching rules . 44
3.4.2 bounding methods . 45

3.5 Rules for processing . 48
3.5.1 simplicial vertices . 49
3.5.2 conflict graph . 51

3.6 Experimental results . 51
3.6.1 Grid graphs . 52
3.6.2 Queen graphs . 53
3.6.3 Mycielski like graphs . 53

3.7 Conclusions . 54

4 Local Search 57
4.1 Preliminaries . 58
4.2 Neighborhood structure . 58

4.2.1 procedure 1: removing a fill-in pair . 60
4.2.2 procedure 2: regaining minimality . 63

4.3 Local search . 68
4.3.1 starting solution . 68
4.3.2 neighborhood . 68
4.3.3 solution improvements . 70

4.4 Experimental results . 70
4.4.1 Dimacs graph coloring . 71
4.4.2 frequency assignment . 71
4.4.3 Bayesian networks . 71

5 Grid Minors 75
5.1 Preliminaries . 76
5.2 X-grids . 78

5.2.1 branchwidth of X-grids . 78
5.2.2 treewidth of X-grids . 80
5.2.3 largest square-grid minor of X-grids . 82

5.3 Sandwich grids and pyramids . 85
5.3.1 branchwidth of sandwich grids . 86
5.3.2 treewidth of sandwich grids and pyramids 87
5.3.3 square-grid minor of sandwich grids and pyramids 87

5.4 Summary and open questions . 88

Contents

6 H-Subgraph Edge Deletion 91
6.1 Problem definition . 92
6.2 MSOL Formulations . 93

6.2.1 formulation for single pattern . 93
6.2.2 formulation for set of patterns . 95

6.3 Nice tree decompositions . 95
6.4 DP for text graphs with bounded degree . 96

6.4.1 constant parameters and notation . 96
6.4.2 dynamic program and results . 97

6.5 Dynamic program for clique patterns . 100
6.5.1 dynamic program and results . 100

6.6 Baker’s approximation scheme . 102
6.6.1 bounded outerplanarity index . 102
6.6.2 approximation schemes . 103

6.7 Generalization to set H of patterns . 105
6.8 Conclusions . 106

Bibliography 107

Nederlandse Samenvatting 115

Curriculum Vitae 119

Chapter 1

Introduction

Graphs are structures that are used to model a broad spectrum of problems that arise from
real-world situations. These problems can originate from a variety of applications such as
data analysis, electrical circuit design, logistics, scheduling, social networks, telecommuni-
cation and many others. To solve such a problem using a graph theoretic approach, one
constructs a graph that represents the real-world setting of the problem in a mathematical
way. Once this is done, the problem is stated in graph theoretical terms and an algorithm
taking the graph as an input is used to generate a solution to the problem. Finally, the
mathematical solution obtained this way must be translated back into the real-world con-
text.

The running time of an algorithm depends heavily on the difficulty of the problem itself,
but also on the complexity of the graph that models the framework of the problem. Some
problems are easy in the sense that there is an algorithm that can solve them in an efficient
way, independent of the structure of the input graph. In this context, efficiency of the algo-
rithm usually means that the running time of the algorithm only grows polynomially in the
size of the input graph. However, a lot of practically relevant problems are hard, meaning
that the running time of algorithms solving them grows at least exponentially in the size of
the input graph.

When dealing with hard problems, one might settle for a close-to-optimal solution that
can be obtained in polynomial time. One can also try to exploit the structure of the input
graph. It turns out that a lot of problems that are hard on general input graphs, can still
be solved efficiently on input graphs that possess some special structural property. Based
on properties as ’drawable in the plane without edges crossing’ or ’all vertices having k
neighbors’, graphs are categorized in a vast number of classes. One graph class in particular
that facilitates many otherwise hard problems, is the class of trees. Trees are connected
graphs that do not contain cycles. The ease with which some hard problems can be solved
on trees, often carries over to input graphs that are in some sense ’treelike’. A parameter

11

Chapter 1. Introduction

that measures the similarity of a graph to a tree is the treewidth of the graph. The lower its
treewidth, the more the graph resembles a tree and the faster many problems can be solved
on this particular graph.

Algorithms that exploit the treelike property of graphs often take as input a so called
tree decomposition of the graph rather than the graph itself. A graph has usually numerous
tree decompositions, each having their own width. The lower the width of a tree decomposi-
tion, the faster the algorithm runs on this tree decomposition. The ability to construct tree
decompositions that have low width is therefore highly valuable when dealing with hard
problems. The treewidth of the graph equals the lowest width over all tree decompositions
of a graph. Unfortunately, constructing a tree decomposition of lowest possible width (and
thus determining the treewidth of the graph) is a hard problem in itself for general graphs.
This thesis deals with various aspects of treewidth and tree decompositions.

In the remainder of this chapter we provide some background information on the theory
of graphs and algorithms on graphs. In particular we focus on the role that treewidth and
tree decompositions play in many of such algorithms. The basic terminology that will be
utilized throughout the thesis is clarified in Chapter 2. In Chapter 3, we present an exact
algorithm that determines the treewidth of a graph. A heuristic for bounding the treewidth
from above is introduced in Chapter 4. The relationship between treewidth of planar graphs
and some other parameters of planar graphs will be examined in Chapter 5. To conclude
the thesis, various algorithms are presented in Chapter 6 that illustrate how tree decompo-
sitions can be exploited to solve a particular graph problem.

1.1 Graph theory

A graph is a mathematical object that captures the notion of connectivity between a set of
objects. The objects are represented by the vertices of the graph and a pairwise relation
between two objects is represented by an edge between the vertices that correspond to the
objects. In mathematics and computer science, graph theory is the study of graphs.

Some say that graph theory originated from a puzzle that was once posed by the towns-
folk of Königsberg, Prussia in the early 1700’s, see e.g. (16). Königsberg was built largely
on an island in the Pregel river. The island is located near where two branches of the river
join, and the borders of the town spread over to the banks of the rivers. Between the four
land masses that the town occupied, seven bridges had been erected, as is illustrated in the
leftmost picture in Figure 1.1.

The people of Königsberg supposedly posed the following question: Is it possible to take
a walk through town, crossing each of the seven bridges just once? In 1736, Swiss math-
ematician Leonhard Euler, having heard of the problem, used the graph in the rightmost
picture from Figure 1.1 to show that such a walk could not be made. The four land masses

12

1.1. Graph theory

1

2

3

4

1
2

3

4

Figure 1.1: the seven bridges of Königsberg and a graph representing the setting

are represented by vertices in the graph and every bridge between two land masses is repre-
sented by an edge between the two vertices that correspond to the land masses. The degree
of a vertex in a graph is the number of edges emanating from the vertex. Euler’s argument
was quite simple: suppose one could make such a walk, then there are at least two land
masses that neither form the start nor the beginning of the walk. Whenever such a land
mass is entered during the walk, it has to be left again to finish the walk. Hence there must
be at least two vertices in the graph that have even degree, which is not the case.

Graphs have since then become an essential means for transforming real-life settings
into abstract mathematical models. Problems that arise from such real-world settings are
often decision problems or optimization problems. A decision problem is a question that can
be answered by either "yes" or "no", depending on the input parameters. An optimization
problem is a problem of optimizing (either maximizing or minimizing) some value based on
the input parameters, for example to find the shortest route between two cities on a road
map. Optimization problems can be cast as decision problems, e.g., instead of asking for the
length of the shortest route between two cities one can ask whether between the two cities
a route exists of length at most k, for some integer k.

For this specific problem, the real-world setting would be the network of roads between
the two cities. A graph theoretical representation of this setting could be a graph in which
the vertices represent all intersections and ends of the roads while the edges represent the
road segments between all intersections and ends of the roads. Simple models like this nor-
mally allow for many extensions to make them more conform to the real-world setting. One
might for example assign a weight to each edge that denotes the length of the corresponding
road segment. For more information on graph theory and its applications, we refer to (57)
and (68).

13

Chapter 1. Introduction

1.2 Algorithms and complexity

Apart from their purpose, algorithms can differ in running time and memory space they re-
quire to fabricate an answer. The demand for these resources is usually expressed in the in-
put size of the problem, i.e., the number of bits needed to denote the input. For problems on
graphs, the input size of the problem is usually the number of vertices in the graph. In com-
puter science, an algorithm is called a polynomial-time algorithm if the time needed to run
it grows only polynomially in the size of the input. If its running time grows exponentially
in the input size, the algorithm is called an exponential-time algorithm. Polynomial-space
and exponential-space algorithms can be defined in a similar manner. Very roughly speak-
ing, polynomial algorithms are fast and efficient while exponential algorithms are slow or
require too much memory to be useful in practice. For an overview of some algorithms on
graphs, we refer to (107).

Based on the time and space requirements of algorithms to solve them, problems on
graphs are clustered into a number of complexity classes. At the moment of writing this
thesis, there are nearly 500 complexity classes (see (1) for an exhaustive overview) of which
we will mention only a few here. One of the most fundamental complexity classes is the
class P. It contains all decision problems that can be solved in polynomial time. As a rule of
thumb, we say that P is the class of computational problems which are ’efficiently solvable’
or ’tractable’. A superset of P is the class NP of so called "nondeterministic polynomial-
time" problems. NP is defined as the set of decision problems for which a possible solution
can be verified in polynomial time. Class P is a subset of NP, but there are a lot of graph
problems in NP for which no polynomial-time algorithms are known. For this reason it is
widely believed that P is a strict subset of NP.

A problem in NP is said to be NP-complete if a polynomial-time algorithm for this prob-
lem would imply the existence of polynomial-time algorithms for all other problems in NP.
This is why NP-complete problems are considered to be the hardest problems in NP. For
more details on the theory of NP-completeness, we refer to (63).

A problem is called NP-hard if it is as least as hard as any other problem in the class
NP. More formally, a problem H is NP-hard if and only if there is an NP-complete problem
L that is in polynomial-time reducible to H. This basically means that if some oracle would
give us a solution to H, then we can solve L (and thereby any problem in the class NP)
in polynomial time. We refer to (76) for an elaborate list of practically relevant NP-hard
optimization problems.

Figure 1.2 displays the relation between the classes P, NP, NP-complete and NP-hard for
the case where P�=NP versus the case where P=NP. One of the central topics in this thesis
is the determination of the treewidth of a graph. The decision version of this problem, i.e.
"given a graph G and an integer k, decide whether the treewidth of G is at most k", was

14

1.3. Dealing with NP-hardness

NP -complete

NP -hard

P

NP

P �=NP

NP -hard

P=NP

P=NP=NP -complete

Figure 1.2: Euler diagram for problems in P, NP, NP-complete and NP-hard

shown to be NP-complete in (7). This implies that treewidth determination is an NP-hard
problem.

Parameterized complexity is a branch of computational complexity theory that focuses
on classifying problems according to their difficulty with respect to multiple input param-
eters. While in the classical setting the complexity of a problem is measured as a function
in the number of bits of input, in parameterized complexity, it is measured as a function in
two or more input parameters.

A number of problems that are NP-hard in the classical setting, are so called fixed pa-
rameter tractable in parameterized complexity. We speak of fixed parameter tractability of a
decision problem if the function measuring its complexity is exponential in only one (small)
input parameter k and polynomial in the input size of the problem. By fixing the value of
the input parameter k, we say that the problem is parameterized in k. While doing so, the
exponential factor disappears from the computational complexity of the problem, making
the problem tractable. The class of fixed parameter tractable problems is denoted by FPT.

A major incentive for investigating the treewidth problem is that a lot of NP-hard prob-
lems on graphs are in the class FPT, where the treewidth of the graph plays the role of
the fixed parameter, i.e., these problems are tractable when they are parameterized by
treewidth.

1.3 Dealing with NP-hardness

In the previous section we indicated that determination of treewidth is an NP-hard problem.
Various ways of dealing with NP-hard problems have been suggested over the course of time.
The most uncomplicated is by brute force, i.e., just enumerate and evaluate all possible

15

Chapter 1. Introduction

solutions and pick the best one. The amount of time needed limits the usability of this
approach to only small graph instances. Methods like branch-and-bound are based on the
same principle of enumerating all solution candidates. However, they do this in a systematic
way in which subsets of fruitless candidates are discarded in massive numbers. Although
they are able to handle NP-hard problems on larger instances than the brute force method,
their running times are still at least exponential. Indeed, assuming that P�=NP, there are
simply no polynomial-time algorithms that return exact solutions to NP-hard problems.

A more practical way to cope with NP-hard problems is therefore using approximation
algorithms or heuristics. Approximation algorithms are efficient and guarantee that the
returned solution is at most a factor (either fixed or depending on some input parameter)
away from optimal. Heuristics are quick and the solution they return is usually reasonably
good, but can in the worst case be arbitrarily far away from optimal. Their performance
typically relies on educated guesses and common sense rather than on mathematically well-
founded methods.

A third approach to NP-hard problems is by taking advantage of certain properties of
the input graph. It is well known that many problems that are NP-hard in general become
efficiently solvable when they are restricted to input graphs that belong to a certain graph
class. For an exhaustive list of graph classes, the complexity of recognizing these classes
and a lot of additional information, we refer to (45; 66).

One property that has proven to be particularly useful in this context is for the input
graph to be a tree. Most real-world scenarios can only be modeled by graphs that are more
complex than trees. This is where treewidth comes into play. The treewidth of a graph is a
measure for how close the graph resembles a tree. The lower the treewidth, the more similar
the graph is to a tree. NP-hard problems that can be efficiently solved on trees are also easily
solvable on graphs that have low treewidth, because there are so called FPT-algorithms
(Fixed Parameter Tractable) that solve these problems in time that is only exponential in
the treewidth of the graph.

1.4 Treewidth

The notion of treewidth that will be used throughout this thesis was introduced by Robert-
son and Seymour in a series of papers on graph minor theory, see (95). Independently,
Arnborg and Proskurowski introduced the equivalent notion of partial k-trees, i.e., a graph
has treewidth at most k if and only if it is a partial k-tree (8).

There is little doubt that treewidth is one of the most important concepts that was intro-
duced in the field of mathematics and computer science during the last decades. Ever since
their introduction, treewidth and closely related notions like pathwidth and branchwidth
have been the subject of study by numerous scientists in the field. The hardness of deter-

16

1.5. Use of tree decompositions

mining the treewidth of a graph makes the topic challenging from a theoretical viewpoint.
From a more practical angle, the study of treewidth attracted a lot of interest because it can
serve as a mathematical tool in dealing with other NP-hard combinatorial problems.

The definition of treewidth invented by Robertson and Seymour is based on the notion
of tree decomposition. A tree decomposition of a graph G is a way to represent G as a tree.
It consists of a tree T and a set of subsets of vertices of G. Each subset forms a node of T
and is usually referred to as a ’bag’. The tree T and its bags form a valid tree decomposition
of graph G, if the following three conditions hold:

1. Each vertex of G is present in at least one bag of T.

2. For each edge of G, there is at least one bag in T that contains both end vertices of the
edge.

3. For each vertex v of G, the bags of T that contain v form a connected subtree of T.

The width of a tree decomposition is equal to the number of vertices in its largest bag
minus one. The treewidth of a graph is defined to be the minimum width over all tree
decompositions of the graph.

Another way to describe treewidth utilizes the notion of chordalization. A chordalization
of a graph can be obtained by adding edges to the graph (if necessary) until for all cycles
in the graph there is an edge connecting two vertices that are non-adjacent on the cycle.
A subset of vertices in a graph that are pairwise connected by an edge is called a clique.
The width of a chordalization is equal to the size of the largest clique in the chordalization
minus one. The treewidth of a graph equals the minimum width over all its chordalizations.
Formal definitions of tree decomposition and chordalization will be introduced in Chapter 2.

Trees contain no cycles, so they form their own chordalization and having a largest clique
of size two (omitting graphs on a single vertex), the treewidth of a tree equals one. Cliques
are also chordalizations of themselves and hence the treewidth of a clique on n vertices is
equal to n−1. As another example, the infamous Petersen graph is shown as the leftmost
picture in Figure 1.3. For the Petersen graph, it is known that the treewidth equals 4. The
tree decomposition and chordalization of the Petersen graph that are also depicted in Figure
1.3 both have a width of 4 and hence they are optimal.

1.5 Use of tree decompositions

In general, solving a problem becomes easier (faster in terms of running time) when the
graph instance gets smaller. Based on this idea, hard problems can often be solved by a so
called "divide-and-conquer" strategy. Given a problem on a graph, the idea is to recursively

17

Chapter 1. Introduction

a

b

cd

e

f

g

hi

j

bgij

behij

bdehi befhi

bcdh abef

a

b

cd

e

f

g

hi

j

Figure 1.3: From left to right are depicted the Petersen graph, a tree decomposition of the Petersen
graph and a chordalization of the Petersen graph.

split up the input graph into a number of smaller graphs. On each of these small graphs a
problem of the same nature is defined that can be solved quickly.

To obtain the solution for the original problem, the solutions on the small graphs have
to be joined together in a consistent way. However, the quality of a decision that is made in
one small part of the input graph will very likely depend on the decisions that were made in
other parts of the graph. The effect of a decision made in one part of the graph propagates
to another part via all paths in the graph connecting the two parts. The more such paths
there are, the more ways there are to combine solutions from the two parts. This makes it
hard to find a solution for the combined parts that is feasible. Combining solutions to the
two separate parts into an optimal solution for the combined parts is even harder.

In dealing with how to combine the partial solutions the property of the input graph
having low or in some sense ’bounded’ treewidth turns out to be algorithmically helpful.
Getting some insight as to why this is the case can best be realized by means of simple
trees. By absence of any cycles, two parts of a tree are connected to each other via just one
single path. Hence, the influence of a local decision made in one part of the tree to a decision
in another part of the tree can be captured by information concerning only the unique path
between the two parts. To some extent, this easiness carries over to graphs that have low
treewidth.

Consider a graph G on which some problem is defined. Assume we are given a tree
decomposition of G of width k, where k is a small constant. By deleting an internal bag
from the tree decomposition we split up the tree into at least two subtrees. Consider the
subgraphs of G that are induced by the vertices in these subtrees. They may overlap, but
the bag that was deleted from the tree decomposition contains all information that is needed
to combine solutions on the subgraphs into a feasible solution for the problem on G. The
internal bag of a tree decomposition thus serves as a separator in the graph and also as
an interface between the two induced subgraphs. We can keep decomposing the subgraphs

18

1.5. Use of tree decompositions

by deleting other bags from the subtrees until all subgraphs have size at most k+1. Since
k is small, solutions to the subgraphs can easily be obtained. The interfaces between the
subgraphs also have size at most k+1 and hence different solutions to the subgraphs can
be efficiently combined into an optimal solution to the problem on original graph G.

A class of graphs is said to have bounded treewidth if their treewidth is bounded from
above by a constant that does not depend on the size of the graph. Bounded treewidth
graphs have tree decompositions of bounded width. For an overview of classes of graphs
that have bounded treewidth, we refer to (27; 66).

Many problems that are NP-complete on general graphs are solvable in polynomial or
even linear time on bounded treewidth graphs (6; 8; 9; 26; 90). The most important char-
acterization of NP-complete problems that can be solved on graphs of bounded treewidth
was derived by Courcelle. In (52), he obtained as a fundamental result that all NP-complete
problems that can be expressed in Monadic Second-Order Logic (MSOL) are linear-time
solvable on graphs of bounded treewidth, if a bounded width tree decomposition of the graph
is given. Algorithms solving these problems typically apply a divide-and-conquer strategy
on a bounded width tree decomposition.

1.5.1 when treewidth is not bounded

What if we want to solve problems on graphs that do not have bounded treewidth? Does
it make sense to use a tree decomposition based approach for solving NP-hard problems on
these graphs where construction of an optimal tree decomposition is an NP-hard problem in
itself? These are some reasonable questions that will be addressed in this subsection.

First of all, graphs that represent real-life settings like communication networks often
have low treewidth. Although they are not necessarily part of a bounded treewidth class,
they are typically quite sparse and are therefore treelike. An optimal tree decomposition
can then often be found in acceptable time bounds and a tree decomposition based approach
for solving the problem can be efficiently applied.

Furthermore, if an exact method to find an optimal tree decomposition is not quick
enough, other methods (see Section 1.7.2 and 1.7.3) can be used to obtain tree decompo-
sitions of reasonably low width. It might very well be the case that the tree decomposition
based approach to solve the problem is already fast enough for our purposes when we use
this non-optimal tree decomposition.

A third reason for using a tree decomposition based technique to solve NP-complete
problems is the re-usability of tree decompositions. It happens that several hard problems
must be solved on the same graph instance. Once a good tree decomposition of such a graph
is available, it can be used over and over for solving multiple problems. In this context, it
will probably pay off to spend some more time and effort in constructing a single good tree
decomposition.

19

Chapter 1. Introduction

1.6 Dynamic programming on tree decompositions

Dynamic programming is an algorithm design paradigm that systematically applies the
before-mentioned divide-and-conquer strategy. The method was invented in 1953 by applied
mathematician Richard E. Bellman. Tree decompositions lend themselves very well for
application of dynamic programming algorithms.

Consider a problem on input graph G and suppose a tree decomposition of G is available.
By choosing an arbitrary bag as the root of the tree decomposition, one can specify a relation
between each pair of bags in the tree decomposition. Any bag X on the unique path from bag
Y to the root (including the root itself) is called an ancestor of bag Y . If X is an ancestor of
Y , then Y is a descendant of X . If bag X is an ancestor of bag Y and X and Y are connected
by an edge, X is said to be a parent of Y and Y a child of X . Bags in the tree decomposition
that have no descendants are called leaves.

The idea of the dynamic programming approach is to associate to each bag X the sub-
graph of G that is induced by all vertices in X and its descendants. For each bag in the tree
decomposition, one computes a table that contains sufficient information to solve the prob-
lem on the subgraph of G corresponding to this bag. The tables are computed in a bottom-up
manner, which means that one first has to compute the tables for the leaves. Tree decom-
positions can be made in such a way that the leaves are sufficiently small, hence computing
the tables for the leaves is often trivial. To compute the table for any other bag, one just
needs the information from the tables of its children. Tree decompositions can be made in
such a way that computing the table for a bag from the tables of its children can be done
very efficiently. Since the graph corresponding to the root coincides with graph G, the table
of the root will contain enough information to determine the solution to the problem on G.

The maximum size of a table and the maximum time needed to compute a table are
exponential only in the width of the tree decomposition. The dynamic program thus runs
in time polynomial in the input size of the graph if and only if the graph has bounded
treewidth. Problems that allow for this approach are thus fixed parameter tractable with
respect to parameter treewidth.

As an example, let us consider the Weighted Independent Set problem. For this problem
we are given a graph G with vertex weights for each vertex. We are looking for a subset S
of vertices in G such that the vertices in S are pairwise non-adjacent and the sum of the
weights of the vertices in S is maximized. Practical applications of this problem appear
among others in information retrieval, signal transmission analysis, scheduling, coding the-
ory and wireless networks. The problem is known to be NP-hard for general graphs. For
trees however, it is solvable in linear time. In (34), a dynamic programming algorithm on
a tree decomposition is presented that runs in time that is only exponential in the width
of the tree decomposition. The Weighted Independent Set problem is thus fixed parameter

20

1.7. Constructing tree decompositions

tractable with respect to treewidth.
For more details on dynamic programming on tree decompositions and for an overview

of other graph decision problems for which this technique has been successfully applied, we
refer to respectively (34) and (18).

1.7 Constructing tree decompositions

In the previous sections, it became clear that the availability of tree decompositions of low
width can considerably speed up the process of solving many NP-complete problems on
graphs. Unfortunately, constructing tree decompositions of low (let alone minimum) width
is a task that is far from trivial.

The construction of a tree decomposition of width k is obviously at least as hard as
deciding whether the treewidth of G is at most k, which is already an NP-complete prob-
lem. Computing treewidth and constructing tree decompositions of minimum width are
NP-hard problems even if we restrict the input graphs to graphs of bounded degree (25), co-
comparability graphs (7; 71), bipartite graphs (78) or the complements of bipartite graphs
(7).

Despite these troubling facts, there are many cases for which treewidth can be efficiently
determined or approximated.

1.7.1 exact methods

Over the last few decades, several graph properties have been shown to facilitate an effi-
cient determination of the graph’s treewidth. One of these properties is for the graph to be
chordal. Chordal graphs are graphs that are triangulated. Determining the treewidth of
a chordal graph allows for a polynomial-time algorithm, since finding the largest clique in
a chordal graph is an easy problem. Other graph classes for which the treewidth can be
determined in polynomial time include permutation graphs (22), circular-arc graphs (104),
circle graphs (78) and distance hereditary graphs (46). In (41; 42), an algorithm was pre-
sented that determines the treewidth of a graph in time, polynomial in the number of its
minimal separators. More examples of polynomial time algorithms for treewidth of graphs
from various classes can be found in (28; 29; 47; 53; 77; 80).

Exact algorithms for treewidth that do not assume or exploit any properties of the input
graph require at least exponential time. Based on the results from (41; 42), an exact algo-
rithm for treewidth that runs in O∗(1.9601n) was obtained in (60), where n is the number of
vertices in the input graph. For a survey of exact algorithms for NP-hard problems and for
explanation on the O∗() notation, we refer to (110). The result from (60) was improved in
(61) and (62), decreasing the running time to O∗(1.7549n). The algorithm however requires

21

Chapter 1. Introduction

exponential space. The fastest exact algorithm for treewidth that takes only polynomial
space is also from (62) and runs in O∗(2.6151n) time.

A well studied case is when the integer k is a fixed constant. Constructive algorithms
for this case can be useful from a practical point of view, i.e., if the treewidth is at most k, a
tree decomposition of width at most k must be returned. The first constructive polynomial
time algorithm for the fixed parameter problem was found in (7). Although during later
improvements upon it the running time of the algorithm was decreased to linear (see e.g.,
(20; 23; 24; 86; 87; 93)), the complexity of the algorithm still contains a hidden constant
that is at least exponential in k, restricting its usability only to very small values of k (e.g.,
k ≤ 4). Hence the quest remains for efficient algorithms for the fixed parameter case that
are also practical from an implementation viewpoint.

For small graphs the treewidth can often be found in reasonable time using a branch-
and-bound method. Experiments with constructive methods for treewidth were published
in (64) and (102). By terminating the algorithm after a specific time bound and reporting the
best solution so far, branch-and-bound algorithms can also be used as heuristics to obtain
upper bounds on the treewidth of larger graphs. In Chapter 3 of this thesis, a branch-and-
bound algorithm will be presented that builds triangulations of the input graph. In the
branching step, potential fill-in edges are either added or denied in the triangulation. As
will be explained in Chapter 2, a triangulation of width k can easily be transformed into a
tree decomposition of width k.

1.7.2 approximation algorithms

Although constructing an optimal tree decomposition in reasonable time is often impossible,
there are many algorithms that approximate the treewidth. Some of them are polynomial
even when k is not bounded, others are exponential in k. In (21), a polynomial-time approx-
imation algorithm was given that returns a tree decomposition with width at most O(logn)
times optimal. This result was improved upon in (5) and (44), where polynomial-time ap-
proximation algorithms are presented with approximation ratio O(logk).

Constant performance ratio approximation algorithms exist for some special graph classes,
see for example (43) where a polynomial 2-approximation algorithm was given for the treewidth
of graphs that do not contain asteroidal triples. Treewidth can also be approximated within
a constant factor for planar graphs. This is a consequence of the polynomial-time algorithm
given by Seymour and Thomas (101) for computing the parameter branchwidth in planar
graphs, whose value approximates treewidth within a factor of 3

2 . Whether constant ratio
approximation algorithms exist for the treewidth problem on general graphs still remains a
famous open problem.

Several approximation algorithms exist for treewidth that run in time exponential in k,
the treewidth of the graph. These are also called fixed parameter approximation algorithms,

22

1.8. Some applications

since they are polynomial only when k is fixed. They either give a tree decomposition of
width at most ck for some constant c ≥ 1, or tell that the treewidth is more than k. For some
examples of them, we refer to (5; 12; 87).

1.7.3 heuristics

Fixed parameter approximation algorithms become less practical when k increases. More-
over, approximation algorithms that are polynomial even when k is unbounded tend to be
very time consuming on big graph instances.

When a guaranteed performance ratio is not of primary importance, upper bound heuris-
tics should be considered. They are often much quicker than approximation algorithms and
although their performance can theoretically be exponentially bad, experiments have shown
that these heuristics often perform very well in practice.

Many upper bound heuristics for treewidth share the same basic structure. A triangula-
tion of the graph is constructed by visiting all vertices of the graph in some order and adding
fill-in edges between the neighbors of the vertex at hand that are not yet visited. Different
criteria for selecting the next vertex to visit lead to different heuristics. We refer to (83) for
computational experiments on several upper bound heuristics.

Another type of upper bound heuristic is based on local search and was proposed in (81).
The idea is to start with an arbitrary tree decomposition or triangulation and to reduce its
width by making small local changes in the configuration of the bags in the tree decomposi-
tion (or cliques in the triangulation). In Chapter 4 of this thesis, we present a local search
heuristic that splits the largest bag in a tree decomposition into smaller bags, while main-
taining the validity of the tree decomposition. Our experiments show that this technique
can lead to significant reduction in the width of tree decompositions resulting from other up-
per bound heuristics when they are used as a starting solution for the local search heuristic.
Combining several types of upper bound heuristics may thus be beneficial.

1.8 Some applications

Tree decompositions of bounded width are interesting from a theoretical viewpoint, because
all NP-complete problems that can be expressed in MSOL can theoretically be solved in lin-
ear time using them, see (51; 52). Considering that there are often huge constant factors
concealed in their linear running times, algorithms exploiting the bounded width tree de-
compositions are not always practical. That being said, there are many examples in which
tree decompositions have been successfully exploited. In this section, we will highlight a
number of them.

In wireless communication networks, frequencies must be assigned to transmitters in

23

Chapter 1. Introduction

such a way that interference between the signals of different transmitters is avoided. In
(81) and (82), optimal solutions were obtained to some hard frequency assignment problems
in wireless networks. This was done by the use of dynamic programming techniques on a
tree decomposition of the graph that models interference constraints in the network. In (84),
a similar approach was used to solve small and medium-sized instances of the more general
class of partial constraint satisfaction problems. The class PCSP contains a diversity of
problems, such as generalized subgraph problems, MAX-SAT, Boolean quadratic programs
and map coloring problems. For large instances of this class, the technique was shown to
provide good lower bounds within reasonable time and memory limits.

A class that can be seen as a generalization of many hard problems (like Independent
(Dominating) Set, Induced Bounded Degree Subgraph, Induced p-Regular Subgraph, Per-
fect Matching Cut and k-Colorability), is the class of Vertex Partitioning Problems. Given
a graph, a Vertex Partitioning problem queries whether its vertices can be partitioned into
a number of sets such that the sets comply to some particular conditions. In (105), it was
shown that a large class of vertex partitioning problems is fixed parameter tractable when
parameterized by treewidth. The FPT-algorithms exploit a bounded width tree decomposi-
tion of the input graph.

A dominating set in a graph is a subset D of the vertices such that every vertex not in D
is connected via an edge to at least one vertex in D. A vertex cover of a graph is a subset C
of the vertices such that each edge in the graph is incident to at least one element of C. The
problem of finding the smallest vertex cover or dominating set in a graph has applications
for example in sensor networks and social networks. A tree decomposition based approach
enabled the authors in (4) to solve the Vertex Cover problem on planar graphs to optimality.
In (2) and (3), tree decomposition based FPT-algorithms are suggested for the Dominating
Set problem on planar graphs as well as for several other domination-like problems.

Practical applications of tree decompositions can also be found in network reliability.
The reliability of a network measures the probability that communication in the network
is possible, given probabilities for each of the elements in the network (e.g., links, routers)
to break down. Many problems that arise in this context are NP-hard on general graphs.
However, information and communication networks like Internet and telephone networks
typically have low treewidth, simply because a tree is the cheapest way to connect a set of
sites. In (91) and (111), tree decomposition based linear-time algorithms are proposed for
several network reliability problems on graphs of bounded treewidth.

Another application that we bring up here concerns probabilistic networks, also called
(Bayesian) belief networks. These networks are directed acyclic graphs that represent a
set of random variables and their conditional (in)dependencies. They are used in decision
support systems and expert systems. The value of a vertex v in the network depends on
the value of all vertices that have an arc to v. Computing the conditional probabilities of all

24

1.9. Thesis outline

vertices is called probabilistic inference, which is an NP-hard problem in general. In (88),
an algorithm is presented that solves the problem in O(n2w) time by dynamic programming
on a tree decomposition of an auxiliary graph of the network, where w is the width of the
tree decomposition.

Recent applications also emerge from the field of Bioinformatics. Consider for example
the problem of searching for some queried sequence in a Ribonucleic Acid (RNA) family
with pseudoknots. Pseudoknots are secondary structures in RNA containing two stem-loop
structures in which half of one stem is intercalated between the two halves of another stem.
Searching for queried sequences of RNA in a structure with pseudoknots turns out to be
a hard problem when using methods as Hidden Markov Models and Covariance Models.
In (103), graphs are used to model both the RNA family with pseudoknots as well as the
queried sequence of RNA. The problem of finding the queried sequence segment then boils
down to the subgraph isomorphism problem, which is NP-hard in itself. However, since
a graph modeling an RNA family with pseudoknots typically has treewidth that is only
slightly higher than 2, the problem of recognizing queried sequences of RNA can be effi-
ciently solved using dynamic programming on a tree decomposition of the graph. Searches
that required several months with other methods can now be accomplished in days. In (112),
some key problems in protein structure prediction were efficiently solved with the help of
tree decompositions.

1.9 Thesis outline

The basic terminology that will be utilized throughout the thesis is clarified in Chapter 2.
Next to formal definitions of treewidth, tree decomposition and some more notions that will
be used throughout the thesis, Chapter 2 also covers some fundamental results that will be
assumed as pre-knowledge in the remainder of the thesis.

In Chapter 3, we present a branch-and-bound algorithm that determines the treewidth
of a graph and returns a tree decomposition of optimal (minimum) width. Since the algo-
rithm is exact and therefore not efficient, its practical usability is limited to relatively small
graph instances only. However, by terminating the algorithm after a fixed time bound, it
can serve as a way to obtain lower and upper bounds on the treewidth of larger graphs.

When exact methods fail, it is necessary to resort to approximation algorithms or heuris-
tics. We develop a treewidth upper bound heuristic that will be the subject of Chapter 4 in
this thesis. The heuristic utilizes a local search technique and takes as input an arbitrary
tree decomposition. It then manipulates the tree decomposition by making a series of local
changes to it, while preserving its defining properties. The ultimate goal of the manipula-
tion steps is to obtain a reduction in the width. Implementation of the local search heuristic
reveals that the width of tree decompositions (even for those resulting from other upper

25

Chapter 1. Introduction

bound heuristics) can often be significantly decreased in an acceptable amount of time.
Subsequently, we turn our attention to the class of planar graphs. This class consists of

all graphs that can be embedded in the plane without crossing edges. Planar graphs do not
have bounded treewidth and the question whether or not computing the treewidth of planar
graphs is NP-hard is still unanswered. The treewidth of a planar graph is however related
to some other parameters of planar graphs, namely its branchwidth (also holds for general
graphs) and the size of its largest square grid-minor. The nature of these relationships
is examined more closely in Chapter 5 of this thesis. In this chapter, we also introduce a
methodology that can be used to determine the size of a largest square grid-minor for some
planar graphs.

In the final chapter of the thesis, Chapter 6, we investigate the problem of excluding a set
of graphs as subgraph of input graph G by deleting a (minimum) number of edges from G.
This problem is NP-hard for general graph instances. We show that the problem (depending
on the type of subgraphs) is fixed parameter tractable when parameterized by the treewidth.
Moreover, we show that an optimal solution to the problem can be efficiently approximated if
the input graph is planar. The algorithms in this last chapter employ dynamic programming
techniques that are very illustrative for the value of tree decompositions in dealing with NP-
hard problems.

1.10 Published material
Part of the material presented in this thesis has been published or has been accepted for
publication in refereed journals or conference proceedings. The following publication is
based on Chapter 4 of this thesis.

Stan P. M. van Hoesel and Bert Marchal. Finding good tree decompositions by local search. Electronic
Notes in Discrete Mathematics, 32 (2009), pp. 43–50.

An extended version of the work described in Chapter 5 of this thesis has been published in
the following publication.

Alexander Grigoriev, Bert Marchal and Natalya Usotskaya. On Planar Graphs with Large Treewidth
and Small Grid-Minors. Electronic Notes in Discrete Mathematics, 32 (2009), pp. 35–43.

Finally, Chapter 6 of this thesis forms the source of the following two publications.

Alexander Grigoriev, Bert Marchal and Natalya Usotskaya. Algorithms for the Minimum Edge Cover
of H-Subgraphs of a Graph. In Proc. of the 36th Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM 2010), Lecture Notes in Computer Science, 5901, Springer (2010), pp.
352–464.

Alexander Grigoriev, Bert Marchal, Ioan Todinca and Natalya Usotskaya. A note on planar graphs with
large width-parameters and small grid-minors. Accepted in Discrete Applied Mathematics, 2012.

26

Chapter 2

Preliminaries

In this chapter we clarify the majority of the terminology that will be used throughout this
thesis. Some terms that are utilized only occasionally will be introduced later, at the point
where they are needed. We commence with some terms and notions that regard standard
graph theory. After that some terminology will be stated concerning the subject of planar
graphs and subsequently the notion graph minor will be explained. We round this chapter
off with formal definitions of treewidth, tree decompositions and some related terms.

2.1 Graph terminology

A graph G is a pair (V (G),E(G)), where V (G) is a finite set of vertices and E(G) is a (multi)-
set of edges. Figure 2.1 displays a graph on ten vertices and fifteen edges, known as the
Petersen graph. If there is no ambiguity about which graph G we deal with, we will refer to

a

b

cd

e

f

g

hi

j

Figure 2.1: the Petersen graph

27

Chapter 2. Preliminaries

V (G) and E(G) simply as V and E. Following the convention in graph theory, we use n(G)
(or simply n) to denote the number of vertices in G and m(G) (or simply m) to denote the
number of edges in G, i.e., n = |V | and m = |E|. An edge e ∈ E is a two-element (multi)-set
of vertices from V , i.e., e ∈ V ×V . If an edge e joins two vertices, then these vertices are
called the end vertices of e. If u and v are the end vertices of the edge e, then e is formally
denoted by {u,v}. For the sake of readability, we will refer to the edge {u,v} simply as uv in
this thesis. Two edges are disjoint if they have no end vertex in common. An edge e and
an end vertex of e are said to be incident to one another. Two vertices that are joined by an
edge are called adjacent vertices. In the Petersen graph as depicted in Figure 2.1, vertices
a and b are adjacent and they are the end vertices of edge ab. In this example, vertex f is
incident to edges af , f h and f i. The open neighborhood N(v) of a vertex v ∈ V in G is the
set of vertices adjacent to v in G. In the Petersen graph, e.g., N(f)= {a, i,h}.

The degree d(v) of a vertex v ∈V is the number of edges incident to v in G. The minimum
degree over all vertices in G is denoted by δ(G), i.e., δ(G) = minv∈V d(v). Similarly, Δ(G)
denotes the maximum degree in G, i.e., Δ(G) = maxv∈V d(v). For the graph in Figure 2.1,
δ(G) =Δ(G) = 3. An edge e ∈ E is called directed if the pair of vertices denoting the edge is
ordered and e is said to be undirected if it is represented by an unordered vertex pair. A
graph G is undirected if all of its edges are undirected. An edge is called a self-loop if its
two end vertices coincide. When E(G) is a set rather than a multi-set and does not contain
self-loops, G is said to be a simple graph. The graph in Figure 2.1 is simple and undirected.
Unless stated otherwise, the graphs in this thesis are both simple and undirected.

A path in a graph G is a sequence of vertices from V such that each vertex in the se-
quence is adjacent to the next vertex in the sequence. For finite paths, the first vertex is
called the start vertex and the last vertex is called the end vertex. All other vertices in a
path are called internal vertices. A cycle is a path for which the start vertex and the end
vertex coincide. A path with no repeated vertices is called a simple path, and a cycle with
no repeated vertices or edges aside from the necessary repetition of the start and end vertex
is a simple cycle. A graph is acyclic if it does not contain any cycle. The length of a path
is the number of edges in the path, counting multiple edges multiple times. The sequence
af h jgb is a simple path of length 5 in the Petersen graph from Figure 2.1. Two paths in a
graph are independent if they have no internal vertices in common. The distance between
two vertices in a graph G is the length of the shortest path in G connecting the two vertices.
The maximum distance between two vertices in the Petersen graph equals 2.

If V ′ ⊆ V and E′ ⊆ E ∩ (V ′ ×V ′), then G′ = (V ′,E′) is a subgraph of G = (V ,E), written
as G′ ⊆ G. If G′ is a subgraph of G, then G is a supergraph of G′. a subgraph G′ of G is
said to be induced by V ′ if E′ contains all edges from E for which both end vertices are in
V ′. The subgraph of G = (V ,E) that is induced by V ′ ⊆V is denoted by G[V ′]. For v ∈V , we
denote by G \ v the graph that is obtained from G by deleting v and all edges incident to v,

28

2.2. Planar graphs

i.e., G \ v =G[V \{v}]. For e ∈ E, by G \ e we denote the graph that results from G when we
delete edge e.

A clique in G is a subset of V for which all vertices are pairwise adjacent. A clique S in
G is called a maximal clique if no strict superset of S is a clique. A clique S in G is called
a maximum clique if there is no clique in G that has bigger size. The size of a maximum
clique in G is denoted by ω(G). A graph on n vertices that forms a clique on n vertices is
called a complete graph and is denoted by Kn. An independent set in G is a subset of V
in which the vertices are pairwise non-adjacent. Maximal and maximum independent sets
can be defined analogously to maximal and maximum cliques. The set {a, f } is a maximal
(and maximum) clique and set {b, e,h, i} is a maximal (and maximum) independent set in
the Petersen graph from Figure 2.1.

A graph is said to be connected if there is a path between each pair of distinct vertices of
the graph. The Petersen graph is an example of a connected graph. A connected component
S of G is a maximal subgraph of G that is connected, i.e., each supergraph of S that is a
subgraph of G is disconnected. Most problems on graphs can be cracked by solving them
separately on each connected component of the graph. It is for this reason that we only
consider input graphs in this thesis that have exactly one connected component, i.e., we
assume that our input graphs are connected. Connected graphs that are acyclic are called
trees.

2.2 Planar graphs

A graph G is called a planar graph if it can be drawn in the plane in such a way that its
edges intersect only at shared end vertices. A drawing of a planar graph G in the plane is
called a planar embedding of G. The graph from Figure 2.1 is non-planar, since it can not be
embedded in the plane without crossing edges. The regions that are bounded by the edges
in a planar embedding of a planar graph are called faces. If we embed a planar graph on
the plane, there is always one face that is unbounded. This is called the outer face. All other
faces are called inner faces. The number of faces in a planar embedding is denoted by the
letter f . The next theorem implies that for a connected planar graph G, the parameter f
does not depend on the embedding of G.

Theorem 2.2.1. (Euler’s formula) Let G be a connected planar graph with n vertices and
m edges. Then for every planar embedding of G it holds that

n−m+ f = 2.

A graph G is called outerplanar (or 1-outerplanar) if there is a planar embedding of
G in which each vertex is incident to the outer face. For k > 1 a planar embedding is k-
outerplanar if removing the vertices incident to the outer face results in a (k−1)-outerplanar

29

Chapter 2. Preliminaries

embedding. A graph G is k-outerplanar if there exists a k-outerplanar embedding of G. The
notion of k-outerplanar graphs was introduced by Baker, see (11). The smallest integer k for
which G is k-outerplanar is called the outerplanarity index of G. As an example, the graph
in Figure 2.2 has outerplanarity index 2, since there is no 1-outerplanar embedding of G.

a

b

c

d

e

f

g

h

a e

f

g

b

h

c

d

Figure 2.2: a planar graph G and a 2-outerplanar embedding of G

In (15), it is shown that the outerplanarity index of an arbitrary planar graph can be
determined in polynomial time. The following theorem is from (75):

Theorem 2.2.2. Given a planar graph G, the outerplanarity index k of G and a k-outerplanar
embedding of G can be found in O(n2) time.

The following theorem from (27) relates the outerplanarity index of a graph to its treewidth:

Theorem 2.2.3. The treewidth of a k-outerplanar graph is at most 3k−1.

2.3 Graph minors

We first explain the notion of an edge contraction in a graph. While doing so, we follow
the terminology from (57). Subsequently, we give a formal definition of a graph minor.
Minors can be obtained from a graph by a series of vertex deletions, edge deletions and
edge contractions in any order. They play an important role in the characterization of many
families of graphs.

Informally, contraction of edge e = uv replaces vertices u and v by a new vertex that
is adjacent to all neighbors of both u and v. In this thesis, we restrict ourselves to sim-
ple graphs and hence we enforce that after contraction, the new vertex is connected to its
neighbors via a single edge and not via a multi-edge. This is illustrated in Figure 2.3.

As is formalized in the next definition, we use G/e to denote the graph that is obtained
from G by contracting edge e.

30

2.3. Graph minors

ve

w

v ue

w

contraction of edge e

Figure 2.3: Before contraction both u and v are adjacent to w. After contraction of e, the new vertex
ve is connected to w only via a single edge.

Definition 2.3.1. Let be given a graph G = (V ,E) and let e = uv ∈ E. Then G/e is the graph
(V ′,E′) that results from G after contracting edge e, where V ′ = (V \{u,v}) ∪ {ve} (with ve the
new vertex) and

E′ = { xy ∈ E | {u,v}∩ {x, y}=� }
⋃

{ vex | ux ∈ E \{e} or vx ∈ E \{e} } .

Two graphs G and H are said to be isomorphic if there exists a bijection f := V (G) →
V (H) such that any two vertices u and v are adjacent in G if and only if f (u) and f (v) are
adjacent in H.

Definition 2.3.2. A graph M is a minor of G, written as M G, if M is isomorphic to a
graph that can be obtained from a subgraph of G by doing a number (zero or more) of edge
contractions.

Figure 2.4 shows a graph G, a subgraph H of G and a minor M of G. M can be obtained
from H by contracting the dashed edges.

A family F of graphs is said to be closed under taking graph minors if for every graph
G in F , all minors of G are also element of F . Planar graphs and the family of bounded
treewidth graphs are examples of graph-minor-closed families.

We say that we subdivide an edge e = uv in G if we add a new vertex w to G and replace
the edge uv by edges uw and vw. A subdivision of G can be obtained from G by a series
of subdivisions of the edges of G. If a graph M has a subdivision that is isomorphic to a
subgraph of G, then M is called a topological minor of G. Since in Figure 2.4, graph H ⊆G
is a subdivision of M, M is a topological minor of G.

In 1930, Kuratowski (85) provided a characterization of planar graphs in terms of two
forbidden topological minors; the complete graph K5 and the complete bipartite graph K3,3.
Seven years later in (108), Wagner proved that a graph is planar if and only if it does not
have K5 or K3,3 as a regular minor. This led him to the bold conjecture that the set of
forbidden minimal minors of any infinite graph-minor-closed family of graphs is finite. A
proof of the theorem by Robertson and Seymour was completed in 2004 with the publication

31

Chapter 2. Preliminaries

G H M

Figure 2.4: graph G, subgraph H ⊆G and minor M G.

of the last in a series of twenty papers (see, among others, (94; 95; 96)) running to over 500
pages and spanning almost 20 years.

2.4 Treewidth

In this section, we formally define treewidth and a few related terms. The notions of
treewidth and tree decomposition were introduced by Robertson and Seymour in (94). Apart
from their definitions, we introduce some fundamental lemma’s regarding treewidth that
are essential for some lemma’s and theorems in later chapters of the thesis.

A tree decomposition of a graph G is a pair (T, X), where T is a tree and X = (Xt : t ∈
V (T)) is a family of subsets of V (G), with the following properties:

•
⋃

t∈V (T) Xt =V (G).

• ∀uv ∈ E(G), ∃t ∈V (T) such that {u,v}⊆ Xt.

• For t, t′, t′′ ∈V (T), if t′ is on the unique path in T between t and t′′ then Xt ∩ Xt′′ ⊆ Xt′ .

For t ∈ V (T), the set Xt is also referred to as a bag of the tree decomposition (T, X). The
width of the tree decomposition (T, X) is maxt∈V (t)(|Xt|−1).

Definition 2.4.1. The treewidth tw(G) of graph G is the minimum width over all tree de-
compositions of G.

The following useful fact about tree decompositions originates from (19).

Lemma 2.4.2. Let (T, X) be a tree decomposition of graph G. Then for any clique S in G,
there is a bag Xt in (T, X) for which S ⊆ Xt.

The relation between treewidth of G and the treewidth of a minor of G can be captured
in the following lemma, which is due to Bodlaender (27).

32

2.4. Treewidth

Lemma 2.4.3. If M G, then tw(M)≤ tw(G).

A lot of research has been dedicated to the fixed parameter case for treewidth, i.e., check
whether the treewidth of a graph is at most some constant w and if so, return a tree decom-
position of width at most w. For an overview of this work we refer to (30). Finally, in (23)
the following result was obtained.

Theorem 2.4.4. Given a graph of treewidth at most w, a tree decomposition of width at most
w can be obtained in linear time.

From a practical viewpoint the algorithm is only useful for low values of w because of a
big hidden constant in the O()-notation in the running time of the linear algorithm.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is called
a chord of that cycle. A chordless cycle in G is an induced cycle in G, i.e., a cycle that forms
an induced subgraph of G. A graph is called chordal (or triangulated) if it does not contain
chordless cycles of length greater than 3, i.e., if all induced cycles in the graph are 3-cycles
(also called triangles). A graph can be transformed into a chordal graph by adding edges
to it up to the point where every cycle contains a chord. Edges that are added to achieve
chordality are called fill-in edges. In this thesis, we denote the set of fill-in edges by F.

Definition 2.4.5. A graph H = (V ,E ∪ F) is called a chordalization (or triangulation) of
G = (V ,E) if H is chordal.

The width of a chordal graph H is equal to ω(H)−1, i.e., the size of the largest clique in
H minus one. Using the notion of chordalization, treewidth can be alternatively defined in
the following way.

Definition 2.4.6. The treewidth tw(G) of graph G is the minimum width over all chordal-
izations of G.

The following result concerning chordal graphs comes from (98).

Lemma 2.4.7. Given a chordal graph G, the size of a largest clique in G and hence tw(G)
can be determined in polynomial time.

An ordering of the vertex set V is a bijection α : {1,2, . . . ,n} ←→ V . If α is an ordering
on n vertices, then we will also refer to α as α(1)α(2) . . .α(n). A chordalization of G = (V ,E)
can be obtained using vertex ordering α of V by application of Algorithm 2.1. In words,
we run through the vertex ordering and turn the higher ordered neighbors of the vertex at
hand into a clique by adding fill-in edges to G. Note that the added fill-in edges also define
neighbor relations in subsequent steps of the algorithm.

The process of turning the higher ordered neighbors of vertex α(i) into a clique is often
called the elimination of vertex α(i). In the context of chordalizations, vertex orderings

33

Chapter 2. Preliminaries

Algorithm 2.1: chordalization

Input: graph G = (V ,E) and vertex ordering α

Output: chordalization of G

for i = 1 to n−2 do
make Si = { v ∈V | v ∈ N(α(i)) && α(v)> i) } a clique by adding fill-in edges (if
necessary);

end

are therefore often referred to as elimination orderings. An elimination ordering α on the
vertices of G is called perfect if during Algorithm 2.1 no fill-in edges are added to G, i.e., if
for all vertices v ∈V the set of higher ordered neighbors already forms a clique in G.

As an example, a graph is depicted in Figure 2.5 with a chordalization of the graph that
is obtained using an elimination ordering on its vertices. Fill-in edges bd,bf ,dh, f h,d f are
added during elimination of respectively the vertices a, c, i, g,b. While eliminating the last
four vertices in the ordering, no fill-in edges need to be added.

a b c

d e f

g h i

a b c

d e f

g h i

Figure 2.5: graph G and chordalization H of G that is obtained via elimination ordering α =
acgibde f h.

A vertex v in a graph G is called simplicial if N(v) induces a clique in G. It was shown
in (89) that every non-empty chordal graph contains at least one simplicial vertex. Another
classical fact is that chordal graphs are recursively simplicial, i.e., they contain a simplicial
vertex and after removing this simplicial vertex, the subgraph is still simplicial. A per-
fect elimination ordering α of a chordal graph G can therefore be obtained by repeatedly
selecting a simplicial vertex of G as the next vertex in α and deleting it from G.

2.5 Tree decompositions and chordalizations

In this thesis, we will use both tree decompositions and chordalizations as structures to
bound and determine the treewidth of graphs. However, the two terms are closely related

34

2.5. Tree decompositions and chordalizations

in the sense that if we are given a graph G and a tree decomposition of G of width k, then
it is easy to construct a chordalization of G of width k. Algorithm 2.2 shows how this can be
done.

Algorithm 2.2: tree decomposition to chordalization

Input: graph G and tree decomposition (T, X) of G of width k
Output: chordalization of G of width k

for t = 1 to |V (T)| do
make Xt a clique in G by adding fill-in edges (if necessary);

end

Vice-versa, a chordalization of G can be used to construct a tree decomposition of G of the
same width. One way to do this is by application of Algorithm 2.3. Note that this algorithm
assumes a perfect elimination ordering (p.e.o.) of the chordalization H of G. Such a p.e.o.
can be obtained using simplicial vertices as described above. The tree decomposition and

Algorithm 2.3: chordalization to tree decomposition

Input: graph G, chordalization H of G of width k and p.e.o. α of H
Output: tree decomposition of G of width k

Create a bag consisting of vertex α(n).;
for i = n−1 to 1 do

find bag Xi containing all higher ordered neighbors of α(i) in H.;
if Xi contains only the higher ordered neighbors of α(i) then

add α(i) to bag Xi.;
end
else

make a new bag containing α(i) and its higher ordered neighbors in H and
connect it to bag Xi.;

end
end

chordalization of the Petersen graph as depicted in Figure 1.3 can be constructed using one
another by application of Algorithms 2.2 and 2.3.

35

Chapter 3

Branch and Bound

This chapter deals with an exact method to determine the treewidth of graphs. The method
that will be presented is a branch-and-bound algorithm that operates directly on the input
graph and ultimately realizes chordalizations of the graph by adding fill-in edges to it. It
is thus constructive in the sense that it not only determines the treewidth of a given graph
instance, but also returns a chordalization of optimal (minimum) width. By application
of Algorithm 2.3, such an optimal chordalization can be used to construct an optimal tree
decomposition of the graph instance.

The content of this chapter is based on cooperation with Stan van Hoesel and Hans
Ensinck.

3.1 Introduction

Finding chordalizations or tree decompositions of minimum width has been a central issue
in algorithmic graph theory during the last decades. Its importance lies in the fact that
many NP-hard problems can be solved efficiently using low-width tree decompositions with
dynamic programming type methods. Examples of such problems are Vertex Coloring, In-
dependent Set, and even Hamiltonian Cycle.

Courcelle (51) has shown that for each graph property that can be formulated in Monadic
Second Order Logic (MSOL), there is a polynomial time algorithm that verifies if the prop-
erty holds if a bounded width tree decomposition of G is available. Such algorithms operate
in two steps. First a tree decomposition is constructed and then the problem is solved on
this tree decomposition. The last step is usually done by some dynamic program for which
both running time and memory space consumption are exponential in the width of the tree
decomposition, but polynomial in the size of the graph.

Among the first authors applying this technique are Bern et al. (13). For other papers
using this technique on a variety of problems, see for instance Wimer et al. (109) for some

37

Chapter 3. Branch and Bound

of the pioneering papers with this type of algorithm, Arnborg and Proskurowski (8), Lau-
ritzen and Spiegelhalter (88) for the inference problem in probabilistic networks, Telle and
Proskurowski (105) for several vertex partitioning problems, Koster et al. (84) for partial
constraint satisfaction problems (in particular frequency assignment problems) and Bod-
laender and Koster (34) for the weighted independent set problem. See Arnborg (6) and
Bodlaender (25) for surveys on treewidth algorithms and algorithms for intractable prob-
lems that are efficient when restricted to graphs of bounded treewidth.

Several graph classes admit polynomial time algorithms for determining their treewidth,
e.g.chordal graphs, permutation graphs, circular arc graphs, circle graphs and distance
hereditary graphs. The problem, however, when given an arbitrary graph G and an integer
k, to determine whether the treewidth of G is at most k is NP-complete (7).

Most constructive methods focussing on upper bounding the treewidth of graphs are con-
stant factor approximation algorithms or heuristics, see Section 1.7.2 and 1.7.3. The major-
ity of exact algorithms for treewidth is non-constructive, see Section 1.7.1. There is however
quite some recent literature focussing on constructive exact methods for determining the
treewidth of a graph. These algorithms use either dynamic programming or branch-and-
bound. Bodlaender et al. (32) give an overview on such algorithms and their theoretical
and practical implications. Shoikhet and Geiger (102) constructed an algorithm that takes
as input a graph G and an integer k. By building sets of minimal separators and so called
fragments of G and by applying dynamic programming techniques, the algorithm returns
an optimal chordalization of G or a valid statement that the treewidth of G is larger than
k. Branch-and-bound is used by Gogage and Dechter (64) and in Bachoore and Bodlaender
(10), among others. Their methods build perfect elimination orderings by adding vertices
one by one in the branching process. Gogate and Dechter introduced a processing method
to kill nodes using exchangeability of neighbors in the orderings. Bachoore and Bodlaender
(10) added processing based on vertex disjoint paths between vertices. Their methods are
practically suitable for graphs of up to 100 vertices and treewidth of no more than 10.

In this chapter, a new constructive algorithm for determining the treewidth of a graph
is introduced. More specifically, a branch-and-bound algorithm is presented that uses a
branching scheme in which fill-in edges are added or forbidden. By exploiting the knowl-
edge about forbidden edges in any node of the branch-and-bound tree, new lower bound
techniques for the treewidth are developed. Moreover, new processing rules are applied to
limit the number of nodes that need to be visited in the branch-and-bound tree.

The remainder of this chapter is organized in the following way: in Section 3.2, some
preliminaries and definitions are introduced, part of which will be used exclusively in this
chapter. Section 3.3 attends to a special graph structure, the so called necklace, that forms
the basis of several processing rules and lower bounds. Section 3.4 then describes the facets
of branching and bounding in the algorithm. In Section 3.5, a number of processing rules

38

3.2. Preliminaries

and some graph reduction techniques are introduced. A selection of the ideas presented in
this chapter have been implemented and the resulting algorithm has been tested on several
classes of graphs. The results of these experiments are presented in Section 3.6. Finally,
conclusions and some directions for further research can be found in Section 3.7.

3.2 Preliminaries

Section 2.4 describes that a chordalization H = (V ,E∪F) of G = (V ,E) can be obtained via
an elimination ordering α on vertex set V by application of Algorithm 2.1. The following
folklore fact provides a way to determine the width of such a chordalization H.

Lemma 3.2.1. Let H = (V ,E∪F) be the chordalization of G that is obtained via elimination
ordering α by application of Algorithm 2.1. Then the width of H is equal to the maximum
over all vertices v ∈V of the number of higher ordered neighbors of v in α at the moment that
v is eliminated.

Proof. The width of chordal graph H is equal to the size of its maximum clique minus one.
Consider the higher ordered neighbors in α of any vertex v at the moment v is eliminated.
Since v will form a clique in H together with these neighbors it follows that the maximum
number of the higher ordered neighbors is a lower bound for the width of H. To see that
the maximum clique in H is induced by some vertex v and its higher ordered neighbors
in α at the moment of v’s elimination, let C be a maximum clique in H and let w be the
element from C that has the lowest order in α. After w’s elimination, no edges are added to
H that are incident to w. Also, during elimination of w, no edges incident to w are added
to H. Therefore, all other elements of C (which are all higher ordered than w) are already
incident to w at the moment w is eliminated.

A perfect elimination ordering of a chordal graph can be found by recursively selecting
simplicial vertices in the graph. By Lemma 3.2.1, the treewidth of a chordal graph thus
equals the maximum degree of a simplicial vertex at the moment it is selected. This leads
to the following trivial result:

Lemma 3.2.2. Determining the treewidth of a chordal graph can be done in polynomial time.

The algorithm described in this chapter builds chordalizations of some input graph G =
(V ,E) by adding edges to it and by forbidding vertex pairs to be edges in the chordalization
of G.

In the remainder of this chapter, the set B = E ∪F, the original set of edges in G plus
the added edges, will be denoted as the set of black edges, and the set R, the vertex pairs
forbidden in a chordalization of G, will be denoted as the set of red edges. The set of vertex

39

Chapter 3. Branch and Bound

pairs that are neither in R nor in B, will be denoted as the set W of white edges. Given
input graph G = (V ,E), nodes in the branch-and-bound tree thus correspond to graphs S =
(V ,B,R), where E ⊆ B, and B, R, and W form a partition of the vertex pairs of G.

Definition 3.2.3. S′ = (V ,B′,R′) is called an extension of S = (V ,B,R) if B ⊆ B′ and R ⊆ R′.

An extension of S = (V ,B,R) can thus be obtained from S by making some white edges
black and/or red.

Definition 3.2.4. S′ = (V ,B′,R′) is called a chordalization of S = (V ,B,R) if S′ is an exten-
sion of S and H = (V ,B′) is chordal.

Note that if S′ is a chordalization of S and S is an extension of G, then S′ is also a
chordalization of G.

Definition 3.2.5. The treewidth of S = (V ,B,R) is the minimum width over all chordaliza-
tions S′ of S. If S has no chordalization, then tw(S)=∞.

In Figure 3.1, an example is given of a graph that has no chordalization.

a b c

d e f

g h i

E ∪ F :

R :

Figure 3.1: Depicted is the graph S = (V ,B,R). In all supergraphs of S, the cycle abeda is chordless.
Therefore tw(S)=∞.

Let it be clear that the red edges in S = (V ,B,R) are not real edges, so whenever a cycle,
a path or the degree of a vertex in S are mentioned, they refer to the cycle, path or degree
of the vertex in the corresponding graph H = (V ,B).

This section ends by introducing a lemma concerning chords in chordal graphs.

Lemma 3.2.6. Let C be a cycle of length at least 4 in a chordal graph G and let v be a vertex
on C. Then at least one of the following statements is true:

• The neighbors of v on C are connected by a chord.

• There is a chord of C incident to v.

40

3.3. the Necklace structure

Proof. Proof by contradiction. Suppose there is a vertex v on C such that the neighbors u
and w of v on C are not connected by a chord and no chords of C are incident to v. Then
consider the shortest cycle C′ in G containing path uvw and using only chords or edges of
C. Since there are no chords in C incident to v and uw is not a chord of C, cycle C′ must be
a chordless cycle with length at least 4, contradicting the chordality of G.

3.3 the Necklace structure

Both processing rules and bounding methods in this chapter depend heavily on the pres-
ence of a certain structure in the graph. This structure, which will be called a necklace, is
introduced in this section and several lemmas are presented concerning chordalizations of
graphs S = (V ,B,R) that contain necklaces.

Definition 3.3.1. A path P = v1 . . .vn of black edges in S = (V ,B,R) for which vivi+2 ∈ R for
i = 1, . . . ,n−2 is called a necklace in S.

If extension S = (V ,B,R) of G = (V ,E) contains a necklace, several conclusions can be
drawn about possible chordalizations of S. They are summarized in the following set of
lemmas that will later on be used to process graph S in a node of the branch-and-bound
tree.

Lemma 3.3.2. Let P = v1 . . .vn be a necklace in S = (V ,B,R). Then in any chordalization of
S, there are no black edges between vertices of P that are non-adjacent on P.

Proof. Suppose that in some chordalization S′ of S, there is a black edge between two ver-
tices vi and vj that have distance of at least 3 on P. Select vi and vj as close as possible
to each other on P. Then in S′, vi . . .vjvi is a cycle of length at least 4, without any black
chords. This contradicts the fact that S′ is a chordalization of S.

Lemma 3.3.2 is illustrated in Figure 3.2. The next lemma concerns a vertex in S that is
connected to two vertices on a necklace in S.

Lemma 3.3.3. Let P = v1 . . .vn−1 be a necklace in S = (V ,B,R) and let vn be connected to both
v1 and vn−1. Then in every chordalization of S, vivn will be a black edge for i = 1, . . . ,n−1.

Proof. By Lemma 3.3.2 the vertices of P will induce a path in the chordalization. Therefore,
all chords of the cycle C = v1 . . .vnv1 in the chordalization must be incident to vn. This
implies that in the chordalization, there are chords vivn for i = 2, . . . ,n−2 in C.

An illustration of Lemma 3.3.3 can be found in Figure 3.3. The last lemma of this chapter
concerns a special type of cycle in S = (V ,B,R).

41

Chapter 3. Branch and Bound

necklace in S any triangulation of S

black edge

red edge

v1 vn v1 vn

Figure 3.2: In any chordalization of S, there are no black edges between vertices of necklace P that
are non-adjacent on P.

closed necklace in S any triangulation of S

black edge

red edge

v1 vn−1 v1 vn−1

vn

vn

Figure 3.3: Let P = v1 . . .vn−1 be a necklace and C = v1 . . .vnv1 be a cycle in S. Then in all chordal-
izations of S, cycle C has exactly n−3 chords, all incident to vn.

Lemma 3.3.4. Let C = v1 . . .vnwv1 be a cycle of length at least 4 in S = (V ,B,R). If vertex w is
connected with red edges to all vertices in C except its neighbors, then in all chordalizations
of S, the edge v1vn will be a black edge.

Proof. If in a chordalization of S, cycle C has no chords incident to w, then by Lemma 3.2.6,
the neighbors of w on C must form a chord in the chordalization.

42

3.4. Branch-and-Bound algorithm for treewidth

3.4 Branch-and-Bound algorithm for treewidth

Branch-and-bound is the most widely used tool for solving large scale NP-hard combina-
torial optimization problems. It is used here in a fairly standard way. Branch-and-bound
algorithms rely on a systematic enumeration of all possible solution candidates. In this
study, this implies that all potential chordalizations of the graph will, either explicitly or
implicitly, be considered.

The branch-and-bound tree consists of nodes each representing a subproblem of the orig-
inal problem. The tree is built by starting with one node (the root), which represents the
original problem, with S = (V ,E,�). The subproblem in a node is to find the minimum width
over all chordalizations of S, or equivalently, to determine the treewidth of S. In the pro-
cess, nodes are split by extending graph S, whenever necessary. A node (the father) is split
by selecting a white edge vw, and making two new subproblems or nodes (the children) in
the tree, one in which vw is colored red, and one in which vw is colored black. Since, in any
chordalization all vertex pairs are colored either red or black, it is clear that every feasible
solution of the father node is present in one of the two children. At any stage of the tree, the
leaf nodes, the nodes that have not been split, represent the whole set of feasible solutions,
guaranteeing that the optimal solution to the root problem can also be found in one of these
nodes. The splitting process is called branching. The selection of the edge on which to split,
is called branching variable/edge selection.

For some of the leaf nodes, one might be able to conclude that no further examination is
necessary. These nodes are labeled inactive, and no further splitting is necessary. The other
leaf nodes are called active. Every time, after a node is split, a new active node has to be
selected to be processed next. There are several orderings of the active nodes in which to
select them. They are described below.

• Breadth First Search: here the subproblems are processed in the order of their cre-
ation. This strategy is seldom used.

• Depth First Search: here one always selects the last created subproblem. This is the
easiest way of implementing the branching strategy. It also uses the least amount of
memory, since the number of subproblems is relatively small.

• Best First Search: here the node is selected according to some criterion, to judge the
potential of the node. Generally, in minimization problems the node with the smallest
lower bound is selected. Note that both Depth First Search and Breadth First Search
can be viewed as special cases of Best First Search using the tree depth within the
Branch-and-Bound tree as criterion: taking highest depth and lowest depth as the
selection criterion, respectively.

43

Chapter 3. Branch and Bound

Before a node is split, it is processed with the techniques available, to find out whether
it might still hold the optimal solution to the root problem. A standard way of processing
is bounding. In a minimization problem such as determining treewidth, normally a good
feasible solution (forming an upper bound) is known, i.e. a good chordalization of input
graph G is known, with width val. If one can prove, with some kind of lower bounding
technique, that for the subproblem at hand no chordalizations with value smaller than val
can be found, then one does not need to examine this node any further; it is made inactive.
This is the bounding procedure in the branch-and-bound algorithm. Besides bounding, other
methods are used to draw conclusions about the subproblem at hand, such as the addition
of red and black edges, and (almost) simplicial vertices. Together these ideas form the
processing part in a node.

For all facets of the branch-and-bound technique that are mentioned here, ideas and
methods will be described next, some of which are standard, others more problem specific.

3.4.1 branching rules

Branching in a node of the binary branch-and-bound tree is done by selecting a white edge
in the graph corresponding to the node. Two children of the node at hand are then created
by turning the selected white edge into a black edge in one child node respectively into a red
edge in the other child node.

simple rules

The first two branching rules are pretty straightforward in the sense that they select a
white edge e based on local properties of the graph in the subproblem at hand, and therefore
require only little computation time.

The first rule selects a white edge vw where vertex v has the highest degree (wrt the
black edges). w is then selected as the vertex with the highest degree (wrt the black edges)
among the vertices for which vw is a white edge. Slightly different mechanisms are possible
here: maximum total degree of v and w or including red edges in the selection process.

The second rule is based on extending some clique C, in which all edges are colored red
or black. It starts off with a maximal clique C in the original graph. One can choose this
initial C, for instance, by taking a good tree decomposition of G, and taking the largest bag.
It starts then, hopefully, in the (dense) part of the graph which is the most complicated to
chordalize and where it may be easiest to draw conclusions from coloring a white edge red
or black. The vertex w outside C is chosen that has the fewest white edges to C. Then a
white edge e between w and a vertex in C is chosen to branch on. Once all edges between w
and C are defined, C can be extended by adding w to C.

44

3.4. Branch-and-Bound algorithm for treewidth

probing based rules

Another way of branching is based on the processing rules that will be discussed in Section
3.5. While turning a white edge of S into a black or red edge, sometimes one can conclude
that to obtain a chordalization of the resulting graph, other white edges have to be turned
into black edges (or cannot be turned into black edges). By applying these processing rules
recursively, the effects of fixing the color of one white edge can be far reaching. For edge
w ∈ W , let wb be the number of white edges in S whose color can be fixed after recursively
applying the processing rules from Section 3.5 after w is colored black. Similarly, let wr be
the number of white edges in S whose color can be fixed after w is colored red. The probing
based branching rule considers all white edges w in S and branches on the one for which
wb +wr is maximized. This rule greatly reduces the number of subproblems. However, the
time won by pruning the subproblems will often be abolished by the time needed to compute
wb +wr for all white edges. Variants on this probing based rule are relatively easy to come
up with. To save computation time, one might for example apply the processing rules only
once instead of recursively.

3.4.2 bounding methods

As mentioned before, methods for bounding the treewidth in a node of the tree play a cru-
cial role in our branch-and-bound algorithm. In this section, some novel techniques are
presented for bounding the treewidth. They exploit information about the set of red edges
in the extension S = (V ,B,R) of G = (V ,E) that corresponds to a node in the branch-and-
bound tree.

upper bounding

To obtain an upper bound on tw(G) that can be used from the very start of a run of the
branch-and-bound algorithm, one might apply a quick upper bound heuristic, see Section
1.7.3. In case the results are not satisfying, one might consider to apply a more advanced
heuristic like the local search heuristic that is the subject of Chapter 4 of this thesis.

Consider an extension S = (V ,B,R) of G and the graph S′ that has the same set of black
edges as S but an empty set of red edges. Any chordalization of S′ is also a chordalization of
G. If S′ happens to be close to an optimal chordalization of G, an upper bound heuristic ran
on S′ will likely give a lower upper bound on tw(G) than the same heuristic ran on G, simply
because there is less room for deviating from an optimal solution. Therefore, in an attempt
to improve upon the starting upper bound on tw(G), it might be beneficial to run the upper
bound heuristic from time to time on S′ for some nodes deep in the branch-and-bound tree.

If one can verify that in some node the extension S = (V ,B,R) of G = (V ,E) is chordal,
then obviously its width also provides an upper bound on tw(G). Checking whether S is

45

Chapter 3. Branch and Bound

chordal is straightforward and determining the treewidth of a chordal graph can be done in
polynomial time, see Lemma 3.2.2.

lower bounding with R

The problem to decide whether an extension S = (V ,B,R) of G = (V ,E) has a chordalization
can be described in the following way: decide whether a chordal graph SC exists such that
S is a proper subgraph of SC and SC is a proper subgraph of the graph obtained from S
by making all white edges black. This problem is known as the chordal sandwich problem,
which was proven to be NP-complete in (65). This destroys hope of effectively killing the
subproblems for which no chordalization exist. Nonetheless, some techniques will be intro-
duced here for bounding tw(S) from below. If this lower bound on tw(S) is equal to or larger
than a known upper bound on tw(G), the particular node can be set to inactive.

Any chordalization of S = (V ,B,R) can be obtained by applying some elimination order-
ing to S. A chordalization of S is an extension of S. Hence, at the moment of elimination
of vertex v, there should not be any red edges between neighbors of v. Let Vb be the set of
vertices v in S for which there are no red edges between neighbors of v in S. Based on the
foregoing observations, the following lemma provides a lower bound on tw(S):

Lemma 3.4.1. The minimum degree in S of the vertices from Vb is a lower bound on tw(S).

To obtain a chordalization of S by use of an elimination ordering, one of the vertices from
Vb must be eliminated first. This observation supports the following lemma:

Lemma 3.4.2. Let Cb be the vertices in S that are adjacent to all vertices in Vb. Then Cb

forms a clique in every chordalization of S and hence |Cb|−1 is a lower bound on tw(S).

Next a second lower bound on tw(S) will be described which is also based on the presence
of red edges and can be seen as a generalization of a result from (49). Note again that a path
in S refers to a path of which all edges are black.

Lemma 3.4.3. Let S = (V ,B,R) and let uv ∈ R. Then the number of vertex disjoint paths
between u and v in S forms a lower bound on tw(S).

Proof. If S has no chordalization, tw(S)=∞ by definition and the claim is true. Otherwise,
consider an arbitrary chordalization of S and a tree decomposition (T, X) of S of equal width
that is derived from this chordalization by Algorithm 2.3. Since uv ∈ R, in (T, X) there is no
bag that contains both u and v. Let Xu and Xv be the bags in (T, X) that contain respectively
u and v such that all internal bags (if any) on the unique path from Xu to Xv in T contain u
nor v. Then by the properties of a tree decomposition, bag Xu (the same holds for Xv) must
contain an internal vertex of any vertex disjoint path between u and v in (the chordalization
of) S. If there are w such vertex disjoint paths in S, then |Xu| ≥ w+1. The width of (T, X)
and of the chordalization of S are thus at least w.

46

3.4. Branch-and-Bound algorithm for treewidth

To determine the maximum number of vertex disjoint paths between u and v in S, one
can use a flow algorithm with capacities on the vertices.

lower bounding with necklaces

An improvement over the lower bound given by Lemma 3.4.3 can be obtained by using the
result of Lemma 3.3.2.

Theorem 3.4.4. Let P = v1 . . .vn be a necklace in S = (V ,B,R). Then for any i ∈ {2, . . . ,n−
1}, the number of vertex disjoint paths between the vertex sets V1 = {v1, . . . ,vi−1} and V2 =
{vi+1, . . . ,vn} forms a lower bound for tw(S).

Proof. If S has no chordalization, tw(S)=∞ by definition and the claim is true. Otherwise,
consider an arbitrary chordalization of S and a tree decomposition (T, X) of S of equal width
that is derived from this chordalization by Algorithm 2.3. By the definition of a necklace and
by Lemma 3.3.2, all paths in the chordalization of S (and thus also in S itself) between a
vertex from V1 and a vertex from V2 have at least one internal vertex. Let Xi−1 and Xi+1

be the bags in (T, X) that contain respectively {vi−1,vi} and {vi,vi+1} such that all internal
bags (if any) on the unique path from Xi−1 to Xi+1 in T do not contain vi−1 nor vi+1. Note
that any internal bag Xi on this path contains vertex vi and that V1 and V2 are in different
components of T \ Xi. By the properties of a tree decomposition, bag Xi−1 (the same holds
for Xi+1) must contain an internal vertex of any vertex disjoint path between a vertex from
V1 and a vertex from V2 in (the chordalization of) S. If there are w such vertex disjoint paths
in S, then |Xi−1| ≥ w+1. The width of (T, X) and of the chordalization of S are thus at least
w.

Lemma 3.3.2 can also function as a way of bounding the treewidth from below; when a
necklace is detected in S and two vertices at distance at least 3 on the necklace are connected
by a black edge, then this implies that tw(S) =∞ and the node can be made inactive. The
same goes for Lemmas 3.3.3 en 3.3.4.

regular lower bound methods

Finally consider again the graph S′ obtained from S = (V ,B,R) by deleting all red edges.
Since the red edges in S are only restrictive for the number of possible chordalizations of S,
any lower bound on tw(S′) is also a lower bound on tw(S). By applying regular treewidth
lower bound heuristics on S′ one can thus also bound tw(S) from below. Algorithm 3.1
which was proposed in (64) can therefore be used as a lower bounding procedure in the
branch-and-bound method. Independently, the same algorithm was proposed in (33) under
the name MMD+(min-d). In the latter paper, two more variants of the algorithm are pro-
posed, called MMD+(max-d) and MMD+(least-c). In step 2a of the algorithm, MMD+(max-d)

47

Chapter 3. Branch and Bound

contracts minimum degree vertex v to a maximum degree vertex u in N(v) and algorithm
MMD+(least-c) contracts v to a vertex u in N(v) for which v and u have the least number of
common neighbors. Experimental results in (33) show that MMD+(least-c) performs slightly
better than MMD+(min-d) on several instances. In our implementation MMD+(min-d) is
used, for the reason that it takes less computation time.

Algorithm 3.1: Algorithm Minor-Min-Width or MMD+(min-d)

Input: graph G
Output: a lower bound on tw(G)

1. lb = 0;

2. Repeat

(a) Contract the edge between a minimum degree vertex v and u ∈ N(v) such that
the degree of u is minimum in N(v) to form a new graph G′.

(b) lb =max{lb,degreev(G)}.

(c) Set G to G′.

3. until no vertices remain in G.

4. return lb.

For extensions S of G with only a low number of red edges, Algorithm 3.1 will provide
better lower bounds on tw(S) than the R-based lower bound algorithms, which exploit in-
formation about the set R. However, when |R| increases, the R-based lower bound methods
might be more competitive.

3.5 Rules for processing

The problem to determine tw(S) in a node of the branch-and-bound tree becomes easier
when more white edges are colored red or black. In this section, several rules are described
for processing a graph S. The three lemmas from section 3.3 state that because of the
presence of necklace structures, in a chordalization of S some white edges in S need to be
black or cannot be black. In analogy with these three lemmas, three rules for processing a
graph S are introduced below.

According to Lemma 3.3.2, a necklace in S will induce a path in any chordalization
of S. Hence whenever a necklace is encountered in a subproblem, the branch-and-bound
algorithm adds red edges to S between non-adjacent vertices of a necklace in S.

48

3.5. Rules for processing

Assume that in graph S a cycle C = v1 . . .vnv1 is found in which P = v1 . . .vn−1 forms a
necklace. Then by Lemma 3.3.3, the algorithm simplifies the subproblem of determining
tw(S) in the node by connecting all vertices of P to vn via a black edge.

Assume finally that in graph S, a cycle C = v1 . . .vnwv1 exists of length at least 4 in
which vertex w is connected with red edges to all vertices in C except its neighbors. Then
by Lemma 3.3.4, in all chordalizations of S, edge v1vn will be black. Hence the algorithm
will process the subproblem by coloring the edge black.

The three rules described above together form the set of so called necklace rules.

3.5.1 simplicial vertices

Another way of simplifying the subproblem of determining tw(S) is by reducing the size
of the graph S itself. In this section, some graph reduction rules are presented, based on
simplicial vertices and almost simplicial vertices. The techniques described are an adaption
of methods that are used for regular graphs (without set R), see e.g., (31).

Lemma 3.5.1. Let v be a simplicial vertex in S = (V ,B,R) of degree d(v) and let S′ = S \{v}.
Then tw(S)=max{d(v), tw(S′)}.

Proof. Since v and its neighbors form a clique in S of size d(v)+1, it follows that tw(S)≥ d(v).
S′ is a minor of S, so by Lemma 2.4.3, tw(S) ≥ tw(S′). Combining the two observations, if
follows that tw(S) ≥ max{d(v), tw(S′)}. To show that tw(S) ≤ max{d(v), tw(S′)}, consider an
optimal tree decomposition of S′. Since the neighbors of v form a clique in S′, there will be a
bag containing all neighbors of v. By adding a neighbor bag to this bag that contains v and
all neighbors of v, one obtains a tree decomposition of S of width max{d(v), tw(S′)}. Hence
tw(S)≤max{d(v), tw(S′)}.

The next lemma is the basis of a graph reduction rule with respect to almost simplicial
vertices. First let us define contraction in the extended graph S = (V ,B,R) of G.

Definition 3.5.2. A black edge uv in S = (V ,B,R) is said to be contracted to v if for all
vertices w for which vw is a white edge:

• vw is added to B if uw ∈ B,

• vw is added to R if uw ∈ R,

and u is deleted from S.

For an illustration of this definition, see Figure 3.4. In the following lemma, Rv denotes
the set of vertices w for which vw ∈ R in S and lb is some lower bound for tw(S).

49

Chapter 3. Branch and Bound

black edge

red edge
u

v

contract u to v

a b c

d e

va b c

d e

Figure 3.4: contraction of black edge uv to vertex v in graph S = (V ,B,R).

Lemma 3.5.3. Let v be an almost simplicial vertex in S with d(v) < lb. Let w be the non-
clique neighbor of v and let S′ be the graph that is obtained from S by contracting vw to w.
If Rw ⊆ Rv, then tw(S)= tw(S′).

Proof. First let us show that tw(S) ≥ tw(S′). Consider an optimal tree decomposition of
S. Replace v by w in the bags of this tree decomposition and delete one w from each bag
that contains two w’s. The result is a tree decomposition of S′ that has lower or equal
width. Indeed, the subtree corresponding to w will still be connected, since there was a bag
containing both v and w and all edge relations (from E and F) are still covered by a bag; w
will be connected in S′ to all vertices (except v) that were either a neighbor of w or v in S
and in the new tree decomposition, for each such vertex there is a bag containing w and this
vertex. Note that w will form a red edge in S′ with all vertices that formed a red edge in S
with either v or w. Since Rw ⊆ Rv in S, neither of those vertices shares a bag with v in the
tree decomposition for S, and therefore neither of those vertices will share a bag with w in
the tree decomposition for S′. It follows that tw(S)≥ tw(S′).
Now let us show that tw(S) ≤ tw(S′). Consider an optimal tree decomposition of S′. Since
Rw ⊆ Rv in S, all neighbors of v in S form a clique in S′ and therefore there is a bag X in
the tree decomposition of S′ containing all neighbors of v in S. Make a bag Y containing
vertex v and all its neighbors in S and attach it to bag X . The result is a tree decomposition
of S. Indeed, there is no bag containing both end vertices of a red edge in S. The width of
this tree decomposition is equal to the maximum of tw(S′) and the degree of vertex v in S,
i.e., tw(S) ≤ max{d(v), tw(S′)}. Since the degree of v in S is smaller than lb, the conclusion
is that tw(S)≤ tw(S′).

50

3.6. Experimental results

3.5.2 conflict graph

Finally, we propose the idea of keeping track of a so called conflict graph. A conflict graph
should be constructed in such a way that it visualizes the conflicts in certain colorings of the
white edges of the graph in the subproblem. The conflict graph should have two vertices for
each white edge in the graph, one for the case that the edge is colored black and one for the
case the edge is colored red. Suppose that e1 and e2 are potential edges in the input graph,
then the conflict graph has vertices c1b, c1r, c2b and c2r. Vertex c1b corresponds with the
situation where e1 is a black edge and c1r to the situation where e1 is a red edge. Suppose
that as a result of the necklace lemmas, e1 can not be colored black if e2 is red, then the
conflict graph has an edge c1bc2r. Conflicts that are detected by the processing rules in a
node of the branch-and-bound tree remain valid for the children of this node. By apply the
processing rules again in the child node, one has to determine the same conflicts in the child
node all over again. The advantage of keeping track of a conflict graph is that from a node
to its child node, the conflict graph has to be updated only in the local region where the
branch-and-bound algorithm is operating at that moment. For this reason we believe that
keeping track of a conflict graph would speed up the branch-and-bound algorithm.

3.6 Experimental results

The branch-and-bound algorithm has been tested on a number of graph classes. Implemen-
tation of the algorithm was done in C++ and experiments were run on a 2.4GHz Intel Core 2
CPU having 2 GB of RAM. The computational experiments focussed on grid graphs, queen
graphs, and graphs derived with the procedure used for Mycielski graphs. These graphs can
easily be extended to larger graphs with similar properties. In this way the behavior of the
algorithm has be studied on similar instances of increasing size.

For all results in this section, Depth First Search has been used as the traversal strategy
in the branch-and-bound tree. Furthermore, branching in the tree was done by the first
branching rule as described in Section 3.4.1. Lower bounds were obtained by Algorithm 3.1.
Upper bounds were found by checking for chordality in every subproblem. For some graph
classes, initial upper bounds were passed as input to the algorithm. Finally, the graphs
corresponding to the subproblems were processed according to the rules that are described
in Section 3.5. At the moment of writing this chapter, the remaining ideas from this chapter
have not yet been fully implemented. For this reason, no running times are displayed in the
tables. Instead, the number of nodes visited in the branch-and-bound tree has been used as
a performance criterion for our branch-and-bound algorithm.

The tables in this section use the following terminology. |V | and |E| denote respectively
the number of vertices and edges in the graph, whereas ub and tw denote an upper bound

51

Chapter 3. Branch and Bound

on the treewidth respectively the treewidth of the graph. Finally, columns #1, #2, and #3
display the number of processed subproblems for several variants of the algorithm:

• #1 denotes the number of processed subproblems when the algorithm is used in its
most basic form; except for removal of simplicial vertices (which is needed to determine
whether the graph is chordal), no processing is used,

• #2 denotes the number of processed subproblems when the necklace rules for process-
ing are enabled,

• #3 denotes the number of processed subproblems when in addition to the necklace
rules also the (almost) simplicial vertices rules are enabled.

3.6.1 Grid graphs

For n,m ≥ 2, the (n×m)-grid graph (see (96)) is the simple graph with vertices vi j (1 ≤ i ≤
n, 1 ≤ j ≤ m) where vi j and vi′ j′ are adjacent if |i− i′| + | j− j′| = 1. The (n×m)-grid graph
will be denoted in this section as grid n_m. Grid graphs are relatively sparse and hence the
graph corresponding to the root problem has a lot of white edges. This makes it relatively
difficult for the branch-and-bound algorithm to find initial chordalizations that can be used
as an upper bound. The treewidth of grid n_m, known to be min(n,m), is therefore passed as
an upper bound to the algorithm. Experimental results of the branch-and-bound algorithm
on grid graphs can be found in Table 3.1.

graph |V | |E| ub tw #1 #2 #3

grid 3_3 9 12 3 3 401 39 39
grid 3_4 12 17 3 3 1835 67 67
grid 3_5 15 22 3 3 6109 105 105
grid 3_6 18 27 3 3 35455 293 293
grid 3_7 21 32 3 3 171711 743 743
grid 3_8 24 37 3 3 929393 2019 2019
grid 3_9 27 42 3 3 4754479 5501 5501
grid 3_10 30 47 3 3 > 107 15001 15001
grid 4_4 16 24 4 4 > 107 638739 298325
grid 4_5 20 31 4 4 > 107 9652057 4821991

Table 3.1: Experiments of the algorithm on Grid graphs

52

3.6. Experimental results

3.6.2 Queen graphs

The n by m queen graph, denoted by queen n_m, is a graph that is based on a chess board of
n by m squares. Each square corresponds to one vertex in the graph. Vertices v and w are
connected by edges if a queen is allowed to move from the square corresponding to v to the
square corresponding to w, i.e. one or more positions horizontally, vertically, or diagonally
on the board.

While testing the branch-and-bound algorithm on the queen graphs, no initial upper
bound was used. Experimental results of the algorithm on queen graphs can be found in
Table 3.2. The (small instances of) queen graphs are dense and hence the graphs corre-
sponding to the subproblems have relatively few white edges. This makes processing rules
more effective, but at the same time the high treewidth of the queen graphs makes finding
an optimal chordalization hard.

graph |V | |E| tw #1 #2 #3

queen 3_3 9 28 6 5 5 5
queen 3_4 12 46 8 381 59 49
queen 3_5 15 67 10 20823 561 433
queen 3_6 18 91 12 1484735 11589 9383
queen 3_7 21 118 14 > 107 472621 392947
queen 4_4 16 76 11 37909 767 551
queen 4_5 20 110 14 > 107 93487 69055
queen 4_6 24 148 16 > 107 1301913 1159711

Table 3.2: Experiments of the algorithm on Queen graphs

3.6.3 Mycielski like graphs

The algorithm was tested on Mycielski extensions of paths Pn, cycles Cn, and cliques Kn

of increasing size. The Mycielski extension of a graph can be found by adding copies of
all vertices, connecting them to the neighbors of their original and finally adding one extra
vertex that is connected to all the copies. Results can be found in Tables 3.3, 3.4 and 3.5.
The subscripts m1 and m2 in these tables mean that respectively 1 and 2 rounds of the
Mycielski construction were applied to the cycles, paths or cliques. Upper bounds that were
obtained from a heuristic were passed as input to the algorithm.

53

Chapter 3. Branch and Bound

graph |V | |E| ub tw # 3

C3_m1 7 12 3 3 1
C4_m1 9 16 4 4 23
C5_m1 11 20 5 5 259
C6_m1 13 24 5 5 1457
C7_m1 15 28 5 5 11537
C8_m1 17 32 5 5 100317
C9_m1 19 36 5 5 854125
C10_m1 21 40 5 5 7627301
C3_m2 15 43 7 7 727
C4_m2 19 57 8 8 17823
C5_m2 23 71 11 10 > 107

C6_m2 27 85 11 10 > 107

Table 3.3: Experiments of the algorithm on Mycielski-cycles

graph |V | |E| ub tw # 3

P3_m1 7 9 2 2 1
P4_m1 9 13 3 3 9
P5_m1 11 17 3 3 9
P6_m1 13 21 3 3 9
P7_m1 15 25 3 3 9
P8_m1 17 29 3 3 9
P9_m1 19 33 3 3 9
P10_m1 21 37 3 3 9
P3_m2 15 34 6 5 55
P4_m2 19 48 7 7 640091
P5_m2 23 62 8 7 530707
P6_m2 27 76 8 8 > 107

Table 3.4: Experiments of the algorithm on Mycielski-paths

3.7 Conclusions

In this chapter, an exact (branch-and-bound) algorithm is described for determining the
treewidth of a graph G = (V ,E). The algorithm constructs all chordalizations H = (V ,E∪F)
of G (explicitly or implicitly) by splitting the solution space on the basis of adding/forbidding
edges in the chordalization. This in contrast to other exact algorithms that use a solution
space based on e.g. elimination orderings to determine the treewidth.

54

3.7. Conclusions

graph |V | |E| ub tw # 3

K4_m1 9 22 4 4 1
K5_m1 11 35 5 5 1
K6_m1 13 51 6 6 1
K7_m1 15 70 7 7 1
K8_m1 17 92 8 8 1
K9_m1 19 117 9 9 1
K10_m1 21 145 10 10 1
K4_m2 19 75 9 9 1831
K5_m2 23 116 11 11 6033
K6_m2 27 166 13 13 20553
K7_m2 31 225 15 15 168981
K8_m2 35 293 17 17 942903
K9_m2 39 370 19 19 > 107

K4_m3 39 244 18 18 > 107

Table 3.5: Experiments of the algorithm on Mycielski-cliques

The current version of the algorithm uses a selection of the ideas that are put forward
in this chapter and has been tested on a number of graph classes. The results show that
the algorithm in its current state can solve graph instances up to some 30 vertices, if the
treewidth is not too high. The processing rules as far as they are implemented now, signif-
icantly reduce the number of subproblems that need to be processed. However, the results
are not yet comparable with the branch-and-bound methods of Gogage and Dechter (64) and
Bachoore and Bodlaender (10). Some additional ideas have been discussed in this chapter.
Section 3.4.2 describes several lower bound procedures that can be incorporated. These
might be improvements over the current, more simple lower bounding procedure. In Sec-
tion 3.5.2 the idea is proposed to keep track of a conflict graph. We do have confidence in the
quality of these ideas, but we realize that the proof of concept still has to be done.

55

Chapter 4

Local Search

In the search for tree decompositions of large graph instances, the sheer complexity of the
treewidth problem forces one to resort to non-exact methods. The spectrum of such non-
exact, constructive treewidth algorithms shows a trade-off between quality of the solution
(width of the returned tree decomposition) and computation time that is needed. For large
graphs, it often happens that neither the popular upper bound heuristics nor the approxima-
tion algorithms are able to find a good balance between these two measures. The first type
may return solutions that are exponentially far from optimal and they may do so in far less
time than might be available. On the other hand, the second type may take unreasonable
amounts of time to find a solution that approximates an optimal solution.

In this chapter, we introduce an upper bound heuristic for treewidth that partly fills this
gap. More specifically, we construct a local search heuristic for treewidth that starts with
a solution obtained by one of the quick upper bound heuristics and subsequently tries to
improve upon this solution by performing a neighborhood search.

The heuristic exploits a new neighborhood structure that operates directly on a tree
decomposition of the input graph. This in contrast to earlier local search heuristics for
treewidth that generally used derived notions such as elimination orders of the vertices, see
for example (50). As a side result, we find an alternative proof for a claim from (17) that
chordalizations of a graph can be made minimal with respect to fill-in edges in O(f (e+ f))
time, where f denotes the number of fill-in edges in a chordalization.

In Section 4.1, some yet undefined notions and preliminaries will be introduced. Section
4.2 describes in detail the two main building blocks of the neighborhood structure in our
local search heuristic. Section 4.3 treats the local search heuristic itself, together with a
way to evaluate different solutions and some ideas for restricting the size of the neighbor-
hood. Finally, in Section 4.4, experimental results of an implementation of the heuristic are
presented.

The content of this chapter is based on cooperation with Stan van Hoesel and Arie Koster.

57

Chapter 4. Local Search

4.1 Preliminaries

Definition 4.1.1. A pair of vertices {u,v} ⊂ V is called a fill-in pair in a tree decomposition
(T, X) of G = (V ,E) if uv ∉ E and ∃Xi ∈ X with u ∈ Xi and v ∈ Xi. The set of fill-in pairs of
(T, X) will be denoted by F.

Note that in Chapter 3 the letter F was used for the set of fill-in edges in a chordalization
of a graph G. We like to point out here that the set F of fill-in pairs in a tree decomposition
(T, X) equals the set F of fill-in edges in the chordalization of G that can be obtained from
(T, X) using Algorithm 2.2. Given a tree decomposition (T, X), we denote by Fi the set of
fill-in pairs that are present in exactly i bags of (T, X). Thus for a tree decomposition on
l bags, the corresponding set F can be partitioned into F1, . . . ,Fl . Later in this chapter we
will show that elements from F1 can simply be ’removed’ from (T, X) without increasing its
width. For this reason, we call f ∈ F1 a redundant fill-in pair.

Definition 4.1.2. A tree decomposition (T, X) is fill-in-pair minimal if it contains no redun-
dant fill-in pairs, i.e. if F1 =�.

A bag XA of a tree decomposition is included in bag XB (or XA ⊆ XB) if all vertices of X A

are contained in XB.

Definition 4.1.3. A tree decomposition (T, X) is inclusion minimal if no bag of (T, X) is
included in another bag of (T, X).

Note that for an inclusion minimal tree decomposition it holds that for any two neighbor
bags X A and XB, XA contains a vertex that is not present in XB, and vice versa. The
inclusion minimality property can easily be obtained by contracting bags to bags which they
are included in.

Definition 4.1.4. A tree decomposition (T, X) is minimal if it is both inclusion minimal and
fill-in-pair minimal.

Given a tree decomposition (T, X) of G = (V ,E) and S ⊂V , by TS we denote the subgraph
of T induced by the bags that contain all vertices in S. By the properties of a tree decom-
position, TS is always a subtree of T. Indeed, if two bags X A and XB of (T, X) contain all
vertices from S, then the bags on the unique path in T between X A and XB do so as well.

4.2 Neighborhood structure

In this section, we define two basic operations on a tree decomposition that we will call
merge and split. The merge of two neighbor bags X A and XB in tree T is a contraction of

58

4.2. Neighborhood structure

bags X A and XB into a new bag XC, where XC contains the union of the vertices of X A

and XB. All bags (except XA and XB themselves) that were neighbor to either X A or XB

before the merge are neighbor to XC after merging X A and XB. Note that the validity of
a tree decomposition is invariant under a merge operation: the three properties of a tree
decomposition are not violated by a merge. A subtree TS is said to be merged in (T, X)
if the bags of TS are pairwise merged until TS is a single bag in (T, X). Though a merge
operation may create redundant fill-in pairs (as we will see later), it cannot destroy inclusion
minimality of a tree decomposition.

A split of a bag is in some sense the opposite operation of a merge. During a split, one
bag XC in (T, X) is replaced by two new neighboring bags XA and XB, such that the union
of the vertex sets of XA and XB is equal to the vertex set of XC and |XA| = |XB| = |XC|−1.
When bag XC is split into the bags XA and XB, there will be a vertex pair {u,v} in XC that
is present in neither X A nor XB. We say that such a vertex pair is separated during the
split. Assume w.l.o.g. that bag XA contains vertex u and bag XB contains v. Now suppose
that before the split, vertex pair {u,v} was not only present in bag XC, but also in some bag
XD . Then in order to maintain connectivity of Tu and Tv, in the tree decomposition after
the split there must be a path from XD to XA not containing XB and a path from XD to XB

not containing XA. Because XA and XB are neighbors in the new tree, this would imply
that T contains a cycle, a contradiction. Hence a vertex pair {u,v} in bag XC can only be
separated by the split operation if it is exclusively present in XC. In addition, {u,v} can
only be separated when it is a fill-in pair, i.e., when it does not correspond to an element in
E, since else the resulting tree decomposition is not valid. A bag XC can thus only be split
into neighbor bags XA and XB when XC contains a redundant fill-in pair, i.e. an element
from F1. A split operation thus essentially removes a redundant fill-in pair from the tree
decomposition.

Definition 4.2.1. Given a bag XC in the tree decomposition (T, X) and {u,v} ∈ F1 in XC, we
say that {u,v} is removed from (T, X) when:

1. XC is split into neighbor bags XA = XC \{u} and XB = XC \{v} and

2. The former neighbor bags of XC that contain vertex v are reconnected to XA and the
other former neighbor bags of XC to XB.

Note that in step 2 neighbor bags of XC containing neither v nor u can either be con-
nected to X A or to XB. It is not difficult to check that validity of the tree decomposition
is maintained under removal of a redundant fill-in pair. Removing a redundant fill-in pair
does not necessarily maintain the inclusion minimality property of a tree decomposition.
It can be shown however that removing a redundant fill-in pair does not create any new
redundant fill-in pairs. When removing a redundant fill-in pair {u,v} by splitting bag XC,

59

Chapter 4. Local Search

other redundant fill-in pairs in XC that are incident to neither u nor v will be present both
in bag XA and XB afterwards, i.e. they move from F1 to F2. For an example of operations
merge and split, see Figure 4.1. This figure illustrates that a merge operation can create
new redundant fill-in pairs and that a split operation can result in one bag being included
in another bag.

a

b c
d e f

abc

bce

bde

cef

abc

bcef

bde

abce

bcef

bde

abce

bce

bde

cef

(a) (b) (c) (d) (e)

Figure 4.1: Picture (a) shows a fill-in pair minimal tree decomposition of the graph in (c). By merging
the two dashed bags, pair {b, f } becomes redundant, see (b). Picture (d) shows an inclusion minimal
tree decomposition of the graph in (c). When removing redundant fill-in pair {b, f } by splitting the
dashed bag, the inclusion minimality property will be lost, see (e).

The neighborhood structure that will be employed in the local search heuristic can be
described in terms of two procedures. The first one removes a fill-in pair {u,v} from some
initial minimal tree decomposition. This is done by merging T{u,v} into a single bag such
that {u,v} becomes a redundant fill-in pair and subsequently removing {u,v} by splitting the
merged bag. During the second procedure, minimality of the resulting tree decomposition
is reattained. We construct an O(f (e+ f)) algorithm that, given a tree decomposition with
fill-in pair set F and width k, returns a minimal tree decomposition with fill-in pair set
F ′ ⊆ F and width k′ ≤ k. The neighborhood of a minimal tree decomposition (T, X) can now
be defined by the set of all minimal tree decompositions that can be obtained from (T, X) by
sequentially applying the two procedures. In the following subsections, the two procedures
will be explained in more detail.

4.2.1 procedure 1: removing a fill-in pair

An important observation is that for any pair {u,v} ∉ E, there exists a tree decomposition
(T, X) of G = (V ,E) such that {u,v} ∉ F. Given (T, X) with {u,v} ∈ F, the following algorithm
shows how to remove an arbitrary fill-in pair {u,v} from F using merge and split operations

60

4.2. Neighborhood structure

as they are defined in the previous section.

Algorithm 4.1: remove a fill-in pair from (T, X)

Input: Tree decomposition (T, X) with {u,v} ∈ F
Output: Tree decomposition (T, X) with {u,v} �∈ F

1. Merge T{u,v} into a single bag to make {u,v} redundant.

2. Remove redundant fill-in pair {u,v}.

It is easy to see that inclusion minimality is maintained under the merge step in Algo-
rithm 4.1. Also, it is not difficult to verify that a tree decomposition remains valid under
application of Algorithm 4.1. Removing the redundant fill-in pair in the second step of Algo-
rithm 4.1 is done by application of the steps in Definition 4.2.1. Note that when Algorithm
4.1 is applied to a redundant fill-in pair, the first step can be skipped. When Algorithm 4.1
is applied to remove fill-in pair {u,v}, we will from now on refer to the single bag that T{u,v}

is merged into as bag XM and to the bags XM \{u} and XM \{v} after step 2 as respectively
XMv and XMu . Figure 4.2 provides an illustration of Algorithm 4.1.

t

u v w

x

tuvw

uvwx

s

y

stu

wxy

stu

wxy

tuvwx

tvwx

tuwx

stu

wxy

(a) (b) (c) (d)

M

Mv

Mu

Figure 4.2: Picture (b) shows a tree decomposition of the graph in (a) with {u,v} ∈ F2. In (c), subtree
T{u,v} is merged into a single bag XM and hence {u,v} moves to F1. Subsequently in (d), redundant
fill-in pair {u,v} is removed by splitting XM into neighbor bags XMu and XMv . The two neighbor bags
of XM in (c) do not contain vertex v so both of them are connected to XMu .

In the second procedure that will be described in the next section, all elements from
F1 will be removed in order to regain minimality of the tree decomposition. It is therefore
important to know what happens to the set F1 during the first procedure. The following
two lemmas specify for each of the two steps in Algorithm 4.1 what happens to the set of
redundant fill-in pairs F1.

61

Chapter 4. Local Search

Lemma 4.2.2. Let (T, X) be a tree decomposition of a graph G with fill-in pair {u,v}. When
T{u,v} is merged into a single bag XM, no elements disappear from F1 and only the following
two types of fill-in pairs will move to F1:

(1) Fill-in pairs {i, j} for which |T{i, j}| ≥ 2 and T{i, j} is a subtree of T{u,v}.

(2) Pairs {i, j} for which T{i, j} =� and both Ti and T j intersect with T{u,v}.

Proof. T{u,v} is merged into XM by repeatedly merging pairs of neighbor bags in T{u,v}. Any
redundant fill-in pair that was present in one of the bags of T{u,v} will afterwards be present
only in XM , so it will still be redundant. Now consider a redundant fill-in pair {a,b} from a
bag not in T{u,v}. Then at least one of the trees Ta or Tb does not intersect with T{u,v}. Indeed
if they did, then the bag T{a,b} should also intersect with T{u,v}, a contradiction. Thus fill-in
pair {a,b} will not be present in XM and hence it will remain redundant after the merge.
While merging T{u,v} into XM , all redundant fill-in pairs will thus remain redundant. Any
fill-in pair that was present in at least 2 bags of T{u,v} and in no bag outside T{u,v} will only
be present in XM after the merge, so it moves from Fi (for some i ≥ 2) to F1. Finally, consider
two vertices that are present in T{u,v}, but not together in one bag. After merging T{u,v} into
XM , they form a fill-in pair that is present only in XM , so they are redundant.

Lemma 4.2.3. While removing {u,v} from (T, X) according to Definition 4.2.1, element {u,v}
drops out of F1 and all redundant fill-in pairs that are not incident to u nor v and have
the same subtree as {u,v} will move from F1 to F2. All other redundant fill-in pairs remain
redundant.

Proof. Let T{u,v} = M before removing redundant fill-in pair {u,v}. First we show that while
splitting XM in XMu and XMv , no new redundant fill-in pairs are created. Each fill-in pair
from XM (except {u,v}) is present in at least one of the bags XMu or XMv after the split, so
no fill-in pairs move from Fi (for some i ≥ 2) to F1. Furthermore, while splitting XM , no new
fill-in pairs are created, i.e. any pair in XMu or XMv was already present in bag XM . Now
consider a redundant fill-in pair in a bag other than XM before the split. After splitting
XM , this pair won’t be present in XMu or XMv either, so it remains redundant. Clearly, {u,v}
itself drops out of F1 since it was only present in XM and it is not present in XMu nor XMv .
Finally consider the other elements of F1 from XM . If they are incident to u (v), then after
the split they are only present in XMu (XMv), so they remain redundant. If they are not
incident to u nor to v, then after the split they appear in both XMu and XMv , so they move
from F1 to F2.

Before proceeding with the second procedure of regaining minimality of the tree de-
composition, we point out that application of the first procedure to a fill-in pair {u,v} in a
minimal tree decomposition will always lead to a tree decomposition of higher or at best

62

4.2. Neighborhood structure

equal width. Indeed, T{u,v} consists of at least two bags. Given two bags from T{u,v}, by the
inclusion minimality property of (T, X) one of them contains a vertex that is not present in
the other one. Thus by merging T{u,v} into a single bag XM , bag XM will be strictly larger
than the largest bag in T{u,v}. When XM is subsequently split into bag XMu and XMv of size
|XM |−1, the size of these two bags is still equal to or larger than the largest bag of T{u,v}.

The aim of our local search heuristic is obviously to find tree decomposition that have a
lower width than some minimal starting solution. The contribution of the first procedure
can thus not be found in the width of the resulting tree decomposition. However, as can
be concluded from Lemmas 4.2.2 and 4.2.3, Algorithm 4.1 is capable of turning a minimal
tree decomposition into a non-minimal one by creating redundant fill-in pairs in the first
step. In Figure 4.2 the algorithm turns the minimal tree decomposition in (b) into the non-
minimal tree decomposition in (d), where {u,w}, {v,w} ∈ F1. This property will be exploited
by the second procedure, which basically removes the newly created redundant fill-in pairs,
until minimality is obtained. Clearly, this can potentially decrease the width of the tree
decomposition. Whenever the increase in width caused by the first procedure is smaller
than the decrease in width caused by the second procedure, the overall result is positive
and a better tree decomposition is detected in the neighborhood.

4.2.2 procedure 2: regaining minimality

In the previous section it was shown that tree decompositions obtained from a minimal tree
decomposition by applying Algorithm 4.1 are likely to lack fill-in-pair minimality. In this
section we present the procedure to regain minimality. The procedure is an algorithm called
MTDA (Minimal Tree Decomposition Algorithm) that regains minimality by removing re-
dundant fill-in pairs. It takes as input a graph G and an arbitrary tree decomposition (T, X)
of G and it returns a minimal tree decomposition of lower or equal width. Moreover, it will
not create any new fill-in pairs, so the set of fill-in pairs in the resulting minimal tree decom-
position is a subset of the set of fill-in pairs in the input tree decomposition. The complexity
of MTDA will be shown to be equal to O(f (e+ f)), where f = |F| and e = |E|.

inclusion minimality

Minimality of a tree decomposition is defined in terms of inclusion minimality and fill-in-
pair minimality. We will assume that the input tree decomposition is already inclusion
minimal. If this is not the case, we can easily obtain inclusion minimality by the following
algorithm. Observe that if in a tree decomposition (T, X) of G bag X A ⊆ XC, then bag
XA ⊆ XB, for all bags XB on the unique path in T from XA to XC. Thus, if a bag in (T, X)
is not included in any of its neighbor bags, then it will not be included in any other bag of
(T, X) either.

63

Chapter 4. Local Search

Definition 4.2.4. If bag XA is included in neighbor bag XB, we say that we contract XA to
XB if we delete XA from the tree decomposition and make all neighbor bags of XA (except
XB) neighbor of XB.

With this in mind, we present Algorithm 4.2 to make a tree decomposition inclusion
minimal.

Algorithm 4.2: inclusion minimal algorithm

Input: Tree decomposition (T, X)
Output: Inclusion minimal tree decomposition (T, X)

1. Define an ordering σ on the bags of (T, X).

2. Initialize bag X A as the first bag in σ.

3. For each neighbor bag XB of X A, check whether X A ⊆ XB.
If so, contract X A to XB.

4. If XA is the last bag in σ, stop.
Else, let X A be the next bag in σ and goto 3.

Although we assume inclusion minimality at the start, during a run of MTDA we may
still encounter situations where bags are included in neighboring bags. Consider a situation
where bag XA is included in XB and there is a fill-in pair in F2 that is present in bag X A

and in bag XB. Then by contracting X A to XB, this fill-in pair becomes redundant, i.e.
contraction of bags does not maintain fill-in pair minimality. The following lemma shows
that new redundant fill-in pairs after a contraction step will only occur in one bag.

Lemma 4.2.5. Let X A ⊆ XB be a bag in tree decomposition (T, X). Then after contracting
XA to XB, any new elements of F1 are present in bag XB.

Proof. No new fill-in pairs are generated while contracting bag XA to bag XB, so F1 ⊆ F.
Furthermore, the only fill-in pairs for which the number of bags containing them decreases
through the contraction were present in X A and thus also in XB. Hence, all fill-in pairs
that become redundant during the contraction were present only in X A and XB before the
contraction. After the contraction, these new redundant fill-in pairs are present only in
XB.

The following lemma bounds the number of bags in an inclusion minimal tree decompo-
sition from above.

64

4.2. Neighborhood structure

Lemma 4.2.6. Let G be a graph and let (T, X) be an inclusion minimal tree decomposition
of G of width k. Then the number of bags in (T, X) is bounded from above by n−k.

Proof. Since w(T, X) = k, there is a bag XA in (T, X) containing k+1 vertices. By inclusion
minimality of (T, X), the neighbor bags of X A contain at least one vertex that is not present
in X A. Clearly, these are different vertices for all neighbors of X A because the path con-
necting two such neighbors in T crosses X A and X A does not contain the vertices. Likewise,
bags at distance 2 from XA contain at least one vertex that is not present in any bag at dis-
tance 1 from X A and thus neither in XA itself. Again, these vertices are different from each
other. Building on this idea, we conclude that it is possible to choose one vertex from each
bag (except bag X A) that is not present in XA, in such a way that all the chosen vertices are
pairwise different. Since X A contains k+1 vertices, there are only n−k−1 different vertices
that are not part of X A, so there could be at most n−k−1 bags besides bag X A in (T, X).

Finally, we make the following easy observation:

Observation 4.2.7. If XA ⊆ XB, then the width of (T, X) is invariant under contraction of
bag X A to XB.

fill-in-pair minimality

To obtain fill-in-pair minimality in a tree decomposition (T, X), we have to remove the re-
dundant fill-in pairs. It is easy to check the correctness of the following observation about
the width of a tree decomposition under removing a redundant fill-in pair.

Observation 4.2.8. The width of tree decomposition (T, X) will not increase under removal
of a redundant fill-in pair.

Indeed, the only thing that happens is that one bag is replaced by two bags of strictly
smaller size. By Lemma 4.2.3, removal of a redundant fill-in pair will not create new redun-
dant fill-in pairs and even can cause other fill-in pairs to lose their redundancy. Inclusion
minimality is not necessarily maintained under removal of a redundant fill-in pair. The
following lemma however states that at most two bags violate this property after removing
a redundant fill-in pair.

Lemma 4.2.9. After removing a redundant fill-in pair {u,v} from an inclusion minimal tree
decomposition (T, X) by splitting XM = T{u,v} into XMu and XMv, bags XMu and XMv are the
only bags that may violate the inclusion minimal property.

Proof. Assume that after splitting, bag X A (�= XMu , XMv) is included in some bag XB. We
show that bag X A was already included then in another bag before the split. If XB = XMu

or XB = XMv , then XA was already included in XM . Otherwise X A was already included

65

Chapter 4. Local Search

in XB. To show that XMu (and XMv) can indeed be included in another bag after the split,
let the tree decomposition before the split be such that XM has a neighbor XC such that
XM \ XC = {v}. Then XC contains u, so XC will be a neighbor of XMu after the split. Since
v was the only element of XM that was not in XC, XMu will be included in XC. A similar
argument can be used for XMv .

minimality

We showed that the inclusion minimal property might get lost when we try to obtain fill-in
pair minimality and vice versa. In this section, we show how to make a tree decomposition
minimal. Algorithm MTDA that will be described next assumes as input an inclusion min-
imal tree decomposition and removes redundant fill-in pairs. After each such removal step,
the set of redundant fill-in pairs is updated using Lemma 4.2.3 and inclusion minimality
is repaired using Lemma 4.2.9. After repairing inclusion minimality, the set F1 of redun-
dant fill-in pairs is again updated using Lemma 4.2.5. By Observations 4.2.7 and 4.2.8, we
conclude that application of MTDA to a tree decomposition will not increase its width.

Algorithm 4.3: MTDA: minimal tree decomposition algorithm

Input: inclusion minimal tree decomposition (T, X)
Output: minimal tree decomposition (T, X)

Determine set F1.;
while F1 �= � do

Select {u,v} ∈ F1 and let XM = T{u,v}.;
Remove {u,v} by splitting XM into XMu = XM \{v} and XMv = XM \{u}.;
Update F1 using Lemma 4.2.3.;
if XMu is included in some neighbor bag XA then

contract XMu to X A.;
update F1 using Lemma 4.2.5.;

end
if XMv is included in some neighbor bag XA then

contract XMv to X A.;
update F1 using Lemma 4.2.5.;

end
end

proof of correctness
Since no new fill-in pairs are created during either removal of a redundant fill-in pair or

66

4.2. Neighborhood structure

contraction of a bag to a neighboring bag, the set F of fill-in pairs is strictly decreasing in size
during a run of Algorithm 4.3. In each run of the while-loop, exactly one fill-in pair leaves
the set F, namely the redundant fill-in pair that is removed, so after at most |F| iterations
of the while-loop, the set F1 ⊆ F will be empty and MTDA will stop. At the start and the end
of the while-loop, the tree decomposition is inclusion minimal, so MTDA indeed returns a
minimal tree decomposition. As a first step, the set of redundant fill-in pairs is determined.
If F1 is empty, the tree decomposition is minimal and MTDA stops. If F1 is non-empty, the
algorithm proceeds and selects one of the redundant fill-in pairs in F1 that will be removed
from the tree decomposition. One for example can choose an element from F1 for which
the bag containing it is maximal, since this is the bag that will be split into two smaller
bags. Note that after removing the selected redundant fill-in pair, the tree decomposition
is not necessarily inclusion minimal anymore. The set F1 is updated using Lemma 4.2.3.
According to Lemma 4.2.9, the only two bags that may violate inclusion minimality are
XMu and XMv . If XMu is contained in one of its neighbors, it is therefore contracted to this
neighbor. By performing this contraction, the set F1 might change and we use Lemma 4.2.5
to update F1. If XMv is included in one of its neighbors, it is also contracted to that neighbor
and again Lemma 4.2.5 is used to update F1. After this, the tree decomposition is inclusion
minimal again and F1 again contains all the redundant fill-in pairs. If F1 is non-empty,
MTDA continues and selects another element from F1 to be removed.

Theorem 4.2.10. Algorithm 4.3 runs in O(f (e+ f)) time.

Proof. As we already observed, the number of fill-in pairs will strictly decrease during a run
of MTDA. At the start of MTDA, there are f = |F| such fill-in pairs and only these f fill-in
pairs are potential elements of F1 during a run of MTDA. Therefore, the while-loop will be
executed at most f times during a run of MTDA. It remains to show that one iteration of
the while-loop takes O(e+ f) time. When removing a redundant fill-in pair {u,v} by splitting
bag XM into XMu and XMv , each neighbor bag of XM is attached to XMu , and then those
containing v are reattached to XMv . Checking for the presence of vertex v in all neighbor
bags of XM can be done in O(n) time. To update the set F1 using Lemma 4.2.3, each element
of F1 that was present only in bag XM has to be checked for incidence to both u and v,
a process that takes complexity O(f). Then the new bags XMu and XMv are checked for
inclusion in one of their neighbors, which takes O(n) time. Finally, the set F1 is updated
again by checking at most two bags for new redundant fill-in pairs. This can be done by
checking for all vertex pairs in these bags that are not in E, whether they are present only
in the bag under consideration, taking O(e+ f) time. Assuming that n < e+ f (which is true
for any connected graph but a tree), we conclude that one iteration of the while-loop takes
O(e+ f) time, making the time complexity of MTDA equal to O(f (e+ f)).

67

Chapter 4. Local Search

4.3 Local search

We showed how a regular fill-in pair can be removed from a minimal tree decomposition
by Algorithm 4.1 and how this could introduce new redundant fill-in pairs. We also showed
how Algorithm 4.3 can turn such a non-minimal tree decomposition back into a minimal one
with lower or equal width. In this section, the two procedures will be combined into a local
search heuristic for upper bounding the treewidth of the input graph.

4.3.1 starting solution

As a starting solution for the local search heuristic, any upper bound heuristic for treewidth
can be used. We apply our local search heuristic on two different starting solutions for
each considered graph instance. The first starting solution is obtained via a heuristic called
Greedy Fill-In (GFI). GFI was first described in (97). It can be applied directly to graph G
and returns a chordalization H = (V ,E∪F) of G by repeatedly selecting the vertex for which
the least fill-in edges have to be added when it is eliminated, then turning these neighbors
into a clique by adding fill-in edges, and finally removing that vertex from consideration.
The obtain a second starting solution, we employed an algorithm that is know as the lex-
icographic breadth-first search recognition algorithm, introduced in (98). Originally, this
algorithm was constructed to recognize chordality of an input graph G and it terminated at
the moment it recognized that no perfect elimination ordering can be found. Without the
termination step however, it returns an elimination ordering on the vertices of G that can
be used to construct a chordalization H = (V ,E ∪F) of G. We use a variant of this algo-
rithm, known as LEX_M, that guarantees that the returned chordalization is minimal. For
computational evaluations of GFI and LEX_M, we refer to respectively (36) and (83).

The chordalization that is returned by either GFI or LEX_M can be turned into an in-
clusion minimal tree decomposition (T, X) of the same width by means of Algorithm 2.3.
Note that the set F of fill-in pairs in (T, X) equals the set F of fill-in edges in chordalization
H = (V ,E∪F). Tree decompositions that are constructed via LEX_M are therefore minimal.
The ones that are obtained via GFI are not necessarily fill-in pair minimal, so we apply
Algorithm 4.3 to them in order to obtain minimal starting solutions for our local search
heuristic.

4.3.2 neighborhood

Definition 4.3.1. Given a graph G and a minimal tree decomposition (T, X)0, the neigh-
borhood of (T, X)0 is the set of minimal tree decompositions of G that can be obtained from
(T, X)0 by a single application of Algorithm 4.1 followed by a single application of Algorithm
4.3.

68

4.3. Local search

Note that Algorithm 4.1 applied to a minimal tree decomposition does not necessarily
return an inclusion minimal tree decomposition. To obtain the inclusion minimal tree de-
composition that is requested as input for Algorithm 4.3, we apply Algorithm 4.2 once.

The neighborhood as defined here is quite large in the sense that each element of F is a
candidate for removal in Algorithm 4.1. We present some ideas here for how to decrease the
size of the neighborhood.

First of all, to reduce the size of the largest bag, MTDA should remove redundant fill-
in pairs from the largest bag. In order to do so, there should be redundant fill-in pairs in
the largest bag at the moment MTDA is applied. To achieve this, we apply Algorithm 4.1
to a fill-in pair that is present in a maximal bag of the minimal tree decomposition. This
is done by merging its subtree into a single bag XM and then splitting XM into two bags,
which are then maximal bags of the tree decomposition and moreover the only bags that
possibly contain redundant fill-in pairs. Even when at the start of Algorithm 4.3 there are
no redundant fill-in pairs in a maximal bag, there might still be redundant fill-in pairs in a
maximal bag in a later stage of the algorithm. However these are more difficult to predict,
so we apply Algorithm 4.1 only to fill-in pairs that are present in a maximal bag of the
minimal tree decomposition.

Secondly, we realize that most of the minimal tree decompositions in the neighborhood of
a minimal tree decomposition (T, X) will have a higher width than (T, X). Especially when
T{u,v} contains a lot of vertices, application of Algorithm 4.1 to fill-in pair {u,v} can dramat-
ically increase the width of the tree decomposition. Most likely, the subsequent decrease in
width caused by Algorithm 4.3 will not make up for this increase. Therefore it seems ap-
propriate to apply Algorithm 4.1 only on fill-in pairs {u,v} for which the number of different
vertices in T{u,v} is reasonably small.

Combining the foregoing two considerations, we restrict the neighborhood of a minimal
tree decomposition (T, X) to solutions that can be obtained from (T, X) by the following two
operations in this order:

1. Single application of Algorithm 4.1 to a fill-in pair {u,v} that is present in a maximal
bag of (T, X) and for which T{u,v} contains at most k∗w vertices, where w is the width
of (T, X) and 1< k ≤ 2 is a constant.

2. Single application of Algorithm 4.3 to restore minimality.

Finally, we mention that although different fill-in pairs may be removed in the first step,
the application of MTDA could cause the resulting minimal tree decompositions to be equal.
Being able to detect in advance whether two fill-in pairs being removed in the first step will
lead to the same minimal tree decomposition would clearly be very helpful, since it would
allow us to avoid exploring a single solution in the neighborhood more than once. In this
chapter however, we did not further explore this consideration.

69

Chapter 4. Local Search

4.3.3 solution improvements

Clearly, we are interested in minimal tree decompositions in the (restricted) neighborhood
of (T, X) that have a width strictly lower than (T, X). These are the tree decompositions
for which the increase in width (caused by Algorithm 4.1) is strictly smaller than the sub-
sequent decrease in width (caused by Algorithm 4.3). However, sometimes the local search
heuristic is able to reduce the size of a maximal bag in one part of the tree decomposition,
while in another part a maximal bag remains untouched. This would remain unnoticed if
we only consider the width of the resulting tree decomposition. For this reason we consider
solutions in the neighborhood of (T, X) that have the same width as (T, X) but a strictly
smaller number of maximal bags, also as improvements over (T, X). A third measure for
improvement can be stated in terms of the number of fill-in pairs. Suppose that a solu-
tion in the neighborhood of (T, X) has the same width and the same number of maximal
bags as (T, X), but a larger number of fill-in pairs. Then we consider this solution to be
an improvement over (T, X) as well, since a larger number of fill-in pairs basically means a
larger neighborhood and thus more potential for better solutions in the neighborhood. In our
heuristic, we apply a first improving strategy, i.e. as soon as a better solution is found, the
current best solution will be updated and the search for further improvements is continued
in the neighborhood of the new best solution.

4.4 Experimental results

In this section some experimental results of the local search heuristic are presented. Im-
plementation was done in C++ and all experiments were run on an AMD Athlon 2400XP+
with 1 Gb of RAM. Graphs from Frequency Assignment networks and Second Dimacs graph
coloring challenge are used as input graphs. Upper bound heuristics GFI and LEX-M are
used to obtain starting solutions and we restrict the neighborhood to solutions that can be
obtained by applying Algorithm 4.1 in the first step to fill-in pairs {u,v} that are present in a
maximal bag and for which the number of vertices in T{u,v} exceeds the size of this maximal
bag by at most 10. To improve the chances of finding a better solution quickly, neighbors
for which the number of vertices in T{u,v} are smallest are explored first. Our tables use the
following terminology. N and E respectively denote the number of vertices and edges in the
input graph. The columns lb and ub give the best upper and lower bounds on treewidth as
reported by Koster et al. (see (83)) in their rigorous computational study on upper bound
heuristics like greedy fill-in, min-fill, max-cardinality search and the minimum-separating-
vertex-set heuristic and several lower bound heuristics. The columns gf i and lex−m denote
the width of the starting solution as obtained by upper bound heuristic GFI and LEX-M. Fi-
nally, the columns LS give the upper bound on treewidth that our local search heuristic

70

4.4. Experimental results

returned using these starting solutions in time seconds.

4.4.1 Dimacs graph coloring

The statistics generated by our local search on the instances from the Dimacs Graph Col-
oring challenge can be found in Table 4.1. We were able to improve on the best known
upper bound for the following graphs: games120, all of the le450-instances, queen6_6 to
queen14_14, school1, zeroin.i.2 and zeroin.i.3, while for most other graphs we were able to
match the best known upper bounds. For some instances (le450-5c, le450-25a, queen10_10),
the portion of the gap between lower and upper bound that was closed is considerable. For
the le450-graphs, upper bound heuristic LEX-M did not return an upper bound within an
hour, so we decided to apply our local search heuristic for these graphs only with the starting
solution provided by GFI.

4.4.2 frequency assignment

As a second set of graphs, we took the instance set of the CALMA project on frequency as-
signment problems. The results of our tests are displayed in Table 4.2. For graph celar03 we
were able to close the gap between upper and lower bound. For all instances from graph02
to graph14, we were able to improve on the upper bound on its treewidth, often drastically.
LEX-M could not find an upper bound on the treewidth of graph11 to graph14 within an
hour, for which reason we only ran our local search heuristic on these graphs with a start-
ing solution obtained by GFI.

4.4.3 Bayesian networks

Instances from the Bayesian Network Repository formed our final testing set. The results
of the experiment can be found in Table 4.3.

71

Chapter 4. Local Search

Graph N E lb ub gfi LS time lex-m LS time

anna 138 493 12 12 12 12 0.17 12 12 0.31
david 87 406 12 13 13 13 0.10 13 13 0.10
fpsol2.i.1 269 11654 66 66 66 66 0.58 66 66 0.70
fpsol2.i.2 363 8691 31 31 31 31 2.05 52 31 0.71
fpsol2.i.3 363 8688 31 31 31 31 2.11 52 31 0.69
games120 120 638 24 36 40 35 141.76 37 32 561.25
homer 556 1628 26 31 31 31 99.55 36 31 45.22
huck 74 301 10 10 10 10 0.00 10 10 0.00
inithx.i.1 519 18707 56 56 56 56 27.41 223 56 1021.58
inithx.i.2 558 13979 31 31 31 31 94.17 227 31 1075.75
inithx.i.3 559 13969 31 31 31 31 93.58 227 31 1066.48
jean 77 254 9 9 9 9 0.00 9 9 0.01
le450-5a 450 5714 79 308 315 303 11929.50 - - -
le450-5b 450 5734 79 307 318 303 10519.11 - - -
le450-5c 450 9803 106 315 315 296 10076.76 - - -
le450-5d 450 9757 106 295 299 285 12352.52 - - -
le450-15a 450 8168 94 290 290 276 10314.78 - - -
le450-15b 450 8169 95 291 301 287 12337.49 - - -
le450-15c 450 16680 139 373 377 366 17365.87 - - -
le450-15d 450 16750 141 375 375 369 10474.78 - - -
le450-25a 450 8260 96 252 258 232 10348.08 - - -
le450-25b 450 8263 96 255 265 247 17352.31 - - -
le450-25c 450 17343 144 353 353 341 13817.04 - - -
le450-25d 450 17425 143 352 363 351 13063.89 - - -
miles250 125 387 9 9 9 9 0.06 10 9 0.09
miles500 128 1170 22 22 23 22 9.07 22 22 1.43
miles750 128 2113 35 36 39 36 9.44 36 36 15.63
miles1000 128 3216 49 49 50 49 7.78 49 49 6.84
miles1500 128 5198 77 77 77 77 3.58 77 77 2.83
mulsol.i.1 138 3925 50 50 50 50 0.33 66 50 1.43
mulsol.i.2 173 3885 32 32 32 32 0.17 69 32 1.82
mulsol.i.3 174 3916 32 32 32 32 0.19 69 32 1.87
mulsol.i.4 175 3946 32 32 32 32 0.19 69 32 1.82
mulsol.i.5 176 3973 31 31 32 31 0.88 69 31 1.97
myciel3 11 20 5 5 5 5 0.01 5 5 0.02
myciel4 23 71 9 10 11 10 0.26 12 10 0.32
myciel5 47 236 16 19 21 19 3.95 25 19 11.55
myciel6 95 755 29 35 35 35 36.52 55 35 246.39
myciel7 191 2360 52 66 66 66 232.89 103 78 2126.17
queen5_5 25 160 14 18 18 18 0.16 18 18 0.29
queen6_6 36 290 18 26 26 25 4.33 26 25 4.18
queen7_7 49 476 22 36 37 35 40.94 36 35 15.79
queen8_8 64 728 28 47 48 46 78.19 47 45 88.05
queen9_9 81 1056 35 59 65 58 403.95 61 60 269.99
queen10_10 100 1470 42 75 79 72 653.95 75 74 499.49
queen11_11 121 1980 48 90 95 89 1615.43 92 91 567.80
queen12_12 144 2596 55 109 117 108 2338.92 110 104 4019.00
queen13_13 169 3328 61 126 137 124 12013.44 126 126 1025.41
queen14_14 196 4186 67 149 163 146 5802.14 151 148 7340.12
queen15_15 225 5180 73 171 183 174 3399.04 172 166 5590.31
queen16_16 256 6320 79 194 218 196 11082.09 196 189 12334.27
school1 385 19095 149 221 225 213 6049.54 226 192 12131.81
zeroin.i.1 126 4100 50 50 50 50 0.20 50 50 0.21
zeroin.i.2 157 3541 32 33 33 32 2.65 43 32 5.21
zeroin.i.3 157 3540 32 33 33 32 1.89 43 32 5.14

Table 4.1: Dimacs Graph Coloring instances

72

4.4. Experimental results

Graph N E lb ub gfi LS time lex-m LS time

celar01 458 1449 15 15 16 15 12.72 18 15 13.08
celar02 100 311 10 10 10 10 0.04 10 10 0.04
celar03 200 721 14 15 15 14 12.18 16 14 3.45
celar04 340 1009 15 16 17 16 2.50 16 16 7.97
celar05 200 681 14 15 16 15 2.91 16 15 3.52
celar06 100 350 11 11 11 11 0.03 11 11 0.02
celar07 200 817 16 16 16 16 2.57 18 16 5.72
celar08 458 1655 16 16 16 16 9.01 20 17 3.40
celar09 340 1130 16 16 16 16 3.08 18 16 12.77
celar10 340 1130 16 16 16 16 3.11 18 16 12.66
celar11 340 975 14 15 15 15 1.10 16 15 2.32
graph01 100 358 16 24 25 24 28.26 27 23 417.46
graph02 200 709 24 50 51 41 305.03 57 43 1132.21
graph03 100 340 16 21 21 20 79.86 27 20 266.48
graph04 200 734 24 55 57 48 940.49 60 51 932.48
graph05 100 416 18 25 26 24 31.99 27 24 141.16
graph06 200 843 26 53 58 51 826.40 60 55 2429.09
graph07 200 843 26 53 58 51 826.63 60 55 2433.60
graph08 340 1234 32 91 95 84 1706.64 105 92 12077.96
graph09 458 1667 37 116 119 107 8415.20 132 121 12234.54
graph10 340 1275 31 93 97 84 12007.97 105 93 12123.45
graph11 340 1425 34 97 97 83 12079.65 - - -
graph12 340 1256 31 86 86 77 5235.54 - - -
graph13 458 1877 39 126 135 120 12130.80 - - -
graph14 458 1398 34 121 123 112 12041.12 - - -

Table 4.2: CALMA Project on Frequency Assignment instances

73

Chapter 4. Local Search

Graph N E lb ub gfi LS time lex-m LS time

alarm 37 65 4 4 4 4 0.00 4 4 0.00
barley 48 126 6 7 7 7 0.03 7 7 0.06
boblo 221 328 3 3 3 3 0.13 4 3 0.12
diabetes 413 819 4 4 4 4 13.27 35 4 128.07
fungiuk 15 36 4 4 4 4 0.00 4 4 0.00
link 724 1738 12 13 15 13 16.37 37 29 592.47
mainuk 48 198 7 7 7 7 0.02 7 7 0.07
mildew 35 80 4 4 4 4 0.03 4 4 0.03
munin1 189 366 10 11 11 11 0.91 15 11 11.08
munin2 1003 1662 6 7 7 7 22.73 16 7 178.24
munin3 1044 1745 7 7 7 7 6.23 15 8 95.07
munin4 1041 1843 8 8 8 8 10.01 28 8 76.93
munin-kgo 1066 1730 5 5 5 5 2.77 13 6 12.37
oesoca 39 67 3 3 3 3 0.00 3 3 0.00
oesoca42 42 72 3 3 3 3 0.00 3 3 0.00
oow-bas 27 54 4 4 4 4 0.02 4 4 0.02
oow-solo 40 87 5 6 6 6 0.16 6 6 0.42
oow-trad 33 72 5 6 6 6 0.04 6 6 0.08
pathfinder 109 211 6 6 6 6 0.07 7 6 0.05
pignet2 3032 7264 48 135 143 127 12391.09 - - -
pigs 441 806 8 10 10 9 7.02 18 10 20.94
ship-ship 50 114 6 8 8 8 0.14 9 8 0.74
vsd 38 62 4 4 4 4 0.00 4 4 0.01
water 32 123 9 9 10 9 0.19 10 10 0.06
weeduk 15 49 7 7 7 7 0.00 7 7 0.00
wilson 21 27 3 3 3 3 0.00 3 3 0.01

Table 4.3: Bayesian Network Repository instances

74

Chapter 5

Grid Minors

This chapter of the thesis is dedicated to treewidth in the class of planar graphs. More
specifically, we examine the relation between treewidth and two other graph parameters,
namely branchwidth and the side size of a largest square-grid minor in some special classes
of planar graphs.

The complexity of finding the treewidth in planar graphs is not known, but it is widely
believed that the problem is NP-hard. Approximating the treewidth of planar graphs is
therefore an interesting research direction. To the best of our knowledge, the most success-
ful approximations to the treewidth in planar graphs are based on two well known lower
bounds, the branchwidth and the side size of the largest square-grid minor.

Branchwidth is a notion that is very closely related to treewidth and, just as for treewidth,
it is an important algorithmic concept that is widely used in discrete mathematics and the-
oretical computer science; see, e.g., Bodlaender (30) and Hicks (74). Gu and Tamaki (69)
constructed a O(n3) algorithm to compute optimal branch decompositions for planar graphs.
For more work on planar branch decompositions, we refer to (14; 72; 73). As for the relation
between treewidth (tw) and branchwidth (bw), Robertson and Seymour show in (96) that
for any graph G with bw(G) > 1 it holds that bw(G) ≤ tw(G)+1 ≤ �3

2 bw(G)�. Seymour and
Thomas developed an O(n3) time algorithm in (101) finding the minimum branchwidth of
a given planar graph on n vertices. Therefore we can approximate treewidth efficiently in
planar graphs to a factor 3

2 from optimal.

Concerning the relation between treewidth and grid minors in planar graphs, indepen-
dently in (67) and (106) it was shown that the treewidth of a planar graph is at most 5 times
the side size of a largest square-grid minor in the graph. This upper bound on the treewidth
was improved in (70) to 4.5 times the side size of a largest square-grid minor. The problem
of finding the largest square-grid minor in a planar graph is interesting in itself. Although
it is not known whether the problem can be solved in polynomial time, there is a O(n2 logn)
time algorithm for finding a square-grid minor with side size at least one fourth of the side

75

Chapter 5. Grid Minors

size of the largest square-grid minor, see (35).
The definition of branchwidth (see Section 5.1) straightforwardly implies that the side

size of the largest square-grid minor (gm) is bounded from above by the branchwidth in
any graph. In (56), a short proof can be found for the fact that graphs with high branch-
width contain large grid minors. In this chapter we further analyze relationships between
treewidth, branchwidth and the side size of the largest square-grid minor in planar graphs.
We present a class of planar graphs for which tw ≈ 3gm

2 −1 and bw = gm. We experienced
that this seemingly trivial task is quite challenging because there are no simple techniques
to accurately estimate treewidth in planar graphs. For the presented graph family, the
branchwidth is easily verifiable, while arguing why the treewidth in the presented graph
class is large is quite technical and requires methods from graph minor theory.

We present two different ways to determine the parameter gm in our graph class. We
see the contribution of this research therefore not only in the construction of lower bounds
for the treewidth approximation, but also in the proof methodologies for determining the
parameter gm in a planar graph.

Furthermore we introduce two classes of planar graphs for which we conjecture that both
branchwidth and treewidth are roughly equal to 2gm. We do believe that these classes are
worst cases for branchwidth and treewidth approximation in terms of gm in planar graphs.

The chapter is organized as follows. In Section 5.1, some new notions and definitions
will be put forward. Subsequently in Section 5.2 we introduce a class of planar graphs for
which we were able to determine bw, tw and gm. Two more classes of planar graphs are
introduced in Section 5.3 for which several upper and lower bounds on bw, tw and gm are
presented. Finally, we summarize the results from this chapter in Section 5.4 in which we
also pose some open questions.

The content of this chapter is based on cooperation with Alexander Grigoriev and Na-
talya Usotskaya.

5.1 Preliminaries

For n,m ≥ 2, the (n×m)-grid graph (see (96)) is the simple graph with vertices vi j (1 ≤ i ≤
n, 1 ≤ j ≤ m) where vi j and vi′ j′ are adjacent if |i− i′| + | j− j′| = 1. In this chapter, we are
interested only in square grids. For simplicity of notation, we refer to the square (n×n)-grid
graph simply as the n-grid. In an n-grid, n is referred to as the side size of the n-grid.

We recall that H is a minor of a graph G if H is obtainable from a subgraph of G by edge
contractions. A minor of graph G that forms a square grid graph is called a square-grid
minor of G. The side size of the largest square-grid minor of G will be denoted by gm(G).

We continue with definitions of branchwidth and branch decompositions. Both notions
were introduced in (96).

76

5.1. Preliminaries

Definition 5.1.1. A branch decomposition of a graph G = (V ,E) is a pair (T,τ), where T is
a ternary tree (every vertex has degree 1 or 3) and τ is a bijection from the set of leaves of T
to E(G).

The order of an edge e of tree T in a branch decomposition is the number of vertices v
from V (G) such that there are leaves t1, t2 of T in different components of T \ e for which
τ(t1),τ(t2) are both incident to v. The width of branch decomposition (T,τ) is the maximum
order over all edges of T.

Definition 5.1.2. The branchwidth bw(G) of graph G is the minimum width over all branch
decompositions of G (or 0 if |E(G)| ≤ 1, when G has no branch decompositions).

Two subsets V ′,V ′′ ⊆ V in G = (V ,E) are said to touch each other if either they have a
vertex in common or E contains an edge uv with u ∈V ′ and v ∈V ′′. Given a graph G = (V ,E),
we say that V ′ ⊆V is connected if G[V ′] is connected, see Section 2.1.

Definition 5.1.3. A set B of mutually touching, connected subsets of V is called a bramble
of G. A subset of V intersecting with every element of B is called a hitting set for bramble B.

The order of a bramble B is the minimum size over all hitting sets for B.

Definition 5.1.4. The bramble number of a graph G is the maximum order over all brambles
B of G.

Brambles are a useful tool in bounding treewidth from below as can be concluded from
the following theorem that is due to Seymour and Thomas (100) and its corollary.

Theorem 5.1.5. Let k be a non-negative integer. A graph has treewidth k if and only if it
has bramble number k+1.

Corollary 5.1.6. Given graph G and a bramble B of order k, tw(G)≥ k−1.

Given a planar graph G together with its planar embedding, two faces f ′ and f ′′ in the
embedding are said to be adjacent if there is a vertex in V (G) incident to both f ′ and f ′′.
We call a sequence f1, . . . , fn of faces an f1 fn-facepath if each of the faces in the sequence is
adjacent to the previous face and to the next face in the sequence. The length of a facepath
is equal to the number of faces in the facepath minus one.

Given an embedding of a graph G, we denote the collection of faces that are incident to
vertex v by Fv. The face distance between faces f ′ and f ′′ in the embedding, denoted by
dG(f ′, f ′′) in this thesis, is equal to the length of the shortest f ′ f ′′-facepath. The distance
between vertex v and face f ′, denoted by dG(v, f ′), is equal to the length of a shortest f ′ f ′′-
facepath, over all faces f ′′ ∈ Fv. It can be shown that for the considered planar graph families

77

Chapter 5. Grid Minors

both distances are independent of the embedding of G, since they are almost 3-connected;
see (39).

For two graphs G and H, the cartesian product G×H is a graph with V (G×H)=V (G)×
V (H), E(G×H)= {{(u,v1), (u,v2)} | u ∈V (G), {v1,v2} ∈ E(H)}⋃

{{(u1,v), (u2,v)} | {u1,u2} ∈ E(G),v ∈V (H)}. The following definition of a cylinder graph will
be used in Section 5.3 and originates from (94).

Definition 5.1.7. For cycle Ck and path Ph, we call Ck ×Ph a k×h cylinder and we denote
it by Ck,h.

5.2 X-grids

In this section we start by introducing a family Xi of planar graphs, which we will call
X-grids. Graph Xn from this family can be constructed by taking an n-grid, two (n×�n/2�)-
grids and two (�n/2�×n)-grids. The four rectangular grids are connected via their long sides
to the four sides of the square grid, as is illustrated in Figure 5.1.

Figure 5.1: construction of X-grids X3 and X4

5.2.1 branchwidth of X-grids

In this section, we study the branchwidth of X-grids. Our findings are encapsulated in the
following theorem.

Theorem 5.2.1. For the X-grid Xn, bw(Xn)= n.

Proof. It is well known that the branchwidth of an n-grid is equal to n. Furthermore, for
any minor H of graph G, bw(H) ≤ bw(G). Since the n-grid is a minor of Xn we conclude
from the two foregoing observations that bw(Xn)≥ n.

To show that bw(Xn) ≤ n, we construct a branch decomposition of Xn of width n. To do
so, we split the edge set E of Xn up in four symmetrical parts E1, . . . ,E4, as is done in Figure
5.2 for X4. Note that for both even and odd values of n, it is easy to make a partition of E in
Xn consisting of 4 symmetrical parts.

78

5.2. X-grids

Ternary tree T of the branch-decomposition consists of one middle edge and four sym-
metrical subtrees Ti that contain the leaves of T corresponding to edges from set Ei, for
i = 1. . .4. The middle edge of T has order equal to n, the edges of T that are incident to a
leaf have order 2 and all other edges in T have order at most n. The width of the branch
decomposition for Xn is therefore equal to n.

Figure 5.3 illustrates how to construct such an optimal branch decomposition of X4.
Each edge of X4 in Figure 5.2 is denoted by a number. In Figure 5.3, the bijection τ between
the leaves of T and E is displayed by simply putting these numbers in the leaves of T. The
labels on edges e of T denote the set of vertices v of X4 for which there are leaves t1, t2 of
T in different components of T \ e, with τ(t1),τ(t2) both incident to v. Following the same
idea as is illustrated in Figures 5.2 and 5.3, it is easy to construct a branch decomposition
of width n for Xn for any value of n ≥ 2.

E1

E4

E3

E2

1

4 5 6

11 12 13

2 3

7 8 9 10

a b c d

e f g h

i j

k l

m n

Figure 5.2: partition of E into sets E1, . . . ,E4 in planar graph X4

79

Chapter 5. Grid Minors

123456

7

8 9 10 11 12

13

{h,j,k,m}

{e,h,i,j}
{e,f,h,j}{e,f,g,h}

{a,b,g,h} {a,b,c,h} {a,b,c,d} {b,c,d}
{a,f,g,h}

{h,j,l,n}

{k,l,m,n}{e,i,k,m}

{e,h,i,j}{e,f,g,h}{e,f,g,h}{e,f,g,h}

{c,d}

E1 E2

E3E4

Figure 5.3: an optimal branch decomposition for the graph from Figure 5.2

5.2.2 treewidth of X-grids

In this section, we take a closer look at the treewidth of X-grids. The results of this study is
condensed in the following theorem.

Theorem 5.2.2. For X-grid Xn, �3n
2 �−2≤ tw(Xn)≤ �3n

2 �−1.

Proof. It is easy to construct a tree decomposition for Xn of width �3n
2 �−1. Another way to

prove that tw(Xn) ≤ �3n
2 �−1 is to combine the result from Theorem 5.2.1 with the fact that

tw ≤ �3bw
2 �−1.

To prove that tw(Xn)≥ �3n
2 �−2, we construct a bramble B of Xn of order �3n

2 �−1. From
this bramble it follows that the bramble number of Xn is at least �3n

2 �−1. Then, we straight-
forwardly apply Theorem 5.1.5.

For an illustration of the bramble construction, we refer to Figure 5.4(a-b). We split the
rows of Xn into sets R1,R2 and R3 and the columns into sets C1,C2 and C3. The bramble B

now consists of all subsets that are of one of the following four types.

1. The vertices from one row and from one column intersecting this row.

2. The vertices from one column from C1, one column from C3 and a path between these
two columns;

3. The vertices from one row in R3, one column in C1 and a path between this row and
column;

4. The vertices from one row in R3, one column in C3 and a path between this row and
column.

80

5.2. X-grids

One subset of B of type 1 and one subset of type 2 are depicted in Figure 5.4(a) with re-
spectively fat solid lines and fat dashed lines. Subsets of B of type 3 and 4 are depicted
respectively by the fat solid lines and the fat dashed lines in Figure 5.4(b). It can be easily

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

(a) (b)

(c)ri

cj ck

C1 C2 C3

R1

R2

R3 (d)

1

2 3
4

Figure 5.4: Examples of the four types of subsets of B in (a,b), a collection of �3n
2 � vertex disjoint

paths in (c) and a hitting set for B of size �3n
2 �−1 in (d).

verified that the subsets of B are connected and mutually touching. We will now show that
the order of B is equal to �3n

2 �−1 which will thus imply that tw(Xn)≥ �3n
2 �−2.

First we prove that the order of B is at least �3n
2 �−1 by showing that for every vertex

set V ′ such that |V ′| < �3n
2 �−1, there is a subset of B that is not hit by V ′. Consider such a

set V ′. Note that R2 and R3 together have �3n
2 �−1 rows and C1,C2 and C3 have more than

�3n
2 �−1 columns together. Thus, if every row in R2 is hit by V ′, then there is a row in R3

that is not hit by V ′. Similarly, if every column in C2 is hit by V ′, then there is a column in

81

Chapter 5. Grid Minors

C1 and a column in C3 that are not hit by V ′. Therefore, for any V ′ with |V ′| < �3n
2 �−1, at

least one of the following 4 situations occurs:

S1. Row ri from R2 and column c j from C2 are not hit by V ′.

S2. Row ri from R2 and column c j from C1 are not hit by V ′.

S3. Row ri from R3 and column c j from C2 are not hit by V ′.

S4. Row ri from R3, column c j from C1 and column ck from C3 are not hit by V ′.

We show that in each of these 4 situations, there is a subset of B that is not hit by V ′.
In situation S1, S2 and S3, ri and c j define a subset of B of type 1. Situation S4 needs
somewhat more attention. First we point out that any vertex set in Xn that separates ri

from c j and from ck and simultaneously separates c j from ck contains at least �3n
2 � vertices.

See Figure 5.4(c), where �3n
2 � vertex disjoint paths between ri, c j and ck are depicted. Since

V ′ contains strictly less than �3n
2 �−1 vertices and thus strictly less than �3n

2 � vertices, in
situation S4 there exists thus a path P either between c j and ck or between ri and c j or
between ri and ck such that P is not hit by V ′. In the first case, {c j,P, ck} forms a subset
of B of type 2 that is not hit by V ′. In the second case {ri,P, c j} forms a subset of type 3 of
B that is not hit by V ′ and in the last case {ri,P, ck} forms a subset of B of type 4 that is
not hit by V ′. This shows that any set V ′ of size strictly smaller than �3n

2 �−1 can not be a
hitting set of bramble B. Hence the order of B is at least �3n

2 �−1.
To show that the order of B is equal to �3n

2 �−1, we note that the vertex set S as depicted
in Figure 5.4(d) forms a hitting set of B of size �3n

2 �−1. It is easy to verify that all four types
of subsets in B are indeed hit by this hitting set.

5.2.3 largest square-grid minor of X-grids

By construction, Xn contains an n-grid minor as an induced subgraph. Intuitively, it might
seem clear that the side size of the largest square-grid minor in Xn is equal to n. Next, we
present two proofs that support this intuition. The first proof is an easy one and is based
on results concerning branch decompositions. Without the use of branch decompositions
however, finding a proof turned out to be less trivial than we thought. In our second proof, we
do not resort to branch decompositions. Instead, we use arguments related to face distances
in the graph.

Theorem 5.2.3. Given X-grid Xn, gm(Xn)= n.

Proof. When we combine the result of Theorem 5.2.1 with the fact that for any graph G it
holds that gm(G) ≤ bw(G), we find that gm(Xn) ≤ n. By construction, Xn contains an n-
grid as an induced subgraph, from which we conclude that gm(Xn) ≥ n. The two foregoing
observations yield that gm(Xn)= n.

82

5.2. X-grids

Surprisingly enough, without the use of branchwidth it is rather difficult to prove Theo-
rem 5.2.3. In the alternative proof that will be presented next, we use arguments in terms
of face distances as they are defined in Section 5.1. This proof will provide a methodological
technique in contrast to the branchwidth based proof.

Before we start with the alternative proof, we need several propositions. The proposi-
tions concern a mapping of the face set of a planar embedding of a graph G to the face set
of a planar embedding of a minor M of G. We recall that a minor M can be obtained from
G by a series of vertex deletions, edge deletions and edge contractions. Basically, if such op-
eration does not change the number of faces in the embedding, then a face is mapped to the
face in the embedding of the minor that naturally corresponds to it. If, by a vertex deletion
or edge deletion, some faces are joined together to one face, then all these faces are mapped
to the joined face. If, by an edge contraction, some face f disappears, then f is mapped to a
face in the embedding of the minor that naturally corresponds to a neighbor face of f . We
say that face f ′ in an embedding of minor M of G corresponds to face f in an embedding of
G if f can be mapped to f ′. We now introduce three propositions, for which correctness can
be easily verified.

Proposition 5.2.4. Using the mapping described above, each face in an embedding of G can
be mapped to a face in an embedding of a minor M of G. Moreover, for any number i of
different faces in the embedding of M, there are at least i different faces in the embedding of
G that can respectively be mapped to them.

Proposition 5.2.5. Let f ′ and f ′′ be two faces in the embedding of G and let f ′M and f ′′M be
respectively the two faces corresponding to f ′ and f ′′ in the embedding of a minor M of G.
Then, dM(f ′M , f ′′M)≤ dG(f ′, f ′′).

Proposition 5.2.6. Let f ′ be a face and v be a vertex in G and let M be a minor of G in
which v is not deleted nor contracted to another vertex. Furthermore, let f ′M be a face in M
corresponding to f ′. Then, dM(v, f ′M)≤ dG(v, f ′).

Using these propositions, we are now ready to present an alternative proof of Theorem
5.2.3.

Proof. Again by construction of Xn, it is easy to see that Xn contains an n-grid as a minor.
To show that gm(Xn) = n, we show that Xn has no (n+1)-grid minor. We will show that
the outer face in an embedding of Xn cannot be mapped to any face in an embedding of the
(n+1)-grid. Then by Proposition 5.2.4 we derive that the (n+1)-grid cannot be a minor of
Xn. The proof is divided into three cases. For all three cases, we present arguments only for
even values of n. For odd values of n the proof is similar. We consider the natural embedding
of Xn and of the (n+1)-grid and from here on, we just talk about a face of Xn ((n+1)-grid)
instead of about a face in the natural embedding of Xn ((n+1)-grid).

83

Chapter 5. Grid Minors

Case 1. The outer face of Xn cannot be mapped to the outer face of the (n+1)-grid. Because
n is even, there is a vertex v in the (n+1)-grid that has distance n

2 to the outer face f ′,
see the leftmost picture in Figure 5.5. If the outer face of Xn could be mapped to the outer
face of the (n+1)-grid, then by Proposition 5.2.6 there should also be a vertex in Xn with
distance at least n

2 to the outer face of Xn. However, there are no such vertices in Xn, see
the rightmost picture in Figure 5.5.

n
2
− 1

0

n
2

1

v

f’

n
2
− 1

1

0

Figure 5.5: Distances of vertices to the outer face in the (n+1)-grid and in Xn

Case 2. We now show that the outer face of Xn cannot be mapped to any of the 4 middle
faces of the (n+1)-grid. There are 2n faces in the (n+1)-grid having face distance n

2 to a
middle face f ′, see Figure 5.6, leftmost picture. Suppose that the outer face of Xn can be
mapped to any of the 4 middle faces of the (n+1)-grid. By Propositions 5.2.4 and 5.2.5 then
there must be 2n different faces in Xn at face distance at least n

2 to the outer face. However,
there are only 2n−3 such faces in Xn, see the rightmost picture in Figure 5.6.

Case 3. Finally, let us show that the outer face of Xn cannot be mapped to any of the other
inner faces of the (n+1)-grid. For each such inner face of the (n+1)-grid there is a vertex
at distance n

2 , see Figure 5.7. Suppose that the outer face of Xn can be mapped to one of the
other inner faces of the (n+1)-grid. Then, by Proposition 5.2.6 there must be a vertex in Xn

that has distance at least n
2 to the outer face. Again, there is no such vertex in Xn, see the

rightmost picture in Figure 5.5.

84

5.3. Sandwich grids and pyramids

f ′

1

n

2

n+1 2n-1 2n

f ′

1

2
n 2n-3

n-1

n
2

n
2

n
2

n
2

n
2

n
2

n
2

n
2

n
2

Figure 5.6: There are 2n faces at face distance n
2 to f ′ in the (n+1)-grid and 2n−3 faces at face

distance n
2 to the outer face in Xn

3

2

1
vv

2

f ’

Figure 5.7: Vertex v at distance n
2 to a non-middle inner face f ′ in the (n+1)-grid

5.3 Sandwich grids and pyramids

In this section, we introduce two more classes of planar graphs, which we call pyramids and
sandwich grids. The graphs in the pyramid family will be referred to as Λn, whereas Sn will
be used to denote a sandwich grid. The pyramid Λn is a graph on 2n2 −2n+1 vertices and
6n2−10n+4 edges. It can be constructed by building a pyramid with the side size of the base
level equal to n, as shown in the leftmost picture in Figure 5.8. The sandwich-grid Sn is a
graph on 2n2 vertices and 4n2 −4 edges and can be constructed by taking two n-grids and

85

Chapter 5. Grid Minors

connecting the vertices on the outer face of one n-grid to the corresponding vertices on the
outer face of the second n-grid, as is shown in the rightmost picture in Figure 5.8. Planar
embeddings of the graphs Λ3 and S4 are given in Figure 5.9.

Figure 5.8: pyramid Λ3 and sandwich grid S4

Figure 5.9: planar embeddings for pyramid Λ3 and sandwich grid S4

In the following we will determine the treewidth and branchwidth of sandwich grids.
We will also present a lower bound on the side size of the largest square-grid minor for both
families and an upper bound on the treewidth of pyramids. We conjecture that these bounds
are tight.

5.3.1 branchwidth of sandwich grids

The branchwidth of sandwich grids can be roughly determined, but only indirectly, as is
shown in the proof of the following theorem.

Theorem 5.3.1. For a sandwich grid Sn, 2n ≤ bw(Sn)≤ 2n+1.

86

5.3. Sandwich grids and pyramids

Proof. To show that bw(Sn) ≤ 2n+1, we use the result from the next section that tw(Sn) ≤
2n. When we combine this with the fact that for any graph G it holds that bw(G)≤ tw(G)+1,
we obtain the desired result.

To show that bw(Sn) ≥ 2n, we use a result on cylinder graphs. Gu and Tamaki show in
(70) that for cylinder C2n,n, which is a subgraph of Sn, bw(C2n,n) = 2n. Since the branch-
width of a subgraph of Sn is smaller than or equal to bw(Sn), we conclude that bw(Sn) ≥
2n.

The question to determine the branchwidth of the pyramid class Λn still remains open.
Later we will show that tw(Λn)≤ 2n−1. Using this result, we can bound bw(Λn) from above
by 2n.

5.3.2 treewidth of sandwich grids and pyramids

The treewidth of sandwich grids can be approximated as follows.

Theorem 5.3.2. For sandwich grid Sn, 2n−1≤ tw(Sn)≤ 2n.

Proof. To prove that tw(Sn) ≤ 2n, we show how to construct a tree decomposition (actually,
a path decomposition) of Sn of width 2n. One can start with a bag that contains 2n vertices
from the first column of Sn (using the embedding of Figure 5.9) plus the top vertex of the
second column. In the next bag, we eliminate the top vertex from the first column and
introduce the second vertex from the second column, etc. The last bag contains the bottom
vertex of the one-to-last column and the 2n vertices from the last column in Sn.

To show that tw(Sn) ≥ 2n−1, we use a result from (70). A result from this study is that
for subgraph C2n,n of Sn it holds that bw(C2n,n) = 2n. Therefore bw(Sn) ≥ 2n. Combined
with the fact that bw(Sn)≤ tw(Sn)+1 this implies that tw(Sn)≥ 2n−1.

For the pyramid Λn, we construct a tree decomposition showing that tw(Λn) ≤ 2n−1.
Consider one of the main diagonals in Λn (using the embedding from Figure 5.9) and all
other paths in Λn that are parallel to this diagonal. Let the middle bag of the tree de-
composition contain all vertices from the main diagonal. In both directions we add a bag
containing the vertices from the main diagonal plus the top vertex from the next path. After
that, we simply eliminate the vertices one by one. This will give a path decomposition of Λn

of width 2n−1, hence tw(Λn) ≤ 2n−1. The question to prove tightness of this upper bound
is still open at the moment of writing this thesis.

5.3.3 square-grid minor of sandwich grids and pyramids

It is easy to see that gm(Sn) ≥ n since Sn contains the n-grid as an induced subgraph. To
show that gm(Λn) ≥ n, we refer to Figure 5.10, which illustrates how to obtain an n-grid

87

Chapter 5. Grid Minors

minor in Λn for odd and even values of n. We do believe that both families Sn and Λn do not
contain (n+1)-grid minors, but we are still looking for techniques to prove this.

odd n even n

Figure 5.10: To obtain n-grid minors in Λn, delete dotted edges and vertices that are incident only
to dotted edges and contract the dashed edges.

5.4 Summary and open questions

The results from this study are summarized in Table 5.1. As a direction for further research,

graph family gm bw tw

X-grid (Xn) n n ≈ 3n
2 −1

pyramid (Λn) ≥ n ≥ n ≥ n
≤ 2n ≤ 2n ≤ 2n−1

sandwich grid (Sn) ≥ n ≈ 2n ≈ 2n−1
≤ 2n

Table 5.1: summary of results

we recommend the interested reader to consider the following questions.

1. Can we find a technique to prove that gm(Λn), gm(Sn)≤ n?

2. Can we find a bramble for Λn of order 2n, i.e., can we show that tw(Λn)= 2n−1?

88

5.4. Summary and open questions

3. Can we find a family of planar graphs satisfying c1 gm < bw < c2tw, where c1 > 1 and
c2 < 1 are some constants?

We end this chapter with the conjecture that the sandwich grid and the pyramid are worst
cases for branchwidth and treewidth approximation in terms of the side size of the largest
square-grid minor.

Conjecture 5.4.1. For any planar graph G, both bw(G) and tw(G) are at most 2gm(G)+
o(gm(G)).

89

Chapter 6

H-Subgraph Edge Deletion

In the final chapter of this thesis, we shift our focus to an application of treewidth and tree
decompositions. We demonstrate how an otherwise intractable graph theoretical problem
can be solved in linear time on graphs that have bounded treewidth, if a tree decomposition
of the graph is available.

In the field of combinatorial graph theory, lately there has been an increased interest
in algorithms for graphs not containing some specified subgraph or induced subgraph. An
apparent reason for this interest is that many combinatorial problems on graphs have use-
ful structural and/or algorithmic properties when restricted to graphs that exclude certain
subgraphs. Just to give a few insightful examples: a famous result by Erdös, Kleitman and
Rothschild (59) says that almost every triangle-free graph has chromatic number 2; Minty
(92) and Sbihi (99) show that the maximum independent set problem is polynomially solv-
able on claw-free graphs; Dunbar and Frick (58) show that the path-partition conjecture
is true for claw-free graphs; Borodin et al. (40) prove that planar graphs with no cycles of
length from 4 to 7 are 3-colorable. There are, of course, many other structural and algorith-
mic results related to graphs without (a) specific subgraph(s). Motivated by this increased
attention in the literature, we present algorithms in this chapter to turn a graph into a
graph that excludes certain subgraphs by deleting a minimum number of edges from it.

The chapter is organized as follows. In Section 6.1 we introduce the problem that will
be the subject of study in this chapter and we give some references to related studies. We
continue by showing in Section 6.2 that by a general result of Courcelle, the decision ver-
sion of the considered problem is theoretically solvable in linear time on graphs of bounded
treewidth. We then introduce a dynamic program in Section 6.4 for the case where the in-
put graph has bounded maximum degree that solves the problem in linear time on graphs
of bounded treewidth. In Section 6.4 the subgraph that is excluded from the graph can be
any fixed, connected graph. Subsequently in Section 6.5, we consider the case where the
fixed subgraph forms a clique and we present a dynamic program that solves the problem

91

Chapter 6. H-Subgraph Edge Deletion

in linear time on graphs of bounded treewidth. In Section 6.6, we present Baker’s style ap-
proximation schemes for the problems from Sections 6.4 and 6.5 on planar graphs. Finally,
in Section 6.7, we show how our algorithms can be adopted to deal with the situation where
more than one type of subgraph needs to be excluded from the input graph.

The content of this chapter is based on cooperation with Alexander Grigoriev and Na-
talya Usotskaya.

6.1 Problem definition

We consider the graph theoretical problem of turning a graph into a graph that excludes
certain subgraphs. The transformation is executed by removing edges from the input graph.
Given an input graph G and a finite set of graphs H = {H1, . . . ,Ht}, we call a subgraph of G
an H-subgraph of G if it is isomorphic to one of the graphs in the set H . In this context, a
graph G is usually referred to as the text and H as the set of patterns. A graph G is called
H-free if there are no H-subgraphs in G. For ease of notation, we use notions of H-subgraphs
and H-free graphs instead of H -subgraphs and H -free graphs.

We restrict ourselves to the case in which the subgraphs that have to be excluded are
fixed graphs that are connected. From here on, we will therefore assume that H forms a
finite set of fixed, connected patterns Hi. The optimization problem that we consider in this
chapter is the following.

PROBLEM: MINIMUM H-SUBGRAPH EDGE DELETION

Input: Text graph G and finite set of patterns H = {H1, . . . ,Ht}
Question: What is the minimum number of edges that must be

deleted from G to make it H-free?

We refer to the decision version of this problem as H-SUBGRAPH EDGE DELETION; i.e.,
given integer k, is it possible to make the input graph H-free by deleting at most k edges?

Related work. It is well-known that the TRIANGLE EDGE DELETION problem, a special
case of H-SUBGRAPH EDGE DELETION with H = {K3}, is NP-complete, see Yannakakis
(113). Therefore the problem H-SUBGRAPH EDGE DELETION is NP-complete as well. Re-
cently, Brügmann et al. (48) proved that the problem TRIANGLE EDGE DELETION remains
NP-complete even if the graph is planar and has maximum degree of 7. On the positive side,
they construct polynomial time reduction rules to obtain linear problem kernels.

Closely related problems are considered extensively in the extremal graph theory; see,
e.g., Bollobás (38) and Bohman (37). There, the general question is: Given a graph H and a
number n, what is the maximum number of edges in a graph G on n vertices that does not

92

6.2. MSOL Formulations

contain a subgraph isomorphic to H? In the context of this paper, the bounds obtained in
the extremal graph theory can be seen as the source of generic lower bounds on the number
of edges to be removed to make a given graph H-free.

To construct PTASs for MINIMUM H-SUBGRAPH EDGE DELETION on planar graphs, we
employ the layerwise decomposition approach introduced by Baker (11). A generalization of
this approach that can be applied also to problems with a non-local structure has recently
been developed by Demaine and Hajiaghayi and is an extension of the bidimensionality
theory. For a literature overview on bidimensionality and its connections to approximation
schemes for planar graph problems, we refer to (55) and (54).

Our results. In this chapter, we first implicitly present a linear time algorithm for H-
SUBGRAPH EDGE DELETION on graphs of bounded treewidth, based on a framework by
Courcelle (51; 52). We then introduce constructive linear time algorithms for MINIMUM

H-SUBGRAPH EDGE DELETION for the two cases for which respectively G has bounded
maximum vertex degree and H is a clique. Both these algorithms are dynamic programs
that assume as input a tree decomposition of the input graph. Finally, for the same cases
we design PTASs for MINIMUM H-SUBGRAPH EDGE DELETION on planar graphs.

6.2 MSOL Formulations

Bounded treewidth and Monadic Second Order Logic (MSOL) have proven to be key con-
cepts in establishing fixed-parameter tractability results. The general results of Courcelle
and Arnborg et al (9) provide a host of powerful algorithmic tools for many combinatorial
problems on graphs of bounded treewidth. In particular, they show that any property on
graph G that can be expressed in MSOL, can be decided in linear time if G has bounded
treewidth.

6.2.1 formulation for single pattern

Consider the H-SUBGRAPH EDGE DELETION problem where H consists of a single pattern
H. By encoding this problem in MSOL, we implicitly construct a linear time algorithm solv-
ing H-SUBGRAPH EDGE DELETION on graphs of bounded treewidth. We end the section by
generalizing the results to allow for a finite set H of patterns instead of just a single pattern.

Consider the following relational structure:

G= {V (G),E(G),V (H),E(H),R2
G ,R2

H ,Eq2, f 1},

where

93

Chapter 6. H-Subgraph Edge Deletion

• RG(x, e) and RH(x, e) are the vertex-edge incidence relation in G and H respectively;

• Eq(x, y) is the equality predicate;

• f : S →V (H) is a function with domain S ⊆V (G) and image V (H).

We now describe a formula Φ(k,G,H) such that G |=Φ(k,G,H) if and only if there exists a
set of edges F ⊆ E(G) of cardinality at most k covering all H-subgraphs of the graph G.

Let G′ be a subgraph of G. First, we define the formula Ψ(f ,G′) to express that f is an
isomorphism between G′ and H. The following properties should be satisfied:

• Function f is injective:

In j(f ,G′)=∀ u,v ∈V (G′), Eq(f (u), f (v))⇒ Eq(u,v);

• Function f is surjective:

Sur j(f ,G′)=∀ v ∈V (H) ∃ u ∈V (G′), Eq(f (u),v);

• Function f preserves the edge relations from G′ in H:
−−−−→
Edge(f ,G′)=∀ u,v ∈V (G′), e ∈ E(G′), RG(u, e) & RG(v, e)⇒

∃ e′ ∈ E(H), RH(f (u), e′) & RH(f (v), e′);

• Function f preserves the edge relation from H in G′:
←−−−−
Edge(f ,G′)=∀ u,v ∈V (H), e ∈ E(H), RH(u, e) & RH(v, e)⇒

∃ u′,v′ ∈V (G′), e′ ∈ E(G′), RG(u′, e′) & RG(v′, e′) & Eq(f (u′),u) & Eq(f (v′),v).

Let
Ψ(f ,G′)= In j(f ,G′) & Sur j(f ,G′) &

−−−−→
Edge(f ,G′) &

←−−−−
Edge(f ,G′),

and consequently
Φ(k,G,H)=∃F ⊆ E(G), |F| ≤ k &

(∀V ′ ⊆V (G),E′ ⊆ E(G), Ψ(f , (V ′,E′))⇒|F ∩E′| ≥ 1).

Hence, we expressed the problem H-SUBGRAPH EDGE DELETION in MSOL, which in com-
bination with Courcelle’s Theorem proves the following theorem.

Theorem 6.2.1. Problem H-SUBGRAPH EDGE DELETION with H consisting of a single
fixed, connected pattern H can be solved in O(n · g(w,h)) time for some function g, where w is
the treewidth of G and h is the size (number of vertices) of H.

Using the result of Theorem 6.2.1 in combination with binary search, the corresponding
optimization version of the problem can be solved in O(n log(m) · g(w,h)) time, where m
denotes the number of edges in G.

94

6.3. Nice tree decompositions

6.2.2 formulation for set of patterns

To generalize Theorem 6.2.1 to a finite set of patterns H = {H1, . . . ,Ht}, we simply need a
wider relational structure G:

G= {V (G),E(G),V (H1),E(H1), . . . ,V (Ht),E(Ht),RG ,R1, . . . ,Rt,Eq, f1, . . . , ft},

where in addition to the definitions above we have to specify

• Ri(x, e), i = 1. . . t, are the vertex-edge incidence relations in Hi;

• f i : S ⊆V (G)→V (Hi), i = 1. . . t, are functions with domain S ⊆V (G) and images V (Hi).

Then, we can write down the general formula Φ(k,G,H) in the following way:

Φ(k,G,H)=∃F ⊆ E(G), |F| ≤ k &

(∀V ′ ⊆V (G),E′ ⊆ E(G),∃1≤ i ≤ t, Ψ(f i, (V ′,E′))⇒|F ∩E′| ≥ 1).

This MSOL formulation, in combination with Courcelle’s Theorem, proves the following
theorem.

Theorem 6.2.2. Problem H-SUBGRAPH EDGE DELETION with a finite set H = {H1, . . . ,Ht}
of fixed, connected patterns can be solved in O(n · g(w,h)) time for some function g, where w
is the treewidth of G and h is the size of the largest pattern in H .

To solve the corresponding optimization version of the problem, one can combine Theo-
rem 6.2.2 with binary search, which adds a factor log(m) to the complexity.

6.3 Nice tree decompositions

A tree decomposition (T, X) is called a nice tree decomposition if the following conditions are
satisfied: Every node of the tree T has at most two children; if a node i has two children
j and k, then Xi = X j = Xk; and if a node i has one child j, then either |Xi| = |X j| +1 and
X j ⊂ Xi or |Xi| = |X j|−1 and Xi ⊂ X j. The following result is from (79):

Lemma 6.3.1. A tree decomposition (T, X) of a graph G can be transformed without increas-
ing its width into a nice tree decomposition of G in time polynomial in |X | and the size of G.
The size of the resulting nice tree decomposition is O(w|X |), where w is the width of the tree
decomposition.

We point out that any tree decomposition of G can be transformed into a tree decompo-
sition of the same width having at most n bags by simply removing all bags that are subset
of another bag. Hence using Fact 6.3.1 we assume from here on that our algorithms run on
nice tree decompositions with O(wn) bags, rooted in some arbitrary bag Xr.

95

Chapter 6. H-Subgraph Edge Deletion

6.4 DP for text graphs with bounded degree

In this section, we consider problem MINIMUM H-SUBGRAPH EDGE DELETION in the set-
ting where text graph G has bounded degree and bounded treewidth and H consists of a
single fixed, connected pattern H. We construct a dynamic programming algorithm for this
setting that solves MINIMUM H-SUBGRAPH EDGE DELETION in time that is exponential
only in the maximum degree of G, in the width of a tree decomposition of G and in some
fixed parameters of H. A generalization of this result to the setting where H is a finite set
of fixed, connected patterns will be introduced in Section 6.7.

6.4.1 constant parameters and notation

By w, we denote the width of (T, X). The maximum degree in G will be denoted by Δ(G).
The diameter of a graph G = (V ,E) is the maximum over all vertex pairs {u,v} ⊆ V of the
length of a shortest path between u and v in G. By h and d we denote respectively the size
|H| and the diameter of pattern H. Since G has bounded degree and bounded treewidth and
H is a fixed connected pattern, the values Δ(G), w, h and d are all constants in the dynamic
program.

Given a bag X in a nice tree decomposition (T, X), we let TX be a subtree of T that is
rooted in X and we let G[TX] be the subgraph of G that is induced by all vertices from the
bags in TX . By EX we denote the set of all edges of G for which both end points are present
in bag X and by EX , we denote a subset of EX , i.e., EX ∈ 2EX . For a bag X , by VX we denote
the set of vertices of G that are in bag X . For a subtree TX , by VTX we denote the set of
vertices of G that are present in some bag of TX . Finally for a vertex set S, by HS we denote
the set of different H-subgraphs in G that are incident to some vertex in S and by HS, we
denote a subset of HS.

Lemma 6.4.1. Consider a graph G and a tree decomposition (T, X) of G of width w. Let
Q = h!

(Δ(G)d+1

h
)
, then

• for vertex v, |H {v}| is bounded from above by Q, and

• for bag X in (T, X), the value |HVX | is bounded from above by (w+1)Q.

Proof. Given that v corresponds to some vertex of an H-subgraph in G it is clear that all h
vertices in this H-subgraph have distance at most d to v in this H-subgraph and thus also
in G. Since the maximum degree in G is Δ(G)> 1, there are at most

∑d
i=0Δ(G)i = Δ(G)d+1−1

Δ(G)−1 ≤
Δ(G)d+1 vertices in G that have distance at most d to v. Since

(Δ(G)d+1

h
)

different sets of
h vertices can be chosen among Δ(G)d+1 vertices and each such set can contain at most
h! different H-subgraphs, the result follows. The second statement is a straightforward
corollary of the first one, since |X | ≤ w+1.

96

6.4. DP for text graphs with bounded degree

6.4.2 dynamic program and results

First we note that by deleting a set of edges from G that covers all H-subgraphs of G, G
becomes H-free. Given a subtree TX of T, we define:

• F(EX ,TX ,HVX) is the minimum cardinality of a set S of edges from G[TX] covering
all H-subgraphs from (HVTX

\HVX)∪HVX in G, given that S∩EX = EX

• F(EX ,TX ,HVX) =∞ if H-subgraphs from (HVTX
\ HVX)∪HVX can not be covered by

EX plus some set of edges from E(G[TX])\EX .

For each bag X in (T, X), we compute a table of such F−values for subtrees rooted in X , one
value for each combination of a subset from EX and a subset from HVX . One such table thus
contains 2|EX |+|HVX | values. To be more specific, we compute tables for the following three
types of subtrees:

1. For each bag X in T, except for root bag Xr, we compute the table for the subtree
consisting of the parent X+ of X , X and all descendants of X in T. The root bag of this
subtree is X+. Such subtree will be denoted by TX+ .

2. For each bag X with two children we compute a table for the subtree TX , consisting of
bag X and all descendants of X .

3. For each leaf bag X we compute a table for the subtree TX .

Note that for a leaf bag X , subtree TX equals bag X . Therefore the tables for the subtrees
of type 3 are easy to compute.

Lemma 6.4.2. A value in the table of the subtree TX rooted in a leaf bag can be computed in
constant time.

Proof. To compute one value F(EX ,TX ,HVX) for the table of the subtree TX that is rooted
in leaf bag X , one just needs to check whether edge set EX covers all H-subgraphs of HVX .
If this is the case, then F(EX ,TX ,HVX)= |EX |, else F(EX ,TX ,HVX)=∞. Using the observa-
tion that |EX | ≤ w2, Lemma 6.4.1 and the fact that both w and Q are constants, the result
follows.

The following lemmas give recursive formulas that show how to compute the tables for
subtrees that are rooted in a non-leaf bag of tree decomposition (T, X). First we show how
to update the table when we combine two subtrees that are rooted in the same bag and have
only this bag in common.

97

Chapter 6. H-Subgraph Edge Deletion

Lemma 6.4.3. Let T ′
X and T ′′

X be two subtrees rooted in X that only share bag X. Let TX be
the subtree that is obtained by combining T ′

X and T ′′
X and let HVX , IVX , JVX ∈ 2HVX . Then

F(EX ,TX ,HVX)= min
IVX ,JVX :HVX ⊆IVX ∪JVX

F(EX ,T ′
X , IVX)+F(EX ,T ′′

X , JVX)−|EX |.

The next two lemmas show how to update the values for a subtree when we extend it by
the parent bag of its root.

Lemma 6.4.4. Let TY be a subtree rooted in Y and let X = Y ∪ {v} be the parent bag of Y .
Furthermore let TX = TY+ and let EY = EX ∩EY . Then:

F(EX ,TX ,HVX)= min
HVY : EX \EY covers HVX \HVY in G

F(EY ,TY ,HVY)+|EX \ EY |

and F(EX ,TX ,HVX)=∞ if there is no such HVY .

Lemma 6.4.5. Let TY be a subtree rooted in Y and let X = Y \ {v} be the parent bag of Y .
Furthermore, let TX = TY+ . Then:

F(EX ,TX ,HVX)= min
EY ,HVY : HVX ∪(H{v}\HVX)⊆HVY , EY∩EX=EX

F(EY ,TY ,HVY).

Obviously, when bag Y and parent bag X of Y have the same vertex set, then the update
of the table after an extension by the parent bag can be accomplished by simply copying the
values. The following lemma gives an upper bound on the time to compute one F-value.

Lemma 6.4.6. The time needed to determine an F-value by one of the Lemmas 6.4.3, 6.4.4
or 6.4.5 is bounded from above by O(2w2+2(w+1)Qw4Q2).

Proof. To determine a value using Lemma 6.4.3 takes O(4|HVX ||HVX |2) time. Using Lemma
6.4.1, this time is bounded from above by O(4(w+1)Qw2Q2). To determine a value using
Lemma 6.4.4, for all subsets HVY we have to check whether all elements from HVX \HVY con-
tain an edge from EX \EY . This takes less than 2|HVY ||HVX ||EX | time and by using Lemma
6.4.1 and the observation that |EX | ≤ w2, this is bounded from above by O(2(w+1)Qw3Q). To
determine a value using Lemma 6.4.5, for all combinations of EY and HVY we have to check
whether HVX ⊆ HVY , whether H {v} \HVX ⊆ HVY and whether EY ∩EX = EX . This takes less
than 2|EY |+|HVY |(|HVX | + |HVX |2 + |EX |2) time and as shown before this can be bounded by
O(2w2+(w+1)Qw4Q2). Clearly, all these running times are smaller than O(2w2+2(w+1)Qw4Q2).

Using Lemmas 6.4.2, 6.4.3, 6.4.4 and 6.4.5, we can compute all necessary tables. For
all bags in the tree, in post order, we construct the tables for the subtree(s) rooted in this
bag. The proof of Lemma 6.4.2 shows how to construct the table for a subtree rooted in leaf
bag X . If X is not a leaf bag, suppose X has 1 child Y , then we may assume that earlier

98

6.4. DP for text graphs with bounded degree

already we computed the table for subtree TY . By using Lemma 6.4.4 or 6.4.5 we then can
compute the table for subtree TX = TY+ from the table of TY . If X is not a leaf bag and
it has 2 children X and Y , then by definition of a nice tree decomposition X = Y = Z and
we may assume that we already computed the tables for subtrees TY and TZ . By simply
copying the values we can construct the tables for subtrees TY+ and TZ+ from the tables of
TY respectively TZ . Then we use Lemma 6.4.3 to compute the table for subtree TX from the
tables for subtrees TY+ and TZ+ . The answer to MINIMUM H-SUBGRAPH EDGE DELETION

can be found in the table of TXr . To be more precise, the solution is

min
EXr

F(EXr ,TXr ,HVXr
).

Using the optimal set EXr , one can perform a backward search in the tree to determine
a minimum set of edges that must be deleted from G to make it H-free. To estimate the
running time of the dynamic program, in the following lemma we determine an upper bound
on the number of individual F-values that must be computed:

Lemma 6.4.7. In the dynamic program, at most O(n2w2+(w+1)Qw) F-values need to be deter-
mined.

Proof. A bag in the rooted tree T has at most 2 children. Thus for any bag X , we compute a
table for at most 3 subtrees rooted in bag X , namely TX and TY+ ,TZ+ for possible children
Y , Z of X . We recall that the number of bags in T is bounded by O(wn). Therefore the total
number of tables to construct is bounded by O(wn). Since the width of (T, X) is w, there are
at most w+1 vertices in bag X and therefore |EX | is bounded from above by w2+w

2 ≤ w2 for
w ≥ 1. Furthermore, by Lemma 6.4.1, |HVX | is bounded from above by (w+1)Q. The latter
two observations imply that the number of values in one table is bounded from above by
2w2+(w+1)Q , from which the result follows.

The main result of this section is described in the following theorem:

Theorem 6.4.8. Given a graph G of bounded maximum degree Δ(G), a fixed connected pat-
tern H and a nice tree decomposition (T, X) of G of bounded width w. The problem MINIMUM

H-SUBGRAPH EDGE DELETION on G with H = {H} can be solved in time O(n22w2+3(w+1)Qw5Q2),
where Q = h!

(Δ(G)d+1

h
)
.

Proof. By Lemma 6.4.7, we need to compute at most O(n2w2+(w+1)Qw) F-values in the dy-
namic program that solves the problem and by Lemma 6.4.6, it takes at most O(2w2+2(w+1)Qw4Q2)
time to compute one such value. Combining these results, we conclude that the dynamic
program runs in O(n22w2

w5(w
h−1

)
h2) time.

99

Chapter 6. H-Subgraph Edge Deletion

6.5 Dynamic program for clique patterns

In this section, we consider MINIMUM H-SUBGRAPH EDGE DELETION for the special case
where H is a clique and G has bounded treewidth. Compared to Section 6.5 we thus drop
the constraint that G should have bounded vertex degree. We exploit the fact that every
tree decomposition contains a bag with all vertices from the clique (see Lemma 2.4.2) and
we find a polynomial time algorithm that again acts on a nice tree decomposition of the text
graph G. It is important to state here that in this section we consider H-subgraphs of G
that are induced by the vertex set of G[TX], not by the vertex set of G.

6.5.1 dynamic program and results

For subtree TX of T rooted in bag X , we define:

• F(EX ,TX) is the minimum cardinality of a set S of edges from G[TX] that covers all
H-subgraphs of G[TX], given that S∩EX = EX .

• F(EX ,TX) =∞, if not all H-subgraphs of G[TX] can be covered by EX plus some set
of edges from E(G[TX])\EX .

We compute tables for the same subtrees as in the previous section. Note that one table for
a subtree rooted in bag X now consists of 2|EX | F-values. Using similar arguments as those
used in the previous section, it is easy to prove the following:

Lemma 6.5.1. During a run of the dynamic program, at most O(n2w2
w) individual F-values

have to be determined.

As in the previous section, a value for the table of a subtree that is rooted in a leaf bag
can be computed in constant time. The following lemmas give recursive formulas that show
how to compute the tables for subtrees that are rooted in a non-leaf bag of T. The first
lemma shows how we can combine subtrees that are rooted in the same bag and have only
this bag in common.

Lemma 6.5.2. Let TX be obtained by taking the union of subtrees T ′
X and T ′′

X such that the
root X of T ′

X and T ′′
X is the only bag that belongs to both subtrees. Then

F(EX ,TX) = F(EX ,T ′
X)+F(EX ,T ′′

X)−|EX |.

The next two lemmas show how to update the values for a subtree when we extend it by
the parent bag of its root.

100

6.5. Dynamic program for clique patterns

Lemma 6.5.3. Let TY be a subtree of T rooted in bag Y , let X = Y ∪ {v} be the parent bag of
Y in T. Furthermore let TX = TY+ and let EY = EX ∩EY . Then:

F(EX ,TX)=

⎧⎪⎨
⎪⎩

F(EY ,TY)+|EX \ EY |, if EX covers all H-subgraphs of
G[TX] that are incident to vertex v.

∞, otherwise.

Indeed, since X is the only bag containing v in TX , it also contains all neighbors of v in
G[TX]. Therefore, all edges of an H-subgraph of G[TX] that are incident to v are part of EX

and thus if such an H-subgraph is not covered by EX then it is not covered at all.

Lemma 6.5.4. Let TY be a subtree of T rooted in bag Y , let X = Y \{v} be the parent bag of
Y in T and let TX = TY+ . Then

F(EX ,TX)= min
EY : EY∩EX=EX

F(EY ,TY).

Again, when bag Y and parent bag X of Y have the same vertex set, then the update of
the table after an extension by the parent bag can be accomplished by simply copying the
values. In the previous section, it is explained how Lemmas 6.5.2, 6.5.3 and 6.5.4 can be
used to determine the tables for all necessary subtrees. The minimum value in the table of
subtree TXr is the solution to MINIMUM H-SUBGRAPH EDGE DELETION.

Lemma 6.5.5. The time needed to determine an F-value in the algorithm is bounded from
above by O(2w2

w4(w
h−1

)
h2).

Proof. Determining the value for a subtree rooted in a leaf bag or by using Lemma 6.5.2
takes constant time. When using Lemma 6.5.3, we check whether EX covers all H-subgraphs
of G[TX] that are incident to v. Vertex v has at most w neighbors in G[TX], so we have to
check for each of the at most

(w
h−1

)
different combinations of (h−1) such neighbors whether

they form an h-clique with v in G[TX] for which all h2−h
2 edges are in EX \ EX . Since |EX |

is bounded by O(w2), this takes at most O(w2(w
h−1

)
h2) time. When using Lemma 6.5.4 to

determine an F-value, for all EY we have to check whether EY ∩EX = EX , which can be
done in time O(2w2

w4). Clearly, all these algorithmic time complexities are bounded from
above by O(2w2

w4(w
h−1

)
h2).

The main result of this section is described in the following theorem:

Theorem 6.5.6. Given an arbitrary text graph G, clique pattern H of size h and a nice tree
decomposition (T, X) of G of bounded width w with N bags. Then MINIMUM H-SUBGRAPH

EDGE DELETION on graph G with H = {H} can be solved in O(n22w2
w5(w

h−1

)
h2) time.

Proof. By Lemma 6.5.1, we need to compute at most O(n2w2
w) F-values in the dynamic

program that solves the problem and by Lemma 6.5.5, it takes at most O(2w2
w4(w

h−1

)
h2)

time to compute one such value. Combining these results, we conclude that the dynamic
program runs in O(n22w2

w5(w
h−1

)
h2) time.

101

Chapter 6. H-Subgraph Edge Deletion

6.6 Baker’s approximation scheme

In this section, we consider the problem MINIMUM H-SUBGRAPH EDGE DELETION for pla-
nar text graphs and patterns. We combine the dynamic programs from Sections 6.4 and
6.4 with a technique invented by Brenda Baker to construct PTASs for the two cases where
respectively G has bounded vertex degree and where H is a 3-clique or 4-clique.

6.6.1 bounded outerplanarity index

The following two lemmas form the analogues to respectively Theorem 6.4.8 and Theorem
6.5.6. The only difference is that they assume planar input graphs with bounded outerpla-
narity index instead of regular input graphs with bounded treewidth.

Lemma 6.6.1. Given a planar text graph G of bounded maximum degree Δ(G) and bounded
outerplanarity index l and a fixed connected pattern H, an optimal solution to MINIMUM H-
SUBGRAPH EDGE DELETION can be obtained in time O(n218l2+9lQ l5Q2), where Q = h!

(Δ(G)d+1

h
)
.

Proof. By Theorem 2.2.2, the outerplanarity index l of G can be determined in O(n2) time.
By Theorem 2.2.3, tw(G) ≤ 3l −1 and by Theorem 2.4.4, a tree decomposition of G of width
w ≤ 3l −1 can be obtained in linear time that can be turned into a nice tree decomposition
in linear time. By Theorem 6.4.8 we can use this nice tree decomposition to solve MINIMUM

H-SUBGRAPH EDGE DELETION on G in time O(n22w2+3(w+1)Qw5Q2). Since w ≤ 3l −1, the
result follows.

A similar result can be obtained for MINIMUM H-SUBGRAPH EDGE DELETION on planar
graphs when H is a 3-clique or 4-clique. Note that to cover all K2-subgraphs of a graph by
edges, one simply has to select as an Edge Cover the complete set of edges. Moreover, note
that a planar graph G does not have Kk as a subgraph for k ≥ 5. This is why we only consider
K3 and K4 as subgraphs in this section that deals with planar graphs.

Lemma 6.6.2. Given a planar text graph G of bounded outerplanarity index l and pattern H
that is either a K3 or K4, an optimal solution to MINIMUM H-SUBGRAPH EDGE DELETION

on G can be obtained in time O(n218l2
l5(3l−1

h−1

)
h2).

Proof. Similar as the proof of Lemma 6.6.1. By Theorem 6.5.6, MINIMUM H-SUBGRAPH

EDGE DELETION on G can be solved in O(n22w2
w5(w

h−1

)
h2) time. Since w ≤ 3l−1, the result

follows.

The problem MINIMUM H-SUBGRAPH EDGE DELETION on planar graphs of bounded
degree with fixed, connected pattern is thus fixed parameter tractable, since it is tractable

102

6.6. Baker’s approximation scheme

when parameterized by outerplanarity index l of G. The same holds for MINIMUM H-
SUBGRAPH EDGE DELETION on planar graphs with clique pattern. We will use these prop-
erties to construct a Baker’s approximation scheme in the next section that can be applied
to both problems.

6.6.2 approximation schemes

Given a planar embedding of a planar graph G = (V ,E), we say that a vertex v is of level 1 if
it is on the exterior face of the embedding. Let Vi be the set of all vertices of level i or lower
than i, then vertex w is in level i+1 if it is on the exterior face of the embedding induced
by G[V \Vi]. We say that edge e = (v,w) ∈ E is in level i of the embedding if both vertices v
and w are in level i. We assume in this section that a planar embedding is represented by
an appropriate data structure such that levels of vertices can be computed in linear time.

In the following two theorems and their proof, we denote by Eopt a minimum set of
edges from G covering all H-subgraphs of G and by OPT we denote the size of Eopt. First
we present an approximation scheme for MINIMUM H-SUBGRAPH EDGE DELETION on a
planar graph G with bounded degree and arbitrary fixed, connected pattern H. A general-
ization of the results to finite sets of fixed, connected patterns will be introduced in Section
6.7.

Theorem 6.6.3. For a planar text graph G of bounded degree, a fixed connected pattern H
and any s > 0, there is a O(n2218l2+9lQ l5Q2)-time algorithm for MINIMUM H-SUBGRAPH

EDGE DELETION that finds a solution of size at most (s+1
s)OPT, where l is a constant de-

pending on s and the outerplanarity index of H.

Proof. First, we use Theorem 2.2.2 to determine G’s outerplanarity index k and a k-outerplanar
embedding of G in O(n2) time. I.e, each vertex of G belongs to one of the k levels. Similarly,
we determine H’s outerplanarity index k′ in O(h2) time. Since H is a fixed subgraph, k′ is a
constant. If k was a constant, the problem could be solved in polynomial time by complete
enumeration. Therefore it is reasonable to assume that k > (s+2)k′. Now for some fixed
2k′ ≤ l ≤ k and for each i ∈ I = {mk′ +1 | 0 ≤ m ≤ � l

k′ −2�} we construct a set Gi of induced
subgraphs of G, consisting of the l-outerplanar subgraphs of G:

• induced by levels 1 to i+k′ −1.

• induced by levels j(l−k′)+ i to j(l−k′)+ i+ l−1, 0≤ j ≤ � k−i−l+1
l−k′ �.

• induced by levels � k−i−l+1
l−k′ �(l−k′)+ i+ l−k′ to k.

See Figure 6.1 for an illustration. Note that i + k′ − 1 ≤ � l
k′ − 2�k′ + 1+ k′ − 1 ≤ l − k′ < l

103

Chapter 6. H-Subgraph Edge Deletion

outerplanarity levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

set G1

set G4

of text G

Figure 6.1: Suppose text G has 15 outerplanarity levels and pattern H is 3-outerplanar. For l = 9,
we construct two sets (G1 and G4) of 9-outerplanar subgraphs of G. For example, the first graph in
G1 is induced by all vertices in G’s first three levels.

and also that k− (� k−i−l+1
l−k′ �(l− k′)+ i+ l− k′)+1 ≤ k− (k− i−2l+1+ k′ + i+ l− k′)+1 = l, so

both the subgraph induced by the first bullet and the one induced by the third bullet are
l-outerplanar. Clearly, also the subgraphs under the second bullet are l-outerplanar. Since
|I| = � l

k′ −1� and for each i we construct � k−i−l+1
l−k′ +3� subgraphs, in total we construct less

than (l−k′
k′)(k+2l+1

l−k′)= k+2l+1
k′ ≤ 3k ≤ 3n =O(n) induced subgraphs of G for fixed value of l.

Observation 6.6.4. For every i ∈ I, the vertices in the following set of levels are the only
vertices that are part of more than one graph from Gi:

• levels j(l−k′)+ i, . . . , j(l−k′)+ i+k′ −1, 0≤ j ≤ � k−i−l+1
l−k′ � and

• levels � k−i−l+1
l−k′ �(l−k′)+ i+ l−k′ to � k−i−l+1

l−k′ �(l−k′)+ i+ l−1.

Observation 6.6.5. For at least one i ∈ I the set of levels from Observation 6.6.4 contains at
most k′

l−2k′ OPT edges from Eopt.

Proof. For any two different values of i from I, the two sets of levels from Observation 6.6.4
are disjoint. Thus if for all i ∈ I, the sets of levels would contain strictly more than k′

l−2k′ OPT
edges from Eopt, then all these levels would contain strictly more than

� l
k′ −2�∑
m=0

k′

l−2k′OPT = � l
k′ −1� k′

l−2k′OPT ≥ (
l−k′

k′ −1)
k′

l−2k′OPT =OPT

edges from Eopt, a contradiction.

Now for each i ∈ I, we use Lemma 6.6.1 to compute optimal solutions to MINIMUM H-
SUBGRAPH EDGE DELETION for all l-outerplanar subgraphs. Since for all values of i to-
gether, the number of l-outerplanar subgraphs is bounded by O(n), this can be done in
time O(n2218l2+9lQ l5Q2). We observe that for each i, any H-subgraph of G is present in at
least one of the subgraphs of G induced by this i. Therefore, for each i, the union of the
optimal solutions for its induced subgraphs is a set of edges that covers all H-subgraphs
in G. The algorithm picks the best of these unions as an approximation to the optimal

104

6.7. Generalization to set H of patterns

solution. To see that this approximation is at most (s+1
s)OPT, consider again an optimal

solution Eopt for G. We pick the value i that by Observations 6.6.4 and 6.6.5 has not more
than k′

l−2k′ OPT edges from Eopt in intersecting levels of graphs from Gi. For each element
S ∈ Gi we let ES be the set of edges in Eopt in subgraph S. Furthermore, we let E′

S be
the edges in an optimal solution of MINIMUM H-SUBGRAPH EDGE DELETION for S. For
this choice of i, we thus have a solution of MINIMUM H-SUBGRAPH EDGE DELETION for
G of size no larger than the sum of the |E′

S|’s. Clearly for each S it holds that |E′
S| ≤ |ES|.

Moreover, since at most k′
l−2k′ OPT edges are counted twice while summing the |ES|’s, we

conclude that
∑

S∈Gi |E′
S| ≤

∑
S∈Gi |ES| ≤ k′

l−2k′ OPT +OPT = l−k′
l−2k′ OPT. Thus in total time

O(n2)+O(h2)+O(n2218l2+9lQ l5Q2) we constructed a solution of size at most l−k′
l−2k′ OPT. By

choosing l = (s+2)k′, we obtain the (s+1
s)-approximation to OPT. Since s is strictly positive

and we assume that k > (s+2)k′, we ensure that 2k′ ≤ l ≤ k.

Next, we present an approximation scheme for MINIMUM H-SUBGRAPH EDGE DELE-
TION on planar graph G and pattern H that is either a K3 or a K4.

Theorem 6.6.6. For planar text graph G, pattern H that is either a K3 or K4 and any s > 0,
there is a O(n2218l2

l5(3l−1
h−1

)
h2)-time algorithm for MINIMUM H-SUBGRAPH EDGE DELETION

on G that finds a solution of size at most (s+1
s)OPT, where l is a constant depending on s and

the outerplanarity index of H.

Proof. Same as proof of Theorem 6.6.3, with the only difference that Lemma 6.6.2 is used
instead of Lemma 6.6.1.

6.7 Generalization to set H of patterns

In this final section of the chapter we generalize the results from the previous sections. We
show how the algorithms can be adopted to deal with a finite set H = {H1, . . . ,Ht}, t > 1
of fixed, connected patterns instead of with a single fixed, connected pattern H. Consider
such a set of patterns H = {H1, . . . ,Ht}, t > 1. First we note that if Hi ∈H is a subgraph of
H j ∈ H , j �= i, then H j is redundant. Indeed, a set of edges that covers all occurrences of
Hi as a subgraph of G will also cover all occurrences of H j as a subgraph of G. Therefore
any graph G that is Hi-free is also H j-free. For the set of cliques this means that only the
smallest clique is significant and hence there is no need to generalize the result from Section
6.5. We thus generalize the results from Section 6.4. To that end, we consider text graph
G of bounded maximum degree and a finite set H of fixed connected patterns such that for
each 1 ≤ i �= j ≤ t, Hi is not isomorphic to a subgraph of H j. By hi, di and ki we denote
respectively the size, the diameter and the outerplanarity index of pattern Hi. The following
theorem then generalizes Theorem 6.4.8.

105

Chapter 6. H-Subgraph Edge Deletion

Theorem 6.7.1. Given a text graph G of bounded maximum degree Δ(G), a finite set of fixed,
connected patterns H and a nice tree decomposition (T, X) of G of bounded width w, the prob-
lem MINIMUM H-SUBGRAPH EDGE DELETION on G can be solved in time O(n22w2+3(w+1)Qw5Q2),
where Q =∑t

i=1 hi!
(Δ(G)di+1

hi

)
.

Proof. We repeat the proof of Theorem 6.4.8, taking Q = ∑t
i=1 hi!

(Δ(G)di+1

hi

)
as a new upper

bound on the number of considered subgraphs of G.

Similarly, we generalize Theorem 6.6.3.

Theorem 6.7.2. For a planar text graph G of bounded degree, finite set of fixed, connected
patterns H and any s > 0 , there is a O(n2218l2+9lQ l5Q2)-time algorithm for MINIMUM H-
SUBGRAPH EDGE DELETION that finds a solution of size at most (s+1

s)OPT, where Q =
∑t

i=1 hi!
(Δ(G)di+1

hi

)
and l is a constant depending on s and the largest outerplanarity index

over all elements from H .

Proof. The proof is similar to the proof of Theorem 6.6.3, with the difference that k′ =
max1≤i≤t ki to guarantee that each occurrence of a pattern from H as a subgraph of G
is present in at least one subgraph from Gi, i ∈ I.

6.8 Conclusions

We analyzed the problem of excluding a set H of patterns as subgraphs of a graph G by
deleting a (minimum) number of edges from G. By a general result from Courcelle and
through a formulation of the problem in Monadic Second Order Logic, we implicitly showed
that the decision version of the problem is solvable in linear time on graphs that have
bounded treewidth. Subsequently, we presented a constructive algorithm solving the op-
timization version of the problem in linear time by using dynamic programming on a tree
decomposition of the input graph. For this, however, we needed the additional assump-
tion that the input graph has bounded maximum vertex degree, except for the case where
H contains only cliques. Using Baker’s layerwise decomposition approach, we created a
polynomial time approximation scheme for the problem on planar graphs, using the same
additional assumption. It should be noted that the constants in the time complexities of
both the linear time algorithm as the PTAS are immense, severely limiting their practical
usage. The question remains open whether a combinatorial linear time algorithm and a
PTAS can be found that do not require the condition concerning maximum vertex degree in
the input graph.

106

Bibliography

Bibliography

[1] Scott Aarsonson: Complexity Zoo. April 2010,
http://qwiki.stanford.edu/wiki/Complexity_Zoo

[2] Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, Rolf Niedermeier:
Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Pla-
nar Graphs. Algorithmica 33(4): 461–493 (2002)

[3] Jochen Alber, Rolf Niedermeier: Improved Tree Decomposition Based Algorithms for
Domination-like Problems. LATIN 2002: 613–628

[4] Jochen Alber, Frederic Dorn, Rolf Niedermeier: Experimental evaluation of a tree
decomposition-based algorithm for vertex cover on planar graphs. Discrete Applied
Mathematics 145(2): 219–231 (2005)

[5] Eyal Amir: Efficient Approximation for Triangulation of Minimum Treewidth. UAI
2001: 7–15

[6] Stefan Arnborg: Efficient Algorithms for Combinatorial Problems with Bounded De-
composability - A Survey. BIT 25(1): 2–23 (1985)

[7] Stefan Arnborg, Derek G. Corneil, Andrzej Proskurowski: Complexity of finding embed-
dings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8(2): 277–284
(1987)

[8] Stefan Arnborg, Andrzej Proskurowski: Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Applied Mathematics 23(1): 11–24 (1989)

[9] Stefan Arnborg, Jens Lagergren, Detlef Seese: Easy Problems for Tree-Decomposable
Graphs. J. Algorithms 12(2): 308–340 (1991)

[10] Emgad H. Bachoore, Hans L. Bodlaender: A Branch and Bound Algorithm for Exact,
Upper, and Lower Bounds on Treewidth. AAIM 2006: 255–266

[11] Brenda S. Baker: Approximation Algorithms for NP-Complete Problems on Planar
Graphs. J. ACM 41(1): 153–180 (1994)

107

Bibliography

[12] Ann Becker, Dan Geiger: A sufficiently fast algorithm for finding close to optimal clique
trees. Artif. Intell. 125(1-2): 3–17 (2001)

[13] Marshall W. Bern, Eugene L. Lawler, A.L. Wong: Linear-Time Computation of Optimal
Subgraphs of Cecomposable Graphs. J. Algorithms 8(2): 216–235 (1987)

[14] Zhengbing Bian, Qian-Ping Gu: Computing Branch Decomposition of Large Planar
Graphs. WEA 2008: 87–100

[15] Daniel Bienstock, Clyde L. Monma: On the Complexity of Embedding Planar Graphs
To Minimize Certain Distance Measures. Algorithmica 5(1): 93–109 (1990)

[16] Norman L. Biggs, E. K. Lloyd, Robin J. Wilson: Graph Theory: 1736-1936. Oxford:
Clarendon Press (1976)

[17] Jean R.S. Blair, Pinar Heggernes, Jan Arne Telle: A practical algorithm for making
filled graphs minimal. Theor. Comput. Sci. 250(1-2): 125–141 (2001)

[18] Hans L. Bodlaender: Dynamic Programming on Graphs with Bounded Treewidth.
ICALP 1988: 105–118

[19] Hans L. Bodlaender, Rolf H. Möhring: The Pathwidth and Treewidth of Cographs.
SIAM J. Discrete Math. 6(2): 181–188 (1993)

[20] Hans L. Bodlaender: Improved Self-reduction Algorithms for Graphs with Bounded
Treewidth. Discrete Applied Mathematics 54(2-3): 101–115 (1994)

[21] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, Ton Kloks: Approximat-
ing Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree. J. Algorithms
18(2): 238–255 (1995)

[22] Hans L. Bodlaender, Ton Kloks, Dieter Kratsch: Treewidth and Pathwidth of Permuta-
tion Graphs. SIAM J.Discrete Math. 8(4): 606–616 (1995)

[23] Hans L. Bodlaender: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM J. Comput. 25(6): 1305–1317 (1996)

[24] Hans L. Bodlaender, Ton Kloks: Efficient and Constructive Algorithms for the Path-
width and Treewidth of Graphs. J. Algorithms 21(2): 358–402 (1996)

[25] Hans L. Bodlaender, Dimitrios M. Thilikos: Treewidth for Graphs with Small Chordal-
ity. Discrete Applied Mathematics 79(1-3): 45–61 (1997)

[26] Hans L. Bodlaender: Treewidth: Algorithmic Techniques and Results. MFCS 1997: 19–
36

[27] Hans L. Bodlaender: A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor.
Comput. Sci. 209(1-2): 1–45 (1998)

108

Bibliography

[28] Hans L. Bodlaender, Ton Kloks, Dieter Kratsch, Haiko Müller: Treewidth and Mini-
mum Fill-in on d-Trapezoid Graphs. J. Graph Algorithms Appl. 2(2): 1–23 (1998)

[29] Hans L. Bodlaender, Udi Rotics: Computing the Treewidth and the Minimum Fill-In
with the Modular Decomposition. Algorithmica 36(4): 375–408 (2003)

[30] Hans L. Bodlaender: Discovering Treewidth. SOFSEM 2005: 1–16

[31] Hans L. Bodlaender, Arie M. C. A. Koster, Frank van den Eijkhof: Preprocessing Rules
for Triangulation of Probabilistic Networks. Computational Intelligence 21(3): 286–
305 (2005)

[32] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, Dimitrios
M. Thilikos: On Exact Algorithms for Treewidth. ESA 2006: 672–683

[33] Hans L. Bodlaender, Thomas Wolle, Arie M. C. A. Koster: Contraction and Treewidth
Lower Bounds. J. Graph Algorithms Appl. 10(1): 5–49 (2006)

[34] Hans L. Bodlaender, Arie M.C.A. Koster: Combinatorial Optimization on Graphs of
Bounded Treewidth. Comput. J. 51(3): 255–269 (2008)

[35] Hans L. Bodlaender, Alexander Grigoriev, Arie M.C.A. Koster: Treewidth Lower
Bounds with Brambles. Algorithmica 51(1): 81–98 (2008)

[36] Hans L. Bodlaender, Arie M. C. A. Koster: Treewidth computations I. Upper bounds.
Inf. Comput. 208(3): 259–275 (2010)

[37] Tom Bohman: The triangle-free process. Advances in Mathematics 221(5): 1653–1677
(2009)

[38] Béla Bollobás: Extremal Graph Theory. London Mathematical Society Monographs,
Vol. 11, Academic Press, London (1978)

[39] J.A. Bondy, U.S.R. Murty: Graph Theory. Springer Publishing Company, Incorporated
(2008)

[40] Oleg V. Borodin, Alexei N. Glebov, André Raspaud, Mohammad R. Salavatipour: Pla-
nar Graphs without Cycles of Length from 4 to 7 are 3-Colorable. J. Comb. Theory,
Ser. B 93(2): 303–311 (2005)

[41] Vincent Bouchitté, Ioan Todinca: Treewidth and Minimum Fill-in: Grouping the Mini-
mal Separators. SIAM J. Comput. 31(1): 212–232 (2001)

[42] Vincent Bouchitté, Ioan Todinca: Listing all potential maximal cliques of a graph.
Theor. Comput. Sci. 276(1-2): 17–32 (2002)

[43] Vincent Bouchitté, Ioan Todinca: Approximating the treewidth of AT-free graphs. Dis-
crete Applied Mathematics 131(1): 11–37 (2003)

109

Bibliography

[44] Vincent Bouchitté, Dieter Kratsch, Haiko Müller, Ioan Todinca: On treewidth approxi-
mations. Discrete Applied Mathematics 136(2-3): 183–196 (2004)

[45] Andreas Brandstädt, Van Bang Le, Jeremy P. Spinrad: Graph classes: a survey. Society
for Industrial and Applied Mathematics, Philadelphia, PA (1999)

[46] Hajo Broersma, Elias Dahlhaus, Ton Kloks: A Linear Time Algorithm for Minimum
Fill-in and Treewidth for Distance Hereditary Graphs. Discrete Applied Mathemat-
ics 99(1-3): 367–400 (2000)

[47] Hajo Broersma, Ton Kloks, Dieter Kratsch, Haiko Müller: A Generalization of AT-Free
Graphs and a Generic Algorithm for Solving Triangulation Problems. Algorithmica
32(4): 594–610 (2002)

[48] Daniel Brügmann, Christian Komusiewicz, Hannes Moser: On Generating Triangle-
Free Graphs. Electronic Notes in Discrete Mathematics 32: 51–58 (2009)

[49] François Clautiaux, Jacques Carlier, Aziz Moukrim, Stéphane Nègre: New Lower and
Upper Bounds for Graph Treewidth. WEA 2003: 70–80. Lecture Notes in Computer
Science 2647, Springer-Verlag (2003)

[50] François Clautiaux, Aziz Moukrim, Stéphane Nègre, Jacques Carlier: Heuristics and
metaheuristic methods for computing graph treewidth. RAIRO - Operations Re-
search 38(1): 13–26 (2004)

[51] Bruno Courcelle: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Inf. and Comput. 85(1): 12–75 (1990)

[52] Bruno Courcelle: The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. ITA 26: 257–286 (1992)

[53] Elias Dahlhaus: Minimum Fill-in and Treewidth for Graphs Modularly Decomposable
into Chordal Graphs. WG 1998: 351–358

[54] Erik D. Demaine, MohammadTaghi Hajiaghayi: Approximation Schemes for Planar
Graph Problems. Encyclopedia of Algorithms 2008

[55] Erik D. Demaine, MohammadTaghi Hajiaghayi: Bidimensionality. Encyclopedia of Al-
gorithms 2008

[56] Reinhard Diestel, Tommy R. Jensen, Konstantin Yu. Gorbunov, Carsten Thomassen:
Highly Connected Sets and the Excluded Grid Theorem. J. Comb. Theory, Ser. B
75(1): 61–73 (1999)

[57] Reinhard Diestel: Graph Theory. Fourh Edition, Springer-Verlag, Heidelberg (2010)

[58] Jean E. Dunbar, Marietjie Frick: The Path Partition Conjecture is true for claw-free
graphs. Discrete Mathematics 307(11-12): 1285–1290 (2007)

110

Bibliography

[59] Paul Erdös, Daniel J. Kleitman, Bruce Rothschild: Asymptotic Enumeration of Kn-free
Graphs. Atti Dei Convegni Lincei 17, Colloquio Internazionale sulle Teorie Combi-
natorie 20: 19–27, American Mathematical Society, Rome (1976)

[60] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca: Exact (Exponential) Algorithms for
Treewidth and Minimum Fill-In. ICALP 2004: 568–580

[61] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, Yngve Villanger: Exact Algorithms for
Treewidth and Minimum Fill-In. SIAM J. Comput. 38(3): 1058–1079 (2008)

[62] Fedor V. Fomin, Yngve Villanger: Treewidth Computation and Extremal Combina-
torics. ICALP(1)2008: 210–221

[63] Michael R. Garey, David S. Johnson: Computers and Intractability; A Guide to the
Theory of NP-Completeness. W.H. Freeman & Co., New York, NY (1990)

[64] Vibhav Gogate, Rina Dechter: A complete Anytime Algorithm for Treewidth. UAI 2004:
201–208

[65] Martin Charles Golumbic, Haim Kaplan, Ron Shamir: Graph Sandwich Problems. J.
Algorithms 19(3): 449–473 (1995)

[66] Graph Classes,
http://wwwteo.informatik.uni-rostock.de/isgci/classes.cgi

[67] Alexander Grigoriev: Treewidth and large grid minors in planar graphs. unpublished
manuscript (2007)

[68] Jonathan L. Gross, Jay Yellen: Graph Theory and Its Applications. Second Edition
(Discrete Mathematics and Its Applications), Chapman & Hall/CRC (2005)

[69] Qian-Ping Gu, Hisao Tamaki: Optimal Branch-Decomposition of Planar Graphs in
O(n3) Time. ACM Transactions on Algorithms 4(3): (2008)

[70] Qian-Ping Gu, Hisao Tamaki: Improved bounds on the planar branchwidth with re-
spect to the largest grid minor size. Technical Report 2009-17: School of Computing
Science, Simon Fraser University, Burnaby, BC, Canada (2009)

[71] Michel Habib, Rolf H. Möhring: Treewidth of cocomparability graphs and a new order-
theoretic parameter. ORDER 11(1): 47–60 (1994)

[72] Illya V. Hicks: Planar Branch Decompositions I: The Ratcatcher. INFORMS Journal on
Computing (INFORMS) 17(4): 402–412 (2005)

[73] Illya V. Hicks: Planar Branch Decompositions II: The Cycle Method. INFORMS Journal
on Computing (INFORMS) 17(4): 413–421 (2005)

[74] Illya V. Hicks: Graphs, Branchwidth, and Tangles! Oh my! Networks 45(2): 55–60
(2005)

111

Bibliography

[75] Frank Kammer: Determining the Smallest k Such That G Is k-Outerplanar. ESA 2007:
359–370

[76] Pierluigi Crescenzi, Viggo Kann:
A compendium of NP optimization problems. July 2005,
http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html

[77] Ton Kloks, Dieter Kratsch: Treewidth of Chordal Bipartite Graphs. J. Algorithms 19(2):
266–281 (1995)

[78] Ton Kloks: Treewidth of Circle Graphs. Int. J. Found. Comput. Sci. 7(2): 111–120 (1996)

[79] Ton Kloks: Treewidth: Computations and Approximations. Lecture Notes in Computer
Science 842 Springer-Verlag, Heidelberg, (1994)

[80] Ton Kloks, Dieter Kratsch, Jeremy Spinrad: On Treewidth and Minimum Fill-In of
Asteroidal Triple-Free Graphs. Theor. Comput. Sci. 175(2): 309–335 (1997)

[81] Arie M.C.A. Koster: Frequency assignment - models and algorithms. PhD thesis, Uni-
versity of Maastricht, Maastricht, The Netherlands, (1999)

[82] Arie M.C.A. Koster, Stan P.M. van Hoesel, Antoon W.J. Kolen: Solving Frequency As-
signment Problems via Tree-Decompositions. Electronic Notes in Discrete Mathe-
matics 3: 102–105 (1999)

[83] Arie M.C.A. Koster, Hans L. Bodlaender, Stan P.M. van Hoesel: Treewidth: Computa-
tional Experiments. Electronic Notes in Discrete Mathematics 8: 54–57 (2001)

[84] Arie M.C.A. Koster, Stan P.M. van Hoesel, Antoon W.J. Kolen: Solving partial con-
straint satisfaction problems with tree decompositions. Networks 40(3): 170–180
(2002)

[85] K. Kuratowski: Sur le problème des courbes gauches en topologie. Fund. Math. 15:
271–283 (1930)

[86] Jens Lagergren, Stefan Arnborg: Finding Minimal Forbidden Minors Using a Finite
Congruence. ICALP 1991: 532–543

[87] Jens Lagergren: Efficient Parallel Algorithms for Graphs of Bounded Tree-Width. J.
Algorithms 20(1): 20–44 (1996)

[88] Steffen L. Lauritzen, David J. Spiegelhalter: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, series B 50: 253–258 (1988)

[89] C.G. Lekkerkerker, J.C. Boland: Representation of finite graphs by a set of intervals on
the real line. Fund. Math. 51: 45–64 (1962)

112

Bibliography

[90] Jan van Leeuwen: Graph Algorithms. Handbook of Theoretical Computer Science, Vol-
ume A: Algorithms and Complexity, 522–631 (1990)

[91] Jean-Francois Manouvrier, Corinne Lucet: Resolving the Network Reliability Problem
with a Tree Decomposition of the Graph. OPODIS 1997: 193–204

[92] George J. Minty: On Maximal Independent Sets of Vertices in Claw-free Graphs. J.
Comb. Theory, Ser. B 28(3): 284–304 (1980)

[93] Bruce A. Reed: Finding Approximate Separators and Computing Tree Width Quickly.
STOC 1992: 221–228

[94] Neil Robertson, Paul D. Seymour: Graph minors. III. Planar tree-width. J. Comb. The-
ory, Ser. B 36(1): 49–64 (1984)

[95] Neil Robertson, Paul D. Seymour: Graph minors. II. Algorithmic Aspects of Tree-Width.
J. Algorithms 7(3): 309–322 (1986)

[96] Neil Robertson, Paul D. Seymour: Graph minors. X. Obstructions to tree-decomposition.
J. Comb. Theory, Ser. B 52(2): 153–190 (1991)

[97] Donald J. Rose: A Graph-Theoretic Study of the Numerical Solution of Sparse Posi-
tive Definite Systems of Linear Equations. Graph Theory and Computing, 183–217
(1972)

[98] Donald J. Rose, Robert E. Tarjan, George S. Lueker: Algorithmic Aspects of Vertex
Eliminination on Graphs. SIAM J. Comput. 5(2): 266–283 (1976)

[99] Najiba Sbihi: Algorithme de Recherche d’un Stable de Cardinalité Maximum dans un
Graphe sans Étoile. Discrete Math. 29(1): 53–76 (1980)

[100] Paul D. Seymour, Robin Thomas: Graph Searching and a Min-Max Theorem for Tree-
Width. J. Comb. Theory, Ser. B 58(1): 22–33 (1993)

[101] Paul D. Seymour, Robin Thomas: Call Routing and the Ratcatcher. Combinatorica
14(2): 217–241 (1994)

[102] Kirill Shoikhet, Dan Geiger: A Practical Algorithm for Finding Optimal Triangula-
tions. AAAI 1997: 185–190

[103] Yinglei Song, Chunmei Liu, Russell L. Malmberg, Fangfang Pan, Liming Cai: Tree
Decomposition Based Fast Search of RNA Structures Including Pseudoknots in
Genomes. CSB 2005: 223–234

[104] Ravi Sundaram, Karan Sher Singh, C. Pandu Rangan: Treewidth of Circular-Arc
Graphs. SIAM J. Discrete Math. 7(4): 647–655 (1994)

[105] Jan Arne Telle, Andrzej Proskurowski: Algorithms for Vertex Partitioning Problems
on Partial k-Trees. SIAM J. Discrete Math. 10(4): 529–550 (1997)

113

Bibliography

[106] Robin Thomas: Tree-Decompositions of Graphs.
http://people.math.gatech.edu/~thomas/SLIDE/CBMS/trdec.pdf

[107] K. Thulasiraman, M.N.S. Swamy: Graphs: Theory and Algorithms. John Wiley &
Sons, Inc., New York, NY (1992)

[108] K. Wagner: Über eine Eigenshaft der ebenen Complexe. Math. Ann. 14: 570–590 (1937)

[109] T.V. Wimer, S.T. Hedetniemi, R. Laskar: A methodology for constructing linear graph
algorithms. Congressus Numerantium 50: 43–60 (1985)

[110] Gerhard J. Woeginger: Exact Algorithms for NP-hard Problems: A Survey. Combina-
torial Optimization 2001: 185–208

[111] Thomas Wolle: A Framework for Network Reliability Problems on Graphs of Bounded
Treewidth. ISAAC 2002: 137–149

[112] Jinbo Xu, Feng Jiao, Bonnie Berger: A Tree-Decomposition Approach to Protein Struc-
ture Prediction. CSB 2005: 247–256

[113] Mihalis Yannakakis: Edge-Deletion Problems. SIAM J. Comput. 10(2): 297–309 (1981)

114

Nederlandse Samenvatting

Nederlandse Samenvatting

Een boom decompositie van een graaf is een weergave van de graaf door middel van een
boom, waarbij de knooppunten van de decompositie deelverzamelingen van de punten van
de graaf zijn. De breedte van een boom decompositie wordt gedefinieerd als de omvang
van het grootste knooppunt, verminderd met één. De best mogelijke breedte (de kleinste)
over alle boom decomposities van een graaf noemen we de boombreedte van de graaf. Een
klasse van grafen heeft een begrensde boombreedte als de boombreedte begrensd wordt
door een constante die niet afhankelijk is van het aantal punten in de graaf. De boom-
breedte is een belangrijke structuurparameter van een graaf. Intuïtief geeft ze aan hoe
"dik" de boom is waarmee de graaf beschreven kan worden. Het belang van de (begrensde)
boombreedte is te vinden in de oplosbaarheid van een groot aantal optimaliseringsproble-
men op grafen, zoals minimale kleuring, grootste onafhankelijke verzameling, en diverse
netwerkproblemen zoals capaciteitsplanning. Deze problemen kunnen met behulp van de
beste boom decompositie, door middel van dynamische programmeringsalgoritmen opgelost
worden in een tijd die polynomiaal afhangt van de grootte van de graaf en exponentieel
van de boombreedte van de graaf. Met andere woorden: deze problemen kunnen efficiënt
opgelost worden op grafen waarvoor de boombreedte begrensd is. Een uitgewerkt voor-
beeld van een grafenprobleem dat met behulp van een dynamisch programmeeralgoritme
op een boom decompositie wordt opgelost komt in dit proefschrift aan de orde. Helaas is de
boombreedte van een graaf niet eenvoudig te bepalen: het probleem is NP-moeilijk. In dit
proefschrift wordt een nieuw (exponentieel) algoritme beschreven om de boombreedte exact
te bepalen met behulp van een boomzoek methode en een heuristiek voor de boombreedte
waarbij met een polynomiaal algoritme goede (maar niet per se optimale) boom decomposi-
ties geconstrueerd worden. Daarnaast worden structuren beschreven waarvan bekend is
dat ze gerelateerd zijn aan de boombreedte van een graaf, zoals roosters. De aard van de
samenhang tussen de boombreedte en deze structuren wordt in dit proefschrift nader on-
derzocht.
In Hoofdstuk 3 wordt een boomzoek algoritme beschreven voor het exact bepalen van de

115

Nederlandse Samenvatting

boombreedte. Dit algoritme is gebaseerd op een splitsingsregel die punten paren selecteert
en hiervoor twee keuzes laat: het wel of niet samen voorkomen van de twee punten in een
knooppunt van de uiteindelijke boom decompositie. Deze regel laat krachtige processing
toe, zodat voor kleine grafen (tot ongeveer 30 punten) de boombreedte bepaald kan wor-
den, met name als de graaf weinig kanten heeft in verhouding tot het aantal punten. Voor
grotere grafen is dit exacte algoritme in de praktijk echter niet bruikbaar. In Hoofdstuk
4 wordt daarom een heuristische methode beschreven voor het vinden van boom decom-
posities met kleine, maar niet noodzakelijkerwijs optimale breedte. Deze methode maakt
gebruik van een nieuwe buurruimte structuur, waarbij verbonden knooppunten van een
decompositie eerst worden samengevoegd en daarna weer worden gescheiden zodanig dat
daarmee een nieuwe boom decompositie verkregen wordt. De buurruimte structuur is in-
gebed in een lokaal zoek algoritme, met meerdere starts. Dit algoritme is competitief met
bestaande heuristische methoden voor de boombreedte die onder andere gebaseerd zijn op
"tabu search" en "simulated annealing".
In Hoofdstuk 5 wordt gekeken naar planaire grafen. Voor een rooster, een eenvoudig type
planaire graaf, geldt dat de boombreedte wordt bepaald door de afmeting van het rooster.
Hieruit volgt dat de klasse van planaire grafen geen begrensde boombreedte heeft. Het
is nog altijd niet aangetoond dat het bepalen van de boombreedte van planaire grafen een
NP-moeilijk probleem is. Wel is bekend dat de boombreedte van een planaire graaf van
onderen wordt begrensd door zowel de grootte van de grootste rooster minor in de graaf als
door de "branchwidth" van de graaf. Ook bestaan er bovengrenzen voor de boombreedte
van planaire grafen in termen van de twee bovengenoemde parameters afzonderlijk. In dit
proefschrift wordt een klasse van planaire grafen opgesteld waarmee wordt aangetoond dat
de bestaande bovengrens voor boombreedte in termen van "branchwidth" scherp is en dat
de bovengrens in termen van rooster minoren zeker niet verder aangescherpt kan worden
dan tot anderhalf keer de grootte van de grootste rooster minor. Daarbij wordt een nieuwe
methode gebruikt om de grootte van de grootste rooster minor te bepalen, gebaseerd op af-
standen tussen de vlakken in een planaire inbedding van de graaf. Uit ander onderzoek is
inmiddels gebleken dat er een klasse van planaire grafen bestaat waarvoor de boombreedte
tweemaal zo groot is als de grootste rooster minor.
Hoofdstuk 6 richt zich tenslotte op de aan- of afwezigheid van subgrafen in een graaf en
illustreert het gebruik van boom decomposities in algoritmen. Diverse belangrijke graaf-
klassen kunnen worden gekarakteriseerd door uitsluiting van een verzameling subgrafen.
Het grafenprobleem waarvoor in dit hoofdstuk algoritmen worden gepresenteerd luidt: hoe-
veel kanten dienen minimaal uit een graaf G te worden verwijderd om een verzameling H
van grafen niet meer als subgraaf in G aanwezig te laten zijn? Dit probleem is NP-moeilijk
voor algemene grafen. Voor speciale gevallen van grafen G met begrensde boombreedte
en verzamelingen H presenteren we lineaire constructieve algoritmen, gebaseerd op dyna-

116

Nederlandse Samenvatting

mische programmering. Verder wordt in dit hoofdstuk aangetoond dat met een laagsge-
wijze decompositie aanpak een optimale oplossing voor het subgraaf eliminatie probleem op
planaire grafen efficiënt kan worden benaderd.

117

Curriculum Vitae

Lambertus Marchal was born on October 20, 1978 in Maarn, The Netherlands. In 1997,
he received his Gymnasium diploma from the Van Lodenstein College in Amersfoort. In
September of that same year he started studying Applied Mathematics at the University
of Twente, where he graduated at the Chair of Discrete Mathematics and Mathematical
Programming in January 2005. In September 2005, he started his doctoral research at
the department of Quantitative Economics at the Faculty of Economics and Business Ad-
ministration of Maastricht University, the results of which are presented in this thesis.
Since November 2010, Bert has been employed at ABF Research in Delft.

119

	Acknowledgements
	Contents
	Chapter 1 - Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography
	Nederlandse Samenvatting
	Curriculum Vitae

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50083
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

