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Abstract

Developing and estimating structural models is becoming a routine practice in marketing. In this study, the possibilities of applying such

models in managerial decision making under uncertainty are investigated. In particular the feasibility of exploiting the inherent probabilistic

nature of structural models to buttress decision making is demonstrated. The approach is based on making heavy use of standard simulation

routines. The model that is under scrutiny describes the relationships between firms’ efforts in three areas (the offer, customer relationships,

and market positions) on the success of a new product introduction. Special attention is given to the aspect of risk aversion. Accounting for

the risk attitude implies different allocation decisions for risk-averse compared to risk-prone managers, in line with common sense.
D 2004 Elsevier Inc. All rights reserved.
Keywords: Structural equation models; Decision making; Simulation; Risk

1. Introduction commitment, affective commitment, and trust. The concep-
Structural equation modeling (SEM) is becoming stan-

dard practice in the marketing society nowadays. The

benefits of SEM are well known: SEM is a rigorous and

conceptually comprehensive approach that addresses funda-

mental issues, using fundamental constructs. The results of

SEM are an increased understanding of underlying relation-

ships with quantitative assessments of the relative impor-

tance of effects. The use of SEM in decision-making

situations has been practically absent, however. This paper

explores the possibilities for this usage of SEM.

A companion paper (De Ruyter, Moorman, & Lemmink,

2001) described the construction and estimation of a model

that explained how customer loyalty depends on the efforts

of management in various areas in the case of launching a

new product. In that paper, three main areas that serve as

antecedents were identified, namely, the offer, relationships,

and market position. Intermediary variables are calculative
0019-8501/$ – see front matter D 2004 Elsevier Inc. All rights reserved.
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tual model that was developed is depicted in Fig. 1, together

with some selected references (E. W. Anderson & Weitz,

1992; J. C. Anderson & Narus, 1990, 1999; Cunningham &

Tynan, 1993; Dick & Basu, 1994; Gemunden & Walter,

1994; Geyskens, Steenkamp, Scheer, & Kumar, 1996; Heide

& John, 1988; Kumar, Hibbard, & Stern, 1994; MacKenzie,

1992; Moorman, Zaltman, & Deshpandé, 1992; Morgan &

Hunt, 1994). The estimated model is reported in Fig. 2.

Goodness-of-fit criteria were at least satisfactory; see De

Ruyter et al. (2001) for an elaborate discussion of the model.

Basically the model describes how loyalty intentions are

influenced by the perceptions of the customer of the

company’s ‘‘offer,’’ the perception of the ‘‘relationship’’

between customer and company and the company’s per-

ceived ‘‘market position.’’ Obviously, by active marketing,

management can influence these customer perceptions and,

consequently, management may seek for optimal levels in

the three fields. However, the question becomes how this

marketing is efficiently done, or alternatively, in marginal

terms: How should an additional dollar be spent, given a

certain, current position? The structural model can be used

to answer such optimization questions.

In this paper the focus will be on how structural equa-

tions models can be used for decision-making analysis. As

usual, decision making takes place under conditions of



 

Fig. 1. The conceptual model with selected references.
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uncertainty. In modeling terms, uncertainty shows up as

nondeterministic, that is, probabilistic construct values,

parameters, and error terms. It will be argued that this model

uncertainty mimics (part of) the uncertainty a real decision

maker is confronted with.

Thus, after describing the fundamentals of decision

making with the help of structural equation models, the

discussion will focus on how the uncertainty component

comes in and how it affects the analysis. Next, the results of

analysis are presented, followed by a discussion of the

implications. Finally, the article concludes with some sug-

gestions for future research.
2. Allocation decisions based on a structural equation

model

The results of the model in Fig. 2 can be used to aid in

managerial allocation decisions. The idea is that manage-

ment can influence customers’ perceptions of the constructs

offer, relationship, and market and hence influence the

intention to stay of the customer. The basic question is

how should management allocate a fixed amount of resour-
ces over these three exogenous constructs in order to

achieve the biggest increase in intention to stay?

To fix ideas: Suppose management has resources that

when spent completely on improving the offer, the percep-

tion of the offer will increase by one point. Similarly, when

spent completely on relationships, this construct will in-

crease by one point, or when allocated completely to market

that construct will increase by one point. Furthermore,

management can also decide to allocate their resources over

the three constructs. In that case, the sum of the increases

will be exactly one again.

When the model results are considered deterministic, the

question raised above is relatively easy to answer, but due to

various sources of uncertainty, such interpretation of the

estimation results is not very realistic. The first source is the

common uncertainty due to model misspecification, mea-

surement errors, and the like. This type of uncertainty is

usually accounted for by incorporating error terms. A

second source is found in the exogenous constructs.

Changes in the measured items are taken as reflecting

changes in the latent construct, but this relationship is not

exact, reflected by errors in the measurement model. This

uncertainty corresponds to the uncertainty related to the



L ¼ 0:7W þ 0:4C ðaÞ

Fig. 2. Empirical model.
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manageability of influencing the latent constructs: The

assumption is that management is able to influence the

perception of these constructs, but this manageability is of

an uncertain kind. A final source of uncertainty in the model

relates to the parameter estimates. Estimation results are

commonly presented as point estimates but basically have

the character of a probability distribution. ‘‘The’’ parameter

value is nothing else than the expected value of that

distribution. Note that although it is natural to speak of

uncertainty, the appropriate technical term is risk: The

distributions of the nondeterministic elements are known,

which typically is a situation of risk.

When the allocation decision is to be made in a situation

of risk, management will weigh the expected returns against

the risk implied. A simple way to model this is to assume

that management holds a utility function, with ‘‘return’’ and

‘‘risk’’ as the variables. Risk is measured in the usual way

by the variances or standard deviations of the model out-

comes (other risk measures like lower partial moments are

discussed by Machina and Pratt, 1997, but since the issue of

risk measures is not central in this paper the more traditional

measure of variance is applied). When the expected value

and the standard deviation of the outcome variables are

known (as functions of the allocation), they are put into a

utility function and that gives the opportunity to determine

the optimal allocation of the budget.

How the various sources of uncertainty can be incor-

porated in this structural model is the next topic. First, the

approach will be illustrated by means of a simple example.

Then the analysis will be executed in general format with

the help of matrix algebra. After that, it will be shown how
the analysis works out for the estimated model of Fig. 2.

Finally, it will be shown how the managerially relevant

issue of risk attitude is naturally incorporated in the

analysis.
3. Extensive example

The following example will help in catching the ideas put

forward in this article. It will also serve as a reference for the

upcoming discussion. Note that this example is completely

constructed and is not based on any realistic assumptions.

The only thing that is realistic is the type of variables

chosen.

Assume that an organization can influence the likeli-

hood of clients making a purchase by increasing either the

clients’ awareness of the organization, or its credibility, or

both. An increase of 1 unit in awareness leads to an

increase of 0.7 in the likelihood of purchase. An increase

of 1 unit in credibility leads to an increase of 0.4 in the

likelihood of purchase. Moreover, an increase of 1 unit in

awareness also leads to an increase in credibility of 0.5

points.

Awareness and credibility are determined by advertising

and attending trade shows, respectively. One million dollars

spent on advertising leads to an increase in awareness of 0.3

units. The same amount spent on trade shows leads to an

increase of 0.6 units in credibility. This whole story can be

summarized in three equations:
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C ¼ 0:6T þ 0:5W ðbÞ

W ¼ 0:3A ðcÞ

where L=likelihood of purchase, W=awareness, C=credibil-

ity, T=trade shows, and A=advertising. T and A are measured

in million dollars, L, W, and C in units. The question is how

must the company allocate 1 million dollars over advertising

and trade shows in order to maximize the increase in the

likelihood of purchase variable.

This is, in fact, not a difficult question, given the model

above. Substitute Eq. (c) in (b) and (a), and Eq. (b) in (a);

rearrange terms and it becomes immediately clear that

L ¼ 0:24T þ 0:27A ðdÞ

Hence, spending the complete budget on advertising

leads to the greatest return in likelihood of purchases.

Advertising is the most effective instrument to increase

the likelihood of purchase.

Such a model like Eqs. (a)– (c) above is, however,

fraught with uncertainties. These uncertainties for example

concern the specification of the model: Are the included

variables the only ones that affect each other? Is the

assumption of linear relationships realistic? Somewhat sim-

ilar are uncertainties about the model estimates. Are the

given coefficients (0.3, 0.4, etc.) correct?

Such uncertainties translate into uncertainty about the

total effect relation (d). Now, assume that when the total

budget of 1 million dollars is spent on trade shows, the

effect on the likelihood of purchase is still 0.24, but with a

variance of 0.06. Similarly, the effect of spending the whole

budget on advertising is 0.27, but with variance of 0.09.

Thus, Eq. (d) can be complemented by two error terms, one

reflecting the uncertainty of the effect of spending in trade

shows, the other the uncertainty related to the effect of

advertising.

L ¼ 0:27T þ 0:24Aþ TeT þ AeA ðeÞ

Note that the error terms are multiplied by the amount

spent on trade shows and advertising, respectively. Intui-

tively, this makes sense: When there is only small spending

in either one, the (magnitude) of the uncertainty there is

accordingly reduced.

Now when the manager seeks to optimize the allocation

of the budget, the manager will also take the uncertainty into

account. In other words, the manager will optimize some

‘‘utility function’’ with expected return (E[L]) and uncer-

tainty, measured by the variance var[L] as the arguments. As

usual the expected values of the error terms are zero; hence

the expected return is given by

E½L� ¼ 0:24T þ 0:27A ðf Þ

The variance is given by

var½L� ¼ T 2varðeT Þ þ A2varðeAÞ ðgÞ
or

var½L� ¼ 0:06T 2 þ 0:09A2

where the assumed values for the variances are plugged in.

Note that the convenient assumption was made that the error

terms are independent, which will not necessarily hold in

more complex situations.

To further illustrate the procedure, assume that the

manager has the following simple utility function:

U ¼ E½L� � var½L�: ðhÞ

Finally note that the budget of 1 million dollars has to be

distributed over T and A. In other words, what is not spent

on trade shows is spent on advertising and vice versa, thus,

T=1�A. Now plugging the expressions for E[L], var[L], into

the utility function, and substituting T with 1�A leads, after

some straightforward arithmetic, to the following equation:

U ¼ 0:18þ 0:15A� 0:15A2:

Maximizing this function leads to A=0.5; hence 50% of

the budget is now spent on Trade shows. This simple

exercise demonstrates the potential of uncertainty to influ-

ence the allocation of budgets.
4. Using the model for allocation decisions under

uncertainty

The estimated model of Fig. 2 counts three exogenous

variables and four endogenous variables. In matrix notation

the model reads:

Y ¼ BY þ CX þ e ð1Þ

with Y a vector of length 4 of endogenous variables, X a

vector of length 3 with exogenous variables, and e a vector

of length 4 of error terms. B is a 4�4 matrix, and C a 4�3

matrix of parameters. Refer to Fig. 2 for the contents of this

model. In the extensive example above, Y would be of

length 3 (L, C, and W), X would be of length 2 (T and A),

and so forth.

The reduced form of this system is

Y ¼ ðI � BÞ�1CX þ ðI � BÞ�1e ð2Þ

or, alternatively

Y ¼ DX þ u ð3Þ

with D a 4�3 matrix and u a vector of length 4; D and u are

defined by Eqs. (2) and (3), so the expected values of Y and

its covariance matrix are

E½Y� ¼ E½DX� þ E½u� ð4Þ

varðYÞ ¼ varðDXÞ þ varðuÞ þ 2covðDX;uÞ: ð5Þ

As discussed above, stochasticity now enters this model

in three ways. First, the error term u has a probability
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distribution that can be derived since the distribution of e is
known, as long as B is deterministic. Second, the exogenous

variables in X follow a probability distribution. Finally, the

parameters in D are functions of parameter estimates and,

consequently, also have a probability distribution. For

reasons of exposition, the consequences of these three types

of uncertainty are next discussed consecutively. Note that in

the extensive example above, no distinction was made

between the various types of errors: The counterpart of

Eq. (5) was simply introduced as Eq. (g).

So, first assume that X and D are deterministic and

suppose that e has a multivariate normal distribution with

mean zero and covariance matrix �e, which is diagonal.

Then u is also normal with zero mean. Since

u ¼ ðI � BÞ�1e ð6Þ

the variance of u is given by

varðuÞ ¼ varððI � BÞ�1eÞ¼ðI � BÞ�1�e½ðI � BÞ�1�V ð7Þ

as B was deterministic. Then the first two moments of Y are:

E½Y� ¼ E½DX� þ E½u� ¼ DX þ 0 ¼ DX ð8Þ

varðYÞ ¼ varðDXÞ þ varðuÞ þ 2covðDX;uÞ

¼ 0þ varðuÞ þ 0 ð9Þ

where var(u) was given above. Note that the expected value

of Y depends on X, but the variance of Y does not depend on

X. Hence, the allocation of a budget among the elements of

X does not affect the risk involved. Consequently, maxi-

mizing the utility function of the firm in this case simply

implies maximizing the expected return.

The next step is to introduce stochasticity in the exoge-

nous variables X. In the present context this can be well

motivated. The Xs in the model (offer, relationship, and

market) represent theoretical constructs, which have no real

counterparts. Instead, they are measured by looking at

measurable variables that are supposed to be influenced

(determined) by the constructs. This impossibility to mea-

sure the constructs makes their true value uncertain. The

consequence is that it is not realistic to state with certainty

that some exogenous variable increases by one unit, for

example. It makes more sense to state that the increase of an

exogenous variable is a random variable with expected value

one, and a given variance. Thus, a firm may try to influence

the value of a construct, but the outcome is uncertain.

Assume that this uncertainty is reflected in the variance of

the error term in the measurement model.

The error terms in the measurement model are correlated.

This means that the covariance matrix of X, �X, is not

diagonal. The interpretation of this is that when management

tries to influence one of the constructs it may simultaneously

also influence the value of the other constructs as well.

On the other hand, the errors of the structural model, and

of the measurement model are assumed to be independent,
cov(X,e)=0, and consequently, cov(X,u)=0. Now calculat-

ing the first two moments of Y gives

E½Y� ¼ E½DX� þ E½u� ¼ DE½X� ð10Þ

varðYÞ ¼ varðDXÞ þ varðuÞ þ 2covðDX;uÞ

¼ DSXDVþ varðuÞ ð11Þ

This makes clear that the allocation of the budget

enters the utility function of the firm both via the

expected value (E[X]) and the variance (�X), making a

portfolio analysis nontrivial. Nevertheless, the discussion

below will illustrate that an analytical solution is still

feasible.

Finally, consider the stochasticity resulting from D. First,

note that it is common to include the variance, resulting

from the stochasticity of the parameter estimates, in fore-

casting in econometrics (Ramanathan, 1995), but also in this

structural equations model it is reasonable to consider this

variance. The variance of the parameter estimates can be

interpreted as an indication of uncertainty about the true

parameter values. Uncertainty about the specification of the

model is accounted for by the error terms, but even when the

model is correctly specified, the uncertainty about the true

parameter values, caused, for example, by measurement

errors, remains. This may of course have serious conse-

quences for the use of the model. The practical analogy is

that decision makers can work with a relationship between

two variables that is quantified, but want to take into

account how certain they are of the exact numbers in that

relationship. Hence, incorporating model uncertainty, by

explicitly incorporating the stochasticity of the parameters

in deriving forecasts, seems justified.

Consequently, assume that vec(BjC) (the vector com-

posed of the parameters of the structural equation model,

represented by the matrices B and C) have a multivariate

normal distribution with mean vec(B̂jĈ) and covariance

matrix �BjC. It should be clear, however, that this does

not lead to tractable formulations for the distribution of D or

u any longer. Therefore, an analytical solution is no longer

feasible when, simultaneously, stochasticity in both X, u,
and B and C is allowed for. In that case, an alternative

approach is available: simulation. Instead of analytically

solving the probability distributions of the variables

of interest, the probability distributions of these dependent

variables are derived by drawing random numbers

from the stochastic variables in the model and performing

the necessary arithmetic operations with these drawn numb-

ers. The approach is described in full detail in Appendix A.
5. From analytic to simulation results

Working with the simulation results proceeds as follows.

First, assume that the firm has resources available so that
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when these resources are completely spent on one of the

exogenous variables, offer portfolio, relationship portfolio,

and market portfolio, the value for that variable will increase

by 1 unit. Then calculate the effect of this increase of 1 in

each of the exogenous variables in terms of the endogenous

variable ‘‘intention to stay’’ only. These effects form the first

row of matrix D above and will be labeled mV. In the

extensive example, this corresponds to the ‘‘reduced form’’

effect of advertising and trade shows, as given in Eq. (d). In

the model of Fig. 2, this reduced form defines the return

only in terms of the ‘‘intention to stay’’ construct. This is the

ultimate variable the firm is interested in, whereas defining

the returns in terms of all endogenous variables would

unnecessarily complicate the analysis and not contribute to

understanding the processes involved.

The next step is to consider how the resources can be

optimally allocated among the three exogenous variables to

optimize the effect on the intention to stay. In other words, a

decision must be made on the weights in the weight vector

w that represents the allocation of the budget among the

exogenous constructs offer, relationship and market. Obvi-

ously the elements of w sum to 1 and are all nonnegative.

The weights must be assigned so that some utility function

(to be specified by the decision maker), which contains the

expected return and the expected risk as its elements, is

maximized. Given the linearity of the model it immediately

follows that the return can be written as R=w Vm, with m the

earlier defined vector of total (i.e., direct plus indirect)

effects of each X on Y.

The effect of introducing risk has been demonstrated in

the extensive example above. The effect for the current

model is illustrated in Table 1, where the optimal budget

allocation (the weights) in the cases without, and with equal

risk associated with the three exogenous variables, are

given. Similar to the extensive example, introducing risk

leads to a larger spread in the portfolio, obviously at the cost

of expected return, but at the benefit of a lower variance in

the outcome variable.

For the sake of arithmetically including risk in the budget

allocation decisions, complete estimation results of the

model are given in Appendix B, including the estimated

covariance matrices.

Stochasticity in the error term only gives E[Y]=Dw

and consequently E[y1]=0.264w1+0.262w2+0.160w3, and

Var( y1)=var(m)=0.708, independent of the weights as was

discussed before. Referring to the analysis above, it still
Table 1

Introducing risk in the allocation model

Optimal weight

without risk

Optimal weight

with equal risk

Return on offer 0.264 1 0.404

Return on relationship 0.262 0 0.400

Return on market 0.160 0 0.196
holds that the optimal allocation of the budget is to spend

it entirely on the offer portfolio. The offer portfolio gives

highest returns, whereas the risk is independent of the

allocation of the budget.

With stochasticity in the exogenous variables, the prob-

lem becomes more complex, but still an analytic solution is

feasible. Referring to the earlier discussion [see Eq. (10)],

the expected return is still the same,

E½y1� ¼ mVw ¼ 0:264w1 þ 0:262w2 þ 0:160w3 ð12Þ

However, the risk is more involved as var(Y)=D�XDV.
Define W as the diagonal matrix with the weights of w as its

diagonal elements and 0s else, so that w=Wi, i=(1,1,1)V.
Then:

varðy1Þ ¼ m VW�XW Vmþ varðuÞ ¼ 0:0697w2
1 þ 0:0686w2

2

þ0:0256w2
3 þ 0:0761w1w2 þ 0:0169w1w3

þ0:0253w2w3 þ 0:708: ð13Þ

Solving the portfolio problem, assuming the utility func-

tion is U(R,S)=R�S like above, the optimal solution

becomes: w1=0.569, w2=0.577 and w3=�0.146. Note, how-

ever, that this solution is infeasible because a weight cannot

be negative. A feasible solution can be obtained by fixing

w3=0 and again solving the problem. With that additional

constraint, the solution becomes w1=0.507, w2=0.493,

which means that the budget should be allocated approxi-

mately equally to the offer portfolio and the relationship

portfolio.

Finally, consider the introduction of stochasticity in the

parameters of the model. As noted above, an analytical

solution is no longer feasible, since the distribution of the

return and risk, as a function of the weights is too

complex, and hence the simulation approach is applied.

This means that random numbers are drawn for all

stochastic elements in the model, that is, the Xs and

the elements of D. The Xs are assumed to have a

multivariate normal distribution with expected value

(1,1,1) and covariance matrix as given in Appendix B.

The elements of D similarly follow a multivariate distri-

bution as defined in that appendix. The calculated first

two moments of the resulting distribution are given in

Table 2, based on a random drawing of 1000 numbers as

described in Appendix A.

The table shows, comparable to Table 1, that spend-

ing the whole budget on improving the offer would

lead to an expected increase of .274 in the intention to

stay variable, with a standard deviation of .442, and so

forth.

Using the results of Table 2, now the expected return

is

E½y1� ¼ 0:274w1 þ 0:258w2 þ 0:163w3 ð14Þ



Table 2

Simulation results with all uncertain elements stochastic

Mean S.D. Covariances Correlations

Ret on O .274 .442 .196 .049 .013 1 .324 .124

Ret on R .258 .342 .117 .014 1 .177

Ret on M .163 .235 .055 1
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and the associated risk

varðy1Þ ¼ 0:196w2
1 þ 0:117w2

2 þ 0:055w2
3

þ 0:098w1w2 þ 0:026w1w3 þ 0:028w2w3: ð15Þ

Solving once again the maximization problem with

U=R�S gives the solution: w1=0.273, w2=0.469, and

w3=0.258. Therefore, with this uncertainty included, also

the market portfolio should receive its share. Moreover, the

relationship portfolio has become the most important port-

folio. This compares to the extensive example in which the

introduction of risk led to a spread in the allocated budget.
Fig. 3. Allocation of a budget as a function of risk aversion.
6. Some experimentation with the allocation decision

framework

It is obvious that the results depend significantly on the

choice of utility function. In this respect it is interesting to

investigate how the risk attitude influences the optimal

allocation decision. This risk attitude defines the relative

weights attached to return (R) and risk (S) in the utility

function. The more risk averse, the greater the weight put

on S.

Risk aversion can be incorporated in the linear function

as used above, by weighing the S variable with a coefficient

b: U(R,S)=R�bS. In this case, b>0 is the measure of risk

aversion, with high values for b corresponding to large risk

aversion. The goal is to define the weights w1, w2, and w3

expressed as functions of b. Hence, a solution for the

following allocation problem is sought:

Max R� bS ð16Þ

s:t: R ¼ w Vm ð17Þ

S ¼ w V�w ð18Þ

w Vi ¼ 1 ð19Þ

i=(1,1,1)V and the last condition says that the weights sum

to 1.

Solving this problem with Lagrange multiplier method

leads to the following quite tedious expression for w:

w V¼

2b þ m VS�1i

i VS�1i

� �
i� m

2b

0
BB@

1
CCAS�1 ð20Þ
Substituting m and � with the values in Table 2 gives the

more down-to-earth expressions for w1, w2, and w3:

w1 ¼ 0:109þ 0:164=b ð21Þ

w2 ¼ 0:226þ 0:242=b ð22Þ

w3 ¼ 0:664� 0:406=b ð23Þ

Note that for every value of b the sum of w1, w2, and w3

indeed equals 1, and that for b=1 the solution that was

presented in Table 1 is again found. Note, however, that

when b<0.611 (=0.406/0.664) w3 becomes negative, which

implies an infeasible solution. For that range of values for b
set w3=0 and solve the optimization problem again. This

leads to:

w1 ¼ 0:316þ 0:037=b ð24Þ

w2 ¼ 0:684� 0:037=b ð25Þ

Hence, when b<0.054, w2 becomes negative, and setting

w2=0 as well for that range of b values gives w1=1. All this

can be depicted graphically; see Fig. 3, showing the sol-

utions in w1�w2 space.

In this figure the line w1 +w2 = 1 defines those solutions

for which w3=0. Going from this line into the direction of

the origin implies that w3 increases, so this diagram makes it

clear that increased risk aversion (larger b) means giving

more weight to w3 and also to w2, relative to w1. This means

that the more risk averse the managers are, the more

attention they should pay to the market conditions. On the

other hand, when b becomes small, that is, risk proneness

increases, the whole budget should be spent on the offer

itself.



H. Ouwersloot et al. / Industrial Marketing Management 33 (2004) 701–710708
7. Discussion

For decision makers, direct input–output or cause-and-

effect models like market response models (Lilien & Ran-

gaswamy, 1998) are often a sufficient tool. The analytical

understanding is left in the black box of the model.

Structural equation models quite in contrast seek to get hold

of that black box, thereby gaining in rigor and depth of

understanding. These characteristics of SEM should help in

getting the models accepted by the decision makers, and this

paper shows that they can also provide support in the

decision-making process.

One aspect in particular needs to be emphasized. SEMs

are well suited to make explicit the type of uncertainty that

is incorporated. Therewith they make it possible to quantify

the degree of uncertainty, simultaneously leaving the option

open that uncertainties can be interrelated. The estimated

covariance structure in the measurement model and the

structural model give this opportunity.

The model that was used in this paper to demonstrate the

approach indicates the usefulness of SEM in decision

making. The calculations above clearly exemplify the type

of advice on investment decisions that can be derived from

the analysis demonstrated in this paper. This could read as

follows:

The higher risk-averse managers are, the more they are

advised to invest in the market positioning and relation-

ships. In contrast, risk-prone managers probably will be

better-off investing in product innovations. This conclu-

sion is certainly valid for the short term, but might be

valid on the longer term as well because of the shown

loyalty of the customer base. The importance of relation-

ship management is intermediate. The extremely risk

prone manager only looks at the offer. The extreme

risk-averse manager looks mainly at the market condi-

tions. In between, the importance of relationships reaches

a maximum. This means that moving along the contin-

uum from risk prone to risk averse the manager first

starts looking at his most direct environment, his rela-

tionships, but at some point recognizes that this is not

enough, and that he should also look at the other actors in

the market.
8. Limitations and suggestions for prospective research

Demonstrating the feasibility of the decision-making

approach required several simplifying assumptions. Trying

to relax these assumptions will lead to more general and

therefore more realistic and useful outcomes. On the tech-

nical side, the strongest assumption was that of a linear

utility function in returns and risk only. More general

assumptions should be investigated. Related to that is the

adopted, simplistic concept of risk aversion. Arrow (1970)

has defined risk aversion as a property (or result) of a
chosen utility function rather than plugging in a coefficient

that reflects risk aversion.

Another assumption was that for each of the exogenous

constructs, increasing the score by one point would cost the

same. This is hardly realistic; on the other hand, establishing

such (quantitative) relationships is a matter of thorough

market research. Once such relationship is established, this

can easily be incorporated in the optimization model as a

budget restriction. In fact, the currently applied restriction

on the weight factor and such budget restriction are techni-

cally the same.

A more fundamental issue is the assumption of line-

arity: when it costs 1 dollar to reach an increase of one

point, 2 dollars will lead to an increase of two points.

Although this is an implication of the estimated structural

equations model, it presumably is far from reality. For

one thing, the applied measurement scales have fixed

limits of 1 and 7. Consequently, it is advisable to accept

that only marginal changes stay within the acceptable

region of meaningful outcomes, defined by the model

assumptions.

All these limitations themselves give opportunities for

further research. The most important achievement of this

paper is its attempt to support rational decision making

based on an estimated structural model. Definitely, the

appropriateness of the model is crucial to the suitability of

the approach, but for this study was considered as a starting

point. Given this starting point, the approach offers oppor-

tunities to investigate how decisions will change when

assumptions or parameters (like the risk-aversion parameter

b in this article) will be adapted. This sensitivity analysis

could be extremely helpful for understanding the implica-

tions of decisions based on models.
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Appendix A. Simulating the distribution of Y

When the analytic distribution of a random variable

cannot be derived, it can be approximated by simulation.

In this particular case, Y is a moderately complicated

function of a number of random variables, for all of which

the (multivariate) distribution is known. Then the distribu-

tion of Y can be approximated by drawing random numbers

from all the distributions of the random variables that define

Y and calculate the simulated distribution of Y.

Drawing random numbers is highly mechanized in many

statistical software packages and even in a number of

spreadsheets. However, this is mainly restricted to drawing

random numbers from uniform distribution and some other
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univariate distributions like the normal, exponential, and

others. Simulating multivariate distributions is more com-

plicated. The general approach to simulate multivariate

distributions is based on the following fundamental relation-

ships in statistics:

Pða; bÞ ¼ PðajbÞPðbÞ

where P(a,b) is the multivariate (here, bivariate) probability

of a and b, P(ajb) is the conditional probability of a, given

b, and P(b) is the marginal probability of b. This rule also

holds for the distributions:

f ða; bÞ ¼ f ðajbÞf ðbÞ

where the fs indicate the distribution functions and the rest is

analogous. Since b can itself be a composite random

variable, a generalization to really multivariate (more than

2) variables is straightforward. For example, let b in the

expressions above be the composite random variable c and

d, then the expression becomes

Pða; c; dÞ ¼ Pðajc; dÞPðc; dÞ ¼ Pðajc; dÞPðcjdÞPðdÞ

where the last equality should be obvious.

Hence, a multivariate distribution can normally be

decomposed into the product of a number of conditional

distributions and a marginal distribution. This result can

subsequently be used to simulate the distribution of the

simultaneous random variables, in particular these marginal

and conditional distributions are known (see, e.g., Nijkamp,

Oosterhaven, Ouwersloot, & Rietveld, 1992; Rietveld &

Ouwersloot, 1992). Referring to the equation above, the

idea is to first draw a number for d, say d*, substitute this

particular d* in the otherwise known distribution of c,

conditional on d=d*. Next, draw a number c* from this

now completely specified distribution of c and substitute

both c* and d* in the distribution of a, conditional on c=c*

and d=d*. Finally draw a random number for a, say a*.

Now a*, c*, and d* constitute a random drawing from the

multivariate distribution of a, c, d.

When the multivariate distribution is normal, that is, a,

c, and d follow a multivariate distribution with expectation

m and variance �, simulating the simultaneous distribution

in the way described above is relatively simple. The
B= 0 0.384 0.237 0.145

0 0 0.288 0

0 0 0 0

0 0 �0.142 0

C= 0.167 0 0

0 0.264 0.258

0.296 0.491 0

0 0 0.417
marginal distribution of the first variable in this case is

univariate normal, the conditional distribution of the sec-

ond, given the first, is again univariate normal, and so

forth.

To be more precise, suppose that x1 to xn have a

multivariate distribution with E(x)=(m1, . . ., mn)V, and

var(x)=� with elements rij. The marginal distribution for

each xi then is a univariate normal distribution with E(xi)=mi

and var(xi)=rii. To define the conditional distribution of x1,

. . ., xk, given x*k+1, . . ., x*n partition the covariance matrix as

� ¼
�11 �12

�21 �22

0
@

1
A

where �11 is the covariance matrix of the first k variables,

and so forth. Assuming that the vector of expected values

is similarly partitioned the mean of the conditional distri-

bution of x1, . . ., xk given xk+1* , . . ., xn* is (Johnson &

Wichern, 1998):

Eðx1; . . . ; xk jxkþ1 ¼ xkþ1* ; . . . ; xn ¼ xn*Þ
¼ Eðx1 jx2 ¼ x2*Þ ¼ m1 þ�12�

�1
22 ðx2*� m2Þ

covðx1 jx2 ¼ x2*Þ ¼ �11 ��12�
�1
22 �21

Consequently, this gives a well-defined and completely

specified distribution function for each xi that can be used

for a random drawing using standard random number

generators.

Applying this procedure to the stochastic variables in our

model facilitates the calculation of the simulated variable y1,

‘‘intention to stay.’’ Repeating this procedure a large number

of times (say, 1000 or so) gives a simulated distribution

function for Y.
Appendix B. Estimation results from De Ruyter et al.

(2001)

The estimation results that are used for the simulations

are taken from De Ruyter et al. (2001). These estimates and

the necessary covariance matrices are presented here.

The point estimators and the corresponding variances of

the parameter matrices B and C are as follows:
Variances * 0.200 0.212 0.184

* * 0.217 *

* * * *

* * 0.207 *

Variances 0.202 * *

* 0.219 0.192

0.197 0.197 *

* * 0.207
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All parameter estimates are assumed uncorrelated, hence

it suffices to only report the variances.

The errors of the estimated relations are also all assumed

uncorrelated. Only the variances enter the analysis. The

estimated variances of the respective equations, that is, the

diagonal elements of the matrix �e, are as follows:
Intention to stay 0.546

Affective commitment 0.607

Trust 0.511

Calculative commitment 0.830
The errors of the measurement model of the exogenous

variables, on the other hand, are correlated. Their correlation

matrix �X is as follows:
Offer portfolio 1

Relationship portfolio .550 1

Market portfolio .200 .302 1
This matrix is applied in the analysis as if it were the

covariance matrix. This basically implies that an expected

change of one unit in an exogenous variable is associated

with a variance of 1, and the above reported covariances.

This variance is probably unrealistically large. However, the

qualitative aspects of the analysis are unaffected by this

assumptions, whereas the exposition of the approach is

facilitated.
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