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Abstract

We consider the problem of sharing the cost of a public facility
among agents who have different needs for it. We base two charac-
terizations of the sequential equal contributions rule on smallest-cost
consistency. Namely, (i) the rule is the only rule satisfying equal
treatment of equals, independence of all but the smallest-cost, and
smallest-cost consistency, and (ii) it is the only rule satisfying equal
share lower bound, cost monotonicity, and smallest-cost consistency.
Journal of Economics Literature Classification Numbers: C71; D30;
D63.

Keywords: consistency; sequential equal contributions rule; airport
problems; TU games; the Shapley value.

1 Introduction

We consider a class of cost sharing problems with the following features:

agents are ordered in terms of their needs for a public facility, and satisfying

a given agent implies satisfying all agents with smaller needs than his. An

example is the so-called “airport problem”: different airlines need airstrips

of different lengths. The larger a plane, the longer the airstrip it needs.

Serving a given plane implies serving all smaller planes. To accommodate all

planes, the airstrip must be long enough for the largest plane. How should

the cost of the airstrip be shared among the airlines?1 A “rule” is a function

that associates with each airport problem, an allocation of the cost of the

airstrip, called a “contribution vector”. A number of properties of rules

have been formulated for this problem and are motivated by various fairness

principles. The literature devoted to the search for rules satisfying these

properties, singly and in various combinations, is initiated by Littlechild and

Owen (1973).2

1Another application is the so-called “irrigation problems”: ranchers are distributed
along an irrigation ditch. A rancher only needs the part of the ditch from his field to the
headgate. To accommodate all ranchers, the ditch should reach the furthest field from the
headgate. How should the cost of maintaining the ditch be shared among the ranchers?

2For a comprehensive survey of this literature, see Thomson (2005).
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A well-known rule is the “sequential equal contributions” (SEC) rule,

which has been employed in real world for many years.3 To introduce the

rule, suppose that there are n airlines indexed by 1, . . . , n. Let li be the length

of airstrip that airline i needs, and ci the cost parameter of airline i (the cost

of building such airstrip that airline i needs). For simplicity, assume that

l1 < · · · < ln, and that the cost parameter is a strictly increasing function of

airstrip length. Thus, c1 < · · · < cn. Imagine that the airstrip is composed

of “segments”: the first segment is defined by l1, the second segment l2 − l1,

the third segment l3− l2, and so on. In addition, the cost of the first segment

is c1, the cost of the second segment c2 − c1, the cost of the third segment

c3 − c2, and so on. All airlines using a given segment contribute equally to

the cost of the segment, and thus pay the total of the contributions of each

segment that they use. (Note that Littlechild and Owen (1973) show that

the contributions vector recommended by the SEC rule coincides with that

prescribed by the “Shapley value” (Shapley, 1953) applied to the TU game

associated to the problem in a natural way.4)

Our purpose here is to base axiomatic characterizations of the SEC rule on

the following variable-population property, which is an application for airport

problems of a general principle of “consistency”5.6 Consider a contributions

vector x chosen by a rule for the problem just defined. Imagine that airline 1

3The terminology we adopt is borrowed from Thomson (2005). This rule has been
discussed by Baker and Associates (1965) and Littlechild and Owen (1973). It underlies
the “serial” idea that has been the subject of a number of studies by many authors. For
instance, Moulin and Shenker (1992). Aadland and Kolpin (1998) refer to it as the serial
cost-share rule, and explain that it is standard in allocating the cost of irrigation ditch in
south-central Montana.

4Given an airport problem, we first transform the problem into a TU game, which we
call the associated airport game, by defining the worth of each coalition as the cost of
building the airstrip used by an airline with the largest cost parameter in that coalition.
We then apply a TU game solution to solve the game. This yields a payoff vector. Finally,
we take this payoff vector as the contributions vector for the airport problem.

5For a survey of the literature on consistency and its converse, see Thomson (2000).
6A number of authors have provided several axiomatic characterizations of the SEC

rule. Readers are referred to Dubey (1982), Moulin and Shenker (1992), Aadland and
Kolpin (1998), and Potters and Sudhölter (1999).
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pays his contribution x1 and “leaves”, and reassess the situation from the

viewpoint of the remaining airlines. It is of course natural to think of x1 as a

contribution to the part of the airstrip that airline 1 uses. Since contributing

to the part of the airstrip that airline 1 uses implies contributing to the part

of the airstrip that all other airlines use, the cost parameters of the remaining

airlines are then revised down by the amount x1. “Smallest-cost consistency”

of the rule requires that for the reduced problem just defined, each of the

remaining airlines should contribute the same amount as he did initially.7

In addition to smallest-cost consistency, we consider the following desir-

able properties. The first property is a symmetry property, “equal treatment

of equals”: two airlines with the same cost parameters should contribute

equal amounts. The second property is an independence property, “indepen-

dence of all but the smallest-cost”: if the cost parameters of all airlines other

than an airline with the smallest cost parameter increase by the same posi-

tive amount, the airline with the smallest cost parameter should contribute

the same amount as he did initially. The third one is a lower bound require-

ment on each airline’s contribution. Imagine, for each airline separately, that

his cost parameter is the smallest. We then divide his cost parameter by

the numbers of airlines. (Note that any segment the airline uses is jointly

used by all other airline. Thus, an equal share of the cost parameter of the

airline is very natural.) “Equal share lower bound” of the rule requires that

each airline should contribute at least as much as an equal share of his cost

parameter. The last one is a monotonicity property, “cost monotonicity”: if

an airline’s cost parameter increases, all other airlines should contribute at

most as much as they did initially.

7When another airline leaves, it is not easy to define the reduced problem. Potters and
Sudhölter (1999) propose two types of consistency requirements for airport problems, “ν-
consistency” and “ψ-consistency”. Depending on which formation of a reduced problem
is adopted, we are led to different consistency properties. However, when we focus on the
departure of an airline with the smallest cost parameter, ν-consistency and ψ-consistency
coincide with smallest-cost consistency. Compared to ν-consistency and ψ-consistency,
smallest-cost consistency is natural and no controversial at all.
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Our contribution is that we offer two consistency characterizations of the

SEC rule. Namely, (i) the rule is the only rule satisfying equal treatment

of equals, independence of all but the smallest-cost, and smallest-cost con-

sistency, and (ii) it is the only rule satisfying equal share lower bound, cost

monotonicity, and smallest-cost consistency.

The rest of this paper proceeds as follows. Section 2 introduces the model,

the nucleolus, and the properties. Section 3 present the main result and show

the independence of the properties.

2 Notation and definitions

There is a universe of “potential” agents, denoted by I j N where N is the

set of natural numbers. Let N be the class of non-empty and finite subsets

of I. Given N ∈ N and i ∈ N , let ci ∈ R+ be agent i’s cost parameter,

and c ≡ (ci)i∈N the profile of cost parameters. An airport problem for N ,

or simply a problem for N , is a list c ∈ RN
+ . Let CN be the class of all

problems for N . A contributions vector for c ∈ CN is a vector x ∈ RN

such that it is “efficient”, i.e.,
∑

i∈N xi = maxi∈N ci and “reasonable”, i.e., for

each i ∈ N , 0 ≤ xi ≤ ci. Let X (c) be the set of all contributions vectors for

c ∈ CN . A rule is a function defined on
⋃

N∈N CN that associates with each

N ∈ N and each c ∈ CN a vector in X (c). Let n denote the number of agents

in N and η : {1, . . . , n} → N be a bijection such that cη(1) ≤ · · · ≤ cη(n).

Thus, the agents in N are ordered in terms of their cost parameters. Note

that if several agents have the same cost parameters, then the order is not

unique. For convention, we assume that N ≡ {1, . . . , n} and c1 ≤ · · · ≤ cn.

Our generic notation for rules is S. For each coalition N ′ ⊂ N , we denote

(ci)i∈N ′ by cN ′ , (Si (c))i∈N ′ by SN ′ (c), and so on. All terminologies we adopt

are borrowed from Thomson (2005)

We now formally introduce the sequential equal contributions rule.

Sequential equal contributions rule, SEC: For each N ∈ N , each c ∈

5



CN , and each i ∈ N ,

SECi(c) ≡ c1

n
+

c2 − c1

n− 1
+ · · ·+ ci − ci−1

n− i + 1
.

The SEC rule satisfies the following properties informally defined in the

introduction.

Equal treatment of equals: For each N ∈ N , each c ∈ CN , and each pair

{i, j} ⊆ N , if ci = cj, then Si(c) = Sj(c).

Equal share lower bound: For each N ∈ N , each c ∈ CN , and each i ∈ N ,

Si(c) ≥ ci

n
.

Independence of all but the smallest-cost: For each N ∈ N , each

c ∈ CN , each c′ ∈ CN , and each δ ≥ 0, if c′1 = c1 and for each i ∈ N\{1},
c′i = ci + δ, then S1(c

′) = S1(c).

Cost monotonicity: For each N ∈ N , each c ∈ CN , each c′ ∈ CN , and

i ∈ N , if c′i ≥ ci and for each j ∈ N\{i}, c′j = cj, then for each j ∈ N\{i},
Sj(c

′) ≤ Sj(c).
8

Next is the central property to our analysis. Let N ∈ N , c ∈ CN , x ∈
X (c), and i∗ ∈ {i ∈ N | for each k ∈ N , ci ≤ ck }. The reduced problem

of c with respect to N ′ ≡ N\ {i∗} and x, rx
N ′ (c), is defined by setting

for each j ∈ N ′,

(rx
N ′ (c))j ≡ cj − xi∗ .

Smallest-cost consistency: For each N ∈ N , each c ∈ CN , and each

N ′ ⊂ N , if x ≡ S (c), then rx
N ′ (c) ∈ CN ′

and xN ′ = S (rx
N ′ (c)).

Remark: Reasonableness and smallest-cost consistency together imply effi-

ciency.

8This property is introduced by Thomson (2005). The property is a complement of
“individual cost monotonicity” (Potters and Sudhölter, 1999), which says the following.
Under the same hypotheses, agent i should pay at least as much as he did initially.

6



3 The results

Our first result is that the SEC rule is the only rule satisfying equal treatment

of equals, independence of all but the smallest-cost, and smallest-cost consis-

tency. To prove this assertion, we use the fact that the SEC rule satisfies the

following monotonicity property: if the cost parameters of all agents increase

by the same positive amount, each agent should contribute at least as much

as he did initially.

Uniform-cost-increase monotonicity: For each N ∈ N , each c ∈ CN ,

each c′ ∈ CN , and each δ > 0, if for each i ∈ N , c′i = ci + δ, then for each

i ∈ N , Si(c) ≤ Si(c
′).

Note that the SEC rule satisfies uniform-cost-increase monotonicity is an

immediate consequence of the definition of the SEC rule. Thus, the proof of

this fact is omitted. We are now ready to prove the announced assertion.

Theorem 1 The SEC rule is the only rule satisfying equal treatment of

equals, independence of all but the smallest-cost, and smallest-cost consis-

tency.

Proof. Clearly, the SEC rule satisfies equal treatment of equals, independence

of all but the smallest-cost, and smallest-cost consistency. Conversely, let S

be a rule satisfying the properties. Let N ∈ N and c ∈ CN . Let x ≡ S(c)

and y ≡ SEC(c). We show that x = y. The proof is by induction on n.

Case 1: n = 1. By efficiency of the rule, x = y.

Case 2: n > 1. The induction hypothesis is that for each N ′ ∈ N and c∗ ∈
CN ′

with N ′ ⊂ N and |N ′| ≤ n−1, we have S(c∗) = SEC(c∗). We first show

that x1 = y1. By smallest-cost consistency and the induction hypothesis, we

then conclude that x = y. So, let N ′ = N\{1}. We distinguish two cases.

Subcase 2.1: c1 = c2. Suppose, by contradiction, that x1 6= y1. Thus, ei-

ther x1 > y1 or x1 < y1. If x1 > y1, then by equal treatment of equals, x2 > y2.
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By smallest-cost consistency, x2 = S2(r
x
N ′ (c)) and y2 = SEC2(r

y
N ′ (c)). Since

x1 > y1, then for each i ∈ N ′, (rx
N ′ (c))i ≤ (ry

N ′ (c))i. Note that |N ′| < n. By

the induction hypothesis, S2(r
x
N ′ (c)) = SEC2(r

x
N ′ (c)). Since for each i ∈ N ′,

(ry
N ′ (c))i−(rx

N ′ (c))i = x1−y1 > 0, thus the two reduced problems rx
N ′ (c) and

ry
N ′ (c) satisfy the hypotheses of uniform-cost-increase monotonicity. Since

the SEC rule satisfies uniform-cost-increase monotonicity , it follows that

x2 ≤ y2, in violation of x2 > y2. If x1 < y1, then by a similar argument, we

derive the desired contradiction.

Subcase 2.2: c1 < c2. Let c′ be such that c′1 = c1 and for each i ∈ N ′,

c′i ≡ ci − (c2 − c1). Let x′ ≡ S(c′) and y′ ≡ SEC(c′). Note that c′1 = c′2. By

Subcase 2.1, x′1 = y′1. By independence of all but the smallest-cost, x′1 = x1

and y′1 = y1. Thus, x1 = y1. Q .E .D .

Yeh and Hwang (2007) show that another well-known rule, the “nucleo-

lus”, is the only rule satisfying equal treat of equals, “largest-cost additivity”9,

and “largest-cost consistency”10. Their result shows that the nucleolus can

be characterized on the basis of properties that almost entirely focus on an

agent with the largest cost parameter. Thus, their result reveals the interest

of focusing an agent with largest cost parameter in characterizing the nucleo-

lus. In contrast, our Theorem 1 shows that the SEC rule can be characterized

on the basis of properties that almost entirely focus on an agent with the

smallest cost parameter. Thus, Theorem 1 reveals the interest of focusing on

an agent with the smallest cost parameter in characterizing the SEC rule.

We next present another characterization of the SEC rule on the basis of

smallest-cost consistency.

9This property says that if the cost parameter of an agent with the largest cost param-
eter increases by some positive amount, then the contribution of the agent should increase
by the same amount.

10This property is a weaker version of ν consistency (Potters and Sudhölter (1999)).
It is obtained by restricting attention to the departure of an agent with the largest cost
parameter.
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Theorem 2 The SEC rule is the only rule satisfying equal share lower bound,

cost monotonicity, and smallest-cost consistency.

Proof. Clearly, the SEC rule satisfies equal share lower bound, cost mono-

tonicity, and smallest-cost consistency. Conversely, let S be a rule satisfying

the three properties. Let x ≡ S(c) and y ≡ SEC(c). We show that x = y.

The proof is by induction on n.

Case 1: n = 1. By efficiency of the rule, x = y.

Case 2: n > 1. The induction hypothesis is that for each (N ′, c∗) such that

N ′ ⊂ N and |N ′| ≤ n − 1, we have S(c∗) = SEC(c∗). We first show that

x1 = y1. By smallest-cost consistency and the induction hypothesis, we then

conclude that x = y. By equal share lower bound, x1 ≥ c1
n
. Suppose that

x1 > c1
n
. Let c̄ ∈ CN be such that for each i ∈ N\{1}, c̄i = c1. Let x̄ ≡ S(c̄).

By equal share lower bound and efficiency, x̄1 = c1
n
. Now, let c̄n ∈ CN be

such that c̄n
n = cn and for each i ∈ N\{n}, c̄n

i = c̄i. Let x̄n ≡ S(c̄n). By

cost monotonicity, x̄n
1 ≤ x̄1. Let c̄n−1 ∈ CN be such that c̄n−1

n−1 = cn−1 and for

each i ∈ N\{n − 1}, c̄n−1
i = c̄n

i . Let x̄n−1 ≡ S(c̄n−1). By cost monotonicity,

x̄n−1
1 ≤ x̄n

1 . Continuing this process, we have c̄2 ≡ c and x̄2
1 ≤ x̄3

1. Since

x = x̄2, we have x1 = x̄2
1 ≤ x̄3

1 ≤ · · · ≤ x̄n
1 = c1

n
, which contradicts to the

assumption of x1 > c1
n
. Thus, x1 = c1

n
. Q .E .D .

We now show that the properties listed in Theorems 1 and 2 are logically

independent. For that purpose, we introduce the following rules. The first

rule is the “constrained egalitarian rule” (Aadland and Kolpin, 1998).11 Start

by requiring equal contributions from all agents in N until there are γ1 ∈ R+

and k1 ∈ N such that k1γ1 = ck1 (if there are several such k1, select the

11Aadland and Kolpin (1998) name this rule as the restricted average cost-share rule.
The authors show that the contributions vector the rule chooses coincides with that pre-
scribed by the “egalitarian rule” (Dutta and Ray, 1989) applied to the associated air-
port game.
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largest). Then, each i ∈ {1, ..., k1} pays γ1. Continue by requiring equal

contributions from members of {k1 + 1, ..., n} until there are γ2 ∈ R+ and

k2 ∈ N such that k1γ1 + (k2 − k1)γ2 = ck2 (if there are several such k2,

select the largest). Then each i ∈ {k1 + 1, ..., k2} pays γ2. Continue in this

way until the total amount collected is cn. This algorithm can be expressed

as follows.

Constrained Egalitarian rule, CE: For each N ∈ N and each c ∈ CN ,

CE1(c) ≡ min
{

c1
1
, · · · , cn

n

}

CEi(c) ≡ min

{
ck−

∑i−1
p=1 CEp(c)

k−i+1
| i ≤ k ≤ n

}
2 ≤ i ≤ n− 1

CEn(c) ≡ cn −
∑n−1

p=1 CEp (c) .

The second rule is a “weighted version” of the SEC rule. Given i ∈ I,

let αi ∈ R++ be agent i’s weight. Let N ≡ {1, . . . , n} and α ≡ (αi)i∈N be

the weights vector. Without loss of generality, assume that c1 ≤ · · · ≤ cn.

Then, the weighted SEC rule with respect to the weights vector α is defined

as follows: let c0 ≡ 0.

Weighted sequential equal contributions rule, SECα: For each N ∈
N , each c ∈ CN , and each i ∈ N ,

SECα
i (c) ≡ αi∑n

j=1 αj

c1 +
αi∑n

j=2 αj

(c2 − c1) + · · ·+ αi∑n
j=i αj

(ci − ci−1) .

The next rule is a modified version of the SEC rule. When there are

three agents and their cost parameters differ, the rule assigns each agent an

equal share of the smallest cost parameter plus the difference between his cost

parameter and the cost parameter of his immediate predecessor; otherwise,

the rule assigns agents the contributions made by the SEC rule.

Modified sequential equal contributions rule, SEC∗: For each N ∈ N ,

each c ∈ CN , and each i ∈ N ,

SEC∗
i (c) ≡

{
Si (c) if |N | = 3 and c1 < c2 < c3;

SECi (c) otherwise,

10



where S is defined as follows: Let N ≡ {1, 2, 3}.

S1(c) =
c1

3

S2(c) =
c1

3
+ c2 − c1

S3(c) =
c1

3
+ c3 − c2

The last rule assigns each agent an equal share of his cost parameter, and

then one of the agents with the largest cost parameter pays the remaining

amount to be collected. Let i∗ ∈ {i ∈ N | for each k ∈ N , ci ≥ ck }.

S∗: For each N ∈ N , each c ∈ CN , and each i ∈ N ,

S∗i (c) ≡
{

ci

n
if i ∈ N\{i∗};

ci∗ −
∑

j∈N\{i∗}
cj

n
otherwise,

Property/Rule CE SECα SEC∗ S∗ SEC
Equal treatment of equals + − + − +
Independence of all but the smallest-cost − + + + +
Smallest-cost consistency + + − − +
Equal share lower bound + − − + +
Cost monotonicity − + − + +

Table 1: Independence of the properties in Theorems 1 and 2. The

notation “+” (“−”) means that a certain rule satisfies (violates) a certain

property.

Table 1 shows that the properties listed in Theorems 1 and 2 are inde-

pendent. For instance, the CE rule satisfies equal treatment of equals and

smallest-cost consistency but violates independence of all but the smallest-

cost. The SECα rule satisfies independence of all but the smallest-cost and

11



smallest-cost consistency but violates equal treatment of equals. The SEC∗

rule satisfies equal treatment of equals and independence of all but the smallest-

cost but violates smallest-cost consistency. Thus, the properties listed in

Theorem 1 are logically independent.
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