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Hypoxia and muscle maintenance regulation: implications for

chronic respiratory disease
Chiel de Theijea, Frédéric Costesb,c, Ramon C. Langend, Christophe Pisone,f,g,h

and Harry R. Goskerd

Introduction

Muscle wasting is a common but often under-recognized

extrapulmonary feature of chronic respiratory failure

(CRF) that significantly increases disease burden. Loss

of muscle mass can largely be attributed to muscle fibre

atrophy, particularly of type II fibres [1,2]. In addition to

the loss of muscle mass, peripheral muscles of patients

with chronic obstructive pulmonary disease (COPD)

often are characterized by a so-called loss of oxidative

phenotype (OXPHEN); a shift from slow oxidative type I

fibres towards fast glycolytic type II fibres, reduced

oxidative enzyme capacities and mitochondrial impair-

ments; for reviews, see [3,4]. In addition to increased

fatigability, loss of muscle OXPHEN may contribute to

elevated energy requirements (as oxidative energy

metabolism is more efficient than glycolytic energy

metabolism) and to enhanced oxidative stress, thereby

augmenting the onset or progression of muscle wasting

[5]. Hypoxemia, either chronic or intermittent, is an

obvious feature of respiratory failure, but surprisingly

its potential impact on muscle maintenance in CRF

patients is rather unexplored.

Molecular sensors of hypoxia
Probably, the most important regulators of cellular

responses to hypoxia belong to the hypoxia inducible

factor (HIF) family of transcription factors [6]. These

factors are heterodimeric proteins composed of a HIFa

(HIF1–3a, of which HIF1a is best described) and

a HIFb subunit. The HIFa gene is continuously

expressed, but under normoxic conditions, the protein

is rapidly hydroxylated by specific prolyl hydroxylases

(PHDs), enabling binding of the E3 ligase von Hippel-

Lindau (VHL) leading to degradation by the ubiquitin

proteasome pathway. As oxygen levels drop, so does the

rate of hydroxylation, thereby allowing for the build-up of

transcriptionally active HIF proteins, driving the expres-

sion of its target genes that are mainly involved in
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de l’Exercice, Hôpital Nord, CHU Saint-Etienne,
cLaboratoire Physiologie de l’Exercice, EA4338
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Purpose of review

Muscle wasting and impaired muscle oxidative metabolism are common extrapulmonary

features of chronic respiratory failure (CRF) that significantly increase disease burden.

This review aims to address the question whether hypoxia, an obvious consequence of

this disease, actually plays a causal role in these muscle impairments.

Recent findings

In experimental models, a causal role for hypoxia in muscle atrophy and metabolic

impairments has clearly been shown. Although the hypoxia-inducible factors and

nuclear factor kappa B are putative mediators of these hypoxia-induced alterations, their

true involvement remains to be proven. Molecular signatures of disrupted regulation of

muscle mass and oxidative metabolism observed in these experimental models also

have been shown in muscles of patients suffering from CRF, suggestive of but not

conclusive for a causal role of hypoxia. Therapies, including but not restricted to those

aimed at alleviating hypoxia, have been shown to partially but not completely restore

muscle mass and oxidative capacity in CRF patients, which may imply an additive effect

of nutritional modulation of substrate metabolism.

Summary

Although hypoxia clearly affects skeletal muscle maintenance, it remains to be confirmed

whether and by which underlying molecular mechanisms hypoxia is causally involved in

CRF-related muscle atrophy and impaired oxidative capacity.
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glycolytic metabolism and angiogenesis [6]. Evidence is

accumulating that the above mentioned PHDs can also

modulate nuclear factor kappa B (NF-kB) signalling

[7��,8], indicative of hypoxia-signalling independent of

HIF1a. NF-kB is a family of proteins involved in innate

immunity, inflammation and apoptosis. Its upstream

regulation involves formation of an IkB kinase complex,

which through its kinase activity ultimately results in

NF-kB transcriptional activity [9]. Interestingly, evi-

dence for crosstalk between HIF1a and NF-kB is also

emerging [7��,8]: although HIF1a is primarily post trans-

criptionally regulated, NF-kB has been reported to up-

regulate HIF1a gene expression and vice versa it has

been shown that HIF activates NF-kB signalling as well.

Given these facts, a primary regulatory role of the HIF

and NF-kB signalling pathways, orchestrated by the

PHDs, seems, therefore, credible in hypoxia-induced

alterations in muscle maintenance.

Hypoxia and maintenance of muscle mass
It is quite evident that hypoxia leads to muscle atrophy.

Observational studies in humans showed that long-term

exposure to high altitude resulted in loss of limb muscle

mass, which has been described as an adaptive mechan-

ism to improve muscle oxygenation by a relatively

increased capillarization [10,11]. Muscle atrophy also

occurs in animals exposed to experimental hypoxia

[12�,13�]. The balance between protein synthesis and

degradation is an important determinant of the mainten-

ance of skeletal muscle mass. Although most experimen-

tal work on hypoxia-induced protein turnover has thus far

focused on regulation of protein synthesis by hypoxia,

effects on ubiquitin (Ub) 26S-proteasome-mediated

protein degradation, as well as autophagy also have been

described (see Fig. 1 for a schematic overview). As most

of this work has been performed in nonmuscular cell

types and tissues, extrapolation of these results to skeletal

muscle protein turnover must be done with care.

Control of transcription can influence the rate of protein

synthesis and can be regulated by transcription factors.

HIFs are recognized as a key modulator of the transcrip-

tional response during hypoxic stress and are involved in

many adaptive responses including protein synthesis

[14�]. The rate of mRNA translation is mainly controlled

during the initiation phase by eukaryotic translation

initiation factors (eIFs). eIF2a is permissive to mRNA

translation in the nonphosphorylated state, but blocks the

initiation of protein synthesis once it becomes phos-

phorylated by one of the four stress kinases which are,

among others, activated by hypoxia [15], oxidative and

endoplasmic reticulum stress [16]. Another eIF, eIF4E, is

inhibited when bound by eIF4E-binding protein 1

(4EBP1). Phosphorylation of 4EBP1 by the mammalian

target of rapamycin (mTOR) results in dissociation of

eIF4E from 4EBP1 and the formation of the translation-

initiation complex [17]. mTOR also activates ribosomal

protein S6 kinase beta-1 (P70S6K1), which in turn,

phosphorylates the ribosomal protein S6 (S6) and, thus,

stimulates translation. Hypoxia reduces phosphorylation

of mTOR and its downstream effectors 4EBP1 and

P70S6, and, thus, inhibits protein synthesis [18]. mTOR

phosphorylation itself is controlled by the tuberous

sclerosis protein 1 and 2 (TSC1/TSC2) complex, which
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Key points

� Maintenance of muscle mass and metabolism is

clearly affected by hypoxia.

� The molecular mechanisms through which chronic

hypoxia affects muscle maintenance are poorly

understood.

� A causal role for hypoxia in muscle atrophy and

impaired oxidative phenotype (OXPHEN) in

chronic respiratory failure is feasible, though

remains to be confirmed.

� Despite these uncertainties, therapies aimed at

alleviating hypoxemia or multimodal rehabilitation

strategies including nutritional modulation can, at

least partially, restore muscle mass and OXPHEN

in chronic respiratory failure.

Figure 1 Schematic overview of potential direct or indirect

hypoxia signals with respect to the control of muscle protein

turnover
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light chain-3 (LC3), eukaryotic translation initiation factor 2a (eIF2a), DNA-
damage-inducible transcript 4 protein (REDD1), tuberous sclerosis
protein 2 (TSC2), mammalian target of rapamycin (mTOR), eIF4E-binding
protein 1 (4EBP1), eukaryotic initiation factor 4E (eIF4E), ribosomal
protein S6 kinase beta-1 (P70S6K1), ribosomal protein S6 (S6), AMP-
activated protein kinase (AMPK), serine/threonine protein kinase AKT
(AKT), Myostatin (MSTN), Forkhead box O (FOXO), nuclear factor kappa
B (NF-kB), muscle atrophy F-box (Atrogin-1), muscle-specific ring finger 1
(MuRF1).
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is regulated by hypoxia-sensitive pathways, including

AMP-activated protein kinase (AMPK) and DNA-

damage-inducible transcript 4 protein (DDIT4/

REDD1). AMPK stimulates TSC2, which in turn inacti-

vates mTOR [19]. The degree of AMPK activation

depends on the severity of the hypoxic conditions [20].

Increased REDD1 expression during hypoxia results

from increased expression of the transcription factors

ATF4 and C/EBP-b. Hypoxia-induced expression of

ATF4 and C/EBP-b is a result of the development

of endoplasmatic reticulum stress and signalling via

eIF2a and does not seem to be dependent on HIF1a

[12�,20,21]. Subsequent REDD1 expression results in

activation of TSC2, which subsequently inhibits mTOR

in response to hypoxia [22].

AKT is a serine/threonine protein kinase and a key

protein in the regulation of muscle mass, which controls

protein synthesis via mTOR, but also regulates protein

degradation. AKT activation by phosphoinositide

3-kinase (PI3K) is involved in the stimulation of myo-

genic differentiation by insulin growth factor-1 (IGF-1).

During hypoxia, this myogenic response changes into a

mitogenic response by redirection of IGF-1 signalling to

mitogen-activated protein kinase (MAPK) instead of

AKT activation. This finding implies that oxygen gradi-

ents may be of importance for myogenesis. It is currently

unknown by which mechanisms hypoxia influences AKT

phosphorylation, although HIF1a may play a role [14�].

Increased protein degradation in skeletal muscle results

from increased lysosomal and/or proteasomal protein

degradation. Autophagy can be initiated in response to

nutritional depletion or hypoxia via activation of HIF1a

and/or endoplasmatic reticulum stress via BCL2/adeno-

virus E1B 19 kDa protein-interacting protein 3 (BNIP3)

and microtubule-associated protein 1 light chain-3 (LC3)

[23,24�]. Autophagy, which captures organelles and

proteins in autophagic vacuoles, relies on lysosomal

protein degradation and is important in muscle mainten-

ance [25]. Muscle protein degradation is also controlled

by the ubiquitin-proteasome system (UPS). In this path-

way, the E3 Ub-ligases, muscle-specific ring finger 1

(MuRF1) and muscle atrophy F-box (Atrogin-1/MAFbx),

label muscle proteins with poly-ubiquitin (Ub) chains,

resulting in their targeted degradation by the 26S-protea-

some. The expression of both MuRF and Atrogin-1 are

increased during hypoxia [26,27]. The expression of

these atrogenes is regulated by inducible transcription

factors like NF-kB [28] and Forkhead box O (FOXO).

FOXO1 is negatively controlled by AKT-mediated phos-

phorylation, which results in its nuclear export and sub-

sequent suppression of the transcription of MuRF1 and

Atrogin-1 resulting in decreased protein degradation

[29,30]. However, the mechanisms by which hypoxia

controls expression of these atrogenes are still unclear.

The regulation of AKT activity may be the key in

regulating muscle mass during hypoxic conditions.

Myostatin (MSTN) signalling is able to suppress AKT

activation, which in turn decreases protein synthesis via

mTOR and derepression of FOXO1-mediated atrogenes

transcription [31,32]. MSTN expression is increased in

muscle atrophy during hypoxic conditions in humans, rats

and muscle cells [13�]. Protein synthesis and degradation

are regulated by complex mechanisms, which allow rapid

adaptation to acute hypoxic stress. However, in response

to sustained hypoxic stress, adaptive mechanisms may

not be adequate in maintaining the balance in muscle

protein turnover, which may culminate in muscle atrophy

in chronic disease.

Hypoxia and maintenance of muscle
metabolism
Literature is rather inconsistent regarding the long-term

response of muscle metabolic profile to hypoxia and the

underlying molecular mechanisms remain unclear. The

adaptations of muscle in humans exposed to high altitude

have been extensively studied and the overall consensus

is that muscle adapts to high altitude hypoxia by a

decrease in oxidative capacity, whereas combined with

exercise training, muscle OXPHEN may even improve

[6,33,34]. In addition, numerous experiments have been

conducted in which rodents were exposed to chronic

hypoxia and in some of these studies, a relative loss of

muscle OXPHEN was indeed found, but not in others.

Although yet to be confirmed, it is possible that these

discrepancies were caused by differences in age as only

the younger animals seemed to exhibit loss of muscle

OXPHEN [35]. By using an in-vitro model in which

cultured muscle cells were exposed to low oxygen levels,

the mere effect of hypoxia could be studied, which

revealed a hypoxia-induced downregulation of the

expression of mitochondrial proteins [36]. The exact

mechanisms underlying hypoxia-induced loss of muscle

OXPHEN also remain largely unclear. There are a few

indications that point towards involvement of HIF1a,

which as mentioned earlier, indisputably is an important

enhancer of glycolytic metabolism, thus ‘away from’

oxidative metabolism. Muscles of patients with Chuvash

polycythemia, a disease with a genetic abnormality

resulting in an impaired HIF1a degradation resulting

in elevated HIF1a levels at normal oxygen tensions,

exhibited early and accelerated phosphocreatine

depletion accompanied by increased acidosis and lactate

accumulation during exercise, indicative of impaired

muscle OXPHEN [37]. Furthermore, higher mitochon-

drial enzyme activities have been observed in muscles of

mice lacking HIF1a [38]. Another potential way of

adjusting mitochondrial capacity to hypoxia is mitochon-

drial autophagy, which also requires HIF1a [39]. In rats,

HIF1a expression levels were found to be highest in the
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fast-twitch type II glycolytic muscles [40]. This study

furthermore showed elevated HIF1a levels in muscles

electrically stimulated with a high frequency (inducing

fast fibre type-specific genes) and reduced HIF1a levels

after low frequency stimulation (inducing slow fibre type-

specific genes), stressing the role of HIF1a in muscle

OXPHEN regulation even independent of hypoxia. It is,

however, unclear whether these results can be extrapo-

lated to humans, as HIF1a protein expression was found

not to be highest in glycolytic muscles but rather in

oxidative muscles [41]. The peroxisome proliferator-

activated receptors (PPARs) and in particular their co-

activator PGC1a are key regulators of OXPHEN in the

pre-existing and developing muscle [42��,43]. In-vitro

studies showed that hypoxia can certainly impair com-

ponents of the PPAR pathway at transcriptional and post-

transcriptional level in cultured muscle cells [39], feasibly

leading to loss of muscle OXPHEN. Controversially,

PGC1a has been shown to induce the expression of

typical HIF1a target genes [especially those involved

in angiogenesis, like vascular endothelial growth factor

(VEGF)] at physiological oxygen levels [44]. A plausible

explanation for this apparent paradox might simply be the

fact that PGC1a-driven mitochondrial biogenesis leads to

an increased oxygen demand, which is not (yet) matched

by the oxygen supply and hence intracellular hypoxia

occurs triggering HIF1a-dependent gene expression

[45]. Alternatively, as NF-kB also has been implicated

in hypoxia-signalling, it can be speculated that NF-kB

also mediates hypoxia-induced loss of muscle OXPHEN.

Remels et al. [46] have recently shown that NF-kB

activation indeed impairs muscle OXPHEN, although

it remains to be established whether this also occurs

under hypoxia. Recapitulated, there are clear indications

that hypoxia can impair muscle OXPHEN, but it remains

to be clarified under what specific conditions and through

what mechanisms this really occurs.

Implications for chronic respiratory disease
Having discussed the (potential) mechanisms through

which hypoxia may impair muscle maintenance, what

indications do we actually have that hypoxia is involved

in muscle pathology in respiratory disease? The first

probably came from Jakobsson et al. [47] who reported

low percentages of type I fibres that were associated with

low arterial oxygen pressures in COPD. Impaired muscle

OXPHEN in COPD has been a consistent finding since

then, but strong evidence for the involvement of hypoxia

is lacking simply because this has not been further

studied in groups of patients with severe hypoxemia

(PaO2<7.3 kPa). In patients with restrictive lung disease

and mild hypoxemia related to scoliosis, Swallow et al.
[48�] showed that impaired muscle function was associ-

ated with a decreased proportion of type I fibres and

increased oxidative stress. Pulmonary arterial hyperten-

sion is also an important cause of chronic hypoxemia and

skeletal muscle abnormalities have indeed been reported

in these patients as well, including decreased type I fibre

proportions and slightly reduced oxidative enzymes

[49]. As discussed above, the PPARs/PGC1a are key

OXPHEN regulators that may be under negative control

of hypoxia. Reduced expression levels of these regulators

have indeed been shown in muscles of patients with

COPD [50]. Regarding muscle atrophy, there are some

indications that in muscles of COPD patients, markers of

the ubiquitin proteasome pathway, including the atro-

genes MuRF1 and Atrogin-1, are increased [51,52].

Moreover, COPD exacerbations are frequently associ-

ated with augmented hypoxemia and fascinatingly, it has

recently been shown that the gene expression of these

atrogenes was upregulated, whereas OXPHEN expres-

sion was downregulated, in patients experiencing an

exacerbation as compared to stable COPD patients

[53�]. Finally, increased expression levels of MSTN have

been reported for COPD patients characterized by hypox-

emia [13�]. It is tempting to attribute all these findings to

hypoxemia, but a definitive conclusion is impossible. To

add to the ambiguity, the involvement of the putative

hypoxia sensors HIF and NF-kB in COPD-related muscle

pathology also remains distinct: muscle HIF gene expres-

sion tended to be increased in COPD, whereas the expres-

sion of the E3 ligase VHL, which targets HIFa for degra-

dation, was also increased [54�]. Increased muscle NF-kB

activation has indeed been reported in COPD patients

with low body weight [55], although unaltered muscle NF-

kB activation has recently been observed in patients with

muscle atrophy [52]. The influence of chronic hypoxemia

was more specifically studied by Favier et al. [12�] who

reported a downregulation of the anabolic AKT/mTOR

pathway and a tendency towards an upregulation of its

putative inhibitor REDD1 in hypoxemic versus normoxe-

mic patients with COPD.

In addition to the above mentioned direct effects of

hypoxia on muscle maintenance, indirect mechanisms

may also be involved in COPD. Loss of appetite and

subsequent cachexia is common in advanced COPD and

elevated circulating levels of leptin, a hormone that

indeed attenuates appetite and is induced by hypoxia

through HIF1a, have been reported for cachectic COPD

patients with more severe hypoxemia [56] and for COPD

patients suffering from an acute exacerbation [57]. Intri-

guingly, a correlation between the degree of hypoxemia

and circulating tumor necrosis factor (TNF-a) in patients

with COPD was observed as well [58], supportive of the

occurrence of hypoxia-induced systemic inflammation

[59], which in turn may contribute to muscle pathology

as well.

Additional arguments in favour of a role of hypoxia in

impaired muscle maintenance come from interventions

Hypoxia and muscle maintenance regulation Theije et al. 551
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aimed at alleviating hypoxemia. Jakobsson and Jorfeldt

[60] found signs of improved muscle oxidative metab-

olism after long-term oxygen therapy (LTOT). Lung

volume reduction surgery (LVRS) represents a functional

treatment for emphysema, which improves respiratory

mechanics and reduces dyspnea. Mineo et al. [61] showed

improvements in muscle mass that were maintained for at

least 5 years following LVRS and were associated with

improved outcomes. Interestingly, they also reported a

decrease in plasmatic inflammatory markers, such as

TNF-a, IL-6 and IL-8, 1 year after surgery [62��], point-

ing towards the pre-existence of hypoxia-induced

systemic inflammation. After lung transplantation, thus

despite correction of hypoxemia, only partial restoration

of muscle OXPHEN has been reported, suggesting a

long-lasting signature of chronic hypoxia that could

partially be reversed by rehabilitation [63–65]. Indeed,

also therapies not (directly) aimed at alleviating hypox-

emia may prove beneficial, as for example recently shown

by improved muscle mass and performance in patients

with CRF and cachexia after multimodal nutritional

rehabilitation [66].

Conclusion
In experimental models, hypoxia evidently leads to

skeletal muscle atrophy and renders muscles less depen-

dent on oxidative energy metabolism. With respect to the

latter, it is, however, still questionable whether hypoxia

actually induces loss of muscle OXPHEN or merely

increases anaerobic capacity. Loss of muscle mass and

OXPHEN are evident in CRF and have been associated

with hypoxemia and although therapies aimed at alleviat-

ing hypoxemia have in fact been shown to partially

restore muscle mass and OXPHEN, a causal role for

hypoxia in the muscle impairments in CRF remains to

be verified. Moreover, alternative therapies, including

nutritional modulation, offer perspectives on improve-

ment of muscle maintenance in CRF.
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