
Chapter 4

Isochoric deformations of
compressible materials

Rubbers and elastomers are highly deformable solids, which have the remark-
able property of preserving their volume through any deformation. This permanent
isochoricity, incorporated mathematically into the equations of continuum mechan-
ics through the concept of internal constraint of incompressibility (see (1.39) or
(1.40)), has led to the discovery of several exact solutions in isotropic finite elastic-
ity, most notably to the controllable or universal solutions of Rivlin and co-workers
(e.g. Rivlin [106]).

Subsequently, Ericksen [33] examined the problem of finding all such solutions.
He found that there are no controllable finite deformations in isotropic compressible
elasticity, except for homogeneous deformations [34]. The impact of that result on
the theory of nonlinear elasticity was quite important, and for many years there
has been “the false impression that the only deformations possible in an elastic
body are the universal deformations” (see [25]). However, around the same time
as the publication of Ericksen’s result, there was considerable activity in trying
to find solutions for nonlinear elastic materials using the semi-inverse method. A
summary of these earlier results may be found in the monograph by Green and
Adkins [49].

Even though for homogeneous isotropic incompressible nonlinearly elastic
solids, the simplified kinematics arising from the constraint of no volume change
has facilitated the analytic solution of a wide variety of boundary-value problems,
the situation is quite different for compressible materials. Firstly, the absence of
the isochoric constraint leads to more complicated kinematics. Secondly, since the
only controllable deformations are the homogeneous deformations, the discussion
of inhomogeneous deformations has to be confined to a particular strain energy
function or class of strain energy functions. Nevertheless, some progress has been
made in recent years in the development of analytic forms for the deformation and
in the solution of boundary value problems. One strategy to find some exact solu-
tions for compressible elastic materials consists in taking inspiration from isochoric
solutions for incompressible materials, and to seek similar solutions in compress-
ible elastic materials. However, it is obvious that the isochoric deformations of an
incompressible elastic body have differents loads than the isochoric deformations
of a compressible elastic body, because they will in general produce changes in
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volume when applied in compressible materials. A review of isochoric problems
can be found in [60].

4.1 Pure torsion

In the incompressible isotropic theory of nonlinear elasticity, the problem of
finite torsion was first considered by Rivlin [106, 107, 108], while relevant ex-
perimental issues were discussed in [105, 112]. Rivlin showed that finite tor-
sion is a universal deformation (see Family 3 of universal solution in (3.53) when
A = C = F = 1, B = E = 0). By virtue of the constraint of zero volume change,
the deformation is that of pure torsion so that there is no extension in the ra-
dial direction and the cross-section of the cylinder remains circular. We know, by
Ericksen result [34], that finite torsion is not sustainable, however, in all compress-
ible isotropic elastic materials. In fact the deformation here is more complicated
and in general, there will be some radial extension, see Polignone and Horgan [97]
and Kirkinis and Ogden [70]. Those two articles present the torsional problem for
the strain energy written either in terms of the principal invariants I1, I2, I3, or
in terms of the principal stretches λ1, λ2, λ3 of the left Cauchy stress tensor B,
or in terms of the principal invariants i1, i2, i3 of V . Polignone and Horgan [97]
obtain a necessary condition for a pure torsion to be possible without imposing the
zero traction on the lateral surface. Kirkinis and Ogden [70] find new necessary
and sufficient conditions on the strain energy function for pure torsion with zero
traction on the lateral surface of the cylinder.

The torsion problem in the compressible case is discussed in other important
works as well. For example it is discussed from both theoretical and experimental
viewpoints in [48] or in [49], where a formula is derived for the couple required
to maintain the deformation in respect of an arbitrary (isotropic) strain energy
function. Slight compressibility effects are investigated in [38], using the general
theory of small deformations superimposed on a large deformation for the Blatz-Ko
material model and for the Levinson-Burgess material in [78]. Currie and Hayes
[25] determined constitutive relations for which pure torsion is sustainable and
proposed a general class of materials, which includes the Hadamard material. The
Blatz-Ko material for foam polyurethane elastomers has been studied recently in
respect of pure torsion by various authors (see, for example, [8, 9, 20]). Loss of
ellipticity for this material model during a pure torsional deformation was examined
by Horgan and Polignone [99].

4.1.1 Formulation of the torsion problem

Let us consider the torsional deformation of an elastic solid circular cylinder of
radius A due to applied twisting moments at its ends,

r = r(R), θ = Θ + τZ, z = Z, (4.1)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and
in the current configurations, respectively, dr/dR > 0, and the constant τ > 0 is
the twist per unit undeformed length. Let us consider the strain energy function
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in terms of the first three principal invariants of B, W = W̄ (I1, I2, I3). The
deformation gradient tensor F for (4.1) is given by





r′ 0 0
0 r/R τr
0 0 1



 , (4.2)

and the physical components of B and its inverse B−1 are given by




r′2 0 0
0 r2/R2 + τ 2r2 τr
0 τr 1



 ,





r′−2 0 0
0 R2/r2 −τR2/r
0 −τR2/r 1 + τ 2R2



 , (4.3)

respectively. The first three principal strain invariants are

I1 = 1 + r′2 +
r2

R2
+ τ 2r2,

I2 =
r2

R2
+ r′2 +

r′2r2

R2
+ τ 2r′2r2, (4.4)

I3 =
r′2r2

R2
.

Substituting (4.3) into (1.36), we obtain the physical components of the Cauchy
stress

Trr = β0 + β1r
′2 + β−1r

′−2,

Tθθ = β0 + β1

(

r2

R2
+ τ 2r2

)

+ β−1
R2

r2
,

Tzz = β0 + β1 + β−1(1 + τ 2R2), (4.5)

Tθz = β1(τr) − τR2

r
β−1,

Trθ = 0, Trz = 0.

In the present case, the equilibrium equations, in absence of body forces, divT = 0,
reduce to the single equation

∂Trr

∂r
+

1

r
(Trr − Tθθ) = 0. (4.6)

Since r = r(R), it is possible to consider the stress as a function of the reference
co-ordinate R, i.e., T = T (R) instead of T = T (r). In this case the chain rule
gives

∂Trr

∂R
+

r′

r
(Trr − Tθθ) = 0. (4.7)

By (4.5)1,2, (1.38) and (4.4) we obtain a single ordinary nonlinear equation for
r(R),

d

dR

[

Rr′

r
(W̄1 + W̄2) +

rr′

R
(W̄3 + W̄2) + τ 2Rr′rW̄2

]

+

(

Rr′2

r2
− 1

R

)

(W̄1 + W̄2) − τ 2RW̄1 = 0, (4.8)
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where the W̄i (i = 1, 2, 3) are evaluated at (4.4). For a solid circular cylinder of
initial radius A subjected to end torques only, the boundary conditions of traction-
free lateral surface are satisfied when

Trr(A) = 0, (4.9)

since Trθ = Trz ≡ 0 by (4.5)5. In addition, to ensure that F is bounded, we impose
the following regularity condition

r(R) = O(R) as R → 0. (4.10)

Thus the two-point boundary value problem consists in solving (4.8) for r(R) on
0 < R < A subject to the conditions (4.9) and (4.10).

The same problem has been written by Kirkinis and Ogden [70] in terms of
the principal stretches in Eulerian principal axes1 but in a more general form than
here. These authors consider the case of torsional deformation superimposed on a
uniform extension,

r = r(R), θ = Θ + λzτZ, z = λzZ, (4.11)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively, dr/dR > 0, the constant τ > 0 is the twist
per unit undeformed length, and λz is the uniform axial stretch. Here we consider
the strain energy function in terms of the principal stretches, W = Ŵ (λ1, λ2, λ3).
The deformation gradient tensor F for (4.11) has components,





r′ 0 0
0 r/R λzτr
0 0 λz



 , (4.12)

and the physical components of B and its inverse B−1 are given by





r′2 0 0
0 r2/R2 + λ2

zτ
2r2 λ2

zτr
0 λ2

zτr λ2
z



 , (4.13)





r′−2 0 0
0 R2/r2 −τR2/r
0 −τR2/r 1/λ2

z + τ 2R2



 , (4.14)

respectively. Let µi, i = 1, 2, 3, be the unit Eulerian principal axes associated with
this deformation. We see that er is the Eulerian principal axis associated with the
principal stretch µ1 and hence

λ1 = r′. (4.15)

We may express the remaining two principal directions in terms of the cylinder
polar axes eθ, ez. Thus, we write

µ2 = cos φeθ + sin φez, µ3 = − sin φeθ + cos φez, (4.16)

1Ogden [95], Section 5.2.5, writes the same problem using the Lagrangian principal axes.
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where φ defines the orientation of the axes µ2, µ3 relative to eθ, ez. By defining
the following rotation matrix

R =





1 0 0
0 cos φ − sin φ
0 sin φ cos φ



 , (4.17)

considering the left stretch tensor V in (1.10)2, and by comparing V 2 and B as
in (1.11)1, we obtain the connections

λ2
2 cos2 φ + λ2

3 sin2 φ =
r2

R2
+ λ2

zτ
2r2,

λ2
2 sin2 φ + λ2

3 cos2 φ = λ2
z, (4.18)

(λ2
2 − λ2

3) sin φ cos φ = λ2
zτr,

from which we deduce that

λ2
2 + λ2

3 =
r2

R2
+ λ2

zτ
2r2 + λ2

z,

(λ2
2 − λ2

z)(λ
2
z − λ2

3) = λ4
zτ

2r2, (4.19)

λ2λ3 =
λzr

R
.

Further, we obtain the explicit expression for φ as

cos 2φ =
λ2

2 + λ2
3 − 2λ2

z

λ2
2 − λ2

3

. (4.20)

Since the Cauchy stress tensor T is coaxial in the isotropic case with the left
Cauchy-Green strain tensor B, we may express it in terms of its principal stresses
T1, T2, T3 through

Trr = T1, Tθz = (T2 − T3) cos φ sin φ, (4.21)

Tθθ = T2 cos2 φ + T3 sin2 φ, Tzz = T2 sin2 φ + T3 cos2 φ.

By (4.20) and (4.21) we obtain the following connection

λ2
zτr(Tθθ − Tzz) =

(

r2

R2
+ λ2

zτ
2r2 − λ2

z

)

Tθz. (4.22)

The principal stresses are given by (1.42) and we use (4.21) to obtain from equation
(4.7)

d

dR
(RŴ1) =

λz

λ2λ3

λ2(λ
2
2 − λ2

z)Ŵ2 − λ3(λ
2
3 − λ2

z)Ŵ3

λ2
2 − λ2

3

, (4.23)

where Ŵi = ∂Ŵ/∂λi, (i, = 1, 2, 3) are evaluated at the values given by (4.15) and
(4.19). In this case the boundary condition to be satisfied is

Trr(A) = T1(A) = 0. (4.24)
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4.1.2 Pure torsion: necessary and sufficient condition

On setting r = R in equation (4.8), Polignone and Horgan [97] obtain a neces-
sary condition on W̄ for pure torsion to be possible. From (4.4), for pure torsional
deformation (r = R), we obtain

I1 = I2 = 3 + τ 2R2, I3 = 1, (4.25)

and so the deformation is isochoric, and by (4.8), we obtain

d

dR

[

W̄1 + W̄3 + (2 + τ 2R2)W̄2

]

− τ 2RW̄1 = 0. (4.26)

On employing the chain rule, (4.26) may be written as

2(3 + τ 2R2)W̄21 + 2(2 + τ 2R2)W̄22 + 2(W̄31 + W̄32 + W̄11) + 2W̄2 − W̄1 = 0, (4.27)

where W̄ij = ∂2W̄/(∂Ii∂Ij) (i, j = 1, 2, 3) are evaluated at the values (4.25). The
condition (4.27) is therefore a necessary condition on W̄ for pure torsion to be
possible (an equivalent condition was obtained by Currie and Hayes [25]).

Kirkinis and Ogden [70], on setting r = λ
−1/2
z R in order to have isochoric

deformation for the torsion superimposed on uniform extension, obtain from (4.15)
and (4.19)(1,3)

λ1 = λ−1/2
z , λ2λ3 = λ1/2

z , λ2
2 + λ2

3 = λ2
z + λ−1

z + λzτ
2R2. (4.28)

In terms of the stretches, the equations (4.21) are given by

Trr = λ−1/2
z Ŵ1, Tθz =

√

(λ2
2 − λ2

z)(λ
2
z − λ2

3)
λ2Ŵ2 − λ3Ŵ3

λ2
2 − λ2

3

,

Tθθ =
(λ2

2 − λ2
z)λ2Ŵ2 − (λ2

3 − λ2
z)λ3Ŵ3

λ2
2 − λ2

3

, (4.29)

Tzz =
(λ2

z − λ2
3)λ2Ŵ2 + (λ2

2 − λ2
z)λ3Ŵ3

λ2
2 − λ2

3

.

On use of (4.28), the equilibrium equation (4.23) specializes to

(λ2
2 + λ2

3 − λ2
z − λ−1

z )
λ2Ŵ12 − λ3Ŵ13

λ2
2 − λ2

3

+ Ŵ1 =

λ1/2
z

(λ2
2 − λ2

z)λ2Ŵ2 − (λ2
3 − λ2

z)λ3Ŵ3

λ2
2 − λ2

3

, (4.30)

in which the derivatives of Ŵ are evaluated for (4.28). Equation (4.30) provides a
necessary condition for the strain energy to admit the deformation considered and
generalizes (4.27) for λz = 1 to the case λz 6= 1. When λz = 1, equation (4.28)
reduces to

γ(λŴ12 − λ−1Ŵ13) + (λ + λ−1)Ŵ1 = λ2Ŵ2 + λ−2Ŵ3, (4.31)
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where γ is defined by
γ = λ − λ−1 = τR, (4.32)

setting λ2 = λ, λ3 = λ−1. Equations (4.27) and (4.31) are clearly equivalent, but
they do not guarantee that the zero-traction boundary condition on the lateral
surface of the cylinder is satisfied and therefore, in general, appropriate radial
tractions need to be supplied in order to maintain the deformation. By (4.29)1, and
since λz is constant, Trr depends on the deformation only through the combination
τR. On setting Trr(R) = T (τR), on the lateral surface, we then have Trr(A) =
T (τA). Thus, the lateral traction vanish if

Trr(A) = T (τA) = 0, (4.33)

for all τ ≥ 0. From that condition follows

d

dτ
Trr(A) = T ′(τA)A = 0, (4.34)

for all τ > 0, and therefore, for any fixed τ > 0,

d

dR
Trr(R) = T ′(τR)τ = 0, (4.35)

for all 0 < R < A. Thus, Trr(R) is constant, and since it vanishes for R = A,
Trr ≡ 0 and from (4.6), it follows that Tθθ ≡ 0 also. From (4.29)(1,2) we deduce
that

Ŵ1 ≡ 0, λ2(λ
2
2 − λ2

z)Ŵ2 − λ3(λ
2
3 − λ2

z)Ŵ3 = 0, (4.36)

where the derivatives of Ŵ are evaluated for the stretches given by (4.28). The
conditions (4.36) are necessary and sufficient for the strain energy function to admit
the combined isochoric torsion and uniform extension with zero tractions on the
lateral surface of the cylinder. To derive (4.36)2, we used the inequality λ2 6= λ3

(otherwise by (4.28) the trivial situation τ = 0, λz = 1, λ2 = λ3 = 1 is verified).
When λz = 1, the conditions (4.36) reduce to

Ŵ1 ≡ 0, λ2Ŵ2 + λ−2Ŵ3 = 0, (4.37)

evaluated for λ2 = λ, λ3 = λ−1, λ − λ−1 = τR. Conditions (4.31) are obviously
implied by (4.37).

If the strain energy W is written in terms of the principal invariants i1, i2, i3
(see (1.32)), then the Cauchy stress components for pure torsional deformation
become

Trr = W̃1 + (i − 1)W̃2 + W̃3, Tθz =
γ

i − 1

(

W̃1 + W̃2

)

,

Tθθ =
1

i − 1

(

W̃1(γ
2 + 2) + (i − 2)(i + 1)W̃2 + (i − 1)W̃3

)

, (4.38)

Tzz =
1

i − 1

(

2W̃1 + (i + 1)W̃2 + (i − 1)W̃3

)

,

where W̃j (j = 1, 2, 3) are the derivatives of W̃ with respect to i1, i2, i3, respectively,
and evaluated for

i = i1 = i2 = λ + λ−1 + 1, γ = λ − λ−1, i3 = 1. (4.39)
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Here, the equilibrium equation (4.27) and (4.31) become

(W̃11 + iW̃12 + (i − 1)W̃22 + W̃31 + W̃32)(i + 1) + i(W̃2 − W̃1) = 0. (4.40)

When Trr = Tθθ = 0 we obtain, after some rearrangement, the necessary and
sufficient conditions as

iW̃1 + W̃2 = 0, (i2 − i − 1)W̃1 − W̃3 = 0, (4.41)

where, here, W̃ depends on i1, i2, i3 and the derivatives are evaluated for (4.39).
In the case of pure torsion, the resultant axial force N on any cross-section of

the cylinder and the resultant moment M are related by

N = −τM, (4.42)

independently of which strain energy function is used. Thus, (4.42) establishes
another example of a universal relation2. To show the relation (4.42), we consider
the definitions

N = 2π

∫ A

0

TzzR dR, M = 2π

∫ A

0

TθzR
2 dR, (4.43)

where the integrals (which are independent of Z) are taken over any cross-section
of the cylinder. The relationship (4.22) at λz = 1, Tθθ = 0, r = R reduces to

Tzz = −τRTθz, (4.44)

and from (4.43), the relation (4.42), therefore, holds.

4.1.3 Some examples

It has been shown by Beatty [8] and by Carroll and Horgan [21] that pure
torsion is possible for the following Blatz-Ko material (2.40)

W̄ (I1, I2, I3) =
µ

2

(

I2

I3

+ 2I
1/2
3 − 5

)

. (4.45)

In fact, here the stress response equation takes the simple form

T = µ
(

I − I
−1/2
3 B−1

)

, (4.46)

and the equation (4.8) reduces to

3Rr3r′′ − r3r′ + R3r′4 = 0, (4.47)

where the prime refers to the ordinary derivative with respect to R. The equation
(4.47) is a second-order nonlinear ordinary differential equation where the param-
eter τ does not appear. The components of the stress Trr and Tθθ do not contain

2It may be compared to the universal relation (3.29)2, because pure torsion is an example of
locally simple shear of magnitude γ = τR in the (eθ,ez) plane.
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τ and it is clear that r = R is a solution of (4.47) that verify (4.10). In this case,
from (4.46), it is easy to see that

Trr = 0, Trθ = 0,

Tθθ = 0, Trz = 0, (4.48)

Tzz = −µτ 2R2, Tθz = µτR,

and so the boundary free traction condition (4.9) is satisfied. For the general Blatz-
Ko material (2.38), the necessary condition (4.26) holds if and only if f = 0. In
this case, the traction free boundary condition is also satisfied.

Consider the Hadamard material (2.21): to ensure the normalization conditions
(1.34) and (1.64), the arbitrary function H in (2.21) must satisfy

H(1) = 0, H ′(1) + c1 + 2c2 = 0. (4.49)

One can see that the necessary condition (4.27) is satisfied if and only if

2c2 = c1. (4.50)

The stress components for the Hadamard material are given, by (1.36), as

Trr = 2c2τ
2R2, Trθ = 0,

Tθθ = 2(c1 + c2)τ
2R2, Tθz = 2(c1 + c2)τR,

Tzz = 0, Trz = 0. (4.51)

Thus, Hadamard materials cannot sustain pure torsion (2c2 = c1) with traction
free lateral surface, except in the degenerate case where c2 = 0.

The authors in [70] and in [97] try to find a more general form of strain energy
to sustain pure torsion3 with the difference that Polignone and Horgan [97] do not
impose free boundary condition. They try to obtain materials where pure torsion
may be possible. For example they start by requiring that

W̄21 + W̄22 = 0, (4.52)

where the derivatives are evaluated in (4.25). Condition (4.52) is a good device
to eliminate the explicit dependence of the parameter τ in the equation (4.27).
In fact the explicit term τ 2R2 vanishes identically when (4.52) is assumed. Since
functions of the form P (I1 − I2, I3) clearly satisfy (4.52), Polignone and Horgan
consider the following general form of strain energy function,

W =
µ

2

[

P (I1 − I2, I3) + Q(I1, I3) + R(I2)S(I3)

+ H1(I3)(I1 − 3) + H2(I3)(I2 − 3) + H3(I3)
]

, (4.53)

where µ > 0 is the infinitesimal shear modulus and P,Q,R, S,Hi (i = 1, 2, 3) are
sufficiently smooth functions. The strain energy function (4.53) satisfies (4.52) if
and only if R(I2) is a linear function. Thus, we assume that

R(I2) = k1I2 + k2, (4.54)

3This is an important task from the mathematical point of view, but afterward one must
establish whether the material described by the model obtained describes reality or if it remains
only an idealization.
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where k1 and k2 are arbitrary constants. On redefining S(I3) and H(I3) to include
these constants, we rewrite (4.53) as

W =
µ

2

[

P (I1 − I2, I3) + Q(I1, I3) + I2S(I3)

+ H1(I3)(I1 − 3) + H2(I3)(I2 − 3) + H3(I3)
]

, (4.55)

in order to satisfy (4.52). The normalization conditions (1.34) and (1.64) require
that

P (0, 1) + Q(3, 1) + 3S(1) + H3(1) = 0 (4.56)

and

− P1(0, 1) + P2(0, 1) +
∂Q

∂I1

(3, 1) +
∂Q

∂I3

(3, 1)

+ 3S ′(1) + 2S(1) + H1(1) + 2H2(1) + H ′

3(1) = 0, (4.57)

where the subscripts 1 and 2 on P indicate the derivatives with respect to the first
and second arguments, respectively. From (4.27) and (4.52), we ask that

2(W̄21 + W̄31 + W̄32 + W̄11) + 2W̄2 − W̄1 = 0. (4.58)

On substitution from (4.55) into (4.58), one finds that

− 3P1(0, 1) +

(

2
∂2Q

∂I2
1

+ 2
∂2Q

∂I1∂I3

− ∂Q

∂I1

)

I1=3+τ2R2, I3=1

+ 2 (S ′(1) + S(1)) + 2H ′

1(1) − H1(1) + 2H ′

2(1) + 2H2(1) = 0. (4.59)

Rather than describe the most general class of functions P,Q, S,Hi (i = 1, 2, 3)
for which (4.58) holds, Polignone and Horgan [97] indicate some possibilities. One
possibility is to search for Q such that

2
∂2Q

∂I2
1

+ 2
∂2Q

∂I1∂I3

− ∂Q

∂I1

= 0, (4.60)

holds. One solution of (4.60) is given in the following form

Q(I1, I3) = αeβ(I3−1)e(1/2−β)(I1−3), (4.61)

to within an arbitrary additive function of I3, that we may include in H3(I3). The
parameters α and β(6= 1/2) are constants. To find a possible form for S(I3), one
might seek S such that

S ′(1) + S(1) = 0, (4.62)

so that (4.59) is further simplified. Thus, it is possible to set

S = ke−(I3−1), (4.63)

where k is a constant. By the previous choices for Q and S, the condition (4.59)
reduces to

− 3P1(0, 1) + 2H ′

1(1) − H1(1) + 2H ′

2(1) + 2H2(1) = 0, (4.64)
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and the normalization condition (4.56) and (4.57) read as

P (0, 1) + α + 3k + H3(1) = 0, (4.65)

− P1(0, 1) + P2(0, 1) +
α

2
− k + H1(1) + 2H2(1) + H ′

3(1) = 0.

Thus, a material described by a strain energy function W̄ of the form (4.55), with Q
and S chosen as in (4.61) and (4.63), respectively, can sustain pure torsional defor-
mations provided (4.64) holds. This is one possible way to generate a benchmark
of possible strain energy functions. On every setting for the unknown function
P,Q, S,H one could check afterwards if the strain energy function found satisfies
the boundary condition as well.

An other investigation concerns the energy functions of the form

W̃ (i1, i2, i3) = f(i1)h1(i3) + g(i2)h2(i3) + h3(i3), (4.66)

which is one generalization of the material described by classes I, II and III in (3.87),
(3.89) and (3.91). Polignone and Horgan [97] show that the first two classes cannot
sustain pure torsion (in general). Instead the third class verifies the condition (4.40)
if and only if a3 = b3 but a uniformly distributed tensile loading would be required
on the lateral surface of the cylinder.

4.2 Pure axial shear

The pure axial shear (also called telescopic shear) problem is a particular form
of axisymmetric anti-plane shear. It has been introduced in Section (3.2.2) for the
case of incompressible isotropic nonlinear elastic cylinder. Here, we are investigat-
ing when this isochoric deformation can be sustained for compressible homogeneous
isotropic materials. In general, for an arbitrary compressible material, the cylin-
der will undergo both a radial r(R) deformation, and an axial deformation w(R).
For an arbitrary incompressible, isotropic and homogeneous, hyperelastic material,
Rivlin [107] has shown that the telescopic shear problem leads to a nonlinear or-
dinary differential equation for the radial displacement w(R), whose solution may
be obtained only upon specification of the strain energy function. Necessary and
sufficient conditions on the form of the strain energy function for the compressible
and incompressible cases, for which nontrivial states of anti-plane shear may be
admissible, have been derived by Knowles [72, 74], but the mathematical structure
used to derive the conditions for compressible material excludes the axisymmetric
case. Here, our main references are Jiang and Beatty [64] and Polignone and Hor-
gan [98], but some examples for telescopic shear in the compressible case are also
described by Agarwal [3] and by Mioducowski and Haddow [82]. In [98], necessary
conditions on the strain energy function W for pure axial shear to be possible are
established by seeking solutions of the governing equations for which r = R. Two
conditions on W are obtained in the form of a second-order and first-order non-
linear ordinary differential equation for axial displacement w(R), whose solutions
must be compatible. In [64], a single necessary and sufficient condition is obtained
in order that the material may support pure axial shear, instead.
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4.2.1 Formulation of the axial shear problem

Let us consider the axisymmetric finite axial shear deformation of an isotropic
compressible nonlinearly elastic hollow circular cylinder with inner surface R = A
and outer surface R = B,

r = r(R), θ = Θ, z = Z + w(R), (4.67)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively, and dr/dR > 0. We set the inner surface
R = A to be bonded to a rigid cylinder so that

r(A) = A, w(A) = 0. (4.68)

The deformation (4.67) may be achieved either by prescribing r(R) and w(R) on
the outer surface R = B, or by applying a uniformly distributed axial shear traction
to the outer surface of the cylinder and assuming that the radial traction is zero
there,

Trr(B) = 0, Trz(B) = T0, (4.69)

where T0 is a given constant. Let us assume that the cylinder is sufficiently long so
that end effects are negligible and that the strain energy function is given in terms
of the first three principal invariants of B:

W = W̄ (I1, I2, I3). (4.70)

Corresponding to the deformation field (4.67), we have

F =





r′ 0 0
0 r/R 0
w′ 0 1



 , B =





r′2 0 r′w′

0 r2/R2 0
r′w′ 0 1 + w′2



 , (4.71)

B−1 =





(w′2 + 1)/r′2 0 −w′/r′

0 R2/r2 0
−w′/r′ 0 1



 , (4.72)

where r′ = dr/dR and w′ ≡ dw/dR. The first three principal invariants are given
by

I1 = 1 +
r2

R2
+ r′2 + w′2,

I2 = r′2 +
r2

R2

(

1 + r′2 + w′2
)

, (4.73)

I3 = r′2
r2

R2
.
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Substitution from (4.71)2 and (4.72) into (1.36) yields the physical components of
the Cauchy stress T as

Trr = β0 + β1r
′2 + β−1

w′2 + 1

r′2
,

Tθθ = β0 + β1
r2

R2
+ β−1

R2

r2
,

Tzz = β0 + β1(w
′2 + 1) + β−1, (4.74)

Trz = β1r
′w′ − β−1

w′

r′
,

Trθ = 0, Tθz = 0.

Because r = r(R), it is convenient to consider that T = T (R). The equilibrium
equations in the absence of body force, divT = 0, for this deformation, reduce to
the following two equations:

∂Trr

∂r
+

1

r
(Trr − Tθθ) = 0,

∂Trz

∂r
+

Trz

r
= 0. (4.75)

We observe that equation (4.75)2 can also be written in the form

d

dr
(rTrz) = 0, (4.76)

so that on integrating and using (4.74)4, (4.73)3 and (1.38), we arrive at the fol-
lowing first-order nonlinear ordinary differential equation

w′

(

RW1 +
r2

R
W2

)

= K, (4.77)

where K is a constant and W1, W2 are the derivatives of W with respect to I1

and I2, respectively, evaluated at the values (4.73). The constant K appearing in
(4.77) can now be expressed in terms of T0. In fact, by (4.74)4, (4.77) and (4.69),
we find that

K =
r(B)T0

2
. (4.78)

Equation (4.75)1, after using a chain rule to differentiate with respect to R, may
be written as the following second-order nonlinear ordinary differential equation

d

dR

(

Rr′

r
W1 +

(

Rr′

r
+

rr′

R

)

W2 +
rr′

R
W3

)

+ W1

(

Rr′2

r2
− 1

R

)

+ W2

(

Rr′2

r2
− 1

R
− w′2

R

)

= 0, (4.79)

where again the derivatives Wi (i = 1, 2, 3) are evaluated at the values (4.73).
Equations (4.77) and (4.79) are a coupled pair of nonlinear ordinary differential
equations for the unknowns functions r(R) and w(R).
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4.2.2 Pure axial shear: necessary and sufficient conditions

Polignone and Horgan [98] obtain necessary conditions on the strain energy
function for pure axial shear to be possible by setting r = R in the equations
(4.77) and (4.79). When r = R, first we know by (4.73) that

I1 = I2 = 3 + w′2, I3 = 1, (4.80)

and so the deformation is isochoric. From (4.79), we obtain

d

dR
(W1 + 2W2 + W3) −

w′2

R
W2 = 0. (4.81)

Employing the chain rule, and setting w′ 6= 0 to have a nontrivial solution, this
last equation can be written as

2(W11 + 2W22 + 3W12 + W13 + W23)w
′′ − W2

w′

R
= 0. (4.82)

From (4.77), we obtain the necessary condition

(W1 + W2)w
′ =

BT0

2R
. (4.83)

In (4.82) and in (4.83) the derivatives are evaluated in (4.80). By differentiating
both sides of (4.83) with respect to R and using the chain rule, we obtain

(W1 + W2)w
′′ = −BT0

2R2
− 2(W11 + 2W12 + W22)w

′2w′′, (4.84)

where the derivatives are evaluated at values (4.80). When r = R, the correspond-
ing stress components in (4.74) become

Trr = β0 + β1 + β−1(w
′2 + 1),

Tθθ = β0 + β1 + β−1,

Tzz = β0 + β1(w
′2 + 1) + β−1, (4.85)

Trz = (β1 − β−1)w
′,

Trθ = 0, Tθz = 0,

where the βi (i = −1, 0, 1) are evaluated at values (4.80). Setting r = R, the
boundary condition (4.68)1 is satisfied and so from (4.68)2 and (4.69)1, the re-
maining boundary conditions are

w(A) = 0, (W1 + 2W2 + W3) |I1=I2=3+w′2, I3=1, R=B = 0, (4.86)

respectively.
In [64], the problem is introduced in the reference configuration. From (1.21),

the physical components of the first Piola-Kirchhoff stress tensor are given by

(TR)RR = (TR)ZZ = 2(W1 + 2W2 + W3), (TR)RZ = −2w′(W2 + W3),

(TR)ΘΘ = 2(W1 + (2 + w′2)W2 + W3), (TR)ZR = 2w′(W2 + W2),

(TR)RΘ = (TR)ΘR = (TR)ZΘ = (TR)ΘZ = 0, (4.87)
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where Wi ≡ ∂W/∂Ii, (i = 1, 2, 3) are evaluated at (4.80). The equilibrium equa-
tions, in the absence of body forces, reduce to the following radial and axial equi-
librium equations

R
d

dR
(W1 + 2W2 + W3) = w′2W2, (4.88)

d

dR
(R(TR)ZR) = 0.

Similarly to the definition in (3.24), after setting w′ = k, we define the shear stress
response function as

τ(k) ≡ (TR)ZR = kµ(k2) (4.89)

and the shear response function as

µ(k2) ≡ 2(W1 + W2). (4.90)

We may therefore rewrite (4.88) as

R
d

dR
(W1 + 2W2 + W3) = k2W2, (4.91)

d

dR
(Rτ(k)) = 0.

As in (3.26), by the empirical inequality (1.46), we know that

µ(k2) > 0, ∀k. (4.92)

We observe that the shear strain k(R) vanishes identically if either the shear strain
itself or its derivative dk/dR vanishes at a single location in [A,B]. In fact by
(4.91)2 and (4.89), we obtain that

Rkµ(k2) = h, (4.93)

where h is an integration constant. If [A,B] contains the origin, the statement is
trivial, because (4.92) holds. Thus, if there exist a point 0 6= R0 ∈ [A,B] such that
k(R0) = 0, by (4.92), it is necessary to have h = 0 and therefore k ≡ 0. If there
exist a point 0 6= R1 ∈ [A,B] such that dk(R1)/dR = 0, by differentiation of (4.93)
with respect to R, we have

R
dk(R)

dR

d

dk
[τ(k(R))] = −τ(k(R)), (4.94)

which with the aid of (4.93), may be written as

dk(R)

dR

d

dk
[τ(k(R))] = − h

R2
, (4.95)

and since dk(R1)/dR = 0 we therefore obtain the constant h = 0, deducing as in
the previous case that k ≡ 0.

The necessary and sufficient condition for a compressible, isotropic and homo-
geneous, hyperelastic material to be capable of sustaining nontrivial, pure axial
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shear deformation whose strain energy function W satisfies (4.92) is the following
condition

(W1 + W2)
[

W11 + I1W12 + (I1 − 1)W22 + W13 + W23 + 1
2
W2

]

=

(I1 − 3)
[

W1(W12 + W22) − W2(W11 + W21)
]

, (4.96)

for I1 = I2 ≥ 3, I3 = 1. By using (4.80), and recalling that the strain energy
function W depends on the shear strain k only through the invariants I1 and I2,
it follows that (4.96) admits the following representation

(W1 + W2)
d

dk
(W1 + 2W2 + W3) = −kW2

d

dk
[k(W1 + W2)] . (4.97)

Recalling the definition of the shear stress response function in (4.89) and since we
may suppose that k and its derivative with respect to R never vanishes (otherwise
by previous consderations the only solution w(R) would be a constant), we may
rewrite (4.97) as

τ(k)
d

dk
(W1 + 2W2 + W3) = −k2W2

dτ(k)

dk
. (4.98)

To prove sufficiency, we need to show that every solution of the equation (4.91)2

also satisfies the radial equilibrium equation (4.91)1 when the condition (4.92) and
(4.98) are identically satisfied. Since the equilibrium equation (4.91)2 may be
written in the form (4.94), after substitution from (4.94) into (4.98), we obtain the
equilibrium equation (4.91)1 and sufficiency is hence shown.

To prove the necessary condition, we consider a solution w̄ of both equations
(4.91)1 and (4.91)2. Since the strain energy function depends on k trough the
invariants I1 and I2, we may rewrite Equation (4.91)1 as

R
d

dk
(W1 + 2W2 + W3)

dk

dR
= k2W2. (4.99)

Because equation (4.91)2 is equivalent to (4.94), we use (4.94) in (4.99) and we
obtain

τ(k)
d

dk
(W1 + 2W2 + W3) = −k2W2

dτ(k)

dk
. (4.100)

Thus (4.98) is obtained and the necessary condition is therefore proved. In order
to attain this result, a division by µ was necessary, but we recall that this is always
possible because (4.92) holds.

4.2.3 Some examples

Let us consider the Hadamard material (2.21). It follows from (4.90) that the
shear response function for the Hadamard material (2.21), is

µ(k2) = 2(c1 + c2) > 0, (4.101)
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a constant, and that the shear stress response function (4.89) is

τ(k) = 2k(c1 + c2), (4.102)

a linear dependence of k. Here, in accordance with (4.96), it follows immediately
that non-trivial, controllable, axial pure shear deformations are possible in every
Hadamard material (2.21) for which

1

2
(W1 + W2)W2 = (c1 + c2)c2 = 0. (4.103)

Since (c1 + c2) > 0,
c2 = 0 (4.104)

is a necessary and sufficient condition for the pure axial shear to be controllable
in an Hadamard material. When c2 = 0 and c1 > 0, from (4.91)2 or (4.83) the
out-of-plane displacement w(R) is given by

w(R) =
BT0

2c1

ln

(

R

A

)

, (4.105)

and from (4.85)3,4, the nonzero stress components are

Tzz =
B2T 2

0

2c1R2
, Trz =

BT0

R
. (4.106)

It is readily seen that (4.96) fails for a Blatz-Ko material (2.40), which is capable
of sustaining pure torsion (see Section 4.1.3).

In searching for a more general class of material for which the pure axial shear
is possible, Polignone and Horgan [98] require that the strain energy W satisfy the
following condition

W11 + 2W12 + W22 = 0, (4.107)

where the derivatives are evaluated in (4.80). By (4.84), and since we are assuming
that W1 + W2 > 0, we obtain

w′′ = − BT0

2R2(W1 + W2)
. (4.108)

On employing (4.107), (4.108), (4.83) in (4.82), we find that

2(W22 + W12 + W13 + W23) + W2 = 0. (4.109)

Thus, Polinone and Horgan [98] start by considering the following form of the
strain energy

W =
µ

2
[P (I1 − I2, I3)(I1 − 3) + Q(I1 − I2, I3)(I2 − 3) + R(I1 − I2, I3)] (4.110)

where µ > 0 is the infinitesimal shear modulus, and P,Q,R are sufficiently smooth
functions. This form of strain energy function certainly verifies the conditions
(4.107). The normalization conditions (1.34) and (1.64)1 are satisfied by (4.110) if

R(0, 1) = 0, (4.111)
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and
P (0, 1) + 2Q(0, 1) − R1(0, 1) + R2(0, 1) = 0, (4.112)

where the subscripts 1, 2 indicate the derivatives with respect to the first and
second arguments, respectively. The task now is to find conditions on the functions
P,Q,R such that condition (4.109) is satisfied. Hence, on substitution from (4.110)
in (4.109), one finds that

2 [P2(0, 1) + Q2(0, 1) − (P1(0, 1) + Q1(0, 1))]

+ Q(0, 1) − R1(0, 1) − [P1(0, 1) + Q1(0, 1)] w′2 = 0. (4.113)

Since we are searching for w′ as a varying function (otherwise (4.82) and (4.83) are
not compatible), the condition (4.113) implies that

P1(0, 1) + Q1(0, 1) = 0 (4.114)

and
2P2(0, 1) + 2Q2(0, 1) + Q(0, 1) − R1(0, 1) = 0. (4.115)

In order that µ > 0, i.e. W1 + W2 > 0, it is necessary that

P (0, 1) + Q(0, 1) > 0. (4.116)

Thus a cylindrical tube composed of a material described by a strain energy func-
tion W of the form (4.110), with P,Q chosen so that (4.114) is satisfied, can sustain
pure axial shear provided (4.115) and (4.116) hold. From (4.83) and the boundary
condition (4.68)2, we obtain the solution

w(R) =
BT0

µ (P (0, 1) + Q(0, 1))
ln

(

R

A

)

(4.117)

for any W of the form (4.110). To satisfy the boundary condition (4.69)1, by (4.86),
(4.112) and (4.114), one finds that

P2(0, 1) + Q2(0, 1) = 0. (4.118)

Combining (4.118) and (4.115), we obtain

Q(0, 1) − R1(0, 1) = 0. (4.119)

Thus, in summary, provided that (4.114), (4.116), (4.118), and (4.119) hold, any
compressible material described by (4.110) allows pure axial shear of the tube
arising from a uniform shear traction applied to its outer surface, with the radial
traction vanishing there. By application also of (4.112), from (4.85), we find that
the only nonzero stresses are then

Tzz =
B2T 2

0

µ (P (0, 1) + Q(0, 1)) R2
, (4.120)

Trz =
BT0

R
.
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In the same way as for the pure torsion deformation, here, it is possible to give
some explicit example of (4.110) when P,Q,R are chosen. Polignone and Horgan
[98] give some examples. One of these is the following strain energy,

W =
µ

2
γ
[

eα(I1−I2)eβ(I3−1)(I1 − 3) + e−α(I1−I2)e−β(I3−1)(I2 − 3)

+ e(I1−I2)e−2(I3−1) − 1
]

,

with α 6= 0, β 6= 0, γ > 0 arbitrary constants.

4.3 Some other meaningful isochoric deforma-

tions

A third isochoric deformation for compressible materials that has been inves-
tigated in a similar fashion is that of azimuthal shear (or circular shear) of a
cylindrical tube,

r = R, θ = Θ + g(R), z = Z, (4.121)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and
in the current configurations, respectively, and the inner surface of the tube is
bonded to a rigid cylinder. The deformation may be achieved either by applying a
uniformly distributed azimuthal shear traction on the outer surface together with
zero radial traction or by subjecting the outer surface to a prescribed angular
displacement, with zero radial displacement. For compressible materials, we know
by Ericksen’s result [34] that azimuthal shear is not a universal solution and that
in general, it is accompained by a radial deformation. These axisymmetric fields
are governed by a coupled pair of nonlinear ordinary differential equations, one of
which is second-order and the other first-order. Azimuthal shear, therefore, cannot
be sustained by all compressible materials, unless certain auxiliary conditions on
the strain energy function are satisfied. That problem has been examined by Beatty
and Jiang [10], Haughton [52], Jiang and Ogden [66] and Polignone and Horgan
[100].

The generalized azimuthal shear is an isochoric deformation of the form

r = R, θ = Θ + g(R,Z), z = Z, (4.122)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively. This deformation (or its Z−independent
specialization) may also appear under the names of circular or rotational shear.
For compressible materials, that problem has been investigated by Kirkinis and
Tsai [71].

The isochoric deformation consisting of the composition of the shearing defor-
mation (4.67) (with r(R) = R) and (4.121) is called helical shear and it is described
by

r = R, θ = Θ + g(R), z = Z + w(R), (4.123)

where (R, Θ, Z) and (r, θ, z) are the cylindrical coordinates in the reference and in
the current configurations, respectively. This last problem has been examined by
Beatty and Jiang [11].
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4.4 Nearly isochoric deformations for compress-

ible materials

In the previous sections we have seen an example of how a strategy of applying
the semi-inverse method, while dealing with complex models, generalizes forms of
solutions already known within the framework of a simpler theory. Motivated by
the results obtained in the incompressible case, we have tried to understand what
happens in the compressible case. By doing so, many important exact solutions
for special classes of compressible elastic materials have been obtained. In [28],
we emphasized that great care has to be exercised in using semi-inverse method
in continuum mechanics to delineate classes of constitutive equations that admit
a particular class of deformations and motions. Sometimes, the admissibility of
a given deformation field is considered to delineate special classes of constitutive
laws. We pointed out that the classes of constitutive equations thus identified from
the standpoint that it may admit a type of deformation may lead to models that
exhibit physically unacceptable mechanical behavior.

To illustrate the dangers inherent to merely turning the mathematical crank to
determine classes of constitutive equations where a certain class of deformations
are possible, we now consider the torsion of a cylindrical shaft (§4.4.1), the axisym-
metric anti-plane shear of a cylindrical tube (§4.4.2), and then the propagation of
transverse waves (§4.4.3) in a compressible nonlinear elastic material. We show
that great care has to be exercised in appealing to the semi-inverse method. The
first and third examples are extracted from our recent work [28]. In the first and
second examples, we consider some static deformations with the help of which we
can lay bare the confusion that has been created in seeking semi-inverse solutions.
By considering torsional deformation and axial axisymmetric shear of a cylindrical
shaft and tube, respectively, we discuss step by step the criticism concerning the
mistakes that have been made as well as the possible errors that can be committed.
Then in the third example, we consider the propagation of transverse bulk waves
(primary motion), which, according to general nonlinear elasticity theory, must al-
ways be coupled to a longitudinal wave (secondary motion). Instead of considering
what happens within the context of the linearized theory, a second-order theory
and then the general nonlinear setting, we consider a top-to-bottom approach. We
derive the general equations and, assuming that the amplitude of the displacements
is of order ǫ, we show that at the first order we recover the results of the linearized
theory and that at a higher order of approximation, we may have some insight
into the coupling between the various modes of deformation. Here, the interesting
point is the occurence of the phenomena of resonance between the primary and
secondary fields.

Let us recall that it has been possible to determine the most general class of
compressible materials for which pure torsion is a controllable deformation in the
case of a circular solid cylinder. This means that for the constitutive equations
that allow the deformation in question, the balance equations are satisfied for the
pure torsion deformation. The next step is to ensure that the lateral surface of
the circular cylinder is traction-free. Now, because simple torsion is an isochoric
deformation, we have to ensure that the lateral boundary has to be traction-free
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while the volume remains constant. There is no reason to expect that this situation
is automatically complied with in a compressible material. It is more natural to
expect that when the lateral boundary of the cylinder is traction-free, the volume
change has to be non-zero. In some sense, the behavior of a class of compressible
materials such that pure torsion is controllable is extraordinary. We now investigate
quantitatively the meaning of this sort of unusual possibility.

To make this claim quantitative, let us observe that any idealized material
characterized by special mathematical properties cannot be clearly identified in the
real world. That is, all mathematical models have to be viewed as approximations
and one has to evaluate how well such models represent reality. We have to make
some determination of what we will find acceptable in terms of an approximate
answer. Such a determination cannot be totally subjective and one has to have
some sort of agreement amongst those developing and using such models. Whether
the criticism concerning the inapplicability of certain models is appropriate or
otherwise needs to be judged by the modeller.

For example, let us suppose that we wish to consider the mathematical as-
sumption that W = W (I2, I3) only with regard to a specific body. This is exactly
the constitutive assumption made by Blatz and Ko [8] in their celebrated model
for foamed polyurethane elastomeric foams. It is imperative, when we make such
an assumption, to check whether the experimental data backs the validity of the
mathematical relationship

∂W/∂I1 = 0. (4.124)

Because, the first derivatives of the strain energy function are the mechanical quan-
tities directly related to the stress, the relation (4.124) is indeed the correct way
to check the constitutive assumption W = W (I2, I3), for example in a biaxial ex-
periment. It is clear that in the real world, our measurement in itself introduces
an uncertainty with regard to the measured quantity, and that the accuracy of
measurement is such that any measurement of the mechanical quantity ∂W/∂I1 to
check the (4.124) will deliver a real number ǫ different from zero. It is not merely
the prerogative of the modeller to say when ǫ is sufficiently small enough to be con-
sidered zero but, and as always, any theoretical assumption is an approximation
and making such an approximation is an art. Roughly speaking, in a nonlinear the-
ory, just because a certain quantity is small it does not follow that everything else
connected with this quantity is or remains small. For this reason, we must be very
careful in considering constitutive assumptions generated by purely mathematical
arguments such as the ones arising from the semi-inverse method4.

On the other hand, it is clear that approximations must be consistent and for
the specific problem under consideration the following problem arises. If a given
problem depends on various parameters αi, i = 1, ..., n and depends on a small
parameter ǫ such that for ǫ = 0 the secondary deformation may be ignored, then
the small ǫ-approximation is consistent if for ǫ << 1 the secondary field is neglible
for any admissible value of the parameters αi.

4We point out that this procedure is exactly the reverse of the constitutive assumption that
comes out from a rigorous mathematical definition of some physical intuition. Notable examples
of this last situation are the concept of frame indifference and material symmetry. In this case we
start by the evidence provided by our observations in the real world and we then try to translate
this into mathematics; in the former case we force mathematics to fit into the real world.
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4.4.1 Nearly pure torsion of compressible cylinder

Let us consider a compressible cylinder of radius A subjected to the torsional
deformation (4.1). We refer to the pure torsion of the cylindrical shaft as the
“primary deformation”, while by “secondary deformation” we mean the radial
displacement r(R). This means

max
R∈[0,A]

∣

∣

∣

∣

r(R)

R
− 1

∣

∣

∣

∣

≈ O(ǫ), (4.125)

or
√

I3 ≈ 1 for all R ∈ [0, A] and for any other parameters (αi for previous refer-
ence).

Now let us consider the classical Blatz-Ko material (2.40), with the strain energy
function

W =
µ

2

[(

I2

I3

− 3

)

+ 2(
√

I3 − 1)

]

, (4.126)

where µ is a constant, the initial shear modulus. This model is of the form
W = W (I2, I3) and it is well known (see Section 4.1.3) that for the class of mate-
rials described by the strain energy function given by (4.126), the isochoric simple
torsion deformation is controllable.

Let us consider a more general strain energy function than (4.126), i.e.

W = k(I1 − 3) +
µ

2

[(

I2

I3

− 3

)

+ 2(1 − 2k/µ)(
√

I3 − 1)

]

, (4.127)

where k and µ are constants. The strain energy function (4.127) differs from (4.126)
by a term linear in I1 and a null-Lagrangian term

√
I3 (see Haughton [53]) such

that the usual restrictions imposed by the normalization conditions are satisfied.
Clearly as k → 0 we recover (4.126) from (4.127).

The derivatives of the strain energy function (4.127) with respect to the invari-
ants are

W1 = k, W2 =
µ

2I3

, W3 =
µ

2

(

1 − 2k/µ√
I3

− I2

I2
3

)

. (4.128)

Now it is possible to evaluate via a suitable experiment the magnitude of the
parameter k and to decide if the assumption W1 = 0 is reasonable on the basis
of fitting the experimental data. If k = 0, then the model (4.127) reduces to
(4.126). Our point is that this model is so special that it is not possible to ensure
that the predictions of the mechanical response are not in contradiction with the
assumption k = 0.

To make this point more quantitative, the next step is to introduce the di-
mensionless independent variable ζ = R/A ∈ [0, 1], the dimensionless dependent
variable

F (ζ) = r/A (4.129)

and the quantities

τ̂ = Aτ, k̂ = k/µ. (4.130)
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The introduction of (4.128), evaluated for the specific deformation under consid-
eration, in (4.8), leads to the equation

k̂

(

ζF ′′

F
+

F ′

F
− τ̂ 2ζ − 1

ζ

)

+
3

2

ζF ′′

FF ′4
+

ζ3

2F 4
− 1

2FF ′3
= 0. (4.131)

(Here F ′ = dF/dζ). Moreover, from (4.5)1, the dimensionless radial stress compo-
nent associated with the deformation, for the model (4.127) is given by

T̂ζζ(ζ) = 1 − 2k̂ + 2k̂
F ′2

√
I3

− F ′−2

√
I3

. (4.132)

Therefore, for a solid circular cylinder initially of radius A subjected to end
torques only, the boundary value problem of interest here is given by equation
(4.131), subject to the conditions T̂ζζ(1) = 0 (i.e. Trr(A) = 0) and F (ζ) → 0 as
ζ → 0. We point out that the isochoric solution F (ζ) = ζ is controllable for the
model (4.127) if and only if k = 0 and in this case, T̂ζζ(1) = 0.

It seems unlikely that one can obtain an explicit exact solution for equation
(4.131), and even a numerical solution for the boundary value problem under in-
vestigation is not easy to obtain because the boundary condition on ζ = 1 is
nonlinear and of mixed type. For this reason, we consider an approximate O(k̂)
solution. A straighforward computation gives

F (ζ) ≈ ζ + k̂
τ̂ 2ζ

24

(

2ζ2 − 5
)

, (4.133)

and the O(k̂) volume approximation is

J ≈ 1 + V(τ̂ 2, ζ)k̂, (4.134)

where

V(τ̂ 2, ζ) =
(4ζ2 − 5)τ̂ 2

12

is the local variation of volume at order k̂. The maximum of this variation is

∣

∣V(τ̂ 2, 0)
∣

∣ =
5

12
τ̂ 2. (4.135)

Because equations (4.133) and (4.135) depend not only on k̂ but also on τ 2, and
because the two parameters are independent, it is clear that the approximation
k̂ = 0 may be not consistent.

Now, imagine that you are able to evaluate via an experiment the parameter
k̂ and that you discover that this parameter is small. It is clear that the exper-
imentally determined number may be never small enough to justify the model
corresponding to k̂ = 0 and only the modeller can choose to set k̂ = 0, or do other-
wise. Our computation shows that such an assumption might be dangerous under
certain circumstances. Indeed, while the limiting model for k̂ → 0 predicts that
during torsion the variation of volume is null, this is not always the case even for
very small k̂. To show this we generated pictures in 4.1, where two different coaxial
cylinders are considered to describe the situation evoked. The external cylinder
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is represented in the picture by only its external surface through a circumference
line of radius R = 1. It is the cylinder where no deformation occurs in the refer-
ence configuration. The dark circle stays in place for the cylinder in the current
configuration, after a torsional deformation (4.1) is imposed. Now it can be ap-
preciated, depending on the amount of torsion τ̂ imposed, how the radius reduces
with the law (4.133) and consequent change of volume occurs. In Figures 4.1 a-b)
the approximation value k̂ = 0.05 is considered, and the amounts of torsion are
τ̂ = 2 and τ̂ = 2.5 respectively. When a small value for k̂ is slightly increased to
k̂ = 0.1, the reduction of the radius for the deformed cylinder is more appreciated.
See Figures 4.1 c-d) where the parameters of the torsion are τ̂ = 2 and τ̂ = 2.5,
respectively. Clearly, the use of the model (4.126) is fraught with danger because
it is too special.

This situation is peculiar to all the constitutive models that are identified by
enforcing special mechanical behaviors via purely mathematical properties, such
as the controllability of isochoric deformations within the context of a theory to
describe the response of compressible bodies.

4.4.2 Nearly pure axial shear of compressible tube

Let us consider a compressible tube of internal and external radii A and B,
respectively, subjected to an axial axisymmetric shear deformation (4.67). Here,
in order to search for pure axial shear deformation, we refer the out-displacement
w(R) as “primary deformation” while we refer to the radial displacement r(R) as
“secondary field”. Similarly to the previous section, this means that

max
R∈[A,B]

∣

∣

∣

∣

r(R)

R
− 1

∣

∣

∣

∣

≈ O(ǫ),

or
√

I3 ≈ 1 for all R ∈ [A,B] and for any other parameters. Now let us consider
the classical Hadamard material (2.21), with strain energy function that we rewrite
here as

W = c1(I1 − 3) + k(I2 − 3) + H(I3), (4.136)

where c1 > 0 and k ≥ 0 are material constants. Clearly if k = 0, the model (4.136)
satisfies the necessary and sufficient condition (4.104) and the material will be
therefore capable of sustaining pure axial shear, for every function H(I3) satisfying
the normalization conditions on the strain energy (1.34) and (1.64).

The derivatives of the strain energy function (4.136) with respect to the invari-
ants are

W1 = c1, W2 = k, W3 = H ′(I3). (4.137)

Now it is possible to evaluate, via a suitable experiment, the magnitude of the
parameter k with respect to the parameter µ and to decide if the assumption
W2 = 0 is reasonable on the basis of fitting the experimental data. Let us consider
the model (2.23) proposed by Levinson and Burgess [79] as special case of strain
energy function (4.136),

W =
(µ

2
− k

)

(I1 − 3) + k(I2 − 3)

+ 1
2
(−2k + λ + µ) (I3 − 1) − (λ + 2µ)(

√

I3 − 1), (4.138)
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Figure 4.1: View of the transverse sections of two perturbed Blatz-Ko cylinder
(4.127): the first one is a cylinder in the reference configuration when no defor-
mation is applied (in the figure represents only its lateral surface through the
circumference line of radius R = 1), and the second one is a cylinder in the
current configuration when an amount of torsion is applied (in the figure, it is
represented by a meshed cylinder of radius (4.133)) for a) k̂ = 0.05, τ̂ = 2.0, b)
k̂ = 0.05, τ̂ = 2.5, c) k̂ = 0.1, τ̂ = 2.0, d) k̂ = 0.1, τ̂ = 2.5.

where λ and µ are the Lamé constants of linear elasticity. At k = 0 the model
(4.138) reduces to

W =
µ

2
(I1 − 3) +

1

2
(λ + µ) (I3 − 1) − (λ + 2µ)(

√

I3 − 1) (4.139)

which satisfies the necessary and sufficient condition to sustain pure axial shear.
In this last case (k = 0) it is easy to obtain the expression for the displacement
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w(R) and the stress field (see Section 4.2.3). The next step is to introduce the di-
mensionless independent variable ζ = R/B, the dimensionless dependent variables

F (ζ) = r/B, ŵ = w/B, (4.140)

and independent variables

η = A/B, k̂ = k/µ, λ̂ = λ/µ, (4.141)

K̂ = K/(Bµ), T̂ = T /µ, T̂0 = T0/µ,

so that η ≤ ζ ≤ 1. The derivatives of the strain energy (4.138) with respect to the
invariants are

W1 =
µ

2
− k, W2 = k, W3 = 1

2
(−2k + λ + µ) − λ + 2µ

2
√

I3

. (4.142)

The introduction of the dimensionless variables and of (4.142) evaluated for the
specific deformation under consideration in (4.79), leads to the equation

− 2k̂ζŵ′2F + ζF (−1 + (λ̂ + 1)F ′2)

− (λ̂ + 1)F 2(F ′ − ζF ′′) + ζ2(F ′ + ζF ′′) = 0, (4.143)

and in (4.77) leads to the equation

2kŵ′[F 2 − ζ2] + ζ(ζŵ′ − 2K̂) = 0. (4.144)

For k̂ = 0, we know that a solution for pure axial shear is F (ζ) = ζ. Here, we
consider an approximation O(k̂) solution, in the spirit of the previous section. Let
us assume that

F (ζ) = ζ + k̂g(ζ), (4.145)

where g is an unknown dimensionless function of ζ. The problem is to solve both
the equilibrium equations (4.143) and (4.144) for the unknowns F and ŵ such that
the following boundary conditions, equivalent to (4.68) and (4.69)1,

g(η) = 0, ŵ(η) = 0, T̂rr(1) = 0, (4.146)

are satisfied. Using (4.145) and (4.146)1 we obtain (at first order) the boundary
conditions that g must satisfy:

g(η) = 0, (λ + 2)g′(1) + λg(1) = 0. (4.147)

The approximation equilibrium equations (4.143) and (4.144) (at first order) be-
come

ζ
[

(λ̂ + 2)(g′ + ζg′′) − 2ŵ′2
]

− (λ̂ + 2)g = 0, (4.148)

and
1
2
ζŵ′ = K̂, (4.149)

respectively. The solution of (4.149) satisfying also the boundary condition ŵ(η) =
0 is given by

ŵ(η) = 2K̂ ln

(

ζ

η

)

. (4.150)
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Using (4.150) in (4.148), the equilibrium equation in the unknown g is given by

(λ̂ + 2)ζ[ζ(ζg′′ + g′) − g] − 8K̂2 = 0 (4.151)

from which we obtain

g(ζ) =
1 + ζ2

2ζ
d1 +

ζ2 − 1

2ζ
d2 − 2K̂2 1 + 2 ln ζ

(

λ̂ + 2
)

ζ
, (4.152)

where d1 and d2 are integration constants obtained by the boundary conditions
(4.147). From (4.78), making use of the solution (4.145), we obtain the value K̂ as

K̂ =
(λ̂ + 1 + η2)T̂0

(λ̂ + 1 + η2) +
[

(λ̂ + 1 + η2)[(λ̂ + 1 + η2) + 2k̂T̂ 2
0 (η2 − 1 − 2 ln η)]

]1/2

(4.153)
The O(k̂) volume change approximation is

J ≈ 1 + k̂T̂ 2
0

2ζ2 log η + (λ̂ + 2)ζ2 − 1 − η2 − λ̂

(λ̂ + 2)(λ̂ + 1 + η2)ζ2
. (4.154)

It is interesting to study the behaviour of J when ζ → η, because it attains the
maximum of this variation there,

J(η) ≈ 1 + k̂T̂ 2
0

2η2 log η + (λ̂ + 1)η2 − 1 − λ̂

(λ̂ + 2)(λ̂ + 1 + η2)η2
. (4.155)

Because η < 1 is arbitrary, if we consider an approximation of J(η) for small η = δ,
we obtain that

J(δ) ≈ 1 − k̂
T̂ 2

0

(λ̂ + 2)δ2
. (4.156)

Since (4.156) depends not only on k̂ but also on the square of the traction T̂ 2
0 ,

and because the two parameters are independent, it is clear that here as in the
previous example, the approximation k̂ = 0 may not be consistent. For example,
if we are able to evaluate via an experiment the parameter k̂ and we discover that
this parameter is small, say k̂ = 0.01, then we may in our upcoming numerical
simulations take A = B/10, so that η = 0.1, and assume λ̂ = 1 of the same
magnitude of µ. After these assumptions, the formula (4.156) becomes

J(δ) ≈ 1 − 1

3
T̂ 2

0 , (4.157)

and cleary we can imagine that the isochoric assumption J = 1 might be very
dangerous when the magnitude of the traction |T̂0| moves away from zero (see
Figure (4.2)), because the dependence is quadratic5.

5The formula (4.157) is a good approximation when small k̂, δ and T̂0 are considered, to avoid
zero or negative volume variation.
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Figure 4.2: Plot of J(δ) when the assumption k̂ = 0.01, δ = 0.1, λ̂ = 1 (see
formula (4.157)) against T̂0 running from zero (J = 1) to 1.5 (J ≈ 0.25).

4.4.3 Another example: transverse and longitudinal waves

Another important example emphasizing that if we ignore the full scope of the
deformation, we may be misguided and we may miss real and interesting phenom-
ena, is given by the propagation of longitudinal and transverse waves.

Introducing the Cartesian coordinates (X1, X2, X3) in the undeformed config-
uration and the Cartesian coordinates (x1, x2, x3) in the current configuration, we
consider the motion given by

x1 = u(X1, t), x2 = X2 + v(X1, t), x3 = X3, (4.158)

where the longitudinal wave u and the transverse wave v must be determined from
the balance equation. The principal invariants: I1, I2 and I3, are given by

I1 = 2 + u2
X1

+ v2
X1

, I2 = 1 + 2u2
X1

+ v2
X1

, I3 = u2
X1

. (4.159)

The equations of motion (1.24) in the absence of body forces, reduce to the two
scalar equations

ρr
∂2u

∂t2
=

∂

∂X1

[2 (W1 + 2W2 + W3) uX1
] , (4.160)

ρr
∂2v

∂t2
=

∂

∂X1

[2 (W1 + W2) vX1
] .

Here the strain energy W is a function of u2
X1

and v2
X1

.
We remark that in the linearized limit, (4.160) reduces to the classical uncoupled

systems of linear wave equations (Atkin and Fox [4]).
If we consider the case u(X1, t) ≡ X1, equations (4.160) reduce, in the general

case, to an overdetermined system of two differential equations in the single un-
known v. Therefore it seems, at least at first sight, that it is not possible to ensure
the existence of a transverse wave in the nonlinear theory for any material within
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the constitutive class (1.36). It is possible that for special classes of materials,
this overdetermined system may have a solution. For example this is the case for
Hadamard materials (2.21). In the case of Hadamard materials, because u ≡ X1

and I3 = 1, we find that (4.160) reduces

ρr
∂2v

∂t2
= µ

∂2v

∂X2
1

. (4.161)

In this case, the system is compatible and the transverse wave solution may be
computed by solving a linear differential equation, as in the linearized theory of
elasticity.

Now let us consider for the Hadamard material the case where the longitudinal
wave u(X1, t) is of order ǫ, where |ǫ| << 1. Then we consider the model (2.23),

H(I3) = (λ + µ) (I3 − 1) − (λ + 2µ)
(

√

I3 − 1
)

, (4.162)

proposed by Levinson and Burgess [79]. Now equations (4.160) become

ρr
∂2u

∂t2
= (λ + 2µ)

∂2u

∂X2
1

, ρr
∂2v

∂t2
= µ

∂2v

∂X2
1

. (4.163)

In this case we find that the equations are the same as in the linearized theory:
they are uncoupled.

We take a further step and we consider a small coupling, i.e. we modify the
constitutive equation (2.21) to be

W = c1(I1 − 3) + c2(I2 − 3) + (λ + µ) (I3 − 1)

− (λ + 2µ)
(

√

I3 − 1
)

+ kI3(I1 − I3 − 2), (4.164)

where k is the coupling parameter and

c1 =
1

2
(λ + 2µ − 4k), c2 =

1

2
(2k − λ − µ). (4.165)

In this case we compute

ρr
∂2u

∂t2
= (λ + 2µ)

∂2u

∂X2
1

+ 2k
∂

∂X1

(

v2
X1

uX1

)

, (4.166)

and

ρr
∂2v

∂t2
= (µ − 2k)

∂2v

∂X2
1

+ 2k
∂

∂X1

(

u2
X1

vX1

)

. (4.167)

Clearly the term ∂(u2
X1

vX1
)/∂X1 in the right hand side of (4.167) may be (at

least at first sight) ignored because the amplitude u is small. This means that
we may consider the system of equations (4.166) and (4.167) as being decoupled.
This is indeed a way to justify the Hadamard material (2.21), which is a model
predicting an exact decoupling. As we have already remarked, any experimental
determination of the coupling k may lead to k being small but never zero.
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To make the idea rigorous, we must (at least) require that, given a set of bound-
ary conditions (for example u = v = 0 at X1 = 0 and L), the initial condition is
such that u(X1, 0) ≈ O(ǫn) with suitable n ≥ 1 and that we have a suitable a priori
bound on the solution such that for any time we ensure u(X1, t) ≈ O(ǫ). Then, if
this a priori bound exists, the initial conditions satisfy the requirements and when
k is small it is possible to consider the transverse waves as being decoupled from
the longitudinal waves.

The point is that it is clear from the structure of the equations that this bound
cannot exist for all the admissible range of parameters. Let k ≈ O(ǫ). When
the longitudinal motion is small, a better approximation than the linear one is to
neglect the term 2k∂X1

(

u2
X1

vX1

)

in (4.167) (which is O(ǫ3)), but to maintain the
coupling term in (4.166) (which is O(ǫ2)). In this case (4.167) is a classical linear
wave equation; introducing c2

T = (µ− 2k)/ρr this equation admits solutions of the
usual form

v(X1, t) =
∞

∑

n=1

[

An cos(kT
n t) + Bn sin(kT

n t)
]

sin(nπX1/L),

where

kT
n = nπcT /L (4.168)

is the transverse wave number of the nth−mode and An, Bn are integration con-
stants such that the initial condition u(X1, 0) ≈ O(ǫn) is verified. If we intro-
duce this solution for v(X1, t) into (4.166) we obtain for u(X1, t) a linear but
non-autonomous equation for which is possible to search for solutions in the form

u(X1, t) =
∞

∑

n=1

ηn(t) sin(nπX1/L),

where ηn(t) are unspecified functions of t. Using standard methods of nonlinear
oscillations (Nayfeh and Mook [89]) we obtain a reduction of the equations to an in-
finite system of coupled ordinary differential equations in the unknowns ηn. These
equations are non-autonomous and they display autoparametric resonance phe-
nomena for some values of the various parameters. Therefore, an a priori bound is
impossible. This means that it does not matter how small the longitudinal motions
are, because after a certain time their amplitude cannot be neglected and a full
coupling between transverse and longitudinal motions must be considered. There-
fore, the Hadamard model is much too special to be considered as a reasonable
idealization of real elastic bodies.

Phenomena of this kind are quite common in classical mechanics. For example
in the framework of the elementary and classical theory for holonomic systems, it
is well known that unstable normal modes may not contribute to the approximate
linear theory. This happens for modes that are “latent” at the initial time. Nev-
ertheless, the higher orders neglected in the Lagrangian can awaken these latent
unstable modes, and bring the system away from equilibrium6.

6A simple and clear example of a mechanical system displaying wake-up of latent modes is
reported in page 133 of Biscari et al. [16].
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Notes

Isochoric deformations play on important role in solid mechanics and here we
have appealed to them to illustrate our thesis in the context of nonlinear elasticity.
To simplify the exposition, we have only considered the theory of unconstrained
nonlinear isotropic elasticity. But our remarks are completely general and apply
(with some modifications) in general to the use of semi-inverse methods in con-
tinuum mechanics. For example Jiang and Beatty [65] find also necessary and
sufficient conditions on the strain energy function for homogeneous and compress-
ible, anisotropic hyperelastic materials to sustain controllable, axisymmetric helical
shear deformations. Thus we think that one needs to exercise a great deal of pru-
dence in ensuring that the results obtained by using the semi-inverse method make
sense.


