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Abstract Aims/hypothesis: In the present study, we in-
vestigated the consequences of adipose tissue lipolytic
inhibition on skeletal muscle substrate use in type 2 dia-
betic patients. Materials and methods: We studied ten
type 2 diabetic patients under the following conditions:
(1) at rest; (2) during 60 min of cycling exercise at 50% of
maximal workload capacity and subsequent recovery. Stud-
ies were done under normal, fasting conditions (control
trial: CON) and following administration of a nicotinic
acid analogue (low plasma non-esterified fatty acid trial:
LFA). Continuous [U-13C]palmitate and [6,6 -2H2]glucose
infusions were applied to quantify plasma NEFA and glu-
cose oxidation rates, and to estimate intramuscular tri-
acylglycerol (IMTG) and glycogen use. Muscle biopsies
were collected before and after exercise to determine net
changes in lipid and glycogen content specific to muscle
fibre type. Results: Following administration of the nic-
otinic acid analogue (Acipimox), the plasma NEFA rate
of appearance was effectively reduced, resulting in lower
NEFA concentrations in the LFA trial (p<0.001). Plasma
NEFA oxidation rates were substantially reduced at rest,
during exercise and subsequent recovery in the LFA trial.

The lower plasma NEFA oxidation rates were compen-
sated by an increase in IMTG and endogenous carbohy-
drate use (p<0.05). Plasma glucose disposal rates did not
differ between trials. In accordance with the tracer data,
a greater net decline in type I muscle fibre lipid content
was observed following exercise in the LFA trial (p<0.05).
Conclusions/interpretation: This study shows that plasma
NEFA availability regulates IMTG use, and that adipose
tissue lipolytic inhibition, in combination with exercise,
could be an effective means of augmenting intramuscular
lipid and glycogen use in type 2 diabetic patients in an
overnight fasted state.

Keywords Acipimox . IMCL . IMTG . Insulin
sensitivity . Skeletal muscle

Abbreviations CON: control trial . FA: fatty acids .
HOMA-IR: homeostasis model assessment insulin
resistance index . IMTG: intramyocellular triacylglycerol .
LFA: low plasma fatty acid trial . Ra: rate of appearance .
Rd: rate of disappearance . Rox: rate of oxidation . TG:
triacylglycerol . VO2 max : maximal oxygen uptake capacity .
Wmax: maximal workload

Introduction

Numerous studies have reported the association between
elevated plasma NEFA concentrations, intramyocellular
triacylglycerol (IMTG, often also abbreviated to IMCL)
accumulation and the development of insulin resistance
and/or type 2 diabetes [1–7]. The Randle (glucose–fatty
acid) cycle has often been used to explain the mechanism
behind skeletal muscle insulin resistance induced by fatty
acid (FA) [8]. More recent insights from various lipid in-
fusion studies have led to an alternative mechanism [9–13].
The latter suggests that elevated NEFA delivery and/or
impaired FA oxidation result in intramyocellular accu-
mulation of triacylglycerol (TG) and FA metabolites (such
as fatty acyl-CoA, ceramides and diacylglycerol), which
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induce defects in the insulin signalling cascade, causing
skeletal muscle insulin resistance [9, 10, 13–17]. Insulin
resistance can subsequently lead to development of the
hyperglycaemic and/or hyperinsulinaemic state that is as-
sociated with type 2 diabetes. The latter is accompanied
by major disturbances in skeletal muscle substrate me-
tabolism [18, 19], which further stimulate IMTG accre-
tion at the expense of IMTG mobilisation and subsequent
oxidation [20].

Therefore, excess IMTG accretion in sedentary, obese
and/or type 2 diabetic patients is the result of a structural
imbalance between NEFA uptake, IMTG deposition and
its subsequent mobilisation and/or oxidation. Recent data
indicate that this imbalance, and not the actual size or
intramyocellular distribution of the IMTG pool, is re-
sponsible for the development of skeletal muscle insulin
resistance [21–23]. It has been speculated that an elevated
IMTG utilisation rate will prevent excess accumulation of
intramyocellular TG and/or FA (metabolites). In addition,
a greater IMTG turnover rate may reduce the degree of
intramyocellular lipid peroxidation [17], due to a de-
creased residence time of the lipid deposits. The turnover
of the IMTG pool should, therefore, form a major ther-
apeutic target in the prevention and/or treatment of skel-
etal muscle insulin resistance, and interventions should be
developed that stimulate IMTG use [24].

Exercise has been shown to augment IMTG use in
healthy, fit males and probably represents an effective
way to prevent and/or reduce excess IMTG accretion [24,
25]. Recently, we observed that even a single bout of
endurance exercise can reduce type I muscle fibre lipid
content by more than 60% in trained men [24, 25]. In the
same study, we observed a progressive decline in IMTG
oxidation rate over time during exercise, which was as-
sociated with a concomitant increase in plasma NEFA
concentration [25]. The latter supported the contention
that elevated plasma NEFA availability suppresses IMTG
mobilisation [25–28]. Because obesity and/or type 2 di-
abetes are associated with elevated plasma NEFA con-
centrations [13, 29], it has been questioned whether
IMTG stores are readily available as a substrate source in
type 2 diabetic patients [24, 25]. Therefore, the first aim
of the present study was to quantify IMTG use at rest,
during exercise and subsequent recovery in type 2 dia-
betic patients. Various studies [24, 30–33] have reported
that pharmacological inhibition of adipose tissue lipoly-
sis can stimulate intramuscular lipid and/or glycogen
use. Based on those findings, we questioned whether such
an intervention could be used to lower plasma NEFA
availability and increase the oxidation rate of the intra-
muscular lipid deposits at rest, during exercise and/or
post-exercise recovery in type 2 diabetic patients.

This study provides novel insight into the role of plas-
ma NEFA availability in modulating IMTG use in type 2
diabetic patients: It also suggests that adipose tissue li-
polytic inhibition could be an effective means of aug-
menting intramuscular lipid and glycogen use.

Subjects, materials and methods

Subjects

Ten sedentary, overweight subjects, who had been di-
agnosed with type 2 diabetes for over 5 years, partici-
pated in this study (Table 1). All subjects were using oral
blood-glucose-lowering medication (metformin with or
without a sulphonylurea derivative). Type 2 diabetic sta-
tus was verified with an OGTT according to WHO cri-
teria [34]. In addition, insulin resistance was estimated
using the homeostasis model assessment for insulin re-
sistance index (HOMA-IR) [35]. Medication was with-
held for 24 h prior to the experimental trials. Subjects
were informed about the nature and risks of the ex-
perimental procedures before their written informed con-
sent was obtained. This study was approved by the local
Medical Ethical Committee.

Pre-testing

Maximal workload (Wmax) and oxygen uptake capacity
(VO2 max) were measured on a cycle ergometer (Lode
Excalibur, Groningen, the Netherlands) during an incre-
mental exercise test. Body composition was assessed using
the hydrostatic weighing method. Body fat percentage
was calculated using Siri’s equation [36].

Diet and activity prior to testing

All subjects maintained normal physical activity patterns
throughout the experimental period. In addition, they filled
out a food intake diary for 2 days prior to the first trial

Table 1 Subjects’ characteristics (n=10)

Age (years) 60.0±2.1
Height (m) 1.79±0.02
Body mass (kg) 90.6±3.0
BMI (kg/m2) 28.4±1.0
Body fat percentage (%) 28.9±1.8
Fat free mass (kg) 64.0±1.9
Basal plasma glucose (mmol/l) 9.4±0.6
Plasma glucose120 min (mmol/l) 16.7±1.2
Basal plasma insulin (mU/l) 9.2±1.0
HOMA-IR (mmol mU−1 l−1) 3.6±0.4
HbA1c (%) 7.3±0.3
VO2 max (l/min) 2.9±0.2
Wmax (W) 200±15
Maximal heart rate (bpm) 161±4
Diagnosed with diabetes (years) 7.5±1

Body mass index (BMI) was calculated by dividing body mass by
the square of the height (m). Insulin resistance was estimated by the
homeostasis model assessment (HOMA-IR), which is calculated by
dividing the product of basal plasma glucose and insulin
concentrations by 22.5
Data represent means±SEM
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in order to keep their dietary intake as identical as pos-
sible prior to the other trials. Dietary analyses showed a
daily energy intake of 8.4±0.7 MJ/day, with 55±1, 29±1
and 16±1% of energy intake derived from carbohydrate,
fat and protein respectively. The evening before each trial,
subjects received a standardised meal (41.5 kJ/kg of body
weight; containing 58, 31 and 11% energy carbohydrate,
fat and protein, respectively).

Experimental trials

Each subject performed three trials, separated by a 1-week
interval. Each trial consisted of 90 min resting measure-
ments, followed by 60 min cycling exercise (50% Wmax)
and 120 min of recovery. In the two main trials, a [U-13C]
palmitate and [6,6-2H2]glucose tracer were infused with
breath, blood and muscle samples being collected at regular
intervals. In the LFA trial, plasma NEFA availability was
reduced by oral administration of a peripheral lipolytic
inhibitor (Acipimox). In the CON trial a placebo was
provided. A third trial was performed to determine the
acetate recovery factor [37].

Protocol

After an overnight fast, subjects arrived at the lab at 08.00
hours, either by car or public transportation. After 30 min
of supine rest, a percutaneous muscle biopsy was taken
from the vastus lateralis muscle. A Teflon catheter was
inserted into an antecubital vein of one arm for blood
sampling; another catheter was inserted in the contralat-
eral arm for isotope infusion. A resting blood and expired
breath sample were collected (between 08.30 and 09.00
hours), after which an oral dose of 250 mg Acipimox or
a placebo was administered (t=0 min). Exactly 30 min
later (t=30 min), subjects were given a single intrave-
nous dose of NaH13CO3 (0.06375 mg/kg), followed by
a [6,6-2H2]glucose prime (13.5 μmol/kg). Thereafter, a
continuous infusion of [6,6-2H2]glucose (0.3 μmol kg−1

min−1) and [U-13C]palmitate (0.01 μmol kg−1 min−1) (or
[1,2-13C]acetate (0.08 μmol kg−1 min−1) was started via
a calibrated pump (IVAC, San Diego, CA, USA). At
t=150 min, another dose of 250 mg Acipimox or a
placebo was administered. At t=120 min, subjects start-
ed to exercise at 50% Wmax for a 60-min period. While
at rest,VO2 andVCO2 weremeasured continuously (Oxycon-
β; Mijnhart, Bunnik, the Netherlands), during exercise VO2

and VCO2 were measured for 5 min every 15 min before
sampling of blood and expired breath. Immediately after
cessation of exercise, a second muscle biopsy was taken,
after which the subjects rested in a supine position. VO2

and VCO2 were measured continuously during the second
hour of post-exercise recovery (t=240–300 min).

Acipimox administration

Both at t=0 and 150 min, subjects were given 250 mg
Acipimox (Nedios, Byk, Zwanenburg, the Netherlands)
or a placebo. Acipimox is a potent adipose tissue lipolytic
inhibitor and is generally prescribed for the treatment of
hyperlipidaemia. Side-effects of Acipimox include: flush-
ing, skin rashes, gastrointestinal complaints and head-
aches. In the present study, six out of ten subjects showed
flushing (redness of the skin; predominantly in the face
and on the back) about 30 min after ingesting the first
dose. During exercise these effects were no longer dis-
tinguishable from the redness/flushing secondary to in-
creased physical activity, as observed in the CON trial.
Other side-effects were not reported. Subjects did not
report a difference in perceived exertion between trials.
In accordance, mean heart rate values during exercise,
measured with a telemetric heart rate monitor (Polar
Vantage XL; Polar, Kempele, Finland), did not differ
between trials and averaged 116±4, 121±3 and 122±4
beats per min in the LFA, CON and acetate recovery
trial, respectively.

Blood and breath sample analysis

Blood samples (7 ml) were collected in EDTA- contain-
ing tubes and centrifuged at 1,000×g for 10 min at 4°C.
Aliquots of plasma were frozen immediately in liquid
nirogen and stored at −80°C. Plasma glucose (Roche,
Basel, Switzerland), lactate, NEFA (Wako Chemicals,
Neuss, Germany), glycerol (Roche Diagnostics, India-
napolis, IN, USA) and triglyceride (Sigma Diagnostics, St
Louis, MO, USA) concentrations were analysed with a
COBAS semiautomatic analyser (Roche). Plasma insulin
was measured by radioimmunoassay (Linco, St Charles,
MO, USA). Blood HbA1c content was analysed by high-
performance liquid chromatography (Bio-Rad Diamat,
Munich, Germany). Expired breath samples were analysed
for 13C/12C ratio by gas chromatography continuous-flow
isotope ratio mass spectrometry (MAT 252; Finnigan,
Bremen, Germany). To determine plasma palmitate and
NEFA kinetics, NEFA were extracted, isolated by thin-
layer chromatography and derivatised to their methyl
esters. Palmitate concentration was determined using ana-
lytical gas chromatography with flame ionisation detection
using heptadecanoic acid as internal standard and com-
prised 21.3±0.7% of total NEFA. Isotope tracer: trace
ratios (TTR) of [U-13C] palmitate were determined using
gas chromatography combustion isotope ratio mass spec-
trometry (Finnigan MAT 252). Following derivatisation,
plasma [6,6-2H2]glucose enrichment was determined by
electron ionisation gas chromatography-mass spectrome-
try (Finnigan). Palmitate, glucose and acetate tracer con-
centrations in the infusates averaged 1.06±0.01, 34.5±0.8
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and 4.94±0.02 mmol/l, respectively. Therefore, the exact
tracer infusion rates averaged 9.1±0.1, 277±2 and 75±1
nmol kg−1 min−1, respectively.

Calculations

From respiratory measurements, total fat and carbohydrate
oxidation rates were calculated using the non-protein res-
piratory quotient [38]:

Fat oxidation rate ¼ 1:695 VO2 � 1:701 VCO2 (1)

Carbohydrate oxidation rate ¼ 4:585 VCO2� 3:226 VO2 (2)

with VO2 and VCO2 in l/min and oxidation rates in g/min.
Rate of appearance (Ra) and disappearance (Rd) of pal-
mitate and glucose were calculated using the single-pool
non-steady-state Steele equations adapted for stable isotope
methodology [39]:

Ra ¼
F � V C2 þ C1ð Þ�2� �

E2 � E1ð Þ� t2 � t1ð Þ� �

E2 þ E1ð Þ�2 (3)

Rd ¼ Ra � V � C2 � C1

t2 � t1

��
(4)

where F is the infusion rate (μmol kg−1 min−1); V=distri-
bution volume for palmitate or glucose (40 and 160 ml/kg,
respectively); C1 and C2 are the palmitate or glucose con-
centrations (mmol/l) at time 1(t1) and 2(t2), respectively;
and E2 and E1 are the plasma palmitate or glucose
enrichments (TTR) at time 1 and 2, respectively. 13CO2

production (Pr13CO2; mol/min) from the infused palmitate
tracer was calculated as:

Pr13CO2 ¼ TTRCO2 � VCO2ð Þ� k � Arð Þ (5)

where TTRCO2 is the breath 13C/12C ratio at a given time
point; VCO2 is the carbon dioxide production (l/min); k is
the volume of 1 mol of CO2 (22.4 l/mol); and Ar is the
fractional 13C label recovery in breath CO2, observed after
the infusion of labelled acetate [37] and calculated as:

Ar ¼ TTRCO2 � VCO2ð Þ� k � 2Fð Þ (6)

where F is infusion rate of [1,2-13C] acetate (mol/min).
Plasma palmitate oxidation rate (Rox) (mol/min) can
subsequently be calculated as:

Rox palmitate ¼ Rd palmitate ðPr13CO2=F � 16Þ (7)

where Rd palmitate is the rate of disappearance of pal-
mitate (mol/min); F is the palmitate infusion rate (mol/
min); and 16 is the number of carbon atoms in palmitate.
Plasma NEFA oxidation is calculated by dividing the
plasma palmitate oxidation rate by the fractional con-
tribution of palmitate to total NEFA concentration at each
time point. Muscle (and lipoprotein)-derived TG oxida-
tion is estimated by calculating the difference between
plasma NEFA and total fat oxidation rate.

In a previous study [40] it has been shown that during
exercise (50%Wmax) plasma glucose Rd equals its Rox (96–
100%). Therefore, plasma glucose oxidation rate during
exercise is calculated as:

Rox plasma glucose ¼ Rd plasma glucose (8)

Muscle glycogen oxidation was calculated by subtracting
plasma glucose oxidation from total carbohydrate oxida-
tion. As plasma glucose Rd does not match Rox during
resting conditions, plasma glucose oxidation rates cannot
be accurately calculated at rest and/or post-exercise re-
covery when using a [6,6-2H2]glucose tracer [40].

Muscle sample analyses

Muscle samples were dissected, freed from any visible
non-muscle material and frozen in nitrogen-cooled iso-
pentane and embedded in Tissue-Tek (Sakura, Zoeter-
woude, the Netherlands). Multiple serial sections (5 μm)
were thaw-mounted together on uncoated, pre-cleaned
glass slides for each subject. To determine muscle fibre
type specific IMTG content, cross-sections were stained
with oil red O together with immunolabelled cellular con-
stituents using a previously described protocol [23, 25, 41].
For each muscle biopsy, a total of 84±4 muscle fibres were
analysed for lipid content. To permit quantification of in-
tramyocellular glycogen, we used the modified PAS stain
[42]. For each muscle biopsy 80±4 muscle fibres were
analysed for glycogen content. Large overviews contain-
ing 447±31 fibres per subject were used to determine fibre
type composition.

Statistics

All data are expressed as means±SEM. To compare tracer
kinetics and/or plasma metabolite concentrations over time
between trials, a two-way repeated measures analysis of
variance was applied. A Scheffé’s post hoc test was ap-
plied in case of a significant F-ratio to locate specific dif-
ferences. For non-time-dependent variables, a two-tailed
Student’s t-test for paired observations was used. Sig-
nificance was set at the 0.05 level of confidence.
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Results

Tracer kinetics

Plasma NEFA and glucose concentrations at rest, during
exercise and recovery under normal, fasting conditions
(CON) and reduced plasma NEFA availability (LFA) are

shown in Fig. 1. Plasma palmitate Ra, Rd and Rox increased
during exercise in the CON trial (p<0.01), whereas in the
LFA trial Ra and Rd remained stable (Fig. 2a). In both trials,
palmitate Ra, Rd and Rox were greater during exercise than
resting values (p<0.05; Table 2). At all stages, plasma
palmitate Ra, Rd and Rox were substantially lower in the
LFA than in the CON trial (p<0.01). Plasma glucose Ra

Fig. 1 Plasma NEFA, TG,
glycerol, glucose, lactate and
insulin concentrations at rest
(t=0–120 min), during exercise
(t=120–180 min) and post-exer-
cise recovery (t=180–300 min)
in both the CON (open circles)
and LFA (closed circles) trial.
Data represent means±SEM;
*p<0.05 for difference
between trials
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and Rd increased over time during exercise in both trials
(Fig. 2b; p<0.01). In the CON trial, plasma glucose Ra was
significantly higher during exercise than the resting values
(Table 2). In both trials, plasma glucose Rd was sig-
nificantly higher during exercise than the resting values

(Table 2). During recovery, glucose Ra and Rd were re-
duced compared with basal values in both trials (p<0.05).
No differences in glucose kinetics were observed between
trials.

Substrate utilisation

Energy expenditure and substrate use at rest are illustrat-
ed in Fig. 3a. Energy expenditure was similar between
trials and averaged 5.75±0.22 and 5.76±0.27 kJ/min in the
CON and LFA trial, respectively. However, substrate
source utilisation rates differed significantly between tri-
als (p<0.05). Total fat oxidation averaged 0.11±0.01 and
0.09±0.01 g/min, contributing 77±2 and 64±5% to total
energy expenditure, in the CON and LFA trial, respec-
tively (p<0.05). The difference in total fat oxidation was
accounted for by a 38±6% reduction in plasma NEFA ox-
idation rate in the LFA compared to the CON trial (0.07±
0.01 vs 0.11±0.01 g/min, respectively; p<0.01). In contrast,
the use of TG sources was substantially augmented in
the LFA trial (0.03±0.01 g/min), compared to the neg-
ligible IMTG use in the CON trial (0.00±0.01 g/min;
p<0.01). Carbohydrate oxidation rates were significantly

Fig. 2 Plasma palmitate rate of appearance (Ra), disappearance
(Rd) and oxidation (Rox) (a) and plasma glucose Ra and Rd (b) at
rest (t=60–120 min), during exercise (t=120–180 min) and
subsequent recovery (t=180–300 min) under normal, fasting con-
ditions (white symbols; CON) and following administration of a
peripheral lipolytic inhibitor (black symbols; LFA). Plasma palmi-
tate Ra (open triangles), Rd (open squares) and Rox (open circles)
significantly increased during exercise in the CON trial (p<0.001),
whereas in the LFA trial Ra and Rd remained stable over time.
Palmitate Ra, Rd and Rox were substantially lower at rest, during
exercise and recovery in the LFA vs the CON trial (p<0.001).
Plasma glucose Ra and Rd increased during exercise in both trials
(p<0.001). Plasma palmitate Ra in the LFA trial (closed triangles)
is nearly identical to palmitate Rd (closed squares) and symbols
overlay. Data represent means±SEM; ***p<0.001 for difference in
Ra, Rd and Rox between trials

Table 2 Tracer kinetics at rest, during exercise and recovery

Control trial
(CON)

Low NEFA
availability (LFA)

Rest
Ra palmitate 2.46±0.18 1.27±0.12a

Rd palmitate 2.45±0.18 1.27±0.11a

Rox palmitate 1.01±0.10 0.52±0.05a

% Rdox palmitate 41.1±1.90 41.0±1.63
Ra glucose 15.5±0.8 15.4±1.4
Rd glucose 16.4±0.8 16.4±1.4
Exercise
Ra palmitate 3.71±0.35b 1.44±0.11ab

Rd palmitate 3.64±0.34b 1.44±0.11ab

Rox palmitate 2.82±0.22b 1.13±0.10ab

% Rdox palmitate 79.3±3.82b 78.0±2.91b

Ra glucose 18.7±1.0b 18.2±1.1
Rd glucose 21.5±1.1b 22.8±1.5b

Recovery
Ra palmitate 2.22±0.15 0.92±0.05ab

Rd palmitate 2.22±0.15 0.89±0.04ab

Rox palmitate 1.03±0.08 0.41±0.03ab

% Rdox palmitate 46.5±1.66b 45.2±2.23b

Ra glucose 10.1±0.5b 10.8±0.4b

Rd glucose 11.6±0.8b 12.2±0.4b

Tracer kinetics as calculated at rest (t=90–120 min), during exercise
at 50% Wmax (t=120–180 min) and during subsequent recovery
(t=240–300 min)
Values are expressed as means±SEM (n=10)
Ra rate of appearance, Rd rate of disappearance, Rox rate of oxidation
(μmol kg−1 min−1), % Rdox percentage of Rd palmitate oxidised (%)
ap<0.01 for difference between trials
bp<0.05 for difference from resting values
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higher in the LFA vs the CON trial (0.13±0.02 vs 0.08±
0.01 g/min, respectively; p<0.01).

In the subsequent exercise trial, the applied 50% Wmax

workload averaged 100±7 W (63±2% VO2 max ). Substrate
source utilisation rates are illustrated in Fig. 3b. Energy
expenditure during exercise averaged 38.5±2.2 and 38.3±
2.3 kJ/min in the CON and LFA trial, respectively. Total fat
oxidation rate averaged 0.40±0.04 and 0.33±0.05 g/min,
representing 42±3 and 34±4% of total energy expenditure

in the CON and LFA trial, respectively (p<0.05). In the
CON trial, plasma NEFA oxidation provided 34± 3% of
total energy expenditure, with TG sources contributing
only 8±3%. In the LFA trial, plasma NEFA oxidation was
substantially impaired, providing only 16± 1%. In con-
trast, TG use was significantly augmented, providing as
much as 18±5% of total energy expenditure in the LFA
trial. Total carbohydrate oxidation rates averaged 1.37±
0.09 and 1.54±0.09 g/min in the CON and LFA trial, re-
spectively (p<0.01). The greater endogenous carbohydrate
use in the LFA trial was attributed to a greater reliance on
muscle glycogen (0.98±0.08 and 1.13± 0.10 g/min, re-
spectively; p<0.05), as plasma glucose oxidation rates did
not differ between trials (0.36±0.03 and 0.37±0.03 g/min,
respectively).

Energy expenditure and substrate use during post-
exercise recovery are illustrated in Fig. 3c. Energy ex-
penditure was similar to pre-exercise resting values and
averaged 5.86±0.22 and 5.70±0.26 kJ/min in the CON
and LFA trial respectively. In the CON trial, fat oxida-
tion rates were significantly greater during recovery than
during pre-exercise rest (0.13±0.01 vs 0.11±0.01 g/min,
respectively; p<0.001), which was predominantly attrib-
uted to a greater use of TG sources (p=0.06). The greater
total fat oxidation rate during recovery was matched
by reduced endogenous carbohydrate use (0.04±0.01 vs
0.08±0.01 g/min; p<0.001). In the LFA trial, fat and car-
bohydrate oxidation rates were similar during recovery
compared to pre-exercise, resting values. However, during
recovery plasma NEFA oxidation rates were substantial-
ly lower than pre-exercise resting values (p<0.05). The
lower plasma NEFA oxidation rates were compensated
by a greater IMTG use (p=0.05). Between trials, plasma
NEFA oxidation rates were substantially lower in the LFA
than in the CON trial (0.05±0.004 vs 0.11±0.008 g/min,
respectively; p<0.001). These lower plasma NEFA oxi-
dation rates were compensated by a greater muscle (and
lipoprotein)-derived TG use (0.040±0.009 vs 0.014±
0.006 g/min, respectively; p<0.01) as well as total en-
dogenous carbohydrate use (0.12±0.02 vs 0.04±0.01, re-
spectively; p<0.01).

Plasma metabolite concentrations

Plasma metabolite concentrations are shown in Fig. 1. In
the CON trial, plasma NEFA concentrations increased
during exercise, reaching peak levels 15 min after cessation
of exercise. Thereafter, NEFA concentrations declined to
near pre-exercise resting levels. In contrast, in the LFA
trial, plasma NEFA concentrations decreased after Acipi-
mox administration and remained well below baseline
values (p<0.001). Plasma TG gradually decreased during
exercise in both trials (p<0.001). Plasma glycerol concen-
trations increased significantly during exercise and de-
creased during recovery in both trials (p<0.001). Glycerol
concentrations were significantly lower in the LFA than
in the CON trial (p<0.001). Plasma glucose concentra-

Fig. 3 Substrate source utilisation (in kJ/min) at rest (t=90–120 min)
(a), during moderate intensity exercise (t=120–180 min) (b) and
subsequent post-exercise recovery (t=240–300 min) (c) in the CON
and LFA trial, respectively. Dark shading (a–c), plasma NEFA; white
(a–c), muscle and lipoprotein-derived TG; pale grey (a, c), car-
bohydrate; pale grey (b), plasma glucose; mid-grey (b), muscle
glycogen. *p<0.05 for differences in plasma NEFA, muscle (and
lipoprotein)-derived TG, muscle glycogen and/or total carbohydrate
oxidation rate between the CON and LFA trial
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tions declined during exercise and recovery in both trials
(p<0.001). Plasma glucose concentrations tended to de-
cline more in the LFA trial (p=0.08). At t=300 min
plasma glucose concentrations were significantly lower
in the LFA trial (p<0.05). In both trials, plasma lactate
concentrations increased well above pre-exercise resting
levels during exercise, after which concentrations returned
to near baseline values (p<0.001). Plasma insulin concen-
trations declined during exercise in both trials (p<0.001).
During recovery, insulin levels continued to decline in the
LFA trial only, resulting in significantly lower insulin
concentrations in the LFA trial (p<0.01).

Muscle tissue analysis

Muscle fibre type analyses showed a 45±3% type I and
55±3% type II muscle fibre content. A significant decline
of muscle fibre lipid content was observed in the LFA
trial (p<0.05; Fig. 4). No changes in muscle lipid content
were observed in the CON trial. The net decline in type I
muscle fibre lipid content was significantly greater in the
LFA than in the CON trial (p<0.05). Intramyocellular
lipid content was ∼three-fold greater in the type I than in
type II fibres (p<0.01). Intramyocellular glycogen content
declined substantially in both type I and II muscle fibres
in both trials (p<0.01; Fig. 5). No differences in glycogen
content were observed between trials or fibre types.

Whole-body insulin sensitivity

The ratio between plasma glucose Rd and the plasma glu-
cose and insulin concentrations was calculated as an index
of whole-body insulin sensitivity. Changes in the insulin
sensitivity index are illustrated in Fig. 6. During pre-ex-
ercise rest, insulin sensitivity tended to increase more in the
LFA than in the CON trial (p=0.088: Fig. 6a). During
exercise, the index increased progressively (p<0.001), with
no differences between trials (Fig. 6b). During recovery,
the index significantly increased in the LFA trial only,
resulting in a significant difference between trials (p<0.01:
Fig. 6c).

Discussion

In the present study, we show that Acipimox administra-
tion effectively inhibits adipose tissue lipolysis in vivo in
type 2 diabetic patients, with plasma NEFA rate of ap-
pearance being decreased by a respective 46±6, 58±4 and
57±3% at rest, during exercise and post-exercise recovery

Fig. 4 Fibre-type-specific intramyocellular lipid content (% area
lipid stained) before and immediately after exercise in the CON
(white bars) and LFA (black bars) trial, as determined in type I (a) or
type II (b) muscle fibres by using quantitative fluorescence mi-
croscopy on oil red O-stained muscle cross-sections. Data represent
means±SEM; *p<0.05 for lower than pre-exercise values in each trial

Fig. 5 Fibre-type-specific intramyocellular glycogen content (stain-
ing intensity) before and immediately after exercise in the CON
(white bars) and LFA (black bars) trial, as determined in type I (a) or
type II (b) muscle fibres by using the modified PAS stain method on
muscle cross-sections. Data represent means±SEM; *p<0.05 for
lower than pre-exercise values in each trial
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when compared to normal, fasting conditions (p<0.001;
Table 2, Figs. 1, 2). This substantially reduced systemic
NEFA availability (p<0.001), with plasma NEFA concen-
trations remaining well below baseline levels (Fig. 1).
Plasma NEFA concentrations were lower at rest (∼two-
fold), during exercise (∼three-fold) and recovery (∼five-
fold) in the LFA than in the CON trial (p<0.001). From a
quantitative point of view, IMTG does not represent an
important substrate source under normal, fasting condi-
tions in overweight type 2 diabetic patients. However,
IMTG oxidation rates can be elevated substantially at rest,
during exercise and subsequent recovery by reducing
plasma NEFA availability (Figs. 3, 4, 5). This study shows
that plasma NEFA availability regulates IMTG use. It also
suggests that adipose tissue lipolytic inhibition could be
an effective means of augmenting intramyocellular lipid
use. The combination of exercise with adipose lipolytic
inhibition seems to represent an effective strategy to aug-

ment post-exercise whole-body insulin sensitivity in type
2 diabetic patients in an overnight fasted state (Fig. 6).

There has been much controversy regarding the role
of the IMTG pool as an available substrate source in
humans [24, 43]. However, many of the inconsistent
findings on the proposed metabolic importance of the
IMTG pool can be attributed to methodological difficul-
ties associated with the methods used to estimate IMTG
use [43]. Recent studies applying isotope tracers, 1H-
magnetic-resonance spectroscopy, electron and/or immu-
nofluorescence microscopy all support the contention
that the IMTG pool functions as a readily available sub-
strate source in healthy, lean men [24]. However, the role
of the IMTG pool as an available substrate source in
obese and/or type 2 diabetic patients remains to be elu-
cidated [24]. In the present study, total fat oxidation at
rest was entirely accounted for by plasma NEFA uptake
and oxidation (CON trial). The contribution of fat sources
other than plasma-derived NEFA was shown to be neg-
ligible (Fig. 3a). During exercise, the greater energy de-
mands were matched by an increase in total fat and
carbohydrate oxidation rates. Besides a three-fold in-
crease in plasma NEFA oxidation rate (Table 2, Fig. 2a),
other fat sources were mobilised to contribute to the
greater energy demands (Fig. 3b). These other fat sources
are generally assumed to reflect the use of muscle-de-
rived TG. However, the applied methodology does not
differentiate between muscle- and lipoprotein-derived TG
use. Nonetheless, lipoprotein-derived TG oxidation seems
to be of little quantitative importance in an overnight
fasted state [24, 43]. In the present study, the contribution
of muscle (and lipoprotein)-derived TG oxidation repre-
sented only 8±3% of total energy expenditure during
exercise (Fig. 3b). In accordance with this, we did not
detect a significant net decline in intramyocellular lipid
content in muscle samples collected before and after ex-
ercise (Fig. 4). Muscle glycogen oxidation contributed
more substantially to total energy expenditure during ex-
ercise (16±1%; Fig. 3b), resulting in a significant net
decline in muscle glycogen content (Fig. 5). During re-
covery, muscle TG use tended to be greater compared
with pre-exercise resting values (p=0.06) and contributed
10±5% of energy expenditure (Fig. 3c). Overall, these
findings seem to be in line with previous reports sug-
gesting that IMTG mobilisation and/or oxidation rates are
reduced in obese and/or type 2 diabetic patients [24, 43].
However, direct comparisons of IMTG use at rest, during
exercise and/or recovery between type 2 diabetic patients
and matched, normoglycaemic controls are warranted to
confirm those suggestions.

As elevated IMTG accretion in type 2 diabetic patients
is the result of a structural imbalance between NEFA up-
take, IMTG deposition and its subsequent mobilisation
and/or oxidation [21–23], it has been suggested that an
elevated IMTG turnover rate can prevent excessive accu-
mulation of intramyocellular FA metabolites [9, 10, 13–16,
44, 45] and/or reduce the degree of intramyocellular lipid
peroxidation [17]. In agreement, interventions known to

Fig. 6 Changes in whole-body insulin sensitivity (as determined by
plasma glucose disappearance rate (μmol kg−1 min−1) divided by
the plasma glucose (mmol/l) and the plasma insulin concentration
(mU/l) at rest (a), during exercise (b) and during post-exercise
recovery (c) in the CON (white bars) and LFA (black bars) trial.
Data represent means±SEM; * p<0.05 for difference between trials
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improve insulin sensitivity, like dietary lipid withdrawal
[2], acute exercise [2, 25] and the use of thiazolidined-
iones [46] have all been associated with a reduction in
skeletal muscle lipid content. Recently, we as well as
others [31], have shown that pharmacological inhibition
of adipose tissue lipolysis can prevent the downregulation
of IMTG use with time during prolonged exercise, which
was shown to be associated with the concomitant increase
in plasma NEFA concentrations. Subsequently, we spec-
ulated whether the same intervention could also effec-
tively lower plasma NEFA availability in type 2 diabetic
patients and increase the capacity to mobilise and oxidise
the IMTG stores at rest and/or during exercise. Therefore,
we administered a nicotinic acid analogue to specifical-
ly inhibit adipose tissue lipolysis [47, 48]. In response,
plasma NEFA Ra, Rd and Rox were substantially reduced
(Table 2, Figs. 1, 2, 3), while muscle TG and endogenous
carbohydrate oxidation rates were significantly elevated
(Fig. 3). Accordingly, a significant decline in intramyo-
cellular lipid content was observed following exercise in
the LFA trial only (Fig. 4). The greater carbohydrate use
during exercise in the LFA trial was attributed to an
elevated muscle glycogen utilisation rate. However, his-
tological analyses did not show a greater decline in in-
tramyocellular glycogen content in the LFA vs the CON
trial (Fig. 5). In contrast, Galbo et al. [33] reported a
greater reduction in muscle glycogen content following
exercise with nicotinic acid administration. In the present
study, the apparent discrepancy between the stable iso-
tope data and muscle sample analysis is probably ex-
plained by the heterogeneity of muscle biopsy samples,
the sensitivity of the histological staining technique and/
or the relative short duration of the exercise trial.

The depletion of the muscle lipid and/or glycogen stores
has been associated with exercise-induced increase in
skeletal muscle insulin sensitivity [24, 49–51]. Conse-
quently, it could be speculated that exercise interventions
that augment IMTG and/or glycogen use are more ef-
fective in improving insulin sensitivity. Furthermore, per-
oxisome proliferator-activated receptor gamma agonists,
like thiazolidinediones, improve insulin sensitivity partly
through enhanced lipid retention in adipose tissue, there-
by stimulating the redistribution of TG from skeletal mus-
cle and liver back to adipose tissue [46]. Nicotinic acid
analogues are likely to act along the same paradigm.
Though we did not aim to assess the effects of exercise
and/or acute adipose tissue lipolytic inhibition on insulin
sensitivity, some interesting findings were reported. He-
patic glucose output (Ra) and glucose disposal (Rd) rates
were significantly lower during recovery when compared
to pre-exercise resting values (Table 2). Though we ob-
served no differences in glucose disposal between trials,
insulin concentrations significantly declined in the LFA
trial only (Fig. 1). After calculating the ratio between
plasma glucose Rd and plasma glucose and insulin con-
centrations as an index of whole-body insulin sensitivity,
we observed a significant increase in insulin sensitivity
during recovery in the LFA trial (Fig. 6c). The latter seems
to support our hypothesis that exercise, in combination

with acute lipolytic inhibition, can augment the exercise-
induced increase in skeletal muscle insulin sensitivity.
More research is warranted to investigate this relationship
and its potential clinical relevance.

In conclusion, administration of a nicotinic acid ana-
logue effectively suppresses adipose tissue lipolysis, both
at rest, during exercise and subsequent recovery in an
overnight fasted state. The reduction in plasma NEFA
availability stimulates intramuscular lipid and glycogen use
at rest, during exercise and/or subsequent recovery. Inhi-
bition of adipose tissue lipolysis during exercise provides
an effective mechanistic approach to significantly reduce
intramyocellular lipid deposits. The latter could repre-
sent an effective interventional strategy to improve skel-
etal muscle insulin sensitivity in type 2 diabetic patients.
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