
Chapter 1

Preliminaries

In this chapter, we recall several definitions and properties that will be used in
the sequel. We begin with some notations on sets and functions (section 1.1) and, in
particular, we present the construction of the pseudo–inverse of a monotone function.
Section 1.2 is devoted to the presentation of the main concepts and results about the
majorization ordering. Binary operations and, in particular, triangular norms are
presented in sections 1.3 and 1.4.

After recalling some facts about distribution functions (section 1.5), we present
the concept of copula and its applications to dependence concepts (sections 1.6–1.9).
Two generalizations of the copula function are presented in the sections 1.10 and 1.11.

1.1 Sets and functions

We denote by R the ordinary set of real numbers (−∞,+∞) and by R its extension
[−∞,+∞]. For every positive integer n ≥ 2, Rn and Rn denote, respectively, the
cartesian product of n copies of R and R. We use vector notations for the points in
Rn, e.g. x = (x1, . . . , xn), and we write x ≤ y when xi ≤ yi for all i ∈ {1, 2, . . . , n}.

A n–box B is a subset of Rn given by the cartesian product of n closed intervals,
B = [x1, y1]× · · · × [xn, yn], and we write it also in the form [x,y], where we suppose
xi < yi for at least an index i ∈ {1, 2, . . . , n}. In particular, [0, 1]n indicates the
cartesian product of n copies of the unit interval, i.e. the unit n–cube. The vertices
of the n–box B = [x,y] are the points c = (c1, . . . , cn) ∈ B such that ci ∈ {xi, yi} for
all i ∈ {1, 2, . . . , n}. In every vertex c, we can define the following function

sgn(c) :=

 1, if card{i ∈ {1, 2, . . . , n} | ci = xi} is an even number;

−1, if card{i ∈ {1, 2, . . . , n} | ci = xi} is an odd number.

An n–place real function H is a function whose domain, DomH, is a subset of Rn

and whose range, RanH, is a subset of R. As a convention, a 1–place real function
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is called simply real function. The partial derivative of H with respect to the i-th
variable xi is denoted by ∂xi

H or ∂iH. If S is a subset of Rn, 1S denote the indicator
function of S defined by

1S(x) =

1, if x ∈ S;

0, if x /∈ S.

A statement about the points of a set S ⊆ Rn is said to hold almost everywhere
(briefly, a.e.) if the set of points of S where the statement fails to hold has Lebesgue
measure zero.

Given a real function f and an accumulation point x0 of Domf , we denote the
left–hand limit of f at x0 (if it exists) by f(x−0 ), and the right–hand limit of f at x0

(if it exists) by f(x+
0 ). Analogously, f ′(x−0 ) and f ′(x+

0 ) denote, resp., the left–hand
derivative and right–hand derivative of f at x0. Moreover, if S ⊆ R, we will denote
by idS the identity function of S, i.e. idS(x) := x for every x ∈ S.

A real function f is increasing (resp., strictly increasing) if, for every x < y,
f(x) ≤ f(y) (resp., f(x) < f(y)). Similarly, f is decreasing (resp., strictly decreasing)
if, for every x < y, f(x) ≥ f(y) (resp., f(x) > f(y)). A function f is (strictly)
monotone if f is either (strictly) increasing or (strictly) decreasing.

Let f : I → R be a real function whose domain I is an interval of R. The function
f is said to be convex on I if, for every x, y ∈ I and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The function f is called Jensen–convex on I (or mid–convex ) if, for every x, y ∈ I,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

A function f is said to be (Jensen–)concave on I if the function−f is (Jensen–)convex.

Proposition 1.1.1 ([69]). Let f be a continuous real function defined on an interval
I of R. Then f is convex if, and only if, f is Jensen–convex.

In the same manner, we could define the convexity for an n–place real function
whose domain is a convex subset of Rn.

Some notations from lattice theory will be also necessary (see [25]). Let (X,≤) be
a partially ordered set, X 6= ∅. For all x, y ∈ X, let U(x, y) := {z ∈ X : x ≤ z, y ≤ z}.
If U(x, y) has a unique smallest element z̃ such that z̃ ≤ z for all z ∈ U(x, y), then z̃
is called the supremum of x and y, denoted by x ∨ y or sup{x, y}. Similarly, if there
is a unique greatest element z′ smaller than x and y, then this is called the infimum,
denoted by x ∧ y or inf{x, y}. If, for all x, y ∈ X, x ∧ y and x ∨ y exist in X, then
(X,≤) is called lattice. Moreover, for every S ⊆ X, we denote by

∨
S the supremum

of the elements of S and by
∧
S the infimum of the elements of S. If, for every S ⊆ X,∨

S and
∧
S exist in X, then (X,≤) is called complete lattice.
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1.1.1 The pseudo–inverse of a real function

Definition 1.1.1. Let [a, b] and [c, d] be intervals of R and let f : [a, b] → [c, d] be
a monotone function. The pseudo–inverse of f is the function f [−1] : [c, d] → [a, b]
defined by

f [−1](y) =


sup{x ∈ [a, b] | f(x) < y}, if f(a) < f(b);

sup{x ∈ [a, b] | f(x) > y}, if f(a) > f(b);

a, if f(a) = f(b).

Notice that, if f is a bijection, then the pseudo–inverse coincides with the inverse.
The graph of the pseudo–inverse of a non–constant monotone function f can be

easily constructed by the following procedure:

(i) draw the graph of f and complete it, if it is necessary, by adding vertical line
segments connecting the points (x0, f(x−0 )) and (x0, f(x+

0 )) at each discontinuity
point x0 of f ;

(ii) reflect the graph so obtained with respect to the graph of idR, namely with
respect to the bisector of the first quadrant;

(iii) remove all but the smallest point from any vertical line contained in the reflected
graph.

Figure 1.1: A function f and its inverse f−1

Now, we consider a pseudo–inverse construction in two special cases.
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Example 1.1.1. Let us consider a function ϕ : [0, 1] → [0,+∞] that is continuous
and strictly decreasing with ϕ(1) = 0. The pseudo–inverse of ϕ is given by

ϕ[−1](t) :=

ϕ−1(t), if t ∈ [0, ϕ(0)] ;

0, if t ∈ [ϕ(0),+∞] .

Note that ϕ[−1] is continuous and decreasing on [0,+∞] and strictly decreasing on
[0, ϕ(0)]. Furthermore, for all t ∈ [0, 1],

ϕ[−1] (ϕ(t)) = t (1.1)

and, for all t ∈ [0,+∞],
ϕ
(
ϕ[−1](t)

)
= min{t, ϕ(0)}. (1.2)

Example 1.1.2. Given a function h : [0, 1] → [0, 1] that is continuous and strictly
increasing with h(1) = 1, its pseudo–inverse h[−1] : [0, 1] → [0, 1] is defined by

h[−1](t) :=

h−1(t), if t ∈ [h(0), 1];

0, if t ∈ [0, h(0)].

Notice that h[−1] is continuous and increasing on [0, 1] and strictly increasing on
[h(0), 1] and, for all t ∈ [0, 1]

h[−1] (h(t)) = t and h
(
h[−1](t)

)
= max{t, h(0)}.

1.2 Majorization ordering

In this section we recall the concepts of majorization ordering on Rn and Schur–
convexity, which can be found in the book by A.W. Marshall and I. Olkin (see [103]).

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two points in Rn and denote
by

x[1], x[2], . . . , x[n] and y[1], y[2], . . . , y[n]

the components of x and y rearranged in decreasing order, and by

x(1), x(2), . . . , x(n) and y(1), y(2) . . . , y(n)

the components of x and y rearranged in increasing order.

Definition 1.2.1. The point x is majorized by y (and we write x ≺ y) if

(i)
k∑
i=1

x[i] ≤
k∑
i=1

y[i] for every k ∈ {1, 2, . . . , n− 1};

(ii)
n∑
i=1

x[i] =
n∑
i=1

y[i].
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Definition 1.2.2. The point x is said to be weakly submajorized by y (and we write
x ≺w y) if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] for every k ∈ {1, 2, . . . , n}.

The point x is said to be weakly supermajorized by y (and we write x ≺w y) if

k∑
i=1

x(i) ≥
k∑
i=1

y(i) for every k ∈ {1, 2, . . . , n}.

In the case n = 2, the previous definitions take these forms.

(x1, x2) ≺ (y1, y2) ⇐⇒

max{x1, x2} ≤ max{y1, y2}

x1 + x2 = y1 + y2

(x1, x2) ≺w (y1, y2) ⇐⇒

max{x1, x2} ≤ max{y1, y2}

x1 + x2 ≤ y1 + y2

(x1, x2) ≺w (y1, y2) ⇐⇒

min{x1, x2} ≥ min{y1, y2}

x1 + x2 ≥ y1 + y2.

The following theorems characterize the majorization orderings ([68, 69, 103]).

Theorem 1.2.1 (Hardy, Littlewood and Pólya). Given two points x and y in
Rn, the following statements are equivalent:

(i) x ≺ y;

(ii) a doubly stochastic matrix P exists such that x = Py.

Corollary 1.2.1. Given two points x and y in R2, the following statements are
equivalent:

(i) x ≺ y;

(ii) there exists α ∈ [0, 1] such that

x1 = αy1 + (1− α)y2 and x2 = (1− α)y1 + αy2.

Theorem 1.2.2 (Hardy, Littlewood and Pólya). Given two points x and y in
Rn, the following statements are equivalent:

(a) x ≺ y;

(b) for every continuous convex function g : R → R
n∑
i=1

g(xi) ≤
n∑
i=1

g(yi).
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The following result, which extends Theorem 1.2.2 to the weak majorization or-
dering and which will be necessary in the sequel, can be found in [103] since it was
published in a journal of difficult access ([155]).

Theorem 1.2.3 (Tomić). Given two points x and y in Rn, the following statements
are equivalent:

(a) x ≺w y;

(b) for every continuous, increasing and convex function g : R → R

n∑
i=1

g(xi) ≤
n∑
i=1

g(yi).

Similarly, the following statements are equivalent

(a) x ≺w y;

(b) for every continuous, decreasing and convex function g : R → R

n∑
i=1

g(xi) ≤
n∑
i=1

g(yi).

Definition 1.2.3. A function ϕ : A ⊂ Rn → R is said to be Schur–convex on A if
it is increasing with respect to the majorization order ≺, namely if, for all x,y ∈ A,
x ≺ y implies ϕ(x) ≤ ϕ(y). If, in addition, ϕ(x) < ϕ(y) whenever x ≺ y but x is not
a permutation of y, then ϕ is said to be strictly Schur–convex on A.
Similarly, ϕ is said to be Schur–concave on A if, for all x,y ∈ A, x ≺ y implies
ϕ(x) ≥ ϕ(y). Moreover, ϕ is said to be Schur–constant if it is, at same time, Schur–
convex and Schur–concave.

The next result characterizes continuously differentiable Schur–concave functions
([137, 126]).

Theorem 1.2.4 (Schur, Ostrowski). Let I be an open interval in R and let ϕ :
In → R be a continuously differentiable function. Then ϕ is Schur–concave on In if,
and only if,

(i) ϕ is symmetric, viz. ϕ(x) = ϕ(xΠ) for every permutation Π;

(ii) for all z = (z1, z2, . . . , zn) ∈ In and i 6= j

(zi − zj) (∂iϕ(z)− ∂jϕ(z)) ≤ 0.
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1.3 Binary operations

Definition 1.3.1. A 2–place real function H is binary operation on a nonempty set
S ⊆ R if Dom H = S × S and Ran H ⊆ S.

Let H be a binary operation on [0, 1].

Definition 1.3.2. The horizontal section of H at b ∈ [0, 1] is the function hb : [0, 1] →
[0, 1] defined by hb(x) := H(x, b); the vertical section of H at a ∈ [0, 1] is the function
va : [0, 1] → [0, 1] defined by va(y) := H(a, y). The sections h0, h1, v0 and v1 are also
called margins of H.

The diagonal section of H is the function δH : [0, 1] → [0, 1] defined by δH(t) :=
H(t, t); the opposite diagonal section of H is the function δ∗H : [0, 1] → [0, 1] defined
by δ∗H(t) := H(t, 1− t).

Definition 1.3.3. An element 0H of [0, 1] is said to be annihilator of H (or zero,
null element of H) if H(0H , s) = 0H = H(s, 0H) for every s in [0, 1].

An element 1H of [0, 1] is said to be neutral element of H if H(1H , s) = s =
H(s, 1H) for every s in [0, 1].

Definition 1.3.4. An element a of [0, 1] is said to be idempotent underH ifH(a, a) =
δH(a) = a, namely if a is a fixed point for δH .

Definition 1.3.5. The transpose of H is the function HT given by

HT (x, y) = H(y, x) for every x, y ∈ [0, 1].

A binary operation H is said to be commutative (or symmetric) if

H(x, y) = H(y, x) for every x, y ∈ [0, 1], (1.3)

viz. H = HT .

Definition 1.3.6. A binary operation H is said to be associative if

H(H(x, y), z) = H(x,H(y, z)) for every x, y, z ∈ [0, 1]. (1.4)

Definition 1.3.7. Let H be a binary operation on [0, 1] and let x be an element of
[0, 1]. The H–powers of x are the elements of [0, 1] given recursively by

x1
H = x and xn+1

H = H(xnH , x)

for all positive integers n.

1.4 Triangular norms

A triangular norm (briefly, t–norm) is a distinguished type of binary operation on
the unit interval [0, 1] that has been introduced (in a simplified form) by K. Menger
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([106]) in order to extend the triangle inequality from the setting of metric spaces to
probabilistic metric spaces. Since then, triangular norms were largely studied in this
context and B. Schweizer and A. Sklar provided the axioms of t–norms as they are
commonly used today (see the book [141] for an extended bibliography); but they
also are widely used in statistics ([62, 65]) and in fuzzy logic, as a generalization of
the classical logic connectives (see [160, 83]). For a complete discussion also on the
recent developments of the theory of triangular norm, we refer to [139, 82, 3].

Definition 1.4.1. A binary operation T on [0, 1] is a triangular norm (briefly, t–
norm) if it satisfies the following properties:

(T1) T is associative;

(T2) T is commutative;

(T3) T is increasing in each place;

(T4) T has neutral element 1.

The following functions are examples of t–norms:

M(x, y) := min{x, y}; W (x, y) := max{x+ y − 1, 0};

Π(x, y) := xy; Z(x, y) =

0, if (x, y) ∈ [0, 1[2 ;

min{x, y}, otherwise.

They are called, resp., minimum,  Lukasiewicz, product and drastic t–norm and are
also denoted by TM , TL, TP and TD.

These four basic t–norms are remarkable for several reasons. For every t–norm T ,
we have

Z(x, y) ≤ T (x, y) ≤M(x, y) for all (x, y) ∈ [0, 1]2.

The t–norms Π and W are prototypical examples of two important subclasses of t–
norms called, respectively, strict and nilpotent t–norms ([83]). Moreover, M , Π and
W play an important role in the theory of copulas, as we shall underline in the sequel.

An example of parametrized family of t–norm is the Yager family {Tα}α≥0 (see
[157]), given by

Tα(x, y) =


Z(x, y), if α = 0;

M(x, y), if α = +∞;

max{1− [(1− x)α + (1− y)α]1/α}, otherwise.

Now, we present a simple way of constructing a new t–norm beginning from already
known ones. This method goes back to some investigations by A.H. Clifford ([17]) on
the theory of semigroups (see [141, 83] for more details).
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Let {Ti : i ∈ I} be a (possibly countable) collection of binary operations on [0, 1]
that are increasing and bounded from above by M , namely Ti(x, y) ≤ M(x, y) for
every i ∈ I and all (x, y) ∈ [0, 1]2. Let {Ji := [ai, bi]}i∈I be a family of closed, non
overlapping (except at the end points), non degenerate subintervals of [0, 1]. Then
the function T , given by

T (x, y) :=

ai + (bi − ai) Ti

(
x− ai
bi − ai

,
y − ai
bi − ai

)
, if (x, y) ∈ [ai, bi]2;

min{x, y}, otherwise;

is a binary operation on [0, 1], called the ordinal sum of the summands 〈ai, bi, Ti〉,
i ∈ I, and we shall write T = (〈ai, bi, Ti〉)i∈I.

Theorem 1.4.1 (Theorem 5.3.8, [141]). An ordinal sum of t–norms is a t–norm.

Clearly, every t–norm T can be viewed as a trivial ordinal sum with only one
summand 〈0, 1, T 〉 only, viz. T = (〈0, 1, T 〉). Moreover, the t–norm M can be viewed
as an empty ordinal sum of t–norms, when the index set I is the empty set. Notice
that, for an ordinal sum of the above type, the points ai and bi (i ∈ I) are the
idempotent elements of T .

Figure 1.2: The ordinal sum T = (〈0, 1/2,W 〉, 〈1/2, 1,W 〉)

Using ordinal sums, parametric families of t–norms can be easily constructed.

Example 1.4.1 (Mayor–Torrens family). Given α ∈ [0, 1], consider the following
family

Tα(x, y) :=

max{0, x+ y − α}, if (x, y) ∈ [0, α]2 ;

min{x, y}, otherwise.
(1.5)

This family is known as the Mayor–Torrens family of t–norms and every Tα is an
ordinal sum, T = (〈0, α,W 〉).
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An important property that a t–norm can have is the Archimedean one.

Definition 1.4.2. A t–norm T is called Archimedean if, for each (x, y) ∈ ]0, 1[2 there
is an n ∈ N such that xnT < y.

For continuous Archimedean t–norms, we have the following representation (see
[97, 3]).

Theorem 1.4.2. For a binary operation T : [0, 1]2 → [0, 1] the following statements
are equivalent:

(i) T is a continuous Archimedean t–norm;

(ii) there exists a mapping ϕ : [0, 1] → [0,+∞] continuous and strictly decreasing
with ϕ(1) = 0 such that, for every (x, y) ∈ [0, 1],

T (x, y) = ϕ[−1] (ϕ(x) + ϕ(y)) . (1.6)

The function ϕ is said to be additive generator of T . A continuous and Archimedean
t–norm T is said to be strict if it has an additive generator ϕ such that ϕ(0) = +∞.

Theorem 1.4.3 (Representation of continuous t–norms). Let T be a binary
operation on [0, 1] such that:

(i) T has annihilator element 0;

(ii) T (1, 1) = 1;

(iii) T is associative;

(iv) T is jointly continuous.

Then T admits one of the following representations:

(a) T = M ;

(b) T (x, y) = ϕ[−1] (ϕ(x) + ϕ(y)), where ϕ : [0, 1] → [0,+∞] is a continuous and
strictly decreasing function with ϕ(1) = 0;

(c) T is an ordinal sum of t–norms Ti, each of them representable in the form (b).

1.5 Distribution Functions

Let n be a natural number, n ∈ N.

Definition 1.5.1. Let H be an n–place real function and let B = [x,y] be an n–box
whose vertices belong to DomH. The H–volume of B is given by

VH(B) =
∑

sgn(c)H(c),

where the sum is taken over all the vertices c of B.
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Definition 1.5.2. Let S1, . . . , Sn be nonempty subsets of R and let H be an n–
place real function such that DomH = S1 × · · · × Sn. The function H is said to be
n–increasing if VH(B) ≥ 0 for every n–box B whose vertices lie in DomH.

In particular:

. a 1–increasing function is an increasing function in the classical sense;

. a 2–increasing function H satisfies the following condition

H(x1, y1) +H(x2, y2) ≥ H(x1, y2) +H(x2, y1), (1.7)

for every x1 ≤ x2 and y1 ≤ y2.

Definition 1.5.3. A function H : Rn → [0, 1] is an n–dimensional distribution func-
tion (briefly n–d.f.) if

(i) H is n–increasing;

(ii) H is left–continuous in each place;

(iii) H(+∞, . . . ,+∞) = 1;

(iv) H(x) = 0, whenever x ∈ Rn and min{x1, x2, . . . , xn} = −∞.

The class of all n–dimensional d.f.’s will be denoted by ∆n.

Specifically:

. F : R → [0, 1] is a (unidimensional) d.f. it it is increasing and left–continuous
with F (−∞) = 0 and F (+∞) = 1;

. H : R2 → [0, 1] is a bivariate d.f. if it is 2–increasing and left–continuous in each
place, with H(+∞,+∞) = 1 and H(x,−∞) = 0 = H(−∞, y) for all x, y ∈ R.

Definition 1.5.4. Let n ∈ N, n ≥ 2. Let {i1, i2, . . . , ik} be a nonempty set of k
indices in {1, 2, . . . , n} (1 ≤ k < n) and let H be an n–distribution function. The
k–margins of H (1 ≤ k < n) are the

(
n
k

)
functions Hi1,...,ik : Rk → [0, 1] defined, for

every y ∈ Rk by
Hi1,...,ik(y) = H(x),

where x is a point in Rn defined by

xj =

yj , if j ∈ {i1, . . . , ik};

+∞, if j /∈ {i1, . . . , ik}.

Proposition 1.5.1. Given an n–dimensional d.f. H, every k–margin of H (1 ≤ k <

n) is a k–dimensional distribution function.
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In particular, we shall generally denote the 1–margins of an n–d.f. H by F1, . . . , Fn

instead of H1, . . . ,Hn and we shall refer to them briefly as margins or marginal d.f.’s.

Remark 1.5.1. Given a probability space (Ω,F, P ) and a random vector X =
(X1, X2, . . . , Xn), namely X : Ω → Rn is a measurable mapping with respect to
the σ–algebra F and the Borel σ–algebra over Rn, the function

H(x) := P

(
n⋂
i=1

{ω ∈ Ω : Xi(ω) < xi}

)
(1.8)

is a n–d.f.. Conversely, in view of the classical Kolmogorov’s compatibility Theorem
(see [94]), given an n–dimensional d.f. H it is possible to construct a probability space
(Ω,F, P ) and a random vector X = (X1, X2, . . . , Xn), such that equation (1.8) holds
for every x in Rn.

Remark 1.5.2. In many applications on reliability theory, the random variables of
interest represent lifetimes of individuals or objects and then it is very important to
study the survival d.f. instead of the d.f.. For a r.v. X, its survival d.f. is defined
by F (t) := P (X ≥ t) = 1 − FX(t). In general, the joint survival d.f. of the vector
(X1, X2, . . . , Xn) is defined by

H(x1, x2, . . . , xn) := P (X1 ≥ x1, X2 ≥ x2, . . . , Xn ≥ xn).

For a random pair (X,Y ) with joint d.f. H and margins F1 and F2, the survival d.f.
is given by

H(x, y) = 1− F1(x)− F2(y) +H(1− x, 1− y).

Finally, we recall the concept of Fréchet class, introduced in [55].

Definition 1.5.5. The Fréchet class determined by the univariate d.f.’s F1, F2, . . . , Fn

is the set Γ[F1, F2, . . . , Fn] of all n–d.f.’s whose margins are F1, F2, . . . , Fn.

Notice that, for every choice of a set of n univariate d.f.’s, the corrisponding Fréchet
class is not empty, because it contains the independence d.f. given by the product of
the margins.

1.6 Copulas

In this section, we introduce the concept of copula. For simplicity’s sake, first, we
limit ourselves to consider two–dimensional copulas; the multivariate case (n ≥ 3) will
be, instead, considered briefly in section 1.9. For a deeper discussion of this topic, we
refer to the book by R.B. Nelsen ([114]) and to chap. 6 of the book by B. Schweizer
and A. Sklar ([141]) (see also the recent papers [128, 116]).

Definition 1.6.1. A function C : [0, 1]2 → [0, 1] is a (bivariate) copula if it satisfies:
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(C1) the boundary conditions,

∀x ∈ [0, 1] C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x;

(C2) the 2–increasing property, i.e. for all x, x′, y, y′ in [0, 1], with x ≤ x′ and y ≤ y′,

VC ([x, x′]× [y, y′]) := C(x′, y′)− C(x, y′)− C(x′, y) + C(x, y) ≥ 0.

In particular, every copula is increasing in each place, viz.

C(x, y) ≤ C(x′, y) and C(x, y) ≤ C(x, y′) for x ≤ x′, y ≤ y′, (1.9)

and satisfies the 1–Lipschitz condition, i.e. for all x, x′, y, y′ ∈ [0, 1]

|C(x, y)− C(x′, y′)| ≤ |x− x′|+ |y − y′|. (1.10)

Moreover, if C : [0, 1]2 → [0, 1] is twice continuously differentiable, condition (C2) is
equivalent to

∂2 C(x, y)
∂x∂y

≥ 0 for all (x, y) ∈ [0, 1]2. (1.11)

In order to prove that a function F : [0, 1]2 → [0, 1] satisfies the so–called rectan-
gular inequality (C2), the following technical Proposition will be useful. But, first,
we denote by ∆+ and ∆− the subsets of the unit square given by:

∆+ := {(x, y) ∈ [0, 1]2 : x ≥ y}, ∆− := {(x, y) ∈ [0, 1]2 : x ≤ y}, (1.12)

and we prove

Lemma 1.6.1. For every F : [0, 1]2 → [0, 1], the F–volume VF (R) of any rectangle
R ⊆ [0, 1]2 can be expressed as the sum

∑
i VF (Ri) of at most three terms, where the

rectangles Ri may have a side in common and belong to one of the following types:

(a) Ri ⊆ ∆+;

(b) Ri ⊆ ∆−;

(c) Ri = [s, t]× [s, t].

Proof. Let a rectangle R ⊆ [0, 1]2 be given; if it belongs to one of the three types (a),
(b) or (c) there is nothing to prove. Then, consider the other possible cases: R may
have one, two or three vertices in ∆−.

If R = [x1, x2]× [y1, y2] has one vertex in ∆+ and three vertices in ∆−, then, since
y2 > x2 > y1 > x1, we can write

R = ([x1, y1]× [y1, y2]) ∪ ([y1, x2]× [y1, x2]) ∪ ([y1, x2]× [x2, y2]) ;
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of these rectangles, the first and the third one are of type (b), while the second one
is of type (c). Now

VF ([x1, y1]× [y1, y2]) = F (y1, y2)− F (y1, y1)− F (x1, y2) + F (x1, y1),

VF ([y1, x2]× [y1, x2]) = F (x2, x2)− F (x2, y1)− F (y1, x2) + F (y1, y1),

VF ([y1, x2]× [x2, y2]) = F (x2, y2)− F (x2, x2)− F (y1, y2) + F (y1, x2).

Therefore, summing these equalities we have

VF ([x1, y1]× [y1, y2]) + VF ([y1, x2]× [y1, x2]) + VF ([y1, x2]× [x2, y2])

= F (x2, y2)− F (x2, y1)− F (x1, y2) + F (x1, y1) = VF ([x1, x2]× [y1, y2]) ,

which proves the assertion in this case. The other cases can be proved in a similar
manner.

Proposition 1.6.1. A binary operation F : [0, 1]2 → [0, 1] is 2–increasing if, and
only if, the three following conditions hold:

(a) VF (R) ≥ 0 for every rectangle R ⊆ ∆+;

(b) VF (R) ≥ 0 for every rectangle R ⊆ ∆−;

(c) VF (R) ≥ 0 for every rectangle R = [s, t]× [s, t] ⊆ [0, 1]2.

Proof. If F is 2–increasing, (a), (b) and (c) follow easily. Conversely, let R be a
rectangle of [0, 1]2. Then, because of the previous Lemma, R can be decomposed into
the union of at most three sub–rectangles Ri of type (a), (b) and (c); and for each of
them VF (Ri) ≥ 0 holds. Therefore VF (R) =

∑
VF (Ri) ≥ 0.

For every (x, y) ∈ [0, 1]2 and for every copula C

W (x, y) ≤ C(x, y) ≤M(x, y); (1.13)

this inequality is known as the Fréchet–Hoeffding bounds inequality ([109]), and W

and M are copulas, called also Fréchet–Hoeffding bounds, in honour of the pioneering
works of Hoeffding ([71]) and Fréchet ([55]). Hence the graph of a copula is a surface
within the unit cube [0, 1]3 that lies between the graphs of the copulas W and M .

A third important copula is the product copula Π.
Notice that a copula is the restriction to [0, 1]2 of the bivariate d.f. HC , given by

HC(x, y) :=



0, if min{x, y} < 0;

C(x, y), if (x, y) ∈ [0, 1]2;

x, if x ∈ [0, 1] and y > 1;

y, if x > 1 and y ∈ [0, 1];

1, if x > 1 and y > 1;
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Figure 1.3: The copulas W and M

Figure 1.4: The copula Π

whose margins are uniformly distributed on [0, 1].
Every copula C induces a probability measure PC on [0, 1]2 given, for every rect-

angle R, by PC(R) := VC(R). In particular, such a probability measure PC is doubly
stochastic, namely P (J × [0, 1]) = P ([0, 1]×J) = λ(J), where J is a Borel set in [0, 1]
and λ is the the Lebesgue measure on [0, 1]. The support of a copula C is the com-
plement of the union of all open subsets of [0, 1]2 with PC measure equal to zero. If a
Borel set R ⊆ [0, 1]2 has PC–measure equal to m ∈ ]0, 1], we said that the probability
mass of C on R is m (or C spreads a mass m on R). For every copula C, we have
the decomposition

C(x, y) = CA(x, y) + CS(x, y),

where

CA(x, y) :=
∫ x

0

∫ y

0

∂2

∂s∂t
C(s, t) dsdt, CS(x, y) = C(x, y)− CA(x, y).

The function CA is the absolutely continuous component of C and CS is the singular
component of C. If C = CA, then it is called absolutely continuous (e.g. Π) and the
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mixed second derivative of C, ∂12C is called density of C. If C = CS , then it is called
singular (e.g. M and W ). If one of the first derivatives of C has a jump discontinuity,
then C has a singular component (see [74, page 15]).

When a copula C is singular, then its support has Lebesgue measure zero, and
conversely. For example, the support of M is the main diagonal of [0, 1]2, {(x, y) ∈
[0, 1]2 | x = y}, namely M is singular. Also W is singular and its support is the
opposite diagonal of [0, 1]2, {(x, y) ∈ [0, 1]2 | x+ y = 1}.

Figure 1.5: Supports of the copulas W and M

We shall denote by C (or C2) the class of all the (bivariate) copulas. The set C is
convex and compact under the topology induced by the norm ‖ ‖∞, given for every
A in C by

‖A‖∞ := max
{
|A(x, y)| : (x, y) ∈ [0, 1]2

}
.

Moreover, pointwise convergence in C is equivalent to uniform convergence, in the
sense that, if a sequence {Cn : n ∈ N} of copulas converges pointwise to a copula C,
then it converges also uniformly.

Notice that, since the set C of copulas is a convex and compact subset of the class
of real–valued continuous functions defined on [0, 1]2, equipped with the ‖ ‖∞ norm,
from the classical Krein–Milman’s Theorem (see, e.g., [32]) it follows that C is the
convex hull of its extremal points.

Given two copulas C and D, D is said to be more concordant (or more PQD)
than C (C ≤ D, for short) if C(x, y) ≤ D(x, y) for every x, y in [0, 1] (see [74]). The
concordance order is only a partial ordering; however, some parametric families of
copulas are totally ordered. In particular, we say that a family {Cθ : θ ∈ I ⊆ R} is
positively ordered (resp., negatively) if Cα ≤ Cβ whenever α ≤ β (resp., α ≥ β).
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1.6.1 Copulas and random variables

Sklar’s Theorem (see [149, 150, 151]) is surely the most important result in the
theory of copulas and it is the foundation of many of the applications of copulas
to statistics. From that, it is clear in which sense we say that “a copula is a func-
tion which joins or couples a bivariate distribution function to its one–dimensional
margins”.

Theorem 1.6.1 (Sklar, 1959). If X and Y are random variables with unidimen-
sional d.f.’s F and G, respectively, and joint d.f. H, then there exists a copula C

(uniquely determined on RanF ×RanG, and hence unique when X and Y are con-
tinuous) such that

∀(x, y) ∈ R2
H(x, y) = C(F (x), G(y)). (1.14)

Conversely, given a copula C and two univariate d.f.’s F and G, the function H

defined in (1.14) is a bivariate d.f. with margins F and G.

Given a joint d.f. H with continuous margins F and G, it is easy to construct the
corresponding copula is given by:

C(x, y) = H(F [−1](x), G[−1](y)),

where F [−1](t) = sup{x : F (x) ≤ t} is the pseudo–inverse of F (and similarly for
G[−1]). Conversely, given a copula C and two univariate d.f.’s F and G, the equality
(1.14) allows us to construct a bivariate d.f. H.

Note as well that, if X and Y are continuous r.v.’s with d.f.’s F and G, C is the
joint d.f. of the r.v.’s U = F (X) and V = G(Y ).

The following result gives an interesting probabilistic interpretation of the three
basic copulas M , Π and W .

Theorem 1.6.2. For continuous r.v.’s X and Y with copula C the following state-
ments hold:

. X and Y are independent if, and only if, C = Π;

. Y is almost surely an increasing function of X if, and only if, C = M ;

. Y is almost surely a decreasing function of X if, and only if, C = W .

In general, Sklar’s Theorem allows us to study the dependence properties of a
random vector by examination of the copula alone, if the r.v.’s are continuous. This
last assumption is essential because, for discontinuous r.v.’s, the copula is not unique
and many problems arise, as discussed, e.g., in [100, 146, 124].
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Example 1.6.1. Let X and Y be r.v.’s with d.f.’s FX = 1]a,+∞] and FY = 1]b,+∞],
with a < b. Then the joint d.f. of X and Y is

H(x, y) =

1, if (x, y) ≥ (a, b);

0, otherwise.

Notice that, in view of Sklar’s Theorem, there exists a (not uniquely determined)
copula C such that (1.14) holds. In this case, C has to satisfy only the assumptions

C(1, 1) = 1, C(0, 1) = C(1, 0) = C(0, 0) = 0.

Therefore, every copula can be associated with the random pair (X,Y ).

In the sequel, when we speak about “the copula of the random pair (X,Y )”, we
assume that X and Y are continuous and, therefore, the copula is unique and it will
also be denoted by CXY .

Remark 1.6.1. The first–order derivatives of a copula have a nice interpretation. If
C is the copula of the random pair (U, V ) of two r.v.’s uniformly distributed on [0, 1],
then

∂C(u, v)
∂u

= P (V ≤ v | U = u) and
∂C(u, v)
∂v

= P (U ≤ u | V = v).

Now, we express the copula of a random vector obtained from another one by
strictly monotone transformations.

Theorem 1.6.3. Let X and Y be continuous r.v.’s with copula C. Let α and β be
two functions strictly monotone on RanX and RanY , respectively.

(i) If α and β are both strictly increasing, then

Cα(X)β(Y ) = CXY .

(ii) If α is strictly increasing and β is strictly decreasing, then

Cα(X)β(Y )(x, y) = x− CXY (x, 1− y).

(iii) If α is strictly decreasing and β is strictly increasing, then

Cα(X)β(Y )(x, y) = y − CXY (1− x, y).

(iii) If α and β are both strictly decreasing, then

Cα(X)β(Y )(x, y) = x+ y − 1 + CXY (1− x, 1− y).
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From the above result we have that, given a copula C, the following function are
copulas (see [84]):

C0,1(x, y) := x− C(x, 1− y), (1.15)

C1,0(x, y) := y − C(1− x, y), (1.16)

C1,1(x, y) := x+ y − 1 + C(1− x, 1− y). (1.17)

In particular, C1,1 is called survival copula and it is denoted more frequently by Ĉ.
It has a large use in reliability theory, where Sklar’s Theorem can be reformulated
under the following form:

Theorem 1.6.4. Let X and Y be two continuous r.v.’s with copula C. Let H be the
joint survival d.f. of (X,Y ) and let F and G be the univariate survival d.f.’s. Then

H(x, y) = Ĉ
(
F (x), G(y)

)
,

where Ĉ is the survival copula of C.

Remark 1.6.2. Notice that the survival copula Ĉ is not the joint survival d.f. C of
two r.v.’s unifomly distributed on [0, 1] whose joint d.f. is the copula C. In such a
case, in fact, we have C(x, y) := 1− x− y + C(x, y).

The symmetry properties of a random pair can also be expressed in terms of the
associated copula (see [114, 84] for more details).

Definition 1.6.2. Two r.v.’s X and Y are exchangeable if, and only if, (X,Y ) and
(Y,X) are identically distributed.

Proposition 1.6.2. Let X and Y be continuous r.v.’s with margins d.f.’s F and G,
respectively, and copula C. Then X and Y are exchangeable if, and only if, F = G

and C is symmetric.

Definition 1.6.3. Let X and Y be r.v.’s and let (a, b) be a point in R2.

. (X,Y ) is radially symmetric about (a, b) if the joint d.f. of (X − a) and (Y − b)
is the same as the joint d.f. of (a−X) and (b− Y ).

. (X,Y ) is jointly symmetric about (a, b) if the following four pairs of r.v.’s have a
common joint d.f.: (X−a, Y −b), (X−a, b−Y ), (a−X,Y −b) and (a−X, b−Y ).

Note that the joint symmetry implies the radial symmetry.

Proposition 1.6.3. Let X and Y be continuous r.v.’s with marginal d.f.’s F and G,
respectively, and copula C. Given a point (a, b) ∈ R2, assume that (X − a) has the
same d.f. as (a−X), and (Y − b) has the same d.f. as (b− Y ). Then:

. (X,Y ) is radially symmetric about (a, b) if, and only if, C = Ĉ;

. (X,Y ) is jointly symmetric about (a, b) if, and only if, C = C0,1 and C = C1,0

(and then also C = Ĉ).
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1.6.2 Families of copulas

For many years, statisticians have been fascinated by the following problem: given
two univariate d.f.’s F and G, find a bivariate d.f. H having F and G as its margins,
and having useful properties such as a simple analytic expression, a simple stochas-
tic representation, some desirable dependence properties, and a suitable number of
parameters. Many methods and procedures for constructing such joint distributions
have been introduced and studied in the literature (see, for example [75, 73]). As
noted in subsection 1.6.1, thanks to Sklar’s Theorem, we can decompose this prob-
lem into two easier steps: the construction of a copula and the construction of two
univariate margins.

Having several families of bivariate distributions at disposal is of great importance
in statistical applications. In fact, for many years, multivariate models have been often
constructed either under the assumption of the independence of their components or
by assuming the components are connected by a multivariate normal distribution
(see, e.g., [58]). Copulas, instead, allow to study models with a more flexible and
wide range of dependence.

In [74, 77], some criteria are given in order to ensure that a family of copulas is
a “good” family, in the sense that it can be useful in certain statistical applications.
Here we list some desirable properties for a parametric class of copulas Cα, where α
belongs to an interval of the real line:

. interpretability, which means having a probabilistic interpretation;

. flexible and wide range of dependence, which implies that the copula Π and at
least one of the Fréchet–Hoeffding bounds W and M belong to the class;

. closed form, in the sense that every copula of the class is absolutely continuous
or has a simple representation;

. ordering, with respect, for example, to concordance.

Now, we present some families of copulas (see [114] for more details).

Example 1.6.2 (Fréchet family). For all x, y ∈ [0, 1] and α, β ∈ [0, 1] such that
α+ β ≤ 1, the family

Cα,β(x, y) = αM(x, y) + (1− α− β)Π(x, y) + βW (x, y)

is a family of copulas, known as the Fréchet family. A slight modification of this
family is the so–called linear Spearman copula (see [72] and [74, family B11]), given,
for every α ∈ [−1, 1], by

Cα(x, y) = (1− |α|) ·Π(x, y) + |α| · Csgn(α)(x, y),

where Csgn(α) = M , if α ≥ 0, and Csgn(α) = W , otherwise.
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Example 1.6.3 (FGM family). For all x, y ∈ [0, 1] and α ∈ [−1, 1]

Cα(x, y) = xy + αxy (1− x) (1− y)

is a family of copulas, known as the Farlie-Gumbel-Morgenstern family (often abbre-
viated FGM) and contains as its members copulas with sections that are quadratic
in both x and y.

Example 1.6.4 (Cuadras–Augé family). For every α ∈ [0, 1], the following func-
tion

Cα(x, y) :=

xy1−α, if x ≤ y;

x1−αy, if x ≥ y;

is a copula, belonging to the family introduced by Cuadras and Augé ([18]). Notice
that Cα is the weighted geometric mean of M and Π; in particular, C0 = Π and
C1 = M .

Example 1.6.5 (Marshall–Olkin family). For every α and β in [0, 1], the following
function

Cα,β(x, y) :=

x1−αy, if xα ≥ yβ ;

xy1−β , if xα ≤ yβ ;

is a copula, belonging to the family introduced by Marshall and Olkin ([101, 102]),
which contains the family given in Example 1.6.4 for α = β.

Example 1.6.6 (BEV Copula). Let A : [0, 1] → [1/2, 1] be a convex function such
that max{t, 1− t} ≤ A(t) ≤ 1 for every t ∈ [0, 1]. The following function

CA(x, y) := exp
[
(lnx+ ln y)A

(
lnx

lnx+ ln y

)]
is a copula, known as bivariate extreme value copula (briefly, BEV) (see [74, chap. 6]).
This copula satisfies the equality Cn(x, y) = C(xn, yn) for every n ∈ N. The name of
this class arises from the theory of extreme statistics. In fact, let (X1, Y1), . . . , (Xn, Yn)
be a random sample from bivariate distribution H, define Mn := max{X1, . . . , Xn}
and Nn := max{Y1, . . . , Yn} and suppose that there exist constants a1n, a2n, b1n and
b2n, with a1n > 0 and a2n > 0, for which the pair(

Mn − b1n
a1n

,
Nn − b2n
a2n

)
has a non-degenerate joint limiting distribution H∗. Then the copula associated with
H∗ is a BEV copula (see [59, 129]).

Example 1.6.7 (Normal copula). Let Nρ(x, y) denote the standard bivariate nor-
mal joint d.f. with correlation coefficient ρ. Then the corresponding copula is

Cρ(x, y) = Nρ(Φ−1(x),Φ−1(y)),
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where Φ denotes the standard normal d.f.. Because Φ−1 does not have a closed form,
there is no closed form for Cρ, which can be only evaluated approximately.

Example 1.6.8 (Shuffle of Min). The copulas known as shuffles of M were intro-
duced in [110] and do not have a simple explicit expression. However, the procedure
to obtain their mass distribution can be easily described:

1. spread uniformly the mass on the main diagonal of [0, 1]2,

2. cut [0, 1]2 vertically into a finite number of strips,

3. shuffling the strips with perhaps some of them flipped around their vertical axes
of symmetry,

4. reassembling them to form the square again.

The resulting mass distribution corresponds to a copula called shuffle of M . Formally,
a shuffle of M is determined by a partition {Ji}i=1,2,...,n, a permutation of (1, 2, . . . , n)
and an orientation n–ple (i1, i2, . . . , in) such that ik = −1 or 1 according to whether
or not the strip Ji × [0, 1] is flipped.

For instance, the shuffle given by {[0, 1/2], [1/2, 1]}, permutation (2, 1) and orien-
tation (−1,−1) is W . Moreover, the shuffle of M with partition {[0, a], [a, 1− a], [1−
a, 1]}, (a ∈ [0, 1/2]), permutation (3, 2, 1) and orientation (−1,+1,−1) is the copula
Cα(x, y) = max{W (x, y),M(x, y)− α}.

Figure 1.6: Support of the copula Cα for α = 1/3

A way of constructing new copulas is given by the ordinal sum construction, a
method already presented in section 1.4, and reproduced here.

Theorem 1.6.5. Let C = (〈ai, bi, Ci〉)i∈I be an ordinal sum such that Ci is a copula
for every i ∈ I. Then C is a copula.



Chap. 1 Preliminaries 23

1.6.3 Diagonal sections of copulas

Given a copula C, it is easily proved that its diagonal δ satisfies the following
properties:

(D1) δ(1) = 1;

(D2) δ(t) ≤ t for all t ∈ [0, 1];

(D3) δ is increasing;

(D4) |δ(t)− δ(s)| ≤ 2|t− s| for all t, s ∈ [0, 1].

The set of functions δ : [0, 1] → [0, 1] satisfying (D1)–(D3) will be denoted by D,
instead D2 will denote the subset of D of the functions satisfying also (D4).

For each function δ ∈ D2, there is always a copula whose diagonal section coincides
with δ. Consider, for example, the diagonal copula

Kδ(x, y) := min
{
x, y,

δ(x) + δ(y)
2

}
, (1.18)

introduced in [117, 56]. Another example is given by the Bertino copula ([9, 57])

Bδ(x, y) := min{x, y} −min {t− δ(t) : t ∈ [x ∧ y, x ∨ y]} . (1.19)

In particular, a Bertino copula is called simple if it can be expressed in the form

Bδ(x, y) := min{x, y} −min {x− δ(x), y − δ(y)} . (1.20)

From a probabilistic point of view, investigations on diagonal sections of copulas
are of interest because, if X and Y are random variables with the same distribution
function F and copula C, then the distribution function of max{X,Y } is δC(F (t)).
Moreover, copulas with given diagonal section have important consequences in finding
the bounds on arbitrary subsets of joint d.f.’s (see [121]). An absolutely continuous
copula with given diagonal section is also given in the recent paper [52].

1.6.4 Archimedean copulas

From a general point of view, copulas are special type of binary operations on [0, 1],
and many important copulas are also t–norms. In particular, the class of Archimedean
copulas (i.e. associative copulas with the Archimedean property as defined in section
1.4), is a very useful subclass of copulas, both in the statistical context (see [62, 63,
113, 112]) and in applications, especially in finance, actuarial science ([58, 70]) and
hydrology ([134]), due to their simple form and nice properties. Archimedean copulas
are characterized here.
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Theorem 1.6.6. A function C is an Archimedean copula if, and only if, it admits
the representation

C(x, y) := ϕ[−1] (ϕ(x) + ϕ(y)) , for all x, y ∈ [0, 1] , (1.21)

where ϕ : [0, 1] → [0,+∞] is continuous, strictly decreasing and convex with ϕ(1) = 0.

The function ϕ is said to be an additive generator of C and, therefore, C is also
denoted as Cϕ. Notice that, by setting h(t) := exp (−ϕ(t)) for every t ∈ [0, 1], Cϕ
may be represented in the form

Cϕ(x, y) = h[−1] (h(x) · h(y)) for all x, y ∈ [0, 1] . (1.22)

This function h is a multiplicative generator of Cϕ and Theorem 1.6.6 may be rephrased
in the following (multiplicative) form.

Theorem 1.6.7. A function C is an Archimedean copula if, and only if, it admits
the representation

C(x, y) := h[−1] (h(x) · h(y)) , for all x, y ∈ [0, 1] , (1.23)

where h : [0, 1] → [0, 1] is continuous, strictly increasing and log–concave, viz. for
every α, s and t in [0, 1], it satisfies the inequality

hα(s)h1−α(t) ≤ h (αs+ (1− α)t) .

Notice that, neither the additive nor the multiplicative generator of an Archime-
dean copula are unique. In fact, if ϕ is an additive generator of C, then every additive
generator of C has the form ϕ1 := k ϕ, for k > 0. Analogously, if h is a multiplicative
generator of a copula D, then h1(t) := h(tα) (α > 0) is also a multiplicative generator
for D. The next result yields a technique for finding generators of Archimedean
copulas ([62]).

Theorem 1.6.8. Let C be an Archimedean copula with generator ϕ. Then

ϕ′(x) · ∂yC(x, y) = ϕ′(y) · ∂xC(x, y) a.e. on [0, 1]2.

In Table 1.1 we list some known families of Archimedean copulas and their additive
generators.

In the spirit of the representation of continuous t–norms (see 1.4.3), Archimedean
copulas allow us to give a full characterization of associative copulas.

Theorem 1.6.9 (Representation of associative copulas). Let C be an associative
copula with diagonal section δC . Then:

. C = M if, and only if, δC = id[0,1];
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Family Copula Cθ(x, y) θ ∈

Frank − 1
θ ln

(
1 + (e−θx−1)(e−θy−1)

e−θ−1

)
[−∞,+∞]

Clayton max
{
(x−θ + y−θ − 1)−1/θ, 0

}
[−1,+∞]

Gumbel–Hougaard exp
(
−
(
(− lnx)θ + (− ln y)θ

)1/θ) [1,+∞]

Ali–Mikhail–Haq xy
1−θ(1−x)(1−y) [−1, 1]

Table 1.1: Families of Archimedean copulas

. C is Archimedean if, and only if, δC(t) < t on ]0, 1[;

. C is an ordinal sum of Archimedean copulas if, and only if, δC(t) < t for some,
but not all, t in ]0, 1[.

In [14], the following generalization of an Archimedean copula is studied.

Example 1.6.9. [Archimax copula] Let A : [0, 1] → [1/2, 1] be a convex function
such that max{t, 1− t} ≤ A(t) ≤ 1 for every t ∈ [0, 1]. Let ϕ be an additive generator
of an Archimedean copula. The following function

Cϕ,A(x, y) := ϕ[−1]

[
(ϕ(x) + ϕ(y))A

(
ϕ(x)

ϕ(x) + ϕ(y)

)]
is a copula, known as Archimax. The family of Archimax copulas includes both
Archimedean copulas and BEV copulas. The functions A and ϕ, which uniquely
determine Cϕ,A, are called, respectively, dependence function and Archimedean gen-
erator.

1.7 Dependence Properties

Here we recall some dependence properties between random variables that will be
expressed in terms of copulas. For more details on this topic, see [114, chap. 5] and
[74].

Definition 1.7.1. Let X and Y be random variables.

. X and Y are positively quadrant dependent (briefly, PQD) if, for every (x, y) in
R2, P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y).

. X and Y are negatively quadrant dependent (briefly, NQD) if, for every (x, y)
in R2, P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y).

Proposition 1.7.1. Let X and Y be continuous r.v.’s with copula C. X and Y are
PQD (resp. NQD) if, and only if, C ≥ Π (resp. C ≤ Π).
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Definition 1.7.2. Let X and Y be random variables.

. Y is left tail decreasing in X (briefly, LTD(Y |X)) if, and only if, the mapping
x 7→ P (Y ≤ y | X ≤ x) is a decreasing function for all y.

. X is left tail decreasing in Y (briefly, LTD(X|Y )) if, and only if, the mapping
y 7→ P (X ≤ x | Y ≤ y) is a decreasing function for all x.

. Y is right tail increasing in X (briefly, RTI(Y |X)) if, and only if, the mapping
x 7→ P (Y > y | X > x) is an increasing function for all y.

. X is right tail increasing in Y (briefly, RTI(X|Y )) if, and only if, the mapping
y 7→ P (X > x | Y > y) is an increasing function for all x.

Proposition 1.7.2. Let X and Y be continuous r.v.’s with copula C.

. LTD(Y |X) if, and only if, for every y ∈ [0, 1],

x 7→ C(x, y)/x is decreasing.

. LTD(X|Y ) if, and only if, for every x ∈ [0, 1],

y 7→ C(x, y)/y is decreasing.

. RTI(Y |X) if, and only if, for every y ∈ [0, 1],

x 7→ [y − C(x, y)]/(1− x) is decreasing.

. RTI(Y |X) if, and only if, for every x ∈ [0, 1],

y 7→ [x− C(x, y)]/(1− y) is decreasing.

Definition 1.7.3. Let X and Y be random variables.

. Y is stochastically increasing inX (briefly, SI(Y |X)) if, and only if, the mapping
x 7→ P (Y > y | X = x) is an increasing function for all y.

. X is stochastically increasing in Y (briefly, SI(X|Y )) if, and only if, the mapping
y 7→ P (X > x | Y = y) is an increasing function for all x.

. Y is stochastically decreasing in X (briefly, SD(Y |X)) if, and only if, the map-
ping x 7→ P (Y > y | X = x) is a decreasing function for all y.

. X is stochastically decreasing in Y (briefly, SD(X|Y )) if, and only if, the map-
ping y 7→ P (X > x | Y = y) is a decreasing function for all x.

Proposition 1.7.3. Let X and Y be continuous r.v.’s with copula C.
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. SI(Y |X) if, and only if, x 7→ C(x, y) is concave for every y ∈ [0, 1].

. SI(X|Y ) if, and only if, y 7→ C(x, y) is concave for every x ∈ [0, 1].

. SD(Y |X) if, and only if, x 7→ C(x, y) is convex for every y ∈ [0, 1].

. SD(X|Y ) if, and only if, y 7→ C(x, y) is convex for every x ∈ [0, 1].

Definition 1.7.4. Let X and Y be random variables

. X and Y are left corner set decreasing (briefly , LCSD(X,Y )) if, and only if,
P (X ≤ x, Y ≤ y | X ≤ x′, Y ≤ y′) is decreasing in x′ and in y′ for all x and y.

. X and Y are left corner set increasing (briefly , LCSI(X,Y )) if, and only if,
P (X ≤ x, Y ≤ y | X ≤ x′, Y ≤ y′) is increasing in x′ and in y′ for all x and y.

. X and Y are right corner set increasing (briefly , RCSI(X,Y )) if, and only if,
P (X > x, Y > y | X > x′, Y > y′) is increasing in x′ and in y′ for all x and y.

. X and Y are right corner set decreasing (briefly , RCSD(X,Y )) if, and only if,
P (X > x, Y > y | X > x′, Y > y′) is increasing in x′ and in y′ for all x and y.

Proposition 1.7.4. Let X and Y be r.v.’s uniformly distributed on [0, 1] with asso-
ciated copula C.

. LCSD(X,Y ) if, and only if,

C(x, y)C(x′, y′) ≥ C(x, y′)C(x′, y)

for every x, x′, y, y′ in [0, 1], x ≤ x′, y ≤ y′.

. RCSI(X,Y )) if, and only if,

Ĉ(x, y)Ĉ(x′, y′) ≥ Ĉ(x, y′)Ĉ(x′, y)

for every x, x′, y, y′ in [0, 1], x ≤ x′, y ≤ y′.

The scheme of implications among the various dependence concepts is presented
in Table 1.2.

For the study of dependence between extreme values, the concept of tail dependence
is useful and can be also expressed in terms of copula (see [74, 113]).

Definition 1.7.5. Let X and Y be continuous r.v.’s with d.f.’s, resp., F and G. If
the following limits exist in [0, 1], then the upper tail dependence parameter λU of
(X,Y ) is defined by

λU = lim
t→1−

P
(
Y > G[−1](t) | X > F [−1](t)

)
;
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SI(Y |X) =⇒ RTI(Y |X) ⇐= RCSI(X,Y )

⇓ ⇓ ⇓

LTD(Y |X) =⇒ PQD(X,Y ) ⇐= RTI(X|Y )

⇑ ⇑ ⇑

LCSD(X,Y ) =⇒ LTD(X|Y ) ⇐= SI(X|Y )

Table 1.2: Implications among dependence concepts

and the lower tail dependence parameter λL of (X,Y ) is defined by

λL = lim
t→0+

P
(
Y ≤ G[−1](t) | X ≤ F [−1](t)

)
.

In particular, if λU = 0 (resp. λL = 0), then X and Y are said to be asymptotically
independent in the upper tail (resp. in the lower tail).

Proposition 1.7.5. Let X and Y be continuous r.v.’s with copula C. If the following
limits exist and take values in ]0, 1], then

λL = lim
u→0+

C(u, u)
u

and λU = lim
u→1−

1− 2u+ C(u, u)
1− u

.

Moreover, if δC is the diagonal section of C, we have:

λL = δ′C(0+) and λU = 2− δ′C(1−).

1.8 Measures of Association

There are a variety of ways to measure the association (or dependence) between
random variables and, as noted by Hoeffding, many such descriptions are “scale invari-
ant” ([71]), that is they remain unchanged under stricly increasing transformations
of r.v.’s. But, in the words of B. Schweizer and E.F. Wolff, “it is precisely the copula
which captures those properties of the joint distribution function which are invari-
ant under almost surely strictly increasing transformations” ([143]). Thus, Sklar’s
Theorem and Theorem 1.6.3(i) suggest that copulas are a powerful tool to measure
dependence.

In this section, we give a representation of some known measures of association in
terms of copula; for more details, see [114, chapter 5] and [143, 74, 50].

Theorem 1.8.1. Let X and Y be continuous r.v.’s whose copula is C. Then the
population version for Kendall’s tau for X and Y is given by

τX,Y := 4
∫ ∫

[0,1]2
C(u, v) dC(u, v)− 1 = 1− 4

∫ ∫
[0,1]2

∂1C(u, v) · ∂2C(u, v) dudv.
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Theorem 1.8.2. Let X and Y be continuous r.v.’s whose copula is C. Then the
population version of Spearman’s rho for X and Y is given by

ρX,Y := 12
∫ ∫

[0,1]2
C(u, v) dudv − 3.

Theorem 1.8.3. Let X and Y be continuous r.v.’s whose copula is C. Then the
population version of Gini’s measure of association for X and Y is given by

γX,Y := 4
[∫ 1

0

C(u, 1− u) du−
∫ 1

0

(u− C(u, u)) du
]
.

Theorem 1.8.4. Let X and Y be continuous r.v.’s whose copula is C. Then the
medial correlation coefficient of X and Y (called also Blomqvist coefficient) is given
by

βX,Y := 4C
(

1
2
,
1
2

)
− 1.

Theorem 1.8.5. Let X and Y be continuous r.v.’s whose copula is C. Then the
Spearman’s footrule coefficient of X and Y is given by

ϕX,Y := 6
∫ 1

0

C(u, u) du− 2.

On the definition of such measures for non–continuous random variables, we refer
to the paper [124].

1.9 Multivariate Copulas

In this section, we consider copulas in the n–dimensional case (n ≥ 3).

Definition 1.9.1. A function C : [0, 1]n → [0, 1] is an n–copula if, and only if, it
satisfies the following conditions:

(C1’) C(x) = 0 if at least one coordinate of x is 0, and C(x) = xi if all coordinates of
x are 1 except at most the i–th one;

(C2’) C is n–increasing.

As a consequence, every copula is increasing in each place and satisfies the 1–
Lipschitz condition, viz.

|C(x1, x2, . . . , xn)− C(x′1, x
′
2, . . . , x

′
n)| ≤

n∑
i=1

|xi − x′i|

for all (x1, x2, . . . , xn) and (x′1, x
′
2, . . . , x

′
n) in [0, 1]n.

For every n–copula C, we have

Wn(x) ≤ C(x) ≤Mn(x) for all x ∈ [0, 1]n,
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where

Wn(x) := max

{
n∑
i=1

xi − n+ 1, 0

}
, Mn(x) := min{x1, x2, . . . , nn}.

These bounds are the best–possible. Notice that, for n ≥ 3, Wn is not a copula.
Another important n–copula is the product

Πn(x) := Πn
i=1xi.

The set of all n copulas will be denoted by Cn.
For sake of completeness, we give the analogous of Sklar’s Theorem.

Theorem 1.9.1. Let X1, X2, . . . , Xn be r.v.’s with joint d.f. H and marginal d.f.’s
F1, F2, . . . , Fn. Then there exists an n–copula C such that, for all x ∈ Rn

H(x) = C(F1(x1), F2(x2), . . . , Fn(xn)). (1.24)

If F1, F2, . . . , Fn are continuous, then C is unique; otherwise C is uniquely determined
on RanF1 ×RanF2 × · · · ×RanFn.

Conversely, if C is an n–copula and F1, F2, . . . , Fn are univariate d.f.’s, then the
function H given by (1.24) is an n–d.f. with margins F1, F2, . . . , Fn.

In the case n ≥ 3, Theorems 1.6.2 and 1.6.3 can be partially reformulated in this
way:

Theorem 1.9.2. Let X1, X2, . . . , Xn be continuous r.v.’s with copula C.

. X1, X2, . . . , Xn are independent if, and only if, C = Πn.

. each of the r.v.’s X1, X2, . . . , Xn is almost surely a strictly increasing function
of any of the others if, and only if, C = Mn.

. If α1, α2, . . . , αn are strictly increasing mapping, respectively, on RanX1, RanX2,
. . . , RanXn, then Cα1(X1)...αn(Xn) = CX1...Xn

.

The following result gives an important class of multivariate copulas, called multi-
variate Archimedean copulas for their analogy with the bivariate case (see [114, 112]).

Theorem 1.9.3. Let ϕ : [0, 1] → [0,+∞] be continuous and strictly decreasing func-
tion with ϕ(0) = +∞ and ϕ(1) = 0. Let C be the function defined by

Cϕ(x) := ϕ−1 (ϕ(x1) + ϕ(x2) + · · ·+ ϕ(xn)) .

If, for all t ∈ ]0,+∞[ and k ∈ N ∪ {0}

(−1)k
dk

dtk
(ϕ−1(t)) ≥ 0,

then Cϕ is an n–copula, called Archimedean copula.
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1.10 Quasi-copulas

Quasi–copulas were introduced by Alsina, Nelsen and Schweizer ([4]) in order to
characterize operations on distribution functions that can, or cannot, be derived from
operations on random variables (see [122] and [116]). The concept of quasi–copula,
which will be defined shortly, is closely connected to that of copula.

Definition 1.10.1. An n–track is any subset B of [0, 1]n that can be written in the
form

B = {(F1(t), F2(t), . . . , Fn(t)) : t ∈ [0, 1]},

where F1, F2, . . . , Fn are some continuous and increasing functions such that Fi(0) = 0
and Fi(1) = 1 for i = 1, 2, . . . , n.

Definition 1.10.2. An n–quasi–copula is a function Q : [0, 1]n → [0, 1] such that for
any n–track B there exists an n–copula CB that coincides with Q on B, namely, for
all x ∈ B, Q(x) = CB(x).

Such a definition of quasi–copula is, however, of little practical use because it
is hard to tell whether a function Q : [0, 1]n → [0, 1] is, or is not, a quasi–copula
according to it. In view of this purpose, quasi–copulas were characterized in a different
way: see [64] for the bivariate case and [21] for the multivariate case.

Theorem 1.10.1. A function Q : [0, 1]n → [0, 1] is an n–quasi–copula if, and only
if, it satisfies the following conditions:

(Q1) Q(x) = xi if all coordinates of x are 1 except at most the i–th one;

(Q2) Q is increasing in each variable;

(Q3) Q satisfies the 1–Lipschitz condition, viz.

|Q(x1, x2, . . . , xn)−Q(x′1, x
′
2, . . . , x

′
n)| ≤

n∑
i=1

|xi − x′i|

for all (x1, x2, . . . , xn) and (x′1, x
′
2, . . . , x

′
n) in [0, 1]n.

The set of all n–quasi–copulas will be denoted by Qn. Since an n–copula is obvi-
ously also an n–quasi–copula, the set Cn of all n–copulas is (strictly) included in Qn.
If Q belongs to Qn \ Cn, then we say that it is a proper n–quasi–copula.

For every n–quasi–copula Q, we have

Wn(x) ≤ C(x) ≤Mn(x) for all x ∈ [0, 1]n,

and Wn is a quasi–copula.
The concept of quasi–copulas has important applications on finding of best–possible

bounds on arbitrary sets of d.f.’s (see [121, 131]). In particular, if we restrict to the
bivariate case, we have:
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Theorem 1.10.2 ([123]). A function Q : [0, 1]2 → [0, 1] is a quasi–copula if, and
only if, there exists a nonempty set B of copulas such that, for every (x, y) ∈ [0, 1]2,
Q(x, y) := sup{C(x, y) : C ∈ B}.

1.11 Aggregation operators

The aggregation of several input values into a single output is an indispensable
tool not only in mathematics, but also in any other disciplines where the fusion of
different pieces of information is of vital interest (see [12]). In a very intuitive sense,
an aggregation operator associates a single value to a list of values, where a value is
simply an element of a given class (e.g., numbers, functions, sets, etc.). Therefore,
from a mathematical point of view, an aggregation operator is simply a function that,
a priori, has a varying number of variables. Here, following [10], we restrict ourselves
to aggregations of a finite number of input values that belong to the unit interval
[0, 1] into an output value belonging to the same interval and we consider aggregation
operators according to the following

Definition 1.11.1. Let n ∈ N, n ≥ 2. An n–ary aggregation operator (briefly,
n–agop) is a function A : [0, 1]n → [0, 1] satisfying

(A1) A(0, 0, . . . , 0) = 0 and A(1, 1, . . . , 1) = 1;

(A2) A is increasing in each variable.

We note that the above conditions seem quite natural with respect to the intuitive
idea of aggregation: (A1) states that if we have only minimal (respectively, maximal)
possible inputs, then we should obtain the minimal (respectively, maximal) possible
output; (A2) ensures that the aggregation preserves the cartesian ordering on the
inputs. The assumptions that inputs and outputs belong to [0, 1] is not restrictive: in
fact, if they belong to some interval [a, b] ⊂ R, it is always possible to re–scale them
on [0, 1].

Definition 1.11.2. A (global) aggregation operator is a family A = {A(n)}n∈N of
n–agops, with the convention that id[0,1] is the only 1–agop.

Such a definition of global aggregation operator is very useful because, in general,
the number of input values to be aggregated is not known. Notice that, given a global
aggregation operator A, A(n) and A(m) need not be related for n 6= m.

Remark 1.11.1. In 2005, during the Summer School on Aggregation Operators, E.P.
Klement suggested to use the term “aggregation function” instead of “aggregation
operator”, when we aggregate real numbers and not complex quantities. We agree
with this point of view, but it is not adopted here for the sake of uniformity with the
literature of this field.



Chap. 1 Preliminaries 33

As it is easily seen, copulas and quasi–copulas are special types of n–agops. In
particular, they are in the class of 1–stable n–agops, as stated in the following

Definition 1.11.3. Let n ∈ N, n ≥ 2 and p ∈ [1,+∞]. An n–agop A is p–stable if,
for all x and y in [0, 1]n

|A(x)−A(y)| ≤ ‖x− y‖p, (1.25)

where ‖ · ‖p is the standard Lp norm on Rn.

The class of p–stable aggregation operators was introduced in [11] for controlling
output errors in aggregation processes. In particular, a 1–stable 2–agop A, also called
1–Lipschitz 2–agop ([90]), satisfies

|A(x, y)−A(x′, y′)| ≤ |x− x′|+ |y − y′|, for every x, x′y, y′ ∈ [0, 1];

and a ∞–stable 2–agop A, also called kernel 2–agop ([93]), satisfies

|A(x, y)−A(x′, y′)| ≤ max{|x− x′|, |y − y′|}, for every x, x′y, y′ ∈ [0, 1].

In the sequel, if no confusion arises, we use the term agop to denote simply a
binary aggregation operators.

For every agop A : [0, 1]2 → [0, 1], we have

AS(x, y) ≤ A(x, y) ≤ AG(x, y) for every (x, y) ∈ [0, 1]2,

where

AS(x, y) =

1, if (x, y) = (1, 1);

0, otherwise;
AG(x, y) =

0, if (x, y) = (0, 0);

1, otherwise;

are called, respectively, the smallest and the greatest agop .
Given an A, the dual of A is defined, for every point (x, y) in [0, 1]2, by Ad(x, y) :=

1−A(1− x, 1− y).




