List of symbols

Number sets and vector spaces $\mathbf{N}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$

	complex numbers
\mathbf{R}^n	set of all real n -tuples
\mathbf{S}^{n-1}	unit sphere of \mathbf{R}^n
\mathbf{R}^n_+	$\mathbf{R}^n \cap \{x_n \ge 0\}$
\mathbf{C}^n	set of all complex n -tuples
$a \wedge b, a \vee b$	minimum and maximum of a and b
$ \alpha $	the length of the multi-index α , i.e.
	$ \alpha = \alpha_1 + \dots + \alpha_n$
$\operatorname{Re}\lambda,\operatorname{Im}\lambda$	real and imaginary part of $\lambda \in \mathbf{C}$
#E	the cardinality of the set E
Topological and metric space notation	
\overline{E}	topological closure of E
∂E	topological boundary of E
E^c	the complementary set of E in a domain
	Ω or in \mathbf{R}^n
$E \subset \subset F$	$\overline{E} \subset F, \overline{E}$ compact
$B(x_0,r)$	open ball with center x and radius r
$B^{+}(0,r)$	$B(0,r) \cap \mathbf{R}^n_+$
$\mathcal{L}(X,Y)$	set of bounded and linear operators
	from X to Y
$\mathcal{L}(X)$	$\mathcal{L}(X,X)$
X'	dual space of the Banach space X

set of natural, integer, rational, real and

Matrix and linear algebra T the identity matrix ${\rm det}B$ the determinant of the matrix B*i*-th vector of the canonical basis of \mathbf{R}^n e_i ${\rm Tr}B$ the trace of the matrix Bthe Euclidean norm of the matrix B, i.e. $||B||_{\infty}$ $(\sum_{i,j=1}^{n} b_{ij}^{2})^{1/2} \\ (\sum_{i,j,h=1}^{n} |D_h b_{ij}|^2)^{1/2} \\ (\sum_{i,j,h=1}^{n} |D_h b_{ij}|^2)^{1/2}$ $||B||_{1,\infty}$ $(\sum_{i,j,h,k=1}^{n} |D_{hk}b_{ij}|^2)^{1/2}$ $||B||_{2,\infty}$ $\langle \cdot, \cdot \rangle$ or $x \cdot y$ the Euclidean inner product between the vectors $x, y \in \mathbf{R}^n$ Function spaces: let $f: X \to Y$ $f \sqsubseteq E$ or $f_{|E}$ restriction of f to $E \subset X$ closure of $\{x \in X : f(x) \neq 0\}$ $\operatorname{supp} f$ characteristic function of the set E χ_E partial derivative with respect to t u_t partial derivative with respect to x_i D_i D_{ij} $D_i D_j$ Duspace gradient of a real-valued function u $D^2 u$ Hessian matrix of a real-valued function u $\operatorname{Tr}(D^2 u)$ Δu C(X,Y)space of continuous functions from X into Y $C(\Omega)$ space of continuous functions valued in \mathbf{R} or \mathbf{C} $C_c(\Omega)$ functions in $C(\Omega)$ with compact support in Ω $C_0(\Omega)$ closure in the sup norm of $C_c(\Omega)$ $UC_b(\Omega)$ space of the uniformly continuous and bounded functions on Ω $C_{h}^{k}(\overline{\Omega})$ space of k-times differentiable functions with $D^m f$ for $|m| \leq k$ bounded and continuous up to the boundary $C^{\alpha}(\Omega)$ space of α -Hölder continuous functions, $\alpha \in (0, 1)$ $C^{k,\alpha}(\Omega)$ space of $f \in C^k(\Omega)$ with $D^m f \in C^{\alpha}(\Omega)$ for $|m| \leq k$ and $\alpha \in (0,1)$ $\mathcal{S}(\mathbf{R}^n)$ Schwartz space of rapidly decreasing functions the seminorm $\sup_{x,y\in\Omega}\frac{|u(x)-u(y)|}{|x-y|^{\alpha}}$ $[u]_{C^{\alpha}(\Omega)}$ sup norm $\|\cdot\|_{L^{\infty}(\Omega)}$ $\sum_{|\alpha| < k} \|D^{\alpha}u\|_{L^{\infty}(\Omega)} + [D^{k}u]_{C^{\alpha}(\Omega)}$ $||u||_{C^{k,\alpha}(\Omega)}$ usual Lesbegue space $(L^p(\Omega), \|\cdot\|_{L^p(\Omega)})$ $(W^{k,p}(\Omega), \|\cdot\|_{W^{k,p}(\Omega)})$ usual Sobolev space $W^{k,p}_{\mathrm{loc}}(\Omega)$ space of functions belonging to $W^{k,p}(\Omega')$ for every $\Omega' \subset \subset \Omega$ $W_0^{k,p}(\Omega)$ closure of $C_c^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$ dual space of $W_0^{m,p'}(\Omega)$ with $\frac{1}{p} + \frac{1}{p'} = 1$ $W^{-m,p}(\Omega)$ $BV(\Omega)$ functions with bounded variation in Ω

134

Operators	
\mathcal{A}	linear operator
\mathcal{A}^*	formal adjoint operator of \mathcal{A}
A	realization of \mathcal{A} in a Banach space X
D(A)	the domain of A
$\rho(A)$	resolvent set of the linear operator A
$\sigma(A)$	spectrum of the linear operator A
Ι	identity operator
[A,B]	the operator $AB - BA$ defined in
	$D(AB) \cap D(BA)$
Measure theory and BV functions	
$\mathcal{B}(X)$	$\sigma\text{-}$ algebra of Borel subsets of a topological
	space X
$[\mathcal{M}(X)]^m$	the ${\bf R}^m$ -valued finite Radon measures on X
$\mathcal{M}^+(X)$	the space of positive finite measures on X
\mathcal{L}^n	Lebesgue measure in \mathbf{R}^n
ω_n	Lebesgue measure of $B(0,1)$ in \mathbb{R}^n
\mathcal{H}^k	k-dimensional Hausdorff measure
$ E $ or $\mathcal{L}^n(E)$	the Lebesgue measure of the set E
$ \mu $	total variation of the measure μ
$\mu \sqsubseteq E$	restriction of the measure μ to the set E
Du	distributional derivative of u
$\mathcal{P}(E,\Omega)$	perimeter of E in Ω
$\mathcal{P}(E)$	perimeter of E in \mathbf{R}^n
$ u_E$	generalized inner normal to E
E^t	set of points of density t of E
$\mathcal{F}E,\partial^*E$	reduced and essential boundary of ${\cal E}$