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Abstract

This paper o�ers a brief overview of the developments in combinatorial

optimization during the past decade. We discuss improvements in polynomial-

time algorithms for problems on graphs and networks, and review the

methodological and computational progress in linear and integer optimization.

Some of the more prominent software packages in these areas are mentioned.

With respect to obtaining approximate solutions to NP-hard problems, we survey

recent positive and negative results on polynomial-time approximability and

summarize the advances in local search.

1 Introduction

Combinatorial optimization is involved with models and methods for optimization
over discrete choices. It is rooted in the theory of linear programming, and has strong
links with discrete mathematics, probability theory, algorithmic computer science, and
complexity theory. Some problems in the area are relatively well understood and admit
solution to optimality in polynomial time. Many others are NP-hard, and one is forced
to go one of three ways. Either one chooses an enumerative method that is guaranteed
to produce an optimal solution. Or one applies an approximation algorithm that runs
in polynomial time. Or one resorts to some type of heuristic search technique, without
any a priori guarantee in terms of solution quality or running time.
In the past decade we have seen signi�cant progress on all these fronts. Network


ow algorithms became more e�cient, and so did algorithms for linear and convex
optimization. For the hard problems, advances in polyhedral techniques extended the
realm of true optimization methods. Performance bounds that can { or probably
cannot { be met in polynomial time were tightened. And there has been a surge
in the development of local search approaches. Remarkable aspects were the use of
randomization in the design and analysis of algorithms, and the attention paid to
on-line planning models.

1This research was partially supported by ESPRIT Long Term Research Project 20244 (project

ALCOM IT: Algorithms and Complexity in Information Technology).
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Two developments outside the area stimulated research in combinatorial
optimization. First, the continued increase in computing power strengthened the need
for e�cient algorithms. The ability to handle bigger problems made the distinction
between low and high order running times more pronounced and diminished the power
of brute force. Second, at the application side, there has been an increasing con�dence
in the practical potential of optimization techniques. Large and di�cult real-world
problems that were out of reach ten years ago are now being solved. Notable examples
occurred in airline crew scheduling, train timetabling, time-constrained vehicle routing,
telecommunication network design, frequency allocation, VLSI layout synthesis, and
statistical disclosure control.
Combinatorial optimization has established itself as a mature discipline of scienti�c

interest and practical relevance. The selection of topics and references presented
below has been governed by space constraints and personal bias. We apologize for
all omissions.

2 Graphs and networks

Major improvements in running times of algorithms for speci�c graph related problems
have been obtained during the last ten years. We highlight a few here. Quite a number
of these results have been obtained via randomized algorithms, for which we refer to
the book by Motwani and Raghavan [39].
Much research on designing faster algorithms for the maximum 
ow problem and

the minimum cost 
ow problem was initiated by the work of Tardos [49], who found
the �rst strongly polynomial algorithm for the minimum cost 
ow problem. Scaling
of the input parameters and pre�xing 
ows are the main ingredients of most of these
new algorithms, but the design of e�cient data structures has also had an important
impact. For a network with n nodes and m arcs, the best known strongly polynomial
algorithms for �nding a maximum 
ow and a minimum cost 
ow have running times
O(nm logn) and O(m log n(m+n logn)), respectively. A thorough treatment of these
results is given by Ahuja et al. [6]. This book also describes improvements in solution
times for problems such as shortest path and matching problems.
The minimum cut problem of �nding a minimum weight set of arcs in a network

whose removal would disconnect the network is dual to the maximum 
ow problem.
Recently, new algorithms have been developed for this problem that do not exploit
this duality. Nagamochi and Ibaraki [40], for instance, use edge contraction in their
algorithm. Randomized edge contraction, introduced by Karger and Stein [32], leads
to the fastest algorithm so far. An overview of these algorithms with a computational
study is given by Chekuri et al. [17].
Interesting results have been obtained in determining polynomially solvable

subclasses of generally NP-hard problems. Robertson and Seymour [45] proved an
old conjecture of Wagner: for each set of graphs that is closed under taking minors,
there exists a �nite set of graphs that are forbidden to be minors of any graph in the
set. This obstruction set can be enormously large, but its �niteness allows Robertson
and Seymour to prove the existence of a polynomial-time algorithm for determining
the tree-width of any graph in a class that is known to contain graphs of bounded
tree-width only. The proof is non-constructive, and the algorithm may involve a large
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constant (of the order of the number of forbidden minors). Bodlaender [15] gives a
good overview of the techniques involved together with some applications.
Next to these classical graph problems, there are several problems in planning and

scheduling that can be viewed as problems on graphs. One well-studied problem of this
kind is the uncapacitated lot sizing problem. In 1958 Wagner and Whitin proposed
an O(T 2) dynamic programming algorithm, where T is the number of time periods
in the planning horizon. It lasted more than thirty years before a better algorithm
was found. In the early 1990's three groups simultaneously developed algorithms with
running time O(T logT ); see [5], [24], [52].
Important for the implementation of graph related algorithms is the availability

of software packages. The most prominent software library is LEDA, A Library
of E�cient Datatypes and Algorithms, developed by Melhorn and N�aher [38].
It is implemented by a C++ class library, and incorporates many e�cient data
structures and algorithms. LEDA is available at ftp://ftp.mpi-sb.mpg.de in
directory pub/LEDA.

3 Linear optimization

The main developments in linear optimization have sprouted from the work of
Karmarkar [33], who started a wave of research on so-called interior point methods.
Both theoretical and practical advances were accomplished over the past ten years,
and by now some interior point methods are competitive with the celebrated simplex
method. An interesting overview and discussion of the use of simplex and interior point
methods can be found in the ORSA Journal on Computing 6.1 (1994). The book by
Roos et al. [46] gives a comprehensive treatment of interior point methods for linear
optimization. Interior point methods have also been developed for convex optimization
problems. The application of interior point type methods to semide�nite optimization
has led to results that have proved particularly useful in the design of approximation
algorithms for certain combinatorial optimization problems; see Section 5.
A new line of research is the development of randomized algorithms for the search

of an optimal basic feasible solution. The main open question here is if there exist
randomized algorithms that solve linear optimization problems in strongly polynomial
expected running time. Though this question has not been resolved yet, major steps
have been taken. The fastest randomized algorithm is due to Kalai [31], and has

expected running time O(n2m+ b
p

n logn logm), where n is the number of variables,
m the number of constraints, and b a constant independent of the input. It is in essence
a randomized simplex algorithm. For a review of research in this direction we refer to
Chapter 9 of the book by Motwani and Raghavan [39].
With respect to deterministic simplex algorithms, many improvements in practical

performance have been achieved. Many of these improvements have been implemented
in the state-of-the-art software package CPLEX [21]. CPLEX also contains an interior
point method.
To enhance user-friendliness of software for linear and integer optimization, model-

ing languages that allow for representation of variables and constraints in a set-based
format are very useful. Leading computer packages for modeling are AMPL [25] and
AIMMS [14].
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4 Integer optimization

The most commonly used technique for solving (mixed) integer programs is still
branch-and-bound. The quality of the available upper and lower bounds on the
optimal value of the considered instance is the decisive factor for success of this
tree search technique. A lower bound on the optimal value (assuming a minimization
problem) is obtained from a relaxation of the integer program. In the past ten to
�fteen years attention has shifted from Lagrangian relaxation to linear programming
relaxation, since the latter type of relaxation can be strengthened more easily by
using cutting planes. Combining cutting planes and Lagrangian relaxation usually
causes convergence problems. Moreover, good LP solvers, such as CPLEX, that allow
for addition of rows are nowadays available.
The theory of cutting planes in the form of valid inequalities that de�ne facets of

the convex hull of feasible solutions to an instance, was mainly developed prior to
this past decade. During the past ten years, however, an enormous amount of more
problem speci�c results have been obtained. Moreover, surprisingly large instances
have been solved using a mixture of cutting plane algorithms and branch-and-bound.
For recent surveys we refer to Aardal and Van Hoesel [1], [2], and to Chapter 3 of [22].
Similar developments have been attained for column generation methods, which can
be viewed as dual to cutting plane techniques. For a survey we refer to Barnhart et
al. [11].
A new development of the last decade is the theoretical quality analysis of cutting

planes. Negative results for some classes of cutting planes have been reported by
Goemans [26]. He evaluated the worst-case improvement resulting from adding
several of the known classes of facets for the traveling salesman polytope to the
subtour polyhedron, i.e., the set of vectors satisfying the so-called subtour elimination
constraints.
Another surprising theoretical result in polyhedral combinatorics is due to Lov�asz

and Schrijver [37], who developed an algorithm for obtaining a sequence of tighter
and tighter relaxations of integer 0-1 programs. The algorithm iterates the following
steps. First, each constraint of the considered problem is multiplied by each variable
xj and its complement 1 � xj (j = 1; : : : ; n). The resulting quadratic program is
then linearized by replacing the nonlinear terms xixj by new variables yij . This linear
formulation is �nally projected onto the space of the original variables. Lov�asz and
Schrijver showed that this procedure needs to be repeated at most n times before the
convex hull of feasible solutions is obtained. Balas et al. [10] showed that it is su�cient
to multiply each constraint by a single variable xj and its complement at a time.
For branch-and-bound algorithms powerful and quite 
exible software packages have

been developed. We mention MINTO [47] and ABACUS [50]. MINTO contains more
tools such as preprocessing and generic valid inequalities, whereas ABACUS has the
advantage that it is written in C++.
Apart from the further development of existing solution techniques, also two new

techniques for integer optimization received much attention in the last decade. The
�rst algorithm we mention, developed by H.W. Lenstra [35], is older than ten years, but
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served as an inspiration for further developments. Lenstra's algorithm was developed to
show that the problem of determining whether the polyhedronK = fx 2 IRn : Ax � bg
contains an integer vector x, can be solved in polynomial time if n is �xed. First, the
algorithm �nds a transformation � such that the polyhedron �K has a \spherical"
appearance. If the basis of the lattice �ZZn has short and near-orthogonal vectors,
then the membership problem can be solved recursively by branching on a number of
parallel hyperplanes. The number of such hyperplanes can be proved to be bounded
by a constant depending only on n. For any lattice such a basis exists and can be
found in polynomial time starting from an arbitrary basis by using basis reduction;
see Lenstra et al. [34]. Lov�asz and Scarf [36] designed a \generalized" basis reduction
algorithm, which works directly on the polyhedron instead of using approximations
such as Lenstra does. The advantage of their method is that less information is lost,
the disadvantage is that it uses considerably more computational steps. Cook et al. [20]
implemented the Lov�asz-Scarf algorithm and solved some previously unsolved integer
programming problems. Barvinok [12] generalized Lenstra's result and proved that
the number of integral points in a polyhedron can be counted in polynomial time if
the dimension is �xed.
Another new technique, based on the theory of Gr�obner bases, was already

known in computational algebraic geometry, and was introduced for solving integer
optimization problems by Conti and Traverso [19]. It amounts to translating the
integer programming problem into an algebraic membership problem. The Gr�obner
bases are used to guide the generalized division that decides the membership. Advances
in applicability of these methods are due mainly to Thomas [51]. Their current
practical power is restricted by the size of the Gr�obner bases, which is large for
most problems. Due to their structure such methods have advantages over other
more conventional IP methods in solving stochastic integer programming problems;
see Schultz et al. [48]. Computer packages for computing Gr�obner bases are available,
e.g., CoCoa [16] and MACAULAY [13].

5 Polynomial-time approximation

As an alternative to solving NP-hard combinatorial optimization problems to
optimality, which may be very time consuming, a stream of research has concentrated
on designing polynomial-time algorithms that aim at good approximations for
such problems. A widely accepted quality measure of such approximations is the
performance guarantee, i.e., an upper bound on the ratio between the approximate
solution value and the optimal one. A comprehensive and up-to-date survey of the
theory of approximation algorithms is provided in the book edited by Hochbaum [28].
Some of the major achievements in this �eld are based on a combination of

relaxation and randomization. Goemans and Williamson (see [27] and Chapter 11 of
[28]) designed approximation algorithms that solve appropriately chosen relaxations
of mathematical programming formulations of the considered combinatorial problems,
and then round the obtained solution in a randomized way. The rounding can
be derandomized yielding deterministic approximation algorithms. In particular,
Goemans and Williamson use semide�nite optimization relaxations to design
algorithms with very good performance guarantees for the problem of �nding a
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maximum cardinality cut in a graph and the problem of �nding the maximum number
of simultaneously satis�able clauses in a Boolean expression with at most two literals
per clause.
A remarkable result was obtained by Arora [8]. He developed a polynomial-time

approximation scheme for the traveling salesman problem (TSP) in the Euclidean
space. Here we notice that Christo�des' algorithm of 1976 [18], with its performance
guarantee of 3/2, is still the best polynomial approximation algorithm for the TSP
whose distances are symmetric and satisfy the triangle inequality.
Apart from the above positive sounds on approximation, there has also been a

breakthrough on the negative side, in the sense of non-approximability of optimal
solutions of some problems. Papadimitriou and Yannakakis [42] de�ned a class of
maximization problems for the purpose of distinguishing problems whose optimal
solutions are hard to approximate within arbitrarily small ratio. This class called
MAXSNP has a two-sided polynomial reduction de�ned on it under which it is closed.
Given a Boolean expression in conjunctive normal form, the problem MAXSAT of
�nding a truth assignment to the variables that satis�es the maximum number of
clauses is complete for this class.
Arora et al. [9] gave a strong justi�cation for investigating these concepts. They

showed that there cannot exist a polynomial-time approximation scheme for MAXSAT
unless P = NP . The proof is based on an alternative de�nition of NP in terms
of randomized certi�cate veri�cation based on �ngerprinting methodology. This
important result implies that for any MAXSNP-complete problem there must be a
threshold value strictly greater than 1 on the achievable polynomial-time performance
guarantee. For an overview of speci�c results in this direction, we refer to Chapter 10
of [28].
In sequencing and scheduling, techniques based on linear programming and rounding

led to surprising performance guarantees for the o�-line and on-line minimization of
total (weighted) completion time on a single machine and on parallel machines, and for
the minimization of makespan on parallel machines subject to communication delays.
An investigation of the complexity of �nding very short schedules yielded lower bounds
on the polynomial-time approximability of several scheduling problems, including the
job shop scheduling problem. For speci�c results and references, we refer to Chapter
12 of [22].
The previous paragraphs concerned the worst-case approach to approximation. A

complementary approach is average-case or probabilistic analysis, a research �eld that
started more than twenty years ago. The main developments in this �eld during the
last decade were based on discovering the possibility to exploit existing results from
probability theory. Empirical process theory provided tools for the analysis of the
optimal solution value of a series of number problems; see Piersma [43]. Martingale

theory allowed for relatively elegant asymptotic characterizations of optimal solution
values of several problems; see Rhee and Talagrand [44]. Finally we mention the rather
complete probabilistic analysis of bin-packing algorithms, presented in Chapter 2 of
[28].
Next to these developments for optimization problems, a breakthrough in approxi-

mation was accomplished for counting problems, again based on randomization. Count-
ing combinatorial structures such as the number of Hamiltonian cycles in a graph is
obviously harder than just deciding on the presence of the structure. Jerrum et al.
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[30] showed the equivalence between approximate counting and approximate sampling
for a wide class of combinatorial structures. Building on work by Aldous [7], they use
Markov chains to simulate random (uniform) sampling of the structures, and proved
that these \mix rapidly". As a �rst result Jerrum and Sinclair [29] devised a fully poly-
nomial randomized approximation scheme (FPRAS) for counting perfect matchings in
dense graphs, whose vertices have degree at least half of the total number of vertices.
The non-dense graph case is still open. Another prominent result in this direction is
an FPRAS for computing volumes of convex bodies by Dyer et al. [23]. A series of
subsequent papers have given schemes with increasingly better running times. For an
overview we refer to Chapter 12 of [28].

6 Local search

For many years heuristic search approaches have been used throughout science and
engineering. Their performance was generally considered to be satisfactory, partly
based on experience, partly based on a belief in some physical or biological analogy,
which was not always supported by familiarity with what has been achieved in
mathematics.
Still, in the past decade local search has reinforced its position as a standard

approach in combinatorial optimization. Problem size or lack of analytical insight
may prohibit the application of true optimization algorithms. Polynomial-time
approximation algorithms may give inferior solutions, and their performance bounds,
if they can be obtained at all, may be meaningless in practice. Local search is a robust
way to obtain good solutions to real problems in reasonable time.
Simulated annealing has established itself as a relatively straightforward technique

that performs very well when given enough time. Tabu search requires more tuning but
often less running time. Genetic algorithms are not known to perform well in a pure
form, even when problem solutions allow a natural string representation, but hybrid
forms in which o�spring are subjected to iterative improvement are promising. Neural
networks have many applications, which, however, seem to fall outside the realm of
optimization.
Many aspects of local search are discussed in the book edited by Aarts and

Lenstra [3]. We see three main lines of advance. First, a theory of the computational
complexity and performance analysis of local search is now emerging; see Chapters 2
and 3 of [3]. Second, neighborhoods embodying problem-speci�c knowledge and data
structures supporting incremental computations are being used in rather sophisticated
implementations. Third, some of the more successful search strategies are hybrids,
which combine local search with a constructive method, with tree search or, again,
with local search. The shifting bottleneck procedure for job shop scheduling of Adams
et al. [4] is a constructive rule that reoptimizes partial schedules along the way. The
shop scheduling algorithms of Nowicki and Smutnicki (see, e.g., [41] and Chapter 11 of
[3]) apply tabu search and jump back to previously considered promising but rejected
moves; many other combinations of local search and tree search have been proposed.
Johnson's iterated Lin-Kernighan algorithm for the TSP (see Chapter 8 of [3]) is a
nested form of local search, which applies 4-exchanges to local optima resulting from
variable-depth search.
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