PS.IV.08

Si- and Zn-doping of lattice matched B_xIn_zGa_{1-x-z}As- and In_xGa_{1-x}N_vAs_{1-v}-layers

Gunnar Leibiger 1), *Claudia Krahmer* 1), Volker Gottschalch 1), Gabriele Benndorf 2), Volker Riede 2)

1) Dept. of Inorganic Chemistry/Semiconductor Chemistry Group/University of Leipzig/Linnestr. 3, 04103 Leipzig, Germany, 2) Dept. of Experimental Physics II/University of Leipzig/Linnestr. 5, 04103 Leipzig, Germany

Introduction

In_xGa_{1-x}N_yAs_{1-y}-alloys have attained great attention in the past few years due to the possibility of lattice matched or strained growth on GaAs substrates in combination with a large reduction of the band–gap energy with increasing nitrogen incorporation [1]. Highly strained In_xGa_{1-x}N_yAs_{1-y}-layers with large In contents have been used as active material in 1.3–1.5 μm laser diodes [2]. Lattice matched layers are of high interest for high–efficiency multi–junction solar cells [3]. The new B_xIn_zGa_{1-z}As–material system, which is largely unknown, offers new possibilities in band–gap engineering and strain reduction [4,5]. The growth of lattice matched B_xIn_zGa_{1-z}As–layers on GaAs has also been demonstrated introducing the material as another candidate for solar–cell applications [4,5]. Systematic doping studies are prerequisite for application of both materials in solar cells or detector structures. However, systematic doping investigations of B_xIn_zGa_{1-z}As and In_xGa_{1-x}N_yAs_{1-y} using metalorganic vapour–phase epitaxy (MOVPE) are either absent or very rare, respectively [6]. In this work, we investigate the Si– and Zn–doping of lattice matched B_xIn_zGa_{1-z}As– and In_xGa_{1-x}N_yAs_{1-y}-layers using MOVPE and disilane and diethylzinc as doping precursors. All layers were characterized with high–resolution x–ray diffraction, photoluminescence (PL), Hall–measurements and infrared spectroscopic ellipsometry (IR–SE).

Experimental

 $B_xIn_zGa_{1-z}As-$ and $In_xGa_{1-x}N_yAs_{1-y}-$ layers have been grown lattice matched on (001)–GaAs substrates at 550°C and 560°C, respectively using low–pressure (p_{tot} = 50 mbar) MOVPE (AIX200). The total flow into the horizontal reactor amounted to 7ssl and the growth rate was ~ 800 nm/min. Triethyl boron (TEB), (1,1)–dimethyl hydrazine (DMHy), trimethyl gallium (TMGa), trimethyl indium (TMIn), diethyl zinc (DEZn) and disilane (500 ppm in H₂) were used as B–, N–, Ga–, In–, Zn– and Si–precursors, respectively. Tertiarybutyl arsine (TBAs) and arsine were used as As–precursor for the growth of $In_xGa_{1-x}N_yAs_{1-y}$ and $B_xIn_zGa_{1-z}As$, respectively. The nitrogen– and indium compositions of the approximately 1 μm thick, lattice matched $In_xGa_{1-x}N_yAs_{1-y}$ –layers can be estimated to y = 0.016 and x = 0.047 and the band–gap energy is ~1.08 eV. The compositions and the band–gap energy of the lattice matched $B_xIn_zGa_{1-z}As$ –layers ($d \sim 1$ μm) amount to x = 0.027, z = 0.06 and z = 0.06 and z = 0.06 eV. The partial pressures of TMIn, TMGa, DMHy, and TBAs, used for the growth of $In_xGa_{1-x}N_yAs_{1-y}$, were z = 0.06 and z = 0.06 an

Results

Nominally undoped $In_xGa_{1-x}N_yAs_{1-y}$ -layers were found to be p-type with free hole concentrations—ranging from $\sim 6\times 10^{16}$ cm⁻³ (V/III = 25) to $\sim 2\times 10^{16}$ cm⁻³ for V/III-rations above 100. In comparison, the background-doping level was drastically reduced for the— $B_xIn_zGa_{1-z}As$ -layers, for which free electron concentrations of 10^{10} cm⁻³ (V/III = 41) and 5×10^{13} cm⁻³ (V/III = 8) have been measured. These values are surprisingly low in view of the relatively large boron-carbon bondstrength.

Fig. 1 (a) shows the free carrier concentrations of the Si-doped $In_xGa_{1-x}N_yAs_{1-y}$ and $B_xIn_zGa_{1-x-z}As$ – layers resulting from the Hall-measurements as a function of the normalized partial pressure of disilane in the gasphase. With increasing Si-incorporation, the p-type $In_xGa_{1-x}N_yAs_{1-y}$ -layers become semiinsulating and for

 $p_{\rm disilane}/p_{\rm group-III}$ -values above 10^{-3} , n-type conduction is obtained with a maximum electron concentration of $\sim 6 \times 10^{18}$ cm⁻³ for $p_{\rm disilane}/p_{\rm group-III} = 0.1$. For normalized disilane-partial pressures between 0.007 and 0.07, the increase of the electron concentration is approximatively linear and a Si-distribution coefficient $k_{\rm Si}$ of ~ 0.004 can be estimated. Please note that in this

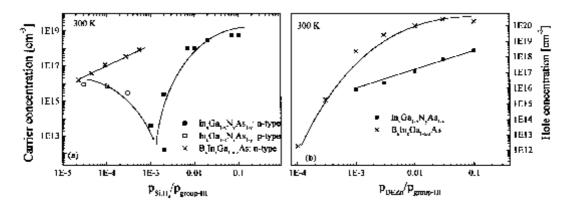


Fig. 1: (a): Free carrier concentration of Si-doped $\ln_x Ga_{1,x}N_\nu As_{1,y^-}$ (squares) and $B_x \ln_x Ga_{1,x}As$ -layers (crosses) depending on the ratio of the partial pressure of disilance to the partial pressures of all group-III precursors. (b): Free hole concentration of Zn-doped $\ln_x Ga_{1,x}N_y As_{1,y^-}$ (squares) and $B_x \ln_x Ga_{1,x}As$ -layers (crosses) depending on the ratio of the partial pressure of DEZn to the partial pressures of all group-III precursors. All lines are shown to guide the eye.

approximation autocompensation effects and the formation of Si–precipitates (both observed in Si–GaAs [7]) are neglected. For $B_xIn_zGa_{1-z}As$, the Si–doping efficiency is clearly increased compared to $In_xGa_{1-x}N_yAs_{1-y}$ (for $2.2\times10^{-5} < p_{disilane}/p_{group-III} < 5.5\times10^{-4}$), which can be understood by the smaller compensation ratio in $B_xIn_zGa_{1-z}As$. The electron concentration increases linearly with increasing $p_{disilane}/p_{group-III}$ -ratio and a Si–distribution coefficient k_{Si} of 0.075 can be estimated under the same assumptions as for $In_xGa_{1-x}N_yAs_{1-y}$. This value is significantly enhanced compared to $In_xGa_{1-x}N_yAs_{1-y}$ ($k_{Si} \sim 0.004$), which might be partly due to the increased autocompensation ratio and/or tendency for formation of Si–precipitates for higher Si–concentrations [7].

Incorporation of Zn resulted in p-type conduction for both materials, $In_xGa_{1-x}N_yAs_{1-y}$ and $B_xIn_zGa_{1-z}As$ (Fig. 1 (b)). In Ref. 6, n-type conduction was obtained for Zn-doped $In_xGa_{1-x}N_yAs_{1-y}$ using MOVPE under similar growth conditions. The origin of this puzzling difference remains unsolved and needs further clarification. For $In_xGa_{1-x}N_yAs_{1-y}$, we obtain linearly increasing hole concentrations with increasing $p_{DEZn}/p_{group-III}$ -ratio up to the highest obtained value of $p \sim 3\times 10^{18}$ cm⁻³ and a Zn-distribution coefficient k_{Zn} of ~ 0.012 can be estimated. In comparison, the Zn-doping efficiency is drastically enhanced in $B_xIn_zGa_{1-z}As$. Assuming that all Zn-atoms are incorporated on group-III lattice sites, a Zn-distribution coefficient k_{Zn} of ~ 0.4 can be estimated for $p_{DEZn}/p_{group-III}$ -ratios between 0.001 and 0.03, where the incorporation behaviour is approximately linear. Different surface reconstructions and the higher As/group-III-ratio in $B_xIn_zGa_{1-z}As$ leading to a higher number of group-III vacancies might explain the observed differences between the two materials.

Fig. 2 shows the Hall-mobilities of the Si- (a) and Zn-doped (b) $In_xGa_{1-x}N_yAs_{1-y}$ - (squares) and $B_xIn_zGa_{1-z}As$ -layers (crosses) as a function of the carrier concentration. Generally, the mobilities of the $B_xIn_zGa_{1-z}As$ -layers are clearly enhanced (by a factor 2-5) compared to the corresponding values for $In_xGa_{1-x}N_yAs_{1-y}$, which can be explained by the lower compensation ratio in $B_xIn_zGa_{1-z}As$. For n-type layers, there is a trend of increasing mobilities with decreasing electron concentrations for high Si-compositions (Fig. 2 (a)). This can be understood by the decreasing number of ionized impurities with decreasing Si-concentration. The saturation or even decrease of the mobilities in the low-concentration region hints at a second process, possibly the

interaction of the Si-dopants with other defects, which may

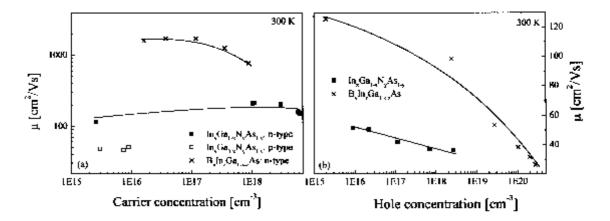


Fig. 2: (a): Hall-mobility of Si-doped $\ln_x Ga_{1-x}N_y As_{1-y}$ (squares) and $B_x \ln_x Ga_{1-x} As$ -layers (crosses) depending on the carrier concentration. (b): Hall-mobility of Zn-doped $\ln_x Ga_{1-x}N_y As_{1-y}$ (squares) and $B_x \ln_x Ga_{1-x} As$ -layers (crosses) depending on the hole concentration. All lines are shown to guide the eye.

also be concluded from PL-experiments (see below). The mobilities of both types of Zn-doped layers decrease with increasing Zn-concentration due to enhanced ionized-impurity scattering and are generally lower than the mobilities of the Si-doped samples, which is due to the higher valence-band effective masses (Fig. 2 (b)).

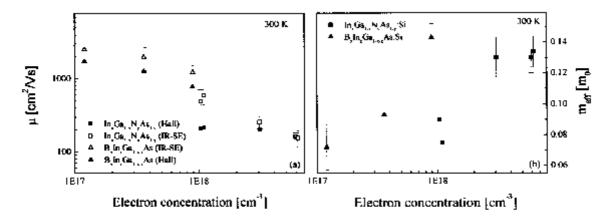


Fig. 3: (a): Mobilities of $In_xGa_{1-x}N_yAs_{1-y}$ (squares) and $B_xIn_xGa_{1-x}As$ (triangles) derived from Hall-measurements (solid symbols) and ellipsometry (open symbols). (b): Effective electron masses of $In_xGa_{1-x}N_yAs_{1-y}$ (squares) and $B_xIn_xGa_{1-x}As$ (triangles).

For the Si-doped layers, infrared spectroscopic ellipsometry was used to derive mobilities and effective masses using the Hall-concentrations as input parameter. Hall-mobilities and optically determined mobilities show in general the same trends (Fig. 3 (a)) and the effective masses increase for both materials with increasing carrier concentration (Fig. 3 (b)), which is an indicator of the nonparabolity of the conduction bands.

The room temperature PL-spectra of both materials are largely influenced by Si-doping as shown in Fig. 4. For $In_xGa_{1-x}N_yAs_{1-y}$ (a) and $B_xIn_zGa_{1-z}As$ (b), the maximum PL-intensities increase with increasing doping level up to ~ 10^{18} cm⁻³. This effect is possibly caused by the interaction of the Si-dopants with other defects. For higher doping levels, the PL-intensities decrease in $In_xGa_{1-x}N_yAs_{1-y}$, which can be explained by defect creation due to

formation of Si-precipitates as observed in Si-GaAs [7].

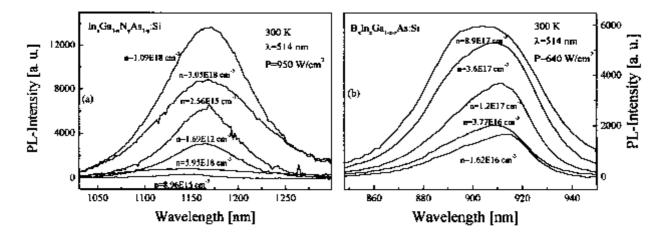


Fig. 4: Room temperature PL-spectra of $In_xGa_{1-x}N_yAs_{1-y}$ (a) and $B_xIn_zGa_{1-z}As$ (b).

Acknowledgement

This work was supported by BMBF under contract 03WKI07. We further acknowledge Mrs. U. Teschner and Dr. H. Herrenberger for considerable experimental support.

References

- [1] M. Kondow et al., Jpn J. Appl. Phys. 35 (1996) 1273.
- [2] K. Nakahara et al., IEEE Photonics Technol. Lett. 10 (1998) 487.
- [3] D. J. Friedman et al., J. Cryst. Growth 195 (1998) 409.
- [4] J. F. Geisz et al., Appl. Phys. Lett. **76** (2000) 1443.
- [5] V. Gottschalch et al., J. Cryst. Growth 248 (2002) 468.
- [6] K. Volz et al., J. Cryst. Growth **248** (2002) 451.
- [7] X. Tang et al., J. Cryst. Growth 98 (1989) 827.