
EJASA:DSS – Electronic Journal of Applied Sta-
tistical Analysis: Decision Support Systems and
Services Evaluation
http://siba-ese.unisalento.it/index.php/ejasa_dss/index

e-ISSN: 2037-3627
DOI: 10.1285/i2037-3627v4n1p9

A goodness-of-fit test for maximum order statis-
tics from discrete distributions
By Silvia Facchinetti, Silvia Angela Osmetti

Published: 28 December 2013

This work is copyrighted by Università del Salento, and is licensed un-
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In economic, financial and environmental sciences studies the extreme
value theory is used for the evaluation of several complex occurring phe-
nomena, e.g., risk management theory, natural calamities, meteorology and
pollution studies. When the observed values are discrete, like count mea-
surements, the discrete extreme value distributions should be applied. In
this paper we propose a procedure to evaluate the goodness of fit of ex-
treme values from discrete distributions. In particular we modify the classic
statistic of the Kolmogorov-Smirnov goodness of fit test for continuous dis-
tribution function. This modification is necessary since the assumption of
the Kolmogorov-Smirnov test is the continuity of the distribution specified
under the null hypothesis. The distribution of the proposed test is given.
The exact critical values of the test statistic are tabulated for extreme values
from some specific discrete distributions. An application in environmental
science is presented.

keywords: Kolmogorov-Smirnov Goodness of Fit Test, Order statistics,
Discrete Distributions.

1 Introduction

One of the most important goodness-of-fit test was suggested by Kolmogorov and Smirnov
(see Kolmogorov (1933) and Smirnov (1939)).
Let’s consider the following hypotheses:
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{
H0 : F (x) = F0(x) for every x

H1 : F (x) 6= F0(x) for some x
(1)

where F (x) is the true cumulative distribution function.
The test is based on a comparison between the cumulative distribution function F0(x)
and the empirical one Sn(x):

Dn = sup
−∞<x<∞

|Sn(x)− F0(x)|. (2)

In particular, let X be a continuous random variable with distribution function F (x),
and let (x(1), x(2), . . . , x(n)) be an ordered simple random sample of size n from X. The
empirical distribution function is a step function with jumps occurring at the sample
values defined as follows:

Sn(x) =


0 for x < x(1)

k/n for x(k) ≤ x < x(k+1) with k = 1, 2, . . . , n− 1.

1 for x ≥ x(n)

(3)

The critical region of size α to reject the null hypothesis in (1) is defined by:

R =

{
Dn : Dn >

dα√
n

}
where dα depends only on α. For a continuous random variable X, the Kolmogorov-
Smirnov test is distribution-free and its exact and approximate critical values have been
calculated. If the continuity assumption of X is not satisfied, the probability distribu-
tion of Dn depends on F0(x) and the test is not distribution-free. Several authors have
studied the Kolmogorov-Smirnov test for discrete random variables (Kolmogorov (1941),
Noether (1963), Conover (1972), Pettitt and Stephens (1977)).
In this paper we propose a modification of the Kolmogorov-Smirnov test that can be
applied to discrete extreme values. Many of the most significant events in several areas
are extreme events or rare events, in economics and finance, in medicine and epidemi-
ology, in meteorology and natural science. In economics and finance, some applications
of extreme value theory are financial strategy of risk management, Value at Risk and
credit risk (Embrechts et al. (1997), Dahan and Mendelson (2001), Barro (1998)). In
natural science and in epidemiology the extreme or rare events, as natural disasters and
the epidemics, occur frequently but they are considered for great important (Frei and
Schar (1998)). The methodology for modeling continuous extreme values or rare events
is well established. When the observed values are discrete, like count measurements, we
apply the discrete extreme value distributions. The binomial and Poisson distributions
are generally used to model the occurrence and frequency of these events (Falk et al.
(2010)). In this paper we consider the discrete extreme value distributions because of
the lack of exhaustive literature about these distributions compared with the continuous
ones (Balakrishnan and Rao (1998)).
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The paper is organized as follows. The next section explains the characteristics of order
statistic from discrete random variable, with particular reference to the the maximum
order statistic. In section 3 the Kolmogorov-Smirnov test applied to discrete extreme
random variables with bounded domain is proposed, the test statistic and its distribution
are presented. In subsection 3.1 we extended the proposed procedure to distributions
with unbounded domain. Section 4 presents the exact critical values of the proposed test
statistic for two particular discrete random variables: extreme values from the uniform-
discrete distribution and the binomial one. Finally, in section 5, we apply our proposal
to empirical data in environmental science field for an illustrative purpose.

2 Distribution of the order statistic from discrete random
variables

Let X be a discrete random variable that assumes the values xi for i = 1, 2, . . . , k with
cumulative distribution function F (xi) and probability distribution function p(xi). Let
X(·) = (X(1), . . . , X(r), . . . , X(n)) be the random vector of order statistics obtained by
a random sample with replacement of size n from X. The generic order statistic X(r)

for r = 1, 2, . . . , n is a discrete random variable that assumes values in the finite set
SX = {xi : i = 1, 2, . . . , k} with cumulative distribution function:

Fr(x) =


0 if x < x1∑h

i=1 pr(xi) if xh ≤ x < xh+1 h = 1, 2, . . . , k − 1

1 if x ≥ xk
(4)

where pr(xi) = Fr(xi)− Fr(xi−1) xi ∈ SX is the probability distribution function of the
order statistic X(r) calculated in xi. The expression (4) may also appear as a function
of the cumulative distribution function F (x) of the random variable X:

Fr(x) =
n∑
j=r

(
n

j

)
[F (x)]j [1− F (x)]n−j . (5)

This distribution function can be associated with an incomplete Beta function, defined
as follows:

Ix(a, b) =
1

B(a, b)

∫ x

0
ua−1(1− u)b−1du 0 ≤ x ≤ 1

where B(a, b) =
∫ 1

0 x
a−1(1− x)b−1dx, with a, b > 0, is the beta function.

Thus the expression (5) can be written:

Fr(x) =
1

B(r, n− r + 1)

∫ F (x)

0
ur−1(1− u)n−rdu = IF (x)(r, n− r + 1). (6)

It is well known that the probability integral transformations Fr(Xr) of each order
statistic is distribution-free. In particular, (5) assumes the form of a survival function
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of a binomial random variable with parameters (n, F (x)) evaluated in r.
For r = n we consider the maximum order statistic X(n), with cumulative distribution
function and probability distribution function respectively given by:

Fn(x) = [F (x)]n (7)

pn(xi) = Fn(xi)− Fn(xi−1) = [F (xi)]
n − [F (xi−1)]n xi ∈ SX . (8)

3 The methodological proposal: the goodness of fit test for
discrete extreme values

Let X(n) be the maximum order statistic from a discrete random variable X with
bounded domain and let (x∗1, . . . , x

∗
s, . . . , x

∗
m) be an ordered random sample with replace-

ment of size m from X(n) with values not necessarily distinct. Let y1, . . . , yj , . . . , yq be the
different ordered values observed in the sample, with x1 ≤ x∗1 = y1 < ... < yq = x∗m ≤ xk,
and let rj be the number of observations equal to yj , for j = 1, . . . , q.
The empirical cumulative distribution function of the maximum order statistic is:

S(n)m(x) =


0 if x < y1

1
m

∑h
j=1 rj if yh ≤ x < yh+1 h = 1, 2, ..., q − 1

1 if x ≤ yq
(9)

with rj ∈ N+ and
∑q

j=1 rj = m. This is a function with q ≤ k steps of height equal to
rj
m , for j = 1, 2, ..., q.
Let’s now adapt the Kolmogorov-Smirnov test to evaluate the goodness of fit of the
maximum discrete order statistics to a previously specified random variable. In this
context the assumption of continuity is not satisfied, and the classic Kolmogorov-Smirnov
test is no longer applicable.
The test is about the null hypothesis

H0 : Fn(x) = F0(x), (10)

where F0(x) is the true cumulative distribution function of the maximum discrete order
statistic. The test statistic is based on the differences between the true and the empirical
cumulative distribution function in (9):

∆h = Fn(xh)− S(n)m(xh) =
h∑
i=1

pn(xi)−
1

m

h∑
i=1

ri with h = 1, 2, . . . , k.

The calculations are formally extended to all xi ∈ SX values, observed or not.
In our proposal the Kolmogorov-Smirnov statistic becomes:

∆m = max
h=1,...,k

|∆h| = max
h=1,2,...,k

| [F (xh)]n − S(n)m(xh) |. (11)
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Figure 1: The empirical cumulative distribution function versus the true one.

The new statistic ∆m is not distribution-free with respect to the classic Kolmogorov-
Smirnov statistic for a continuous random variable. In fact the distribution of ∆m

depends on the sample size m, on the order parameter n and on the distribution of the
discrete random variable X.
Since the distribution of the order statistic X(r) depends on X only through the cumu-
lative distribution function F (x), ∆m in (11) depends only on F (x), for fixed n and m.
For a fixed specified size α, we don’t reject the null hypothesis if ∆m ≤ dα, or equiva-
lently:

F0(xh)− dα ≤ S(n)m(xh) ≤ F0(xh) + dα ∀h = 1, 2, . . . , k (12)

otherwise we reject the null hypothesis if ∃h such that at least one difference ∆h falls
outside the region defined above:

Sm(xh) < [F (xh)]n − dα or Sm(xh) > [F (xh)]n + dα.

In order to apply the test and to define the critical values, we need to specify the
distribution of the test statistic under the null hypothesis H0:

F∆m(d) = P (∆m ≤ d|H0). (13)

This distribution is determined by considering all sets of points (F0(xh), S(n)m(xh)), for
h = 1, 2, . . . , k that meet the condition (12), i.e. those are included into the region
defined in Figure 1.
The figure shows one possible trajectory of points and one of the differences ∆h between

the empirical cumulative distribution function and the true one. These differences are
the vertical distances between the points and the bisector, where the two functions F0(x)
and S(n)m(x) overlap.
For the case of extreme value statistic, once the distribution law of the random variable
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X(n) has been defined, we define the cumulative distribution function of ∆m under H0

as follow:

F∆m(d) =
∑
rh∈H

P (r) (14)

where

P (r) =
m!(∏k−1

h=1 rh!
)(

n−
∑k−1

h=1 rh

)
!

k−1∏
h=1

[F0(xh)− F0(xh−1)]rh(1− F0(xk−1))m−
∑k−1

h=1 rh

(15)

is the probability of occurrence of the different possible trajectories r = {r1, r2, ..., rk}
that meet the condition (12). In particular P (r) is a multinomial probability distribution
function.
In (14) H is the set

H =

{
k−1⋃
h=1

{max(0, rh) ≤
h∑
i=1

ri ≤ min(m, rh)}

}
, (16)

where [rh/m, rh/m] is ∀h the interval of values of the empirical cumulative distribution
function S(n)m(xh) such that the points (F0(x), S(n)m(xh)) be in accordance with (12).
In particular

rh = bm[F (xh)]n + dc and rh = bm[[F (xh)]n − d]c+ 1. (17)

The cumulative distribution function (14) allow us to calculate the exact critical values
of the test. It should be noted that the distribution in (15) depends on the distribution
function of the random variable X from which the order statistics derive, on the sample
size n from which depends the order of the maximum order statistic and on the number
of replications of the sample m. Therefore, for a fixed α, the critical values of the test
statistic depend on the distribution law of the random variable from which the extreme
values are derived.
The proposed test assumes that the null hypothesis is simple and the null hypothesis
completely specifies the distribution of the population. The goodness of fit test procedure
may be extend to a composite null hypothesis in which the distribution of the population
belongs to some parametric family distribution:

H0 : Fn(x) = F0(x; θ) : θ ∈ Θ.

The test statistics then becomes maxh=1,...,k |F0(xh, θ̂) − S(n)m(xh)|, where θ̂ is an esti-
mator of θ. The distribution of such test statistic is a conditional distribution respect
to the θ̂ value and it has the same functional form of the one defined in (14). The test
statistics is again not distribution free.
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3.1 Distribution with a countable number of jumps

We now extend the proposed procedure to discrete distributions with unbounded domain.
For example the Poisson distribution is usually applied to model a rare event. For these
distributions we can apply the proposed procedure, using the distribution defined in
(14), with a modification of the set H in (16). In particular we define

rk∗−1 = lim
k→∞

rk−1

and we suppose that ∃ε ' 0+ such that

rk∗−1 ≥ bm(F ∗ − ε)− dc+ 1,

where F ∗ = limh→∞ F (xh) = 1. Therefore, ∃ε ' 0+ such that the distribution of the
test statistic under the null hypothesis becomes

F∆m(d) =
∑
rh∈H∗

 m!(∏k∗−1
h=1 rh!

)(
n−

∑k∗−1
h=1 rh

)
!

k∗−1∏
h=1

[F0(xh)− F0(xh−1)]rh(1− F0(xk∗−1))r
∗
h

}
(18)

where r∗h = m−
∑k∗−1

h=1 rh and

H∗ =

k∗−1⋃
h=1

{max(0, rh) ≤
h∑
i=1

ri ≤ min(m, rh)}. (19)

In particular for h = (k∗ − 1) we have rk∗−1 ≤
∑k∗−1

i=1 ri ≤ m.
The problem is solved by using on the left side argument of the H∗, analogously it can
be solved by the use of the right side one.

4 Exact calculation of the critical values

We apply the proposed test to the maximum order statistic from two particular discrete
distributions: the uniform and the binomial. We need to calculate the probability dis-
tribution of the test statistic ∆m from (14).

Discrete uniform random variable. Let X be a discrete uniform random variable that
assumes values (1, 2, . . . , k) with probability P (X = x) = 1/k ∀x = 1, 2, . . . , k. Let X(n)

be the maximum order statistic from X, with cumulative distribution function

Fn(x) =


0 x < 1

(h/k)n h ≤ x < h+ 1 h = 1, . . . , k − 1.

1 x ≥ k
(20)
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Table 1 and table 2 show the values of the cumulative distribution function of the test
statistic for several values of the parameters k, n and the critical value d, for m = 5 and
m = 10 sample sizes, respectively.

Table 1: Exact distribution of ∆m statistic for a discrete uniform random variable with
m = 5

n k d=0.1 d=0.2 d=0.3 d=0.4 d=0.5

2 5 0.05225 0.36791 0.70592 0.86363 0.99064

10 0.00448 0.20190 0.56987 0.82122 0.94789

15 0.00048 0.13698 0.51884 0.80253 0.93055

5 5 0.18981 0.64269 0.77911 0.95534 0.99239

10 0.03812 0.39110 0.67587 0.87491 0.97889

15 0.00525 0.25661 0.54541 0.88029 0.93655

10 5 0.32164 0.90753 0.98927 0.98953 0.99939

10 0.10551 0.61781 0.81959 0.94146 0.99425

15 0.03205 0.42394 0.69637 0.92304 0.95551

15 5 0.83603 0.98847 0.98847 0.99959 0.99959

10 0.33942 0.61546 0.93126 0.99249 0.99249

15 0.10440 0.60858 0.81795 0.93635 0.99342

20 5 0.94367 0.99870 0.99870 0.99998 0.99998

10 0.32762 0.88496 0.98425 0.98515 0.99900

15 0.30500 0.64632 0.88108 0.98295 0.98295

From table 1 and table 2 we note that the probability to accept the null hypothesis
depends on the parameter k characterizing the distribution and on the rank n. Indeed,
for a fixed value of n, the probability 1− α increases with an increase of the parameter
k. Moreover, for fixed values of d and k this probability increase with n, the rank of
the maximum order statistic. Finally, since the bandwidth in figure 1 increase with the
increase of d, this probability has an increment with the critical value d. For m = 10
the probabilities 1− α are higher than the once obtained for m = 5.

Binomial random variable. Let now X be a binomial random variable with parameters
l and p. Let X(n) be the maximum order statistic from X, with cumulative distribution
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Table 2: Exact distribution of ∆m statistic for a discrete uniform random variable with
m = 10

n k d=0.1 d=0.2 d=0.3 d=0.4 d=0.5

2 5 0,18443 0,66327 0,91484 0,98680 0,99845

10 0,05713 0,51864 0,86053 0,97416 0,99702

15 0,02683 0,48484 0,85563 0,97297 0,99706

5 5 0,39470 0,79307 0,95928 0,99655 0,99966

10 0,15824 0,63556 0,90670 0,98813 0,99929

15 0,07114 0,60779 0,87777 0,97847 0,99760

10 5 0,59474 0,98361 0,99774 0,99978 0,99999

10 0,31513 0,81117 0,95948 0,99531 0,99947

15 0,18159 0,68950 0,92084 0,98588 0,99870

15 5 0,95383 0,99566 0,99973 0,99999 1,00000

10 0,48524 0,86074 0,99241 0,99895 0,99990

15 0,31954 0,80667 0,95730 0,99439 0,99937

20 5 0,99438 0,99983 1,00000 1,00000 1,00000

10 0,61228 0,97491 0,99606 0,99956 0,99997

15 0,48421 0,85616 0,97859 0,99627 0,99956

function

Fn(x) =


0 x < 0[∑x

i=0

(
l

i

)
pi(1− p)l−i

]n
h ≤ x < h+ 1 h = 0, . . . , l − 1.

1 x ≥ l

(21)

Table 3 and table 4 show the values of the cumulative distribution function of the test
statistic for several values of the distribution parameters l, p and n and of the critical
value d. We consider the sample sizes m = 5 and m = 10.

We observe that the probability to accept the null hypothesis depends on the param-
eters l and p characterizing the distribution and on the rank n like the results obtained
the maximum order statistic from a discrete uniform random variable. Moreover the
probability 1− α increase with the sample size m and with the critical value d.
In conclusion in both cases, we observe that the probability to accept the null hypothesis
depends on the parameters that characterize the distributions in analysis, as well as the
distribution function of the random variable X from which come the order statistics.
Furthermore, the probability increases with the sample size m and the critical value d.
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Table 3: Exact distribution of ∆m statistic for a binomial random variable with m = 5

n l p d=0.1 d=0.2 d=0.3 d=0.4 d=0.5

2 5 0.1 0.12445 0.52410 0.80925 0.91693 0.99220

0.5 0.08399 0.44748 0.72847 0.93455 0.97768

10 0.1 0.04575 0.47728 0.79239 0.90501 0.97781

0.5 0.01748 0.36524 0.69152 0.86884 0.98619

5 5 0.1 0.18233 0.61561 0.78363 0.94447 0.99109

0.5 0.11434 0.53030 0.80860 0.91846 0.99213

10 0.1 0.08546 0.43504 0.73535 0.95709 0.98630

0.5 0.06739 0.41264 0.70367 0.90237 0.96939

10 5 0.1 0.21000 0.57431 0.78053 0.92077 0.98079

0.5 0.14810 0.59159 0.85571 0.96239 0.97747

10 0.1 0.09375 0.55244 0.77223 0.92465 0.97198

0.5 0.04552 0.47233 0.80311 0.89723 0.98262

15 5 0.1 0.13725 0.59650 0.84793 0.96164 0.97532

0.5 0.27536 0.61307 0.82182 0.92738 0.99137

10 0.1 0.11498 0.50636 0.79534 0.91264 0.99154

0.5 0.09852 0.50694 0.78751 0.90425 0.98147

20 5 0.1 0.15584 0.61177 0.92328 0.92378 0.99251

0.5 0.30044 0.61942 0.80385 0.93523 0.97702

10 0.1 0.14155 0.42192 0.82784 0.97688 0.97688

0.5 0.11052 0.48556 0.78012 0.90518 0.99022

5 Empirical evidence

We now apply of the proposed goodness of fit test in environmental sciences field: the
PM10 (Particulate Matter) air pollution study.
A data set of daily average concentrations of PM10 in µg/m3 in Sondrio (Italy) comes
from ARPA is used. We consider the number of days per week for which the PM10 level
are greater than the safety threshold observed in January from the year 2000 to the year
2009. The PM10 level recommended is 50 micro grams per a cubic meter of air (50µg/m3)
measured as a 24 hour running average. We consider the PM10 concentration only in the
month of January because the winter shows the highest values with respect to summer
months. The observations follow a binomial distribution with parameters l (number of
weekly detection days in which the PM10 level is greater than the safety threshold) and
p (probability to overcome the safety threshold). The value of p is estimated from daily
historical observations. We consider the maximum of the n = 4 values observed in the
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Table 4: Exact distribution of ∆m statistic for a binomial random variable with m = 10

n l p d=0.1 d=0.2 d=0.3 d=0.4 d=0.5

2 5 0,1 0,29419 0,77605 0,94993 0,99358 0,99930

0,5 0,23746 0,71170 0,94287 0,99244 0,99916

10 0,1 0,19872 0,76039 0,94079 0,99152 0,99949

0,5 0,12050 0,66100 0,91183 0,98697 0,99840

5 5 0,1 0,39009 0,79190 0,95725 0,99517 0,99949

0,5 0,30561 0,78103 0,95113 0,99353 0,99929

10 0,1 0,21832 0,69729 0,95213 0,99663 0,99969

0,5 0,19842 0,66990 0,92120 0,98566 0,99434

10 5 0,1 0,38214 0,76518 0,94315 0,99264 0,99975

0,5 0,33140 0,82748 0,96571 0,99360 0,99918

10 0,1 0,28000 0,76374 0,93833 0,99011 0,99928

0,5 0,19456 0,75502 0,93931 0,99178 0,99963

15 5 0,1 0,32657 0,82325 0,96220 0,99264 0,99902

0,5 0,44592 0,79946 0,95017 0,99153 0,99894

10 0,1 0,30253 0,75824 0,94510 0,99320 0,99925

0,5 0,27096 0,75209 0,93955 0,99190 0,99964

20 5 0,1 0,18584 0,84965 0,96496 0,99768 0,99933

0,5 0,46403 0,79345 0,94616 0,99179 0,99947

10 0,1 0,27902 0,76174 0,97370 0,99579 0,99955

0,5 0,28634 0,73510 0,93676 0,99170 0,99928

four weeks of January for the 10 considered years.
Our aim is to evaluate the distribution of the maximum of the observed values, thus we
test the null hypothesis H0 : Fn(x) = F0(x), where F0(x) is the cumulative distribution
function of the maximum with rank n = 4 from the binomial random variable in (21) with
parameters l = 7 and p = 0.8107. Considering a sample of size m = 10, we calculate the
empirical cumulative distribution function and we obtain a value of the test statistic in
equation (11) equal to 0.1512 and a p-value equal to 0.3711. For a specified 1−α = 96%,
we obtain a critical value dα = 0.3 (> 0.1512). Therefore we accept the null hypothesis
that the observed values come from the maximum of the binomial random variable with
parameters l = 7 and p = 0.8107.
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6 Conclusions

In this paper we propose a procedure to evaluate the goodness of fit of an order statistic
from discrete distributions. In particular, we modify the classic statistic of Kolmogorov-
Smirnov test in order to apply it to extreme values from discrete distributions. We find
the cumulative distribution function of the test statistic under the null hypothesis H0

and we observe that the statistic is not distribution-free with respect to the continuous
random variable case. Its distribution depends both on the one defined under H0 as
well as the sample size m. Moreover, as the order statistics are distribution-free, the
distribution of the test statistic ∆m depends on that of the random variable X from
which the order statistics are derived. These results have been verified applying the
procedure to extreme values from discrete uniform and binomial distributions. The
exact values of the cumulative distribution function for finite sample sizes are given.
This test is applicable in several areas (economic, financial and environmental sciences)
and has a general validity in the theory of extreme values, particularly for those complex
phenomena in which the values observed are discrete. In particular we have illustrated
an example of the application of the proposed procedure to a study on the PM10 air
pollution.
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