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Abstract: This study examines the effect of two different techniques of bias 
reduction in the case of the fixed persons-fixed items formulation of the Rasch 
model. A first approach can be considered “corrective”, because it consists 
simply in correcting ex-post the joint maximum likelihood estimates by a factor 
(m-1)/m, were m represents the number of items and/or persons. A second 
approach, which is an application of a quite general formula for reducing the 
maximum likelihood estimation bias, can be considered “preventive”, because it 
arises from a modification of the score function. A comparative study of these two 
techniques was done using simulated data. 
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1. Introduction 
 
For the Rasch Model (RM), the Joint Maximum Likelihood (JML) is an estimation procedure in 
which item and person parameters are estimated simultaneously. One of the major drawbacks of 
the JML approach is that item parameters cannot be estimated consistently if the number of 
subjects, n, approaches infinity and the number of items, k, is fixed. More specifically, it is 
known that the JML estimation of item parameters is biased (both for the case of finite samples, 
and asymptotically). Indeed the JML estimate of the item difficulty parameters have an 
approximate bias that is a function of the constant k/(k-1) ([1], p. 244). As a practical solution for 
reducing this bias, [1] proposed the use of a multiplicative bias correcting factor (k-1)/k. 
The main purpose of this study is to compare the properties of two possible bias-reducing 
procedures for the JML estimation of the RM parameters: i) the (m-1)/m bias correction (where 
m can be either n or k); ii) the procedure of bias reduction suggested by [6] and based on a 
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suitable modification of the score function (modified score). The two methods will be simply 
denoted as C-JML and JML*, respectively, hereafter. While C-JML is “corrective”, because the 
Maximum Likelihood Estimate (MLE) is first calculated and then corrected, JML* is 
“preventive” in character, because the likelihood function is modified before the MLE is 
computed. The C-JML approach is actually adopted by the software Winsteps ([8]), while the 
Firth’s approach does not seems to be implemented in any programs for the JML estimation of 
the RM. It is important to emphasize these approaches to bias reduction apply both to item and 
person parameters. Note that, since the correction factor is smaller than one, the C-JML 
estimator reduces the standard error of the JML estimator. Now, it is known that the JML 
approach overspreads the estimates of item difficulties under the Rasch model, and that the C-
JML estimator yields practically unbiased estimates ([11]). Then, one can also deduce that the C-
JML always has a higher precision, in terms of mean square error, with respect to the JML 
estimator. Nevertheless, this estimator suffers of the unbounded nature of the JML estimation: if 
the JML estimate is infinite, so is the C-JML estimate. In particular, the (m-1)/m bias correction 
applies only for non-extreme score vectors. Moreover, this approach does not apply to other 
cases in which the JML estimate does not exist (see [7] for necessary and sufficient conditions 
for the existence of a JML estimate for the RM). 
Firth’s approach is defined in a rather general framework, that is for both exponential and 
nonexponential models. In particular, for the case of an exponential family in its canonical 
parameterization (that is the case of the RM) the method consists in maximizing a modified log-
likelihood function *l l A= + , where l is the log-likelihood function and A is one-half of the 
logarithm of the square root of the determinant of the Fisher information matrix. Still other bias 
reducing techniques are possible; for example, one could consider other types of adjustements of 
the score function (for example by taking observed instead of expected information function). 
Alternatively, one could rely on a suitable modification of a profile likelihood function; the 
interested reader is referred to [3] for an up-to-date review concerning techniques of bias 
reduction based on modified likelihood, or modified profile likelihood. However, an 
investigation along these lines goes beyond the scope of the present study. Interestingly, [12] 
introduced a special case of Firth’s bias reduction method, by applying a similar formula to the 
3-parameter logistic model (which includes the RM as a special case), but his approach is only 
devoted to the problem of the estimation of the ability parameter, under the assumption that the 
item parameters are known. This estimate is defined as the Weighted Likelihood Estimate (WLE) 
in [12]. The WLE is currently adopted, as a default, by the software RUMM 2020 ([2]) to obtain 
person parameter estimates. In a first step, this software uses the (Pairwise) Conditional 
Maximum Likelihood (CML) estimation method for obtaining the item parameters. Then, in a 
second step, the MLE (or WLE) approach is used to estimate ability parameters, treating the 
previously estimated item parameters as if they were the true quantities. 
This paper focuses on the JML estimation approach for the RM; special attention is devoted to 
the problem of the bias of item parameters (for the simple reason that for person parameters this 
problem is less likely to occur). More specifically, we will explore comparatively the effect of 
the MLE bias reducing formula proposed by Firth in the special case of the JML estimation of 
the RM, with respect to that given by the C-JML estimator.  
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2. Materials and Methods 
 
According to the RM for dichotomous responses 0/1, the logit of the probability of a 1-response 

is ( ) ( )( )ln 1 0vi viP X P X= = = v iθ −β , where 1viX =  denotes a 1-response of person v 

( 1v ,...,n= ) to item i ( 1i ,...,k= ) and where the parameters vθ  and iβ  represent, respectively, the 
ability of person v and the difficulty of item i. The JML is not simply an estimation method for 
the RM but it should be considered a model formulation, also known as fixed persons-fixed 
items RM ([5]). In a fixed persons-fixed items RM, item and person parameters are estimated 
simultaneously by maximizing the log-likelihood function ln vivi

l p=∑ , where pvi=P(Xvi=xvi), 

with vix  taking values on the set { }0 1, . In particular, let ( )1vi viP P X= = , 1vi viQ P= −  and 

vi vi viU P Q= . It is easy to see that ( ) ( ){ }1v vi v i v ii
l x exp exp ∂ ∂θ = − θ −β + θ −β ∑ , and that 

( ) ( ){ }1i vi v i v iv
l x exp exp ∂ ∂β = − + θ − β + θ −β ∑ . Then 2 2

v vii
l U∂ ∂θ = −∑ ; 2 0v wl∂ ∂θ ∂θ = , 

for every v w≠ ; 2 2
i viv

l U∂ ∂β = −∑ ; 2 0i jl∂ ∂β ∂β = , for every i j≠ ; 2
v i vil U∂ ∂θ ∂β = .  

Now, since only 1k +  different test scores are possible for persons – that is 0 1vx , ,...,k• =  - only 

1k +  different theta estimates are possible. Then, by considering one identifiability constraint, 
the dimension of the canonical parameter is ( )1 1 2k k k+ + − =  (at most, depending on the 

dataset). Let tf  be the number of persons having test score t, 0 1t , ,...,k= . There is no loss of 

generality by considering ( )1 2 2k, ,...,η η η  as the canonical parameter (simply by renaming person 

and item parameters), where t tη = λ , 1t ,...,k= , and k i i+η = β , 1i ,...,k= , where tλ  represents 

the parameter of the persons with test score t, and where 0θ  (for example) is taken equal to zero 

as an identifiability constraint. The elements of the information matrix ℑ  are defined by the 
relationships 2 2

t t tii
E l f U− ∂ ∂η =∑ , 2

t k i t tiE l f U+− ∂ ∂η ∂η = − , 2 2
k i t tit

E l f U+− ∂ ∂η =∑ , and 

zero otherwise (for simplicity we assume that there are no ties among the item total scores 

1 kx ,...,x• • ; otherwise a similar grouping of items may also be considered). The JML* estimator is 

obtained by maximizing the modified log-likelihood function *l l A= + , where 12  lnA −= ℑ . 

 
 
3. Simulation study 
 
A simulation study was carried out to determine the bias and the precision of the three estimation 
methods: JML, JML* and C-JML. The entire simulation was performed in the R computing 
environment ([9]). Maximization of the likelihood is carried out by using the nlm function, 
which adopts a Newton-type algorithm, in the R-package stats. The R functions necessary to 
obtain the estimates, according to the considered methods, are available from the website  
http://www.economia.unict.it/punzo.  
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3.1 Design 
We considered 6 test lengths k ranging from 5 to 30, in increments of 5, and 3 sample sizes, n 
=100, 400, 1000.  For each couple (n,k), R=100 replications were taken into account, leading to a 
total of 1800 datasets. In detail, for each couple (n,k) and for each replication: 

- n values of θ  were generated from a standard normal distribution; 
- k values of β  were drawn from a standard normal distribution and a posteriori centered 

to have zero mean; 
- a n k×  dataset was generated from a RM; 
- JML, JML* and C-JML estimates were derived for the dataset at hand, with an 

identifiability constraint of zero mean on the β  parameters. This identifiability constraint 
was chosen in order to “tune” true and estimated item parameters. 

 
3.2 Error indices 
For each couple (n,k), the overall precision of the obtained item parameter estimates was 

assessed by (an estimated) root mean square error ( )2
1 1

1 1
RMSE

R k

jr jrr j
ˆR k− −

= =
= β −β∑ ∑ , 

where jrβ̂  is the estimated parameter of item j in replication r, and jrβ  is the corresponding true 

parameter value. In order to evaluate the bias note that, due to the a posteriori centering of the 

jrβ and due to the way the jrβ̂ are constrained, the average bias ( ) ( )∑ β−β−
jr jrjrRk

,

1 ˆ  masks the 

overall magnitude of the bias, because in this formula negative and positive biases cancel each 
other out. The following formula (see [10]) was adopted to evaluate the bias 

( ) ( )
1

I
I I jr jrj ,r

ˆS
−

∈Ω
∆ = β β∑ , where ( ){ } 1  1I jrj ,r , j ,...,k , r ,...,R : IΩ = = = β ∈ , ( )IIS Ω= card                               

and I represents the interval of interest. Naturally, values of I∆  near to one indicate low bias. 
The intervals I of interest were [0.5,1), [1,1.5), [1.5,2), [2,∞ ), and [0.5,∞ ), with the latter 
summarizing the information arising from the previous ones.  
 
3.3 Results 
Table 1 shows the comparative results in terms of the bias index I∆ . As expected, regardless 

from the estimation method, the precision of the item estimates increases when k and/or n 
increase too. Also, although JML* works better than JML, C-JML clearly outperforms both of 
them. In this ranking among methods, it is also important to note as JML* performs more similar 
to JML than C-JML. Tables 2 and 3 illustrate the results in terms of RMSE for the values k=5, 
10, 15 and k=20, 25, 30, respectively. These tables, beside to confirm the above considerations, 
also confirm that the JML underestimates the difficulties of easy items but overestimates those of 
difficult items. In other words, it overspread the difficulty estimates. 
 
 
4. Discussion 
 
This study compares the effect of two different techniques of bias reduction of the JML estimates 
of item parameters for a RM. The interest in this estimation method is simply due to the 
popularity of the software Winsteps, which appears to be the most widely used Rasch analysis 
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program ([4]), and that effectively adopts the JML estimation method, as well as the C-JML 
bias-correction approach. Our simulations confirm that the bias (computed by the index I∆ ) is 

quite near to the conjectured factor k/(k-1), especially for large samples.  
 
Table 1. Values of I∆  for the three considered estimators, JML, JML*, and C-JML. 

  n=100    n=400    n=1000  
k I k/(k-1) 

 JML JML* C-JML  JML JML* C-JML  JML JML* C-JML 
5 [0.5,1) 1.25  1.36 1.32 1.09  1.29 1.28 1.03  1.28 1.28 1.02 

 [1,1.5) 1.25  1.37 1.33 1.10  1.31 1.30 1.05  1.31 1.30 1.04 
 [1.5,2) 1.25  1.38 1.34 1.11  1.33 1.32 1.06  1.36 1.35 1.08 
 [2, ∞) 1.25  1.27 1.22 1.01  1.40 1.39 1.12  1.37 1.36 1.09 
 [0.5, ∞) 1.25  1.36 1.32 1.09  1.31 1.30 1.04  1.30 1.30 1.04 
               

10 [0.5,1) 1.11  1.15 1.12 1.03  1.12 1.12 1.01  1.12 1.12 1.01 
 [1,1.5) 1.11  1.15 1.13 1.04  1.13 1.13 1.02  1.13 1.12 1.01 
 [1.5,2) 1.11  1.18 1.15 1.06  1.13 1.13 1.02  1.13 1.13 1.02 
 [2, ∞) 1.11  1.18 1.14 1.06  1.12 1.11 1.00  1.14 1.14 1.03 
 [0.5, ∞) 1.11  1.15 1.13 1.04  1.13 1.12 1.01  1.13 1.12 1.01 
               

15 [0.5,1) 1.07  1.08 1.06 1.01  1.08 1.08 1.01  1.08 1.08 1.01 
 [1,1.5) 1.07  1.10 1.07 1.02  1.08 1.08 1.01  1.08 1.08 1.01 
 [1.5,2) 1.07  1.08 1.05 1.01  1.08 1.07 1.01  1.08 1.08 1.01 
 [2, ∞) 1.07  1.07 1.03 1.00  1.09 1.08 1.02  1.09 1.09 1.02 
 [0.5, ∞) 1.07  1.08 1.06 1.01  1.08 1.08 1.01  1.08 1.08 1.01 
               

20 [0.5,1) 1.05  1.08 1.06 1.03  1.07 1.07 1.02  1.06 1.05 1.00 
 [1,1.5) 1.05  1.06 1.04 1.01  1.06 1.06 1.01  1.06 1.06 1.01 
 [1.5,2) 1.05  1.10 1.08 1.05  1.05 1.05 1.00  1.07 1.06 1.01 
 [2, ∞) 1.05  1.07 1.03 1.01  1.05 1.04 1.00  1.06 1.05 1.00 
 [0.5, ∞) 1.05  1.08 1.06 1.02  1.07 1.06 1.01  1.06 1.06 1.01 
               

25 [0.5,1) 1.04  1.06 1.04 1.02  1.04 1.04 1.00  1.05 1.05 1.01 
 [1,1.5) 1.04  1.06 1.04 1.02  1.05 1.04 1.01  1.04 1.04 1.00 
 [1.5,2) 1.04  1.08 1.05 1.04  1.04 1.03 1.00  1.05 1.05 1.01 
 [2, ∞) 1.04  1.07 1.03 1.02  1.05 1.05 1.01  1.05 1.05 1.01 
 [0.5, ∞) 1.04  1.06 1.04 1.02  1.05 1.04 1.00  1.05 1.05 1.01 
               

30 [0.5,1) 1.03  1.04 1.02 1.00  1.03 1.03 1.00  1.04 1.04 1.00 
 [1,1.5) 1.03  1.06 1.04 1.02  1.04 1.03 1.01  1.04 1.04 1.00 
 [1.5,2) 1.03  1.06 1.04 1.03  1.04 1.03 1.00  1.04 1.04 1.01 
 [2, ∞) 1.03  1.08 1.05 1.04  1.05 1.04 1.01  1.04 1.03 1.00 
 [0.5, ∞) 1.03  1.05 1.03 1.02  1.04 1.03 1.00  1.04 1.04 1.00 

 
Moreover, simulations confirm that the bias reduction techniques, JML* and C-JML, tend to 
effectively reduce the bias, without an inflating effect on the standard error of the estimators 
(with respect to the baseline level of the JML estimator). This may be due to a shrinkage effect 
on the estimates of both these approaches. In particular, by this comparison, it clearly appears 
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that the C-JML method, based on correcting the JML estimate with the bias-correction factor (k-
1)/k, outperforms the method suggested by Firth, based on a modification of the score function 
and leading to the JML* estimator. Indeed, in general, JML* shows little differences with respect 
to the bias of the JML estimator. Besides, an advantage of JML* over C-JML is that the former 
avoid the issue of the infinite estimate in the case of extreme patterns. But it should also be noted 
that the existence of JML* estimate for ill-conditioned datasets ([7]) has not yet been 
demonstrated. 
 
Table 2. RMSE for the three considered estimators, JML, JML*, and C-JML, and for low values of k. 

    k=5   k=10   k=15 

    JML JML* C-JML   JML JML* C-JML   JML JML* C-JML 
n=100   0.41 0.38 0.24   0.29 0.28 0.24   0.27 0.26 0.24 
n=400   0.30 0.29 0.12   0.17 0.17 0.11   0.15 0.14 0.12 
n=1000   0.26 0.26 0.08   0.14 0.14 0.07   0.11 0.11 0.07 

 
 
Table 3. RMSE for the three considered estimators, JML, JML*, and C-JML, and for higher values of k. 

    k=20   k=25   k=30 

    JML JML* C-JML   JML JML* C-JML   JML JML* C-JML 
n=100   0.26 0.25 0.24   0.26 0.25 0.24   0.25 0.24 0.23 
n=400   0.13 0.13 0.11   0.13 0.13 0.12   0.13 0.12 0.12 
n=1000   0.10 0.10 0.07   0.09 0.09 0.07   0.09 0.09 0.08 
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