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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università del Salento: ESE - Salento University Publishing

https://core.ac.uk/display/231330387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Electronic Journal of Applied Statistical Analysis
Vol. 12, Issue 01, April 2019, 209-222
DOI: 10.1285/i20705948v12n1p209

Statistical inference for the transformed
Rayleigh Lomax distribution with

progressive type-II right censorship

Amani Alghamdi, Wei Ning, and Arjun K. Gupta

Bowling Green State University
Bowling Green, Ohio, USA

Published: 26 April 2019

In this paper, we study the transformed Rayleigh Lomax (Trans-RL) dis-
tribution which belongs to a certain family of two parameters lifetime dis-
tributions given by Wang et al. (2010). Confidence intervals and inverse
estimators of the Trans-RL parameters are derived in order statistics. A sim-
ulation study is conducted to report the coverage probabilities, the average
biases and the average relative mean square errors for the maximum likeli-
hood, L-moments and inverse estimators. We compare the performance of
these methods under different schemes of progressively Type-II right censor-
ing. Finally, an illustrative example is provided to demonstrate the proposed
methods.

keywords: L-moments, Confidence intervals, Inverse estimators, Order Statis-
tics, Proportional hazard family.

1 Introduction

Censoring is one of the useful sampling techniques in life test experiment which is used to
save time and cost of testing units, see (Lawless, 2011) and (Meeker and Escobar, 2014).
Type-I and Type-II censoring are the two most common censoring schemes, where in
Type-I censoring scheme, the total duration of the study is fixed and the number of
failures is random, whereas under censoring of Type-II, the number of failures is fixed
in advance and the total duration of the study is random.

One of the main extensions of Type-II censoring scheme is progressive Type-II right
censoring which has received great attentions. Herd (1956) was the first to study esti-
mation of the population parameters based on progressively censored samples. Cohen
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(1963) studied the importance of progressive censoring in life-testing reliability exper-
iments. Balakrishnan and Aggarwala (2000) provided details about right progressive
censoring in theories and applications.

Let Y1, Y2, ..., Yn be independent and identically distributed (i.i.d) random lifetimes of
n units. A progressive Type-II right censored sample can be obtained in the following
way: Suppose that n units are placed on life test at time zero. Before we begin the test,
a number m(< n) is fixed and the censoring scheme R = (R1, ..., Rm) with Rj ≥ 0 and∑m

j=1Rj +m = n is specified. Immediately following the first failure, R1 surviving units
are removed from the test at random. Then, immediately following the second observed
failure, R2 surviving units are removed from the test at random . This process continues
until at the time of the m− th observed failure, the remaining Rm = n−R1−R2− ...−
Rm−1−m units are removed from the experiment and censored. This censoring scheme
includes as special cases the complete sample (when m = n and R1 = ... = Rm = 0).

Several lifetime distributions associated with censored sampling are available and have
wide applications in engineering, science, public health and medicine. For example,
the one parameter exponential distribution under censored sampling has received great
attention in the literature (See (Ehsan Saleh, 1967), (Pettitt, 1977), (Wright et al., 1978)
and (Sundberg, 2001))

According to Marshall and Olkin (2007), let G be a distribution function depending
only on the shape parameter α with hazard rate R=-log(Ḡ). Suppose that F (.;α, σ) is
defined by the formula

F (y;α, σ) = 1− [1−G(y;α)]σ, (1)

Then, σ is called a frailty parameter and {F (.;α, σ);α, σ > 0} is a frailty parameter
family, or alternatively, a proportional hazard family.

The Weibull distribution, the Gompertz distribution and the Lomax distribution are
examples included in family (1).

In this paper, we study the inference under progressively Type-II right censored sam-
pling for a new distribution belongs to the family (1) called Trans-RL distribution. The
rest of the paper is organized as follows. In section 2, the Rayleigh Lomax (RL) distri-
bution is defined after transformation. Under progressively Type-II right censoring, the
confidence intervals as well as the inverse estimation for the Trans-RL parameters are
studied in section 3. In section 4, the coverage probabilities, the average relative biases
and average relative mean square errors for the MLE, the method of L-moments and
inverse estimators are calculated for different progressive censoring schemes through a
simulation study. Finally, a real dataset is provided to illustrate the proposed method.

2 The Rayleigh-Lomax Distribution

Lomax distribution is one of the well known distributions that is very useful in many
fields such as engineering, reliability and life testing. However, this distribution does not
provide great flexibility in modeling data. Thus, Lomax distribution can be generalized
by presenting additional parameters such as shape, scale or location in the distribution
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and then observing the characteristic of the new distribution. Several generalized classes
of distributions are available such as exponentiated Lomax (Abdul-Moniem and Abdel-
Hameed, 2012), Beta-Lomax((Rajab et al., 2013), exponential Lomax distribution (El-
Bassiouny et al., 2015) and Gumbel-Lomax (Tahir et al., 2016).

El-Bassiouny et al. (2015) proposed a new generalization of Lomax distribution by
adding a scale parameter β > 0 to the Lomax distribution. Let G(x) denotes the
cumulative density function (cdf) of Lomax distribution and f(t) is the probability
density function (pdf) of the exponential distribution. Then the cdf for the exponential
Lomax (ELomax) distribution is given by the general expression

F (x;α, λ, β) =

∫ 1
1−G(x;α,λ)

0
f(t;β)dt. (2)

Therefore, the ELomax cdf is given by∫ 1

( λ
x+λ)

α

0
βe−βtdt = 1− e−β(

λ
x+λ)

−α
, α, λ, β > 0. (3)

Rayleigh Lomax (RL) distribution provided by Alghamdi (2018) is another extension
of Lomax distribution which grants great fit in modeling wide range of real data sets. It
is a very flexible distribution that by changing its parameters, some different useful dis-
tributions can be obtained. The RL distribution is defined using the general expression
in (2) as

F (x;α, λ, σ) =

∫ 1

( λ
x+λ)

α

0
f(t;σ)dt, (4)

where f(t;σ) is the pdf of Rayleigh distribution given by

f(t;σ) =
t

σ2
e−

t2

2σ2 , t ≥ 0, σ > 0. (5)

From (4), The Rayleigh Lomax cdf is given by

F (x;α, λ, σ) = 1− e
−1

2σ2
(x+λλ )

2α

, (6)

The corresponding pdf is given by taking the derivative of (6)

f(x;α, λ, σ) =
α

λσ2

(
x+ λ

λ

)2α−1

e
−1

2σ2
(x+λλ )

2α

, x > −λ, α, λ, σ > 0, (7)

where α is the shape parameter and λ and σ are scale parameters of Rayleigh Lomax
distribution. Rayleigh Lomax distribution behaves as a lifetime distribution by adding
the scale parameter λ to the RL random variable X. Particularly, let Y = X+λ

λ , then
the pdf of the transformed RL distribution is

fY (y;α, σ) =
α

σ2
y2α−1e

−1

2σ2
y2α , y, α, σ > 0, (8)
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and its cdf is given by

FY (y;α, σ) = 1− e
−1

2σ2
y2α . (9)

Regarding the Trans-RL distribution, (1) can be written as

F (y;α, σ) = 1− [1−G(y;α)]
1

2σ2 , y, α, σ > 0, (10)

where G(y;α) = 1− e−y2α .

3 Confidence Intervals and Inverse Estimation of
Parameters α and σ

The following results, which are also stated in Wang et al. (2010), are needed

Theorem 1 (I) If Vi:m:n = −log(1−F (Yi:m:n;α, σ)), i = 1, ...,m, then V1:m:n, ..., Vm:m:n

is a progressively type II right censored sample from the standard exponential distribution
with sample size n and censoring scheme R = (R1, ..., Rm). In the Trans-RL distribu-
tion, Vi:m:n = 1

2σ2Y
2α
i:m:n.

(II) If W1 = nV1:m:n, Wi =
[
n−

∑i−1
j=1 (Rj + 1)

]
(Vi:m:n − Vi−1:m:n), i = 2, ...,m, then

W1, ...,Wm are independent standard exponential random variates.

(III) If Si =
∑i

j=1Wj , i = 1, ...,m and U(i) = Si
Sm
, i = 1, ...,m − 1, then U(1) < ... <

U(m−1) are order statistics from the uniform(0,1) distribution with sample size m-1.

Proof. (I) Balakrishnan and Aggarwala (2000) provided the joint pdf of all m pro-
gressively type II right censored order statistics as follows.

fY1:m:n,...,Ym:m:n(y1, ..., ym) = c

m∏
i=1

f(yi)[1− F (yi)]
Ri , y1 < ... < ym (11)

where c = n(n − R1 − 1)...(n − R1 − R2 − ... − Rm−1 − m + 1). For the Trans-RL
distribution, the joint pdf of all m progressively Type-II right censored order statistics
is

fY1:m:n,...,Ym:m:n(y1, ..., ym) = c

m∏
i=1

α

σ2
y2α−1
i

(
e

−1

2σ2
y2αi
)Ri+1

. (12)

Then it is easy for us to obtain

fV1:m:n,...,Vm:m:n(v1, ..., vm) = ce−
∑m
i=1(Ri+1)vi , 0 < v1 < ... < vm <∞, (13)

which implies that V1:m:n, ..., Vm:m:n is a progressively Type-II right censored sample
from the standard exponential distribution.
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(II) If

W1 = nV1:m:n,

W2 = (n−R1 − 1) (V2:m:n − V1:m:n) ,

...

Wm = (n−R1 − ...−Rm−1 −m+ 1) (Vm:m:n − Vm−1:m:n) .

Then,

V1:m:n =
W1

n
,

V2:m:n =
W1

n
+

W2

n−R1 − 1
,

...

Vm:m:n =
W1

n
+ ...+

Wm

n−R1 − ...−Rm−1 −m+ 1
.

Hence, from (13), we have

fW1,...,Wm(w1, ..., wm) = e−(R1+1)
w1
n .e

−(R2+1)
(
w1
n

+
w2

n−R1−1

)
...e

−(Rm+1)
(
w1
n

+...+ wm
n−R1−...−Rm−(m−1)

)
= e−

∑m
i=1(Ri+1)

w1
n .e

−
∑m
i=2(Ri+1)

w2
n−R1−1 ...e

−(Rm+1) wm
n−R1−...−Rm−1−(m−1) .

(14)

= e−
∑m
i=1 wi , wi ≥ 0.

Therefore, W1, ...,Wm are independent standard exponential random variates.

(III) The probability distribution function of the order statistic Ui, i = 1, ...,m − 1.
from the uniform(0,1) is given by

fU(i)
(u) =

(m− 1)!

(i− 1)!(m− i− 1)!
ui−1(1− u)m−i−1,

=
Γ(m)

Γ(i)Γ(m− i)
ui−1(1− u)m−i−1, 0 < u(1) < u(2) < ... < u(m−1) < 1 (15)

which implies that U(i) ∼ Beta(i,m− i).
Given Si =

∑i
j=1Wj , i = 1, ...,m, we need to show that Ui = Si

Sm
, i = 1, ...,m− 1

is order statistic from the uniform (0,1) distribution with sample size m − 1. Since
W1, ...,Wm are independent standard exponential random variates, then Si =

∑i
j=1Wj

is a random variable from the gamma distribution with the shape parameter i > 0 and
the rate parameter equals 1. Let Si+1 = Wi+1 + Wi+2 + ... + Wm and Sm = Si + Si+1,
where Si+1 follows the gamma distribution with the shape parameter m− i > 0 and the
rate parameter equals 1.



214 Alghamdi, Ning, Gupta

Since Si and Si+1 are independent random variables, the joint pdf of of Si and Si+1

is given as

f(si, si+1) =
si−1
i

Γ(i)
e−si .

1

Γ(m− i)
sm−i−1
i+1 e−si+1 , Si, Si+1 ≥ 0, i,m > 0. (16)

Let K = Si
Si+Si+1

and Sm = Si + Si+1, then Si = KSm and Si+1 = Sm(1−K) with

∂(Si, Si+1)

∂(Sm,K)
=

∣∣∣∣∣ K Sm

1−K −Sm

∣∣∣∣∣ = Sm.

Then, the joint pdf of K and Sm is given as

f(k, sm) =
Γ(m)

Γ(i)Γ(m− i)
ki−1(1− k)m−i−1 s

m−1
m

Γ(m)
e−sm . (17)

By factorization theorem, Si
Si+Si+1

= Si
Sm
∼ Beta(i,m− i).

Therefore, U(i) = Si
Sm
, i = 1, ...,m − 1, where U(1) < ... < U(m−1) are order statistics

from the uniform(0,1) distribution with sample size m− 1.

3.1 Interval estimation of parameter α

In order to construct the confidence interval of the parameter α, we consider the following
pivotal quantity

W (2α) =
m−1∑
i=1

(−2log(U(i))) = 2
m−1∑
i=1

log

(
Sm
Si

)

= 2
m−1∑
i=1

log

[ ∑m
j=1(Rj + 1)Vj:m:n∑i

j=1(Rj + 1)Vj:m:n + [n−
∑i

j=1(Rj + 1)]Vi:m:n

]

= 2

m−1∑
i=1

log

[ ∑m
j=1(Rj + 1)Y 2α

j:m:n∑i
j=1(Rj + 1)Y 2α

j:m:n + [n−
∑i

j=1(Rj + 1)]Y 2α
i:m:n

]
. (18)

We notice that W (2α) is a function of α and does not depend on σ. Moreover, W (2α) =∑m−1
i=1 (−2logU(i)) =

∑m−1
i=1 (−2log(Ui)), and U1, ..., Um−1 = S1

Sm
, ..., Sm−1

Sm
is a random

sample from the uniform(0,1) distribution which implies that W (2α) has the χ2 distri-
bution with 2(m − 1) degrees of freedom. To show that W (2α) is strictly monotonic
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function, we write equation (18) as follows.

W (2α) = 2
m−1∑
i=1

log

(
1 +

Sm − Si
Si

)

= 2

m−1∑
i=1

log

(
1 +

∑m
j=i+1(Rj + 1)Vj:m:n − [n−

∑i
j=1(Rj + 1)]Vi:m:n∑i

j=1(Rj + 1)Vj:m:n + [n−
∑i

j=1(Rj + 1)]Vi:m:n

)

= 2

m−1∑
i=1

log

(
1 +

∑m
j=i+1(Rj + 1)P(j,i) − [n−

∑i
j=1(Rj + 1)]∑i

j=1(Rj + 1)P(j,i) + n−
∑i

j=1(Rj + 1)

)
, (19)

where P(j,i) =
Vj:m:n

Vi:m:n
=
(
Yj:m:n

Yi:m:n

)2α
is strictly increasing in α for j > i, and then W (2α)

is strictly increasing function of α. Therefore, W−1 exists and the confidence interval of
the parameter α is stated in the following theorem.

Theorem 2 Suppose X = (X1:m:n, ..., Xm:m:n) is a progressively Type II right censored
sample from the Trans-RL distribution with sample of size n and the censoring scheme
R = (R1, ..., Rm). Then, for any 0 < γ < 1,[

1
2W

−1[χ2
1−γ/2(2(m− 1))], 12W

−1[χ2
γ/2(2(m− 1))]

]
is a 100(1−γ)% confidence interval for the shape parameter α, where χ2

1−γ/2(2(m−1))

and χ2
γ/2(2(m−1)) are the lower and upper γ percentiles respectively of the χ2 distribution

with 2(m− 1) degrees of freedom.

3.2 Interval estimation of parameter σ

To obtain the confidence interval of σ, we consider the quantity,
V = 2Sm. Note that from part (III), Sm =

∑m
j=1Wj . Hence,

V = 2
m∑
j=1

Wj

= 2

m∑
j=1

(Rj + 1)Vj:m:n (20)

For the Trans-RL distribution, the quantity V can be written as

V =
1

σ2

m∑
j=1

(Rj + 1)Y
2g(W,Y )
j:m:n , (21)

where g(W,Y ) = α = 1
2W

−1(t) obtained from (18) numerically and V has the χ2

distribution with 2m degrees of freedom. Hence, the 100(1− γ)% confidence interval of
σ is 

√√√√∑m
j=1(Rj + 1)Y

2g(W,Y )
j:m:n

χ2
γ/2(2m)

,

√√√√∑m
j=1(Rj + 1)Y

2g(W,Y )
j:m:n

χ2
1−γ/2(2m)

 .
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3.3 Inverse estimation of parameters α and σ

Since W (2α) has the χ2 distribution with 2(m−1) degrees of freedom and E(W (2α)) =
2(m − 1) < ∞, then by strong law of large numbers, W (2α̂)

a.s→ 2(m − 2) (or W (2α̂)
converges with probability one to 2(m− 2)).

Therefore, we can obtain the point estimator α̂ of α from the following equation:

W (2α̂) = 2(m− 2). (22)

The inverse estimate of α is obtained by solving equation (22) numerically. From the
previous subsection, we know that V = 2Sm has the χ2 distribution with 2m degrees of
freedom. Hence, the inverse estimate of the parameter σ is

σ̂ =

√∑m
j=1(Rj + 1)Y 2α̂

j:m:n

2(m− 1)
. (23)

4 Simulation Results And Illustrative Example

4.1 Simulation Results

In this subsection, we conduct a simulation study for the Trans-RL distribution under a
variety of progressively Type-II right censored sampling schemes over 10000 replications.

We generate progressively Type-II censored samples from the Trans-RL distribution
for different choices of sample sizes and censoring schemes provided by Wang et al.
(2010). Table 1 shows the coverage probabilities of confidence intervals of α and σ at
0.90 and 0.95 confidence levels for the Trans-RL distribution. It illustrates that the sim-
ulated probabilities for 0.90 and 0.95 are very close to the 0.90 and 0.95 confidence levels.
We also obtain the inverse estimate of α and σ in Table 2 and Table 3 and compare their
performance with the maximum likelihood estimates (MLEs) and L-moment estimates
which are presented in Table 4-6, where L-moments can be estimated by linear com-
binations of order statistics (Hosking (1990)). We observe that the inverse estimation
provides a good alternative to the method of L-moments and MLE in terms of bias and
MSE. Moreover, in almost all cases, the estimators of the parameters α and σ become
less biased as the censored units increase for a fixed sample size.
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Table 1: The coverage probabilities of the confidence intervals in the transformed RL
distribution for α = 1 and σ = 1.

α σ

(n,m) (r1,...,rm) 0.90 0.95 0.90 0.95

(10,5) (0,...,0,5) 0.8500 0.9149 0.8416 0.9100

(10,5) (5,0,...,0) 0.8771 0.9368 0.8591 0.9223

(10,8) (0,0,...,2) 0.8288 0.8975 0.8781 0.9346

(10,8) (2,0,...,0) 0.8447 0.9102 0.8722 0.9334

(20,10) (0,0,...,10) 0.8401 0.9050 0.8755 0.9348

(20,10) (10,0,...,0) 0.8557 0.9190 0.8776 0.9364

(20,15) (0,0,...,5) 0.8385 0.9025 0.8877 0.9415

(20,15) (5,0,...,0) 0.8469 0.9125 0.8838 0.9403

(30,10) (0,0,...,20) 0.8520 0.9146 0.8790 0.9370

(30,10) (20,0,...,0) 0.8626 0.9234 0.8836 0.9393

(50,12) (0,...,0,38) 0.8694 0.9298 0.8881 0.9406

(50,12) (38,0,...,0) 0.8725 0.9293 0.8820 0.9366

(50,25) (0,0,...,25) 0.8457 0.9102 0.8872 0.9396

(50,25) (25,0,...,0) 0.8410 0.9056 0.8948 0.9446

Table 2: The average bias and average MSE of the inverse estimators of the parameters
of the transformed RL distribution for α = 1 and σ = 1.

Bias MSE

(n,m) (r1,...,rm) α̂ σ̂ α̂ σ̂

(10,5) (0,...,0,5) -0.04258 0.27993 0.32956 0.75423

(10,5) (5,0,...,0) -0.03892 0.19442 0.162947 0.59069

(10,8) (0,...,0,2) -0.00334 0.20340 0.10729 0.31404

(10,8) (2,0,...,0) -0.02781 0.14724 0.10363 0.50432

(20,10) (0,0,...,10) -0.01636 0.10813 0.11379 0.18029

(20,10) (10,0,...,0) -0.03189 0.07033 0.05969 0.19855

(20,15) (0,0,...,5) 0.00031 0.09648 0.07304 0.22366

(20,15) (5,0,...,0) -0.01603 0.08205 0.04257 0.15048

(30,10) (0,...,0,20) -0.00912 0.13493 0.12528 0.16423

(30,10) (20,0,...,0) -0.01380 0.06646 0.05292 0.16163

(50,12) (0,...,0,38) 0.00532 0.11155 0.10696 0.14701

(50,12) (38,0,...,0) -0.00705 0.06631 0.04168 0.14275

(50,25) (0,...,0,25) -0.01335 0.04005 0.03567 0.04766

(50,25) (25,0,...,0) -0.00398 0.02737 0.02273 0.07204
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Table 3: The inverse estimates of the parameters of the transformed RL distribution for
α = 1 and σ = 1.

(n,m) (r1,...,rm) α̂ σ̂

(10,5) (0,0...,5) 0.95742 1.27993

(10,5) (5,0,...,0) 0.96108 1.19442

(10,8) (0,...,0,2) 0.99666 1.20340

(10,8) (2,0,...,0) 0.97219 1.14724

(20,10) (0,0,...,10) 0.98364 1.10813

(20,10) (10,0,...,0) 0.96811 1.07033

(20,15) (0,...,0,5) 1.00031 1.09648

(20,15) (5,0,...,0) 0.98397 1.08205

(30,10) (0,...,0,20) 0.99088 1.13493

(30,10) (20,0,...,0) 0.98620 1.06646

(50,12) (0,...,0,38) 1.00532 1.11155

(50,12) (38,0,...,0) 0.99295 1.06631

(50,25) (0,...,0,25) 0.98665 1.04005

(50,25) (25,0,...,0) 0.99602 1.04342

Table 4: The average bias of the L-moments and MLEs of the parameters of the Trans-
formed RL distribution

Bias

α̂ σ̂

(n,m) (r1,...,rm) L-mom MLE L-mom MLE

(10,5) (0,..,0,5) 0.55567 0.92258 -0.38858 -0.79442

(10,5) (5,0,...,0) -0.07781 0.15797 -0.07739 -0.10608

(10,5) (1,1,...,1) 0.15453 0.42711 -0.26749 -0.44135

(10,8) (0,...,0,2) 0.27196 0.45911 -0.11571 -0.3555

(10,8) (2,0,...,0) 0.01472 0.16016 0.00327 0.01753

(20,10) (0,...,0,10) 0.42648 0.61213 -0.42983 -0.61913

(20,10) (10,0,...,0) -0.05016 0.05026 -0.05732 -0.08407

(20,10) (1,1,...,1) 0.03664 0.14912 -0.28479 -0.48656

(20,15) (0,...,0,5) 0.28703 0.39965 -0.18612 -0.25265

(20,15) (5,0,...,0) 0.00450 0.07531 -0.00134 0.01254

(30,10) (0,...,0,20) 0.50733 0.70672 -0.60172 -0.64089

(30,10) (20,0,...,0) -0.10060 -0.01042 -0.08483 -0.11747

(30,10) (2,2,...,2) 0.07229 0.18551 -0.43015 -0.51704

(30,20) (0,...,0,10) 0.31000 0.41319 -0.28147 -0.31776

(50,12) (38,0,...,0) -0.11779 -0.05355 -0.09259 -0.10947

(50,25) (25,0,...,0) -0.03584 -0.00130 -0.02766 -0.01838

(50,25) (1,1,...,1) 0.02812 0.06811 -0.28931 -0.30948
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Table 5: The average MSE of the L-moments and MLEs of the parameters of the Trans-
formed RL distribution

MSE

α̂ σ̂

(n,m) (r1,...,rm) L-mom MLE L-mom MLE

(10,5) (0,..,0,5) 1.50534 2.34460 0.31145 1.13771

(10,5) (5,0,...,0) 0.16243 0.25583 0.07078 0.20065

(10,8) (0,...,0,2) 0.29683 0.51212 0.10391 0.70489

(10,8) (2,0,...,0) 0.12723 0.19352 0.08648 0.23226

(20,10) (0,...,0,10) 0.42118 0.68416 0.20333 0.56756

(20,10) (10,0,...,0) 0.06158 0.07473 0.04174 0.16764

(20,15) (0,...,0,5) 0.17883 0.28198 0.06654 0.22357

(20,15) (5,0,...,0) 0.04760 0.05868 0.02974 0.06064

(30,10) (0,...,0,20) 0.50528 0.83076 0.37277 0.42960

(30,10) (20,0,...,0) 0.05666 0.05525 0.03644 0.15508

(30,20) (0,...,0,10) 0.17262 0.26647 0.09526 0.16951

(50,12) (38,0,...,0) 0.04869 0.04024 0.03231 0.09948

(50,25) (25,0,...,0) 0.02286 0.02195 0.02030 0.01638

(50,25) (1,1,...,1) 0.03492 0.03903 0.09031 0.13263

Table 6: The maximum likelihood and L-moment estimates of the parameters of the
Transformed RL distribution

Estimate

α̂ σ̂

(n,m) (r1,...,rm) L-mom MLE L-mom MLE

(10,5) (0,. . . ,0,5) 1.47614 1.97562 0.61142 0.20558

(10,5) (5,0,. . . ,0) 0.92219 1.15797 0.92261 0.89392

(10,5) (1,1,. . . ,1) 1.15454 1.42711 0.73251 0.55867

(10,8) (0,0,. . . ,2) 1.27196 1.45911 0.88428 0.64447

(10,8) (2,0,. . . ,0) 1.01472 1.16015 1.00327 1.01753

(20,10) (0,0,. . . ,10) 1.42648 1.61213 0.57017 0.38087

(20,10) (10,0,...,0) 0.94983 1.05026 0.94267 0.91593

(20,10) (1,1,. . . ,1) 1.03664 1.14912 0.71520 0.51344

(20,15) (0,0,. . . ,5) 1.28703 1.39965 0.81388 0.74734

(20,15) (5,0,. . . ,0) 1.00450 1.07531 0.99866 1.01254

(30,10) (0,0,. . . ,20) 1.50733 1.70672 0.39828 0.35910

(30,10) (20,0,. . . ,0) 0.89939 0.98958 0.91517 0.88253

(30,10) (2,2,. . . ,2) 1.07229 1.18551 0.56985 0.48296

(30,20) (0,0,. . . ,10) 1.31000 1.41319 0.71853 0.68223

(50,12) (38,0,. . . ,0) 0.88221 0.94645 0.90741 0.89053

(50,25) (25,0,. . . ,0) 0.96416 0.99869 0.97234 0.98162

(50,25) (1,1,. . . ,1) 1.02812 1.06811 0.71069 0.69052
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4.2 An Illustrative Example

We consider the following general progressively Type-II censored data which represent
the time (in minutes) to breakdown of an insulating fluid between electrodes at voltage
30 kv. This data is taken from Nelson (1982, Table 6.1, p. 228). The complete data
set consist of n = 11 times to breakdown. The progressively censored data are given as
follows

ri 0 0 0 0 3 0 0 0

Yi 2.0464 2.8361 3.0184 3.0454 3.1206 4.9706 5.1698 5.2724

The experimenter removed three survival units from the test at the failure (breakdown)
of an insulating fluid which is occurred at 3.1206 minutes such that

∑8
i=1 ri+m = 3+8 =

11.

The maximum likelihood and inverse estimates of α and σ are computed and the
results are shown in Table 7.

Table 7: The maximum likelihood and inverse estimates of α and σ

α̂ σ̂

MLE Inverse MLE Inverse

Complete data 1.84201 1.63638 9.73321 7.45820

Progressive data 1.74957 1.67150 8.38262 8.53374

From Table 7, we observe that the inverse estimates of the Trans-RL parameters α
and σ in the case of progressively censored sample are closer to the ones based on the
complete sample (when m = n and R1 = ... = Rm = 0) than the MLEs. Hence, the
inverse estimation is preferable and is considered as a good alternative even for small
sample size. Moreover, the confidence intervals at 0.90 and 0.95 confidence levels for
each of α and σ are calculated and shown in Table 8 and Table 9.

Table 8: The 0.90 confidence intervals for the parameters α and σ.

90% confidence limits

α σ

Lower Upper Lower Upper

Complete data 1.07606 2.59416 6.27758 10.68066

Progressive data 1.05046 2.77078 6.56098 12.45661

Complete data (MLE) 1.07657 2.60781 -1.97060 21.44285

Progressive data (MLE) 1.02828 2.47307 -1.18758 17.98259
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Table 9: The 0.95 confidence intervals for the parameters α and σ.

95% confidence limits

α σ

Lower Upper Lower Upper

Complete data 0.97022 2.78400 6.01879 11.36063

Progressive data 0.92780 2.98112 6.24778 13.45855

Complete data (MLE) 1.06161 2.62278 -2.19938 21.67163

Progressive data (MLE) 1.04213 2.45922 -1.00412 17.79886

Tables 8 and 9 show that the confidence intervals for both α and σ derived in sections
3.1 and 3.2 are shorter than the confidence intervals based on the maximum likelihood
estimation in almost all cases, which indicates that the confidence intervals using Wang
et al. (2010) method outperform those of maximum likelihood method.

5 Discussion

In this paper, we introduce an inference under progressively Type-II censoring for a new
generalization of Lomax distribution after transformation, called Trans-RL distribution.
This distribution provides great fit in modeling wide range of real datasets. According to
Wang et al. (2010), we discuss some properties of order statistics and Poisson processes
as the Trans-RL distribution belongs to proportional hazard family. Therefore, we derive
the confidence intervals and inverse estimators of the proposed distribution. Simulation
study is performed to investigate the coverage probabilities, the average biases and
the average relative mean square errors for the maximum likelihood, the method of
L-moments and the inverse estimators. Therefore, we show that the performance of
the inverse estimation and the confidence intervals proposed in this paper perform quite
better than the ones derived from the maximum likelihood and the L-moments estimators
under different sample sizes and censoring schemes. Finally, a numerical example is
provided to explain the purpose of this study.
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