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Gene selection in high-dimensional microarray data has become increas-
ingly important in cancer classification. The high dimensionality of microar-
ray data makes the application of many expert classifier systems difficult.
To simultaneously perform gene selection and estimate the gene coefficients
in the model, sparse logistic regression using L1-norm was successfully ap-
plied in high-dimensional microarray data. However, when there are high
correlation among genes, L1-norm cannot perform effectively. To address
this issue, an efficient sparse logistic regression (ESLR) is proposed. Exten-
sive applications using high-dimensional gene expression data show that our
proposed method can successfully select the highly correlated genes. Further-
more, ESLR is compared with other three methods and exhibits competitive
performance in both classification accuracy and Youdens index. Thus, we
can conclude that ESLR has significant impact in sparse logistic regression
method and could be used in the field of high-dimensional microarray data
cancer classification.

keywords: Lasso, microarray data classification, gene selection, sparse lo-
gistic regression.

1 Introduction

One of the major advancement made in the field of biology and genetics research is the
emergence of DNA microarray technology. In cancer research, this technology facilitates
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the determination of the expression values of thousands of genes simultaneously. The
gene expression data is used for various analyses to understand the biological signifi-
cance of the tissue from which the genes were extracted for the experiment (Apolloni
et al., 2016; Algamal and Lee, 2015c). In most applications of the expert systems using
microarray technology, the number of genes, p, is greater than the number of patients
(tissues), n (Zheng and Liu, 2011). Dealing with the situation p > n , which is com-
monly known as high-dimensional data, poses a challenging task in the application of
the statistical methods (Piao et al., 2012; Algamal and Lee, 2017, 2015b,a). Overfitting
and multicollinearity are the most common problems that arise in high-dimensional data
when applying statistical classification methods.

In general, cancer classification analysis, based on microarray gene data, is a task of
constructing a decision rule based on the dataset of genes and tissues, which is able to au-
tomatically assign new tissue to one of two categories (Kalina, 2014). High-dimensional
cancer classification analysis has attracted much attention in both bioinformatics and
computational biology, because the classical classification methods suffer from the curse
of dimensionality (Algamal and Lee, 2015e,d; Algamal, 2012). Using all genes in the
high-dimensional microarray data often results in model overfitting, particularly if there
are irrelevant and noisy genes (Liang et al., 2013). Consequently, removing irrelevant
and noisy genes is an important target when dealing with high-dimensional cancer clas-
sification. In principle, gene selection aims to select a relatively small set of genes from
a high-dimensional gene dataset, and, therefore, achieves high classification accuracy.
Furthermore, selecting important genes can also help in early diagnosis for and drug
discovery for cancer Mao et al. (2013).

Numerous statistical methods have been successfully applied in the area of cancer
classification. Among them, logistic regression (LR) is considered as a powerful dis-
criminative method. LR provides predicted probabilities of class membership and easy
interpretation of the gene coefficients (Algamal and Lee, 2015e,f). However, LR is nei-
ther applicable nor suitable for the high-dimensional microarray data classification, be-
cause the design matrix is singular. Thus, iteration methods, such as Newton-Raphsons
method, cannot work (Bielza et al., 2011).

Recently, there has been growing interest in applying the sparse methods in high-
dimensional cancer classification . To tackle both estimating the gene coefficients and
performing gene selection simultaneously, sparse logistic regression (SLR) has been suc-
cessfully applied in high-dimensional cancer classification (Cawley and Talbot, 2006; Li
and Eng Chong, 2005; Shevade and Keerthi, 2003; Zhu and Hastie, 2004). A SLR with
different penalties can be applied. The most widely and popular penalty is the least
absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996). The Lasso im-
poses the L1-norm penalty to the loss function. Because of the L1-norm property, the
Lasso can perform variable selection by assigning some gene coefficients to zero. For this
reason, the Lasso has gained popularity in high-dimensional data.

In most applications of the bioinformatics and computational biology using microarray
technology, often the genes can be grouped according to a specific structure, such as the
biological pathway. Therefore, selecting a group of correlated genes is desirable than
selecting individual gene because selecting individual gene may perform inefficiently
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in such cases by ignoring the information in the grouping structure (Algamal and Lee,
2015f). The grouping effect suggests that the strongly correlated genes tend to be selected
or not selected together. A resulting estimator encourages the grouping effect when it
tends to select the highly correlated genes together. In this study, an efficient sparse
logistic regression is proposed by introducing a new weight inside the L1-norm penalty.
The main objective behind this new weight is to improve -norm penalty ability to select
more correlated genes inside a group. To evaluate the effectiveness of the new weight,
we apply four public cancer classification datasets. Moreover, a comparison is done with
other penalties.

2 Sparse Logistic Regression

Logistic regression is a statistical method, which it can be used to model a binary
classification problem. The regression function has a nonlinear relation with the linear
combination of the genes. In cancer classification, the response variable of the logistic
regression has two values either 1 for the tumor class or 0 for the normal class. Let
yi ∈ {0, 1}, then the logistic regression model is defined as

ln[
pi

1− pi
] = xTi β, i = 1, 2, ..., n, (1)

where xTi is a 1 × p vector of genes and β = (β1, ..., βk)
T ∈ Rk is a vector of unknown

gene coefficients, and

E(yi = 1|xi) =
Exp(xTi β)

1 + Exp(xTi β)
. (2)

The log-likelihood function can be written as:

`(β) =
n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)}. (3)

Logistic regression offers the advantage of simultaneously estimating the probabilities
pi and 1−pi for each class and classifying subjects. The predicted class is then obtained
by I{p̂i > 0.5}, where I is an indicator function. SLR adds a nonnegative penalty term
to Eq. (3), such that the size of gene coefficients in high-dimension can be controlled.
Without loss of generality, it is assumed that the genes are standardized, then the
estimation of the vector β is obtained by maximizing the sparse logistic regression as

β̂SLR = arg max
β

[
n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)} − λg(β)

]
(4)

where λ g(β) is the penalty term that sparse the estimates. The penalty term depends
on the positive tuning parameter, λ, which controls the tradeoff between fitting the data
to the model and the effect of the penalty. In other words, it controls the amount of
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shrinkage. For the λ = 0, we obtain the maximum likelihood method (MLE) solution.
Conversely, for large values of λ the influence of the penalty term on the coefficient
estimates increases. Several penalty terms have been discussed in the literature. Among
them, L2-norm (Ridge) (Hoerl and Kennard, 1970), L1-norm (Lasso) (Tibshirani, 1996),
L1-norm + L2-norm (Elastic) (Zou and Hastie, 2005), weighted L1-norm (Adaptive
Lasso) (Zou, 2006). The sparse logistic regression model using Lasso, elastic net (Elastic),
and adaptive lasso (ALasso) is defined as

β̂Lasso = arg max
β

 n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)} − λ
p∑
j=1

|βj |

 , (5)

β̂Elastic = arg max
β

 n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)} − (λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2j )

 ,
(6)

β̂ALasso = arg max
β

 n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)} − λ
p∑
j=1

|βj |

(
∣∣∣β̂initialj

∣∣∣)γ
 , (7)

where λ, λ1, λ2, γ ≥ 0 and β̂initialj is an initial estimate for each βj . Eqs. (5)-(7) can be
efficiently solved by the coordinate descent algorithm (Friedman et al., 2010).

Despite the advantage of the Lasso, it has three shortcomings (Wang et al., 2011;
Al-Fakih et al., 2015; Algamal et al., 2017). First, it cannot select more genes than the
number of samples. Second, in microarray gene data, there is grouping among genes,
where genes that share a common biological pathway have a high pairwise correlation
with each other. The Lasso tries to select only one gene or a few of them among a group of
correlated genes. To overcome the first two limitations, Zou and Hastie (2005) proposed
the elastic net penalty, for which the penalty is a linear combination of L1-norm and L2-
norm. Last, the Lasso has a bias gene selection, because it penalizes all gene coefficients
equally. In other words, the Lasso does not have the oracle properties, which refer to
the probability of selecting the right set of genes (with nonzero coefficients) converged
to one, and that the estimators of the nonzero coefficients are asymptotically normal
with the same means and covariances as if the zero coefficients are known in advance
(Fan and Li, 2001). In relation to the last limitation of the Lasso, oracle properties, Zou
(2006) proposed the adaptive Lasso in which adaptive weights are used for penalizing
different coefficients in the L1-norm penalty.

3 An Efficient Sparse Logistic Regression

In high-dimensional classification data, however, the Lasso faces practical problems.
First, Lasso applies the same amount of the penalization to all gene coefficients, resulting
biased estimation of the large gene coefficients. As a result, its model selection results
are inconsistent. Second, for highly correlated genes, Lasso tends to arbitrary pick only
one gene from the whole group (Kamkar et al., 2015; Zou and Hastie, 2005). In addition,
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the adaptive Lasso (Zou, 2006) still has poor performance when there is grouping among
genes, although it applies the different amount of the penalization to gene coefficients.
Furthermore, using β̂MLE as an initial weight is not available and hence the adaptive
Lasso is no longer applicable in the high-dimensional data.Moreover, although, the elastic
net performs well when the pairwise correlations between genes are very high, El Anbari
and Mkhadri (2013) stated that if the absolute correlation between genes is less than
0.95, the elastic net may be slightly less reliable. Moreover, the elastic net does not take
into account the correlation structure among genes. Besides, elastic net computationally
suffers from the burden of having two tuning parameters.

To alleviate these limitations, a new initial weight inside the L1-norm penalty has
been proposed. The main objective behind this new weight is to improve the ability
of L1-norm penalty to select more correlated genes inside a group. This new weight is
defined as

β̂initialj =
sj,β̂Ridge

β̂j,Ridge
, (8)

where sβ̂Ridge
is the standard error of the ridge estimator and β̂Ridge is the ridge estimator.

Although the β̂Ridge can be used as an initial weight in the high-dimensional data, but,
because of the nature of the L2-norm, the ridge penalty tries to force the estimated gene
coefficients of highly correlated genes to be close to each other. However, this property
loses the capability of estimating the coefficients of highly correlated genes with different
magnitude, especially with different signs (Wang et al., 2011).

The main objective behind this new weight is to improve the ability of L1-norm penalty
to select more correlated genes inside a group by using the β̂Ridge and adjusted its capa-
bility of estimating the coefficients of highly correlated genes by using the sβ̂Ridge

. Using

sβ̂Ridge
will adjust the penalized amount for each gene coefficient by assigning small

weight in Eq. (8) to the large gene coefficient and large weight to the small gene coeffi-
cient. In addition, it can enhance the capability of β̂Ridge in estimating the coefficients of
highly correlated genes with different magnitude. Consequently, the benefit of using the
sβ̂Ridge

is to efficiently improve the sparse logistic regression using the weighted L1-norm

penalty in selecting more correlated genes inside a group. Depending on the principal
component analysis, Cule and De Iorio (2013) proposed a procedure to calculate the
sβ̂Ridge

. This procedure was used in calculation, where the R package ridge was used for

implementation. The efficient sparse logistic regression (ESLR) is defined as

β̂ESLR = arg max
β

 n∑
i=1

{yi ln (pi) + (1− yi) ln(1− pi)} − λ
p∑
j=1

(abs(
sj,β̂Ridge

β̂j,Ridge
))
γ

|βj |

 .
(9)

4 Tuning Parameter Selection

For practical applications, one has to decide the values of λ. Classically, cross-validation
(CV) has been widely used. However, it is computationally intensive for ESLR, simply
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because there are two tuning parameters: λ and γ. For simplicity, γ = 1 was used for
the real data application. Then, the ESLR tuning parameters were reduced to only λ.

5 Datasets

To evaluate our proposed method ESLR in the field of cancer classification, four pub-
licly well-known binary cancer classification datasets were used: diffuse large B-cell
lymphoma (DLBCL) (Shipp et al., 2002), prostate cancer (Singh et al., 2002), leukemia
cancer (Golub et al., 1999), and colon cancer (Alon et al., 1999). The detailed informa-
tion of these datasets is summarized in Table 1. The DLBCL dataset consisted of the
gene expression values of 77 samples that were measured by high-density oligonucleotide
microarrays of the two most prevalent adult lymphoid malignancies, which comprised
58 samples of diffuse large B-cell lymphomas (DLBCL) and 19 samples of follicular lym-
phoma (FL). Each sample contained 7,129 gene expression values. The original prostate
dataset contained 12600 genes for 52 prostate tumor samples and 50 non-tumor tissues.
A subset of 5966 genes was adapted in the classification. In the leukemia dataset, there
were two types of patients: 47 patients of acute lymphoblastic leukemia (ALL) and 25
patients of acute myeloid leukemia (AML). The total expression profiles were 7129 genes.
The colon cancer dataset, contained gene expression levels of 40 tumor and 22 normal
colon tissues for 6500 human genes obtained with an Affymetrix oligonucleotide array.
A subset of 2000 genes with the highest minimal intensity across the samples was used.

Table 1: The detail information for the used data sets

Data set # samples # genes Classes

DLBCL 77 7129 DLBCL / FL

Prostate 102 5966 Tumor / Non-tumor

Colon 62 2000 Tumor / Normal

Leukemia 72 7129 ALL / AML

6 Evaluation Measures

In order to evaluate the performance of our proposed ESLR method and to compare
it with other sparse methods, two evaluation criteria were calculated depending on the
training and testing dataset:

Classification accuracy (%) (CA)

CA=
TP + TN

TP + FP + FN + TN
× 100% (10)

Youdens Index (YI)

Y I = (Sensitivity+Specificity)− 1 (11)
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where TP is the number of true positive, FP is the number of false positive, TN is
the number of true negative, and FN is the number of false negative.The sensitivity is
used to ensure the test ability of the classifier. It was calculated in the same way as the
classification accuracy,where it regards only positive cases. While specificity is computed
in the same fashion as sensitivity. The difference is that it deals only with negative cases.
Both sensitivity and specificity are defined as:

Sensitivity=
TP

TP + FN
× 100% (12)

Specificity=
TN

FP + TN
× 100% (13)

7 Results and Discussion

In order to enable a fair comparison, we randomly partitioned each dataset into a training
dataset, which comprised 70% of the samples, and a test dataset, which consisted of 30%
of the samples. In order to get the best value of λ, the 10-fold CV was employed using
the training dataset with 200 times. All the applications were conducted in R using
the glmnet package. The averaged number of selected genes, the averaged classification
accuracy (%) (CA), and Youdens index (YI) in both the training and testing datasets
are reported in Table 2. For comparison purposes, the performance of the Lasso, ALasso,
and Elastic was also evaluated.

As can be seen from Table 2, ESLR selected more genes than the Lasso and ALasso,
while it slightly selected more genes than Elastic. In prostate, for instance, ESLR selected
25 genes compared to 14, 16, and 23 genes for Lasso, ALasso, and Elastic, respectively.
Importantly, ESLR has the potential to select more genes than the Lasso and ALasso,
indicating that most of these additionally selected genes were probably highly correlated.

Furthermore, ESLR has average classification accuracy in both the training and testing
sets, and is much better than Lasso, ALasso, and Elastic in the DLBCL, prostate,
and leukemia datasets, respectively. For the colon dataset, ESLR has slightly better
classification accuracy. For example, in the DLBCL data, the classification accuracy of
ESLR in the training (testing) set was 99.583 (96.741), which was greater than 97.736
(93.674) for the Elastic, 96.287 (92.035) for ALasso, and 96.011 (91.731) for the Lasso.
In terms of Youdens index, the averaged values in all the datasets were considerably
higher for ESLR in both the training and testing datasets, where the maximal Youdens
index is 1. On the other hand, the Lasso generally performed slightly worse than the
other three methods in terms of classification accuracy and Youdens index for either
the training or the testing dataset, although it did select less genes. Furthermore, in
leukemia dataset, although Elastic method selected 27 genes more than 25 selected by
ESLR, the classification accuracy and Youdens index were less than the ESLR.
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Table 2: The averaged evaluation criteria over 200 time for the used data sets

Training set Testing set

# genes CA YI CA YI

DLBCL

Lasso 12 96.011 0.895 91.731 0.859

ALasso 13 96.287 0.905 92.035 0.907

Elastic 24 97.736 0.912 93.674 0.912

ESLR 24 99.583 0.937 96.741 0.940

Prostate

Lasso 14 98.441 0.894 88.749 0.877

ALasso 16 98.718 0.903 88.782 0.883

Elastic 23 98.872 0.910 89.107 0.891

ESLR 25 99.014 0.955 93.317 0.917

Colon

Lasso 10 93.551 0.743 78.882 0.721

ALasso 10 93.803 0.754 79.107 0.738

Elastic 14 94.325 0.769 79.438 0.741

ESLR 15 94.484 0.784 80.107 0.757

Leukemia

Lasso 14 98.891 0.947 95.148 0.907

ALasso 15 98.904 0.951 95.471 0.918

Elastic 27 98.974 0.955 96.076 0.924

ESLR 25 99.638 0.981 98.085 0.977

To further evaluate the ability of ESLR in consistently selecting gene, Fig. 1 depicts
the boxplots of the number of selected genes of ESLR, Elastic, ALasso, and the Lasso
in all the datasets over the 200 times. It is clear that ESLR gave much more consistent
results than the other three methods. For instance, using the whiskers of the boxplots
as a reference, the ESLR is likely to choose a subset of genes of size 23 to 28 genes, as
compared to a subset of size 20 to 25, 10 to 22, and 5 to 22 genes for the Elastic, ALasso,
and the Lasso in the prostate dataset, respectively. This clearly demonstrated that the
size of the selected genes obtained from ESLR was consistent each time.
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Figure 1: Number of selected genes over 200 times for the used methods. (a) DLBCL.
(b) prostate. (c) colon. (d) leukemia

To focus on the capability of ESLR in encouraging grouping effects by selecting the
correlated genes, we listed the most frequently highly correlated selected genes in the
leukemia dataset in Table 3. The correlation matrix of these selected genes is given in Fig.
2. We can observe that the ESLR successfully selected the most highly correlated genes.
For example, the highest correlation among the selected genes was 0.918 between gene
index 2348 and 4535. These two correlated genes were selected together by ESLR with
100% compared to 94% for Elastic, 36% for ALasso, and 20% for the Lasso. Furthermore,
ESLR selected the most important highly correlated genes 190 times out of 200 times,
with the percentage equal to 95%. On the other hand, it can be observed that the
Elastic performed well in selecting highly correlated genes, although it selected more
genes compared to the Lasso and ALasso. In contrast, the Lasso and ALasso failed to
select the highly correlated genes together; their percentages were 21.5% and 23.5%,
respectively. The success of ESLR in selecting more correlated genes than the other
methods, especially ALasso, is due to its ability to adjust the weight.
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Table 3: Frequencies of the most 13 selected genes in leukemia data set over 200 times

Frequency

Gene Index Gene name Lasso ALasso Elastic ESLR

4535 SSR2 Signal sequence receptor, beta 101 121 198 200

4328 MCP Membrane cofactor protein 50 51 178 200

2348 ACADM acyl-coenzyme A dehydrogenase, C-4 to C-12 straight chain 43 47 196 200

1745 C-yes-1 mRNA 173 181 200 200

2242 INTEGRAL MEMBRANE PROTEIN E16 44 51 20 193

6919 Skeletal beta-tropomyosin 157 161 176 190

1882 CST3 cystatin C (amyloid angiopathy and cerebral hemorrhage) 68 71 188 194

6797 GYPB Glycophorin B 58 66 191 200

3320 Guanine nucleotide exchange factor p532

mRNA 59 62 171 191

5501 TOP2B topoisomerase (DNA) II b (180 kDa) 157 173 195 200

1903 Recombination activating protein (RAG-1)

gene 144 137 184 194

6855 TCF3 transcription factor 3 (E2A immunoglobulin enhancer-binding factors E12/E 137 142 191 200

6281 MYL1 myosin light chain (alkali) 142 151 182 193
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Figure 2: The correlation matrix between the top 13 selected genes for leukemia dataset

To further test the stability of the proposed method, the ESLR seeks to prove that it
can classify high-dimensional cancer data with a high degree of accuracy compared to
the other three used methods. Depending on the training dataset, a two-way analysis
of variance (ANOVA) was used as a statistical test to check whether the ESLR, Elastic,
ALasso, and the Lasso were statistically significant and if there was any significant
difference between the four datasets used in terms of classification accuracy. Table 4
reports the two-way ANOVA results. From Table 4, the results showed statistically
significant differences between the ESLR and the three other used methods in terms of
classification accuracy. In addition, we can see that the DLBCL, prostate, colon, and
leukemia datasets had different classification accuracy values.

Furthermore, Duncan’s multiple range test was used to obtain more detailed informa-
tion about the differences between the ESLR and the other three used methods. Table
5 lists the p-value of each compared pair of methods. It is apparent from Table 5 that
the ESLR showed statistical differences compared to the Elastic, ALasso, and Lasso in
terms of classification accuracy.
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Table 4: Two-way ANOVA for average classification accuracy over 200 times

Source df SS MS F p-value

Methods 3 9362.321 3120.773 259.314 0.000

Datasets 3 5826.743 1942.247 161.387 0.000

Error 3193 38426.878 12.0346

Total 3199 53615.851

Table 5: p-value of Duncans multiple range test for average classification accuracy

ALasso Elastic ESLR

Lasso 0.036 0.000 0.000

ALasso 0.007 0.000

Elastic 0.004

To summarize, it is obvious that the microarrays real datasets results demonstrated
the use of ESLR in terms of classification accuracy, Youdens index for both the training
and testing sets. In addition, it outperformed the other competitor methods in terms of
consistent selection, selection of highly correlated genes, and stability test.

8 Conclusion

Cancer classification is one of the most important applications in gene expression data.
In this paper, an efficient sparse logistic regression, ESLR, is proposed by introducing a
new weight inside the L1-norm penalty to estimate the gene coefficients and perform gene
selection simultaneously. As a result, ESLR can improve the classification accuracy of
the expert classifier system using high-dimensional microarray data. The experimental
results of the real datasets demonstrated that ESLR successfully selected the correlated
genes. Moreover, compared with Elastic, ALasso, and Lasso, the proposed method
proved that ESLR yielded positive and useful results in terms of classification accuracy
and Youdens index for both the training and testing datasets. It achieved the highest
classification accuracies (99.58%, 99.01%, 94.32%, and 99.63%) of training dataset and
(96.74%, 93.31%, 80.10%, and 98.08%) of testing dataset for DLBCL, prostate, colon,
and leukemia datasets, respectively. In addition, the Youdens index obtained by the
ESLR was the highest for all of the four gene expression datasets, as compared to
Elastic, ALasso, and Lasso. In conclusion, the obtained results indicate that a highly
classification accuracy is possible when ESLR is employed to analyze gene expression
data for cancer classification.
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